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Abstract

Lip reading has received increasing attention in recent years. This paper focuses on
the synergy of multilingual lip reading. There are about as many as 7000 languages
in the world, which implies that it is impractical to train separate lip reading models
with large-scale data for each language. Although each language has its own linguistic
and pronunciation rules, the lip movements of all languages share similar patterns due
to the common structures of human organs. Based on this idea, we try to explore the
synergized learning of multilingual lip reading in this paper, and further propose a syn-
chronous bidirectional learning (SBL) framework for effective synergy of multilingual
lip reading. We firstly introduce phonemes as our modeling units for the multilingual
setting here. Phonemes are more closely related with the lip movements than the alpha-
bet letters. At the same time, similar phonemes always lead to similar visual patterns
no matter which type the target language is. Then, a novel SBL block is proposed to
learn the rules for each language in a fill-in-the-blank way. Specifically, the model has
to learn to infer the target unit given its bidirectional context, which could represent the
composition rules of phonemes for each language. To make the learning process more
targeted at each particular language, an extra task of predicting the language identity is
introduced in the learning process. Finally, a thorough comparison on LRW (English)
and LRW-1000 (Mandarin) is performed, which shows the promising benefits from the
synergized learning of different languages and also reports a new state-of-the-art result
on both datasets.

1 Introduction
Lip reading aims to infer the speech content by using visual information like lip movements,
and is robust to the ubiquitous acoustic noises [10] in our life. This special property makes it
important for automatic speech recognition in noisy or silent scenarios [4, 13, 20, 21]. With
the rapid development of deep learning technologies and the recent emergence of several
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Phoneme Set
① a, ai, au, b, ch, d, ei, ə, 
əu, f, g, h, i, ii, k, l, m, n, p, s, 
zh, sh, t, u, uu, w, y, z, ʒ, ɔ; 
② ŋ, e, ʌ, æ, ð, ɔi, r, θ, v; 
③ in, iŋ, yu, yue, ts, j, q, uŋ, 
uɔ, x, an, aŋ, əŋ, ən, ie, iii, 
ər
Notations:
①: Common phonemes shared 
among English and Chinese
②: Unique phonemes in English 
③: Unique phonemes in Chinese

Example Words
English words Chinese words

Example Lip Reading Samples 

English: about

/t uŋ b au/

/ə ˈb au t/

English: after

/j yu d a/

/ˈɑː f t ər/

Chinese: 通报

Chinese: 巨大

Paired Example 1:

Paired Example 2:

words Phonemes

after /'a:f t ər/ 
kite /'k ai t/ 

make /'m ei k/ 
come /'k ʌ m/
about /ə 'b au t/

loud /l au d/
…… ……

lake /l ei k/

words Phonemes

把 /b a/ 
美 /m ei/ 
才 /ts ai/
通 /t uŋ/
报 /b au/
巨 /j yu/
…… ……
大 /d a/

(a) The union of phonemes in English 
and Chinese words used in this paper. 

(b) Examples of some words and their 
corresponding phonemes.

(c) Paired Examples of some lip reading samples, where each pair contains 
at least one common phoneme in the presented English and Chinese words.

Figure 1: Illustration of the modeling units in our work.

large-scale lip reading datasets [3, 4, 19, 23], there have been several appealing results in
recent years [1, 2, 20, 23, 24]. However, almost all of the existing methods focus on the
problem of monolingual lip reading. In this paper, we try to make an exploration of mul-
tilingual lip reading, which has not been considered before to the best of our knowledge.

Limited by the structure of our vocal organs, the number of distinguishable pronuncia-
tions we could make is finite. So the set of distinguishable pronunciations in each language
is finite, leading to many common pronunciations shared among different languages. For
example, there are as many as 30 phonemes existing in both English and Mandarin words,
as shown in Figure 1.(a). Figure 1.(b) provide some example words with their corresponding
phoneme-based representations. The same phonemes in different languages would generate
the same or similar lip movements even though the speakers are of different languages, as
shown by Figure 1.(c). Besides, knowledge sharing and transfer among different languages
could further help the unique model shared by different languages learn more easily than
learning separately from every single language. These factors make us think it possible to
perform a synergize learning of multilingual lip reading.

Each language has its own rule to compose different units (characters or phonemes)
into a valid word. If we could make the lip reading model master the composition rules
for each language, it should be able to obtain good recognition results when meeting these
languages. Based on this idea, we consider the learning process of the composition rule for
each language as to learn a fill-in-the-blank problem according to the correct rules. If the
model could make correct predictions for any missing units, no matter which language the
input is, as long as its previous and later context is given, then the decoder module should be
also effective to compose correct phonemes into correct words in the multilingual lip reading
setting. Therefore, a novel synchronous bidirectional learning (SBL) block is introduced to
construct the decoder module to finish our prediction process for the multilingual lip reading
problem.

Overall, the main contributions could be summarized as follows.
• We make a first exploration to the problem of multilingual lip reading. As far as we

know, it is the first time to tackle the lip reading problem in a multilingual setting with
large-scale lip reading datasets.

• To perform a better multilingual lip reading, we introduce phonemes as the modeling
units, which acts as the bridge to link different languages. Then, a novel synchronous
bidirectional learning (SBL) framework is proposed to learn the composition rule for
each language. Finally, an extra task of judging the language type is introduced to
make the learning more targeted at each specific language at present.

• With a thorough evaluation and comparison, our method not only shows a clear advan-
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tage of multilingual lip reading over monolingual lip reading, but also outperforms the
existing state of the art performance by a large margin on the benchmarks of different
languages.

2 Related work
2.1 Lip Reading
Great strides have been made in lip reading recently [1, 2, 3, 4, 10, 11, 13, 17, 18, 20, 21,
22, 23, 24]. Existing lip reading methods could be generally divided into two categories,
decoding based methods and classification based methods.

In the first category, lip reading is considered as a sequence (image sequence) to sequence
(text sequence) problem, and seq2seq models based on RNN or Transformer [16] are applied.
For example, Chung et al. [4] was the first to use an RNN based encoder-decoder framework
to perform lip reading and has achieved an appealing result. Luo et al. [10] proposed to
introduce the CER (character error rate) to the RNN based seq2seq model to perform a more
direct optimization over the evaluation metric. Zhang et al. [20] introduced a temporal focal
block to capture the short-range dependencies based on the Transformer-seq2seq model.

In the second category, the whole input image sequence is taken as a single object be-
longing to a word class, and the lip reading problem is considered as a video classification
problem. In 2017, Stafylakis et al. [13] proposed an effective pipeline to perform classifi-
cation based lip reading, which has been used widely in the subsequent lip reading methods
[10, 11, 18, 20, 21, 22]. Later, Wang [17] proposed a multi-grained spatio-temporal model
to perform lip reading by collecting information from three different granularities.

2.2 Multilingual Learning
Multilingual learning has been studied for a long time in the field of speech recognition and
natural language processing. Dalmia et al. [5] found that an end-to-end multi-lingual training
of seq2seq models is beneficial to low resource cross-lingual speech recognition. In 2018,
Zhou et al. [25] proposed to use the sub-words as modeling units with the Transformer archi-
tecture [16] and achieved good results for multilingual speech recognition. Toshniwal et al.
[15] take a union of language-specific grapheme sets and train a grapheme-based sequence-
to-sequence model on data combined by different languages for speech recognition. Besides
the design of modeling units, some other methods performed multilingual learning by other
ways. For example, Tan et al. [14] proposed to train separate models for each language
at first and then perform knowledge distillation from each language-specific model to the
multilingual model for multilingual translation. Wang et al. [12] presented a Grapheme-to-
Phoneme (G2P) model which share the same encoder and decoder across multiple languages
by utilizing a combination of universal symbol inventories of Latin-like alphabets and cross-
linguistically shared feature representations. Inspired by these related methods, we make an
exploration to the synergized learning of multilingual lip reading, by introducing phonemes
as modeling units, and also a novel synchronous bidirectional learning framework to solve
the multilingual lip reading problem, which has not been touched before.

3 The Proposed SBL Framework
We build our model based on the Transformer architecture, as shown in Figure 2. The whole
model can be divided into two main parts: the visual encoder and the synchronous bidi-
rectional decoder, which are shown as blue and yellow parts respectively in Figure 2.(a).
The visual encoder is responsible for encoding the input image sequence to a preliminary
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CNN based Front-end

Input sequence (X1:T)
(Both English and Mandarin)
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(a) The Proposed Synchronous Bidirectional Learning Framework (b) The Involved Attention Blocks in Our Framework
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Figure 2: The whole framework of our model. The model takes the lip image sequence
(X1:T ) as input and outputs a sequence of phonemes ŷyy1:L. During the inference process, the
decoder employs the left-to-right (L2R) phoneme context cccL2R

1:i = [c1,c2, . . . ,ci] to predict
ŷi+1, and the right-to-left (R2L) phoneme context cccR2L

1:i = [cL, cL−1, . . . , cL−i] to predict
ŷL−i−1.

sequential representation of the sequence. Then the synchronous bidirectional decoder is
followed to take the outputs of the encoder as inputs and predicts both the left-to-right and
the right-to-left output sequence simultaneously in the training process. By learning from
the bidirectional context including both the previous and future time steps, the model could
be able to learn the composition rules of each language.

3.1 The Visual Encoder
As shown in Figure 2.(a), the visual encoder mainly consists of two modules, the CNN based
front-end and N stacked self-attention blocks. The CNN based front-end is used to capture
the short-term spatial-temporal patterns in the image sequence, and N stacked self-attention
blocks are used to weight the patterns at different time steps in the visual sequence to obtain
the final representation of the encoder.

Specifically, we denote the input image sequence as X = (x1,x2, ...,xT ), where T is the
number of frames in the sequence. We use H and W to denote the height and width of
the frames respectively. The image sequence is input to a 3D-convolutional layer firstly,
followed by a max-pooling layer. The spatial dimension is reduced to a quarter of the input
size, while the temporal dimension is kept the same as the input. That is, the dimension of
the output would be T ×H/4×W/4. Then a ResNet-18 [7] module is introduced to output
a 512-d vector at each time step, which would be added with their corresponding positional
encodings and then used as the input of the subsequent self-attention blocks. The final output
of the last self-attention block is taken as the final representation of the input sequence. We
denote the output as Eθ (X), where θ represents the parameter of the encoder, and Eθ (X) is
composed by T 512-d vectors.

The structure of each self-attention block is the same as [16]. As shown in Figure 2.(b),
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the output of each self-attention block can be obtained as:

Q′ = QWQ,K′ = KWK ,V ′ =VWV ,

H(Q,K,V ) = softmax
(

Q′K′T√
dk

)
V ′,

MH(Q,K,V ) = Concat(H1, . . . ,Hh)WH .

(1)

Where H and MH means the output of a single head attention block and a multi-head at-
tention block respectively, Q,K and V equal to each other corresponding to the input of the
block. Each head H j( j = 1, ..,h) would have its own learnable parameters WQ,WK and WV .
WH is another learnable parameter to combine all the outputs from all the heads. In this pa-
per, we employ h = 8 and N = 6 in the encoder. The dimension dk of both the query matrix
Q and key matrix K, and the dimension dv of the value matrix V , are all set to 64.

3.2 The Synchronous Bidirectional Decoder
Given the representation Eθ (X) of each input sequence X , the synchronous bidirectional
(SB) decoder is introduced to predict each phoneme ci at each output’s time step i (i =
1,2, . . . ,L). As shown in Figure 2.(a), the decoder part is composed of several stacked syn-
chronous bidirectional learning (SBL) blocks. Each block would combine the context from
both the previous and future time steps to generate its output to the next SBL block. We
use the context of the left-to-right (L2R) and the right-to-left (R2L) directions in the label
sequence to express the previous and future context.

As shown in Figure 2.(a), each SBL block contains two branches: the L2R branch and
the R2L branch. Each branch consists of a self-attention block and a vanilla-attention block.
The self-attention block would perform a weighted sum of its input at different time steps,
where the weights are obtained from the input by itself, as shown in Eq.(1) where Q,K,V are
all equal to the input. The vanilla attention block is similar to the self-attention block, and
also output a weighted sum of its input ( which is corresponding to the output of the previous
self-attention block) at different time steps. But the weights are generated according to the
output of the encoder, as shown in Figure 2 where K and V are equal to the output of the
encoder and Q is the output of the previous self-attention block.

To effectively unify the L2R and the R2L branches, some differences exist between the
first SBL block and the subsequent SBL blocks. Specifically, we assume the ground truth
labels of each sequence as yyy = (y1,y2, ...,yL), where each sequence is padded to the same
length L. The architecture can be described as follows.

• For the first SBL block, a sequence of phonemes before the current time step together
with their corresponding positional encodings is used as the input. For example, when
predicting the target unit at time step i+ 1(i = 0, ...,L− 1), the input to the first L2R
and R2L branch are cccL2R

1:i = (c1,c2, ...,ci) and cccR2L
1:i = (cL,cL−1, ...,cL−i) respectively,

as shown in Figure 2.(a). Each ci (or cL−i) is equal to the corresponding prediction
result ŷi (or ŷL−i) in the inference process. For training, we introduce probabilistic
teacher forcing, where ci (or cL−i) is equal to the ground truth unit yi (or yL−i)with a
probability γ , and to the previous prediction result ŷi (or ŷL−i) with a probability 1-γ .

• For the SBL blocks after the first one, the input from the previous output would be
reversed at first to generate the R2L branch’s input.

• For all the SBL blocks, the output of R2L would be reversed at first to perform an
element-wise summation with the output of L2R branch. Then the summation is used
as the output of the corresponding SBL block.
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Finally, two fully connected layers are introduced to project the output of the two branches
of the last SBL block to the unified phoneme space respectively.

To make the learning process more targeted and effective for each specific language, we
also introduce an extra task to predict the language type of the input by adding an extra
indicator label F to the ground-truth sequence: yyy→ {F,yyy}. With the prediction task, the
model can be guided to learn in a more targeted and effective manner for different languages.

3.3 Learning Process
Given the above pipeline, the model is learned by minimizing the cross-entropy loss at each
time step. Specifically, we use ŷi

(L2R) and ŷi
(R2L) to denote the prediction results of the L2R

and R2L branch at time step i respectively. Then the model would be optimized to minimize
Ltotal as follows:

LL2R =−
L

∑
i=1

p(ŷi
(L2R)) log p(ŷi

(L2R)), LR2L =−
L

∑
i=1

p(ŷ(R2L)
i ) log p(ŷ(R2L)

i ) (2)

Ltotal = λ1LL2R +λ2LR2L (3)

where p(ŷi
(L2R)) = p(ŷ(L2R)

i |c1,c2, . . . ,ci−1), p(ŷ(R2L)
L−i ) = p(ŷ(R2L)

L−i |cL,cL−1, . . . ,cL−i+1). λ1
and λ2 are used to balance the learning of the two branches, and both of them are set to be
0.5 in our experiments.

For the test process, we introduce the entropy of the prediction results of each branch to
measure the quality of the corresponding branch. A smaller entropy of the prediction results
indicates stronger confidence of the prediction. In the ideal case, the prediction is like a one-
hot vector. We define H(ŷ(L2R)

i ) and H(ŷ(R2L)
i )) as the entropy of the prediction distribution

of the L2R and R2L branch at time step i respectively. The combination result is denoted as
C-Bi, where C means combining. It is achieved by:

C-Bii =

{
ŷ(L2R)

i if H(ŷ(L2R)
i )< H(ŷ(R2L)

i ).

ŷ(R2L)
i if H(ŷ(L2R)

i )> H(ŷ(R2L)
i ).

(4)

In the setting where an extra language indicator flag F is introduced, the above combina-
tion operation is performed only when the predictions of the language identity from both the
two branches are the same. If the judgements are different, then we directly adopt the result
from the branch which has a smaller entropy over the language identity judgement.

4 Experiments
Limited by the existing available large-scale lip reading datasets, we evaluate the proposed
SBL framework with two languages, the English dataset LRW, and the Mandarin dataset
LRW-1000.

English Lip Reading Dataset: LRW [3], released in 2016, is the first large scale English
word-level lip-reading datasets, which includes 500 English words. There are 1000 training
samples in each word class. All the videos are collected from BBC TV broadcasts, resulting
in various types of speaking conditions in the wild. It has become a popular and influential
benchmark for the evaluation of many existing lip reading methods.

Mandarin Lip Reading Dataset: LRW-1000 [19], released in 2019, is a challenging
and naturally distributed large scale benchmark for Mandarin word-level lip-reading. There
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are 1000 Mandarin words and phrases, and more than 700 thousand samples in total. The
length and frequency of the words are all naturally distributed without extra limitations,
forcing the model to be easily adaptive to the practical case where some words indeed appear
more frequently than others.

In our experiments, the split manner of training and test set is the same as divided by each
dataset itself when we train mono-lingual lip reading models. When we train multilingual
lip reading models, the training and test data is composed by the union of the training and
test set of each language respectively. But the metric value is computed for each language
separately to perform a comparison with other methods in a similar setting.

4.1 Implementation Details
We crop the mouth regions of each frame on LRW with a fixed bounding box of 112 by
112.The images in LRW-1000 are already cropped well and we use them directly without
other pre-processing. All the images are converted to grayscale, resized to 112 × 112, and
then randomly cropped to 88 × 88. Each word in both the English dataset LRW and the
Mandarin dataset LRW-1000 is converted to a sequence of phonemes, which would be used
as the target label sequence. In our paper, we use 39, 47 and 56 phonemes for only English,
only Chinese and the union of English and Chinese respectively.

In the training phase, the Adam [8] optimizer is employed with default parameters. The
learning rate would be changed automatically in the training process according to the number
of training steps. To speed up the training speed and ensure the generalization performance
of the model, we set the teacher forcing rate γ as 0.5. The implementation is based on
PyTorch. Dropout with probability 0.5 is applied to each layer in our model.

To perform a convenient comparison with other methods, we also adopt the word-level
accuracy (Acc.) as the performance measure, where Acc. = 1- WER and WER is computed
by comparing the predicted and ground truth phoneme sequence.

4.2 Ablation Study of the Proposed SBL Framework
In this section, we try to answer two questions based on our model with a thorough compari-
son and analysis. (1) Is it possible to perform multilingual lip reading, after all, mono-lingual
lip reading itself has already been a very challenging task? (2) Would the proposed SBL
framework be effective for the synergy of multilingual lip reading? How much improvement
could it bring to the recognition of each specific language?

I. For Question-1: We answer it from the following comparison.

• I-A. TM (Baseline): For the baseline, we use the visual encoder shown in Figure
2.(a), with the decoder as the traditional Transformer [16]. Two different models are
trained on the English and Mandarin lip reading datasets respectively, which is in the
same way as traditional work.

• I-B. TM-ML: Using the same architecture as I-A, but the model is trained with a
new mixed data by combining LRW and LRW-1000 together, where ML refers to the
introduction of training on different languages simultaneously.

• I-C. TM-ML-Flag: Based on I-B, we add an extra indicator flag to introduce an extra
task of predicting the language type. Here, we use Flag to denote the introduction of
this task.

The results, in Table 1, show the recognition performance of the model for both common
phonemes and unique phonemes between the two languages, English and Mandarin (LRW
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and LRW-1000). We could find that the multilingual training can improve the ability of
recognizing not only the common phonemes shared between these languages, but also the
unique phonemes belonging to each specific language. At the same time, we find that the
prediction performance has not much relation with the phoneme’s position in the word. The
multilingual setting would increase both the quantity and the diversity of each phoneme
shared among different languages. At the same time, knowledge sharing and transfer among
different languages can also improve the learning ability of the model. So the learning for
the multilingual target could bring many benefits to the recognition.

The results are shown in Table 2 and Table 3, which report both the phoneme error rate
(PER) and the accuracy (Acc.=1-WER) in different settings, where “EN/CN” and “EN+CN”
mean that the corresponding model is trained with a single language or both lnaguages (EN:
LRW and CN: LRW-1000). According to Table 2 and Table 3, we could find that there
is a significant improvement when using mixed multilingual data for training. This shows
that the joint learning of different languages could help improve the model’s capacity and
performance for phonemes, leading to enhance the model’s performance for each individual
language. This conclusion is consistent with the results in the related ASR and NLP domain
[5, 6, 9, 25].

As can be seen from Table 2 and Table 3, there is a further improvement when we further
introduce an extra language type prediction task to the learning process. It suggests that an
explicit introduction of the task to predict language type could help the model learn the rules
of different languages more effectively.

Method Languages
EN_LRW (PER. ↓ ) CN_LRW-1000 (PER. ↓ )

CPs UPs CPs UPs
TM(Baseline) EN/CN 16.12% 17.58% 48.03% 48.90%

TM-ML EN+CN 13.85% 14.97% 46.81% 47.55%
TM-ML-Flag EN+CN 13.76% 14.45% 46.68% 47.03%
TM-ML-BD EN+CN 13.05% 13.77% 41.91% 43.52%

TM-ML-BD-Flag EN+CN 12.88% 13.50% 41.79% 42.44%

Table 1: Evaluation of the effects of multilingual synergized learning for common and unique
phonemes prediction. CPs:Common Phonemes, UPs:Unique Phonemes. ↓ means that the
lower the value is, the better the performance is.

Method Languages
EN_LRW (PER. ↓ ) CN_LRW-1000 (PER. ↓ )

L2R R2L C-Bi L2R R2L C-Bi
TM(Baseline) EN/CN - - 16.98% - - 48.42%

TM-ML EN+CN - - 14.53% - - 47.21%
TM-ML-Flag EN+CN - - 14.12% - - 46.83%
TM-ML-BD EN+CN 13.50% 13.66% 13.37% 43.82% 42.71% 42.35%

TM-ML-BD-Flag EN+CN 13.39% 13.53% 13.19% 43.11% 42.20% 42.03%

Table 2: Evaluation of the effects of multilingual synergized learning for phonemes predic-
tion. TM:Transformer, ML:Multi-lingual, BD:Bi-directional, ↓ means that the lower the
value is, the better the performance is.

II. For Question-2: We perform comparison and analysis from two aspects. Firstly, we
evaluate our idea that the composition rules of each language can be learned more easily by
using bi-directional context and so could provide help for multilingual lip reading. Then we
compare with the proposed SBL framework to verify its effectiveness. For this target, we
performed the following comparison at first.
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• II-A. TM-ML-BD: Based on the setting of I-B, we introduce an extra decoder module
which is targeted to make predictions in a right-to-left direction. We use BD to denote
that bi-directional information is used in the learning process.
• II-B. TM-ML-BD-Flag: Based on the model II-A, an extra prediction task of lan-

guage type as I-C is introduced in this setting.
The results are shown in Table 2 and Table 3. We can see that there is an obvious

improvement when the bi-directional context is introduced. The accuracy increased from
81.03% and 44.58% to 84.12% and 52.61% on LRW and LRW-1000 respectively. This
improvement verifies the effectiveness of our idea that the rules of each language could be
learned by learning to infer the target phoneme given its bidirectional context. When we
introduce the extra task of predicting language type, the performance is further improved.

Method Languages
EN_LRW (Acc. ↑ ) CN_LRW-1000 (Acc. ↑ )

L2R R2L C-Bi L2R R2L C-Bi
TM(Baseline) EN/CN - - 76.22% - - 41.83%

TM-ML EN+CN - - 81.03% - - 44.58%
TM-ML-Flag EN+CN - - 82.17% - - 45.24%
TM-ML-BD EN+CN 83.56% 82.78% 84.12% 49.33% 51.48% 52.61%

TM-ML-BD-Flag EN+CN 84.04% 83.26% 84.63% 50.35% 52.67% 53.29%

Table 3: Evaluation of the baseline methods for multilingual lip reading. ↑ means that the
higher the value is, the better the performance is.

Method Languages
EN_LRW (Acc. ↑ ) CN_LRW-1000 (Acc. ↑ )

L2R R2L C-Bi L2R R2L C-Bi
TM-ML-BD EN+CN 83.56% 82.78% 84.12% 49.33% 51.48% 52.61%

TM-ML-BD-Flag EN+CN 84.04% 83.26% 84.63% 50.35% 52.67% 53.29%
SBL-First EN+CN 84.97% 83.46% 85.26% 51.79% 53.82% 54.35%
SBL-All EN+CN 86.21% 85.04% 86.78% 52.78% 55.63% 56.12%

SBL-All-Flag EN+CN 86.88% 85.64% 87.32% 53.41% 56.29% 56.85%

Table 4: The SBL results for exploring multilingual lip reading. ↑ means that the higher the
value is, the better the performance is.

Based on the above evaluation, we make a further comparison of the above bidirectional
models with our proposed SBL, which unifies the two-directional context together in a single
block, instead of two separate single-directional modules. For this target, we perform the
following experiments.

• II-C. SBL-First: In this setting, we only introduce the first SBL module to the de-
coder, but keep the subsequent blocks in the decoder as the traditional blocks in the
vanilla Transformer [16].
• II-D. SBL-All: In this setting, the architecture is totally the same as shown in Figure

2.(a), where each block in the decoder is designed to combine the bidirectional context
together.
• II-E. SBL-Flag: This setting is almost the same as II-D, except that an extra task of

predicting language type is introduced to the learning process.
The results are shown in Table 4. As we can see, it is much better even we introduce the
SBL block only at the first layer. It achieves the performance of 85.26% and 54.35% on
LRW and LRW-1000 respectively. This result has already outperformed TM-ML-BD-Flag
which introduce two separate uni-directional decoder branches and the extra prediction task
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of language type. When we introduce the SBL block through the whole decoder with the
extra language-type prediction task, SBL-All-Flag outperforms the others by a large margin
on both the two datasets.

4.3 Comparison with the State of the Art
In this part, we perform a comparison with other related state-of-the-art lip reading methods,
including both seq2seq based decoding methods and classification based methods, as shown
in Table 5. In the table, [11], [13], [18], [22], [21] are based on sequential classification
structures. And [20], [10] are based on sequential decoding structures. We can find that
our SBL framework outperforms the state-of-the-art performance by a large margin, espe-
cially on LRW-1000. One noteworthy result is that [20] achieved an accuracy of 83.7% on
the English benchmark LRW after pre-training on two extra large-scale English lip reading
datasets, LRS2-BBC and LRS3-TED. But their result is worse than ours which use only an
extra Mandarin dataset LRW-1000 which has a smaller scale than LRS2-BBC and LRS3-
TED. This result could provide another support to the benefits of multilingual training.

Work Method LRW LRW-1000
[13]-2017 Classifying 83.00% -
[11]-2018 Classifying 82.00% -
[20]-2019 Decoding 83.70% -
[10]-2020 Decoding 83.50% 38.70%
[22]-2020 Classifying 84.41% 38.79%
[21]-2020 Classifying 85.02% 45.24%
[18]-2020 Classifying 84.13% 41.93%

Ours (SBL-First) Decoding 85.26% 54.35%
Ours (SBL-All) Decoding 86.78% 56.12%

Ours (SBL-All-Flag) Decoding 87.32% 56.85%

Table 5: Comparison with other related methods.

5 Conclusion
Inspired by the related multilingual study in the field of automatic speech recognition and
NLP, we try to explore the possibility of multilingual synergized lip reading with large scale
datasets for the first time. The phonemes are introduced as the modeling units to bridge
different languages. And a new synchronous bidirectional learning manner is introduced
to unify the two-directional context together in each block, to enhance the learning of each
language. Both the proposed model and the learning process are not related to some spe-
cific properties of some single language, so it can be directly employed to three or more
languages. Limited by the available large-scale lip reading datasets, we perform a thor-
ough evaluation and analysis on the English and Mandarin datasets. Our work achieves new
state-of-the-art performance on both the two challenging benchmarks, LRW (English) and
LRW-1000 (Mandarin).
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