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ABSTRACT
With the prevalence of graph data in a variety of domains,
there is an increasing need for a language to query and
manipulate graphs with heterogeneous attributes and struc-
tures. We propose a query language for graph databases that
supports arbitrary attributes on nodes, edges, and graphs.
In this language, graphs are the basic unit of information and
each query manipulates one or more collections of graphs.
To allow for flexible compositions of graph structures, we
extend the notion of formal languages from strings to the
graph domain. We present a graph algebra extended from
the relational algebra in which the selection operator is gen-
eralized to graph pattern matching and a composition oper-
ator is introduced for rewriting matched graphs. Then, we
investigate access methods of the selection operator. Pat-
tern matching over large graphs is challenging due to the
NP-completeness of subgraph isomorphism. We address this
by a combination of techniques: use of neighborhood sub-
graphs and profiles, joint reduction of the search space, and
optimization of the search order. Experimental results on
real and synthetic large graphs demonstrate that our graph
specific optimizations outperform an SQL-based implemen-
tation by orders of magnitude.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Lan-
guages; H.2.4 [Database Management]: Systems—Query
processing

General Terms
Algorithms, Languages, Performance
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1. INTRODUCTION
Data in multiple domains can be naturally modeled as

graphs. Examples include the Semantic Web [28], GIS, im-
ages [2], videos [20], social networks, Bioinformatics and
Cheminformatics. Semantic Web standardizes information
on the web as a graph with a set of entities and explicit rela-
tionships. In Bioinformatics, graphs represent several kinds
of information: a protein structure can be modeled as a set of
residues (nodes) and their spatial proximity (edges); a pro-
tein interaction network can be similarly modeled by a set
of genes/proteins (nodes) and physical interactions (edges).
In Cheminformatics, graphs are used to represent atoms and
bonds in chemical compounds.

The growing heterogeneity and size of the above data has
spurred interest in diverse applications that are centered on
graph data. Existing data models, query languages, and
database systems do not offer adequate support for the mod-
eling, management, and querying of this data. There are a
number of reasons for developing native graph-based data
management systems. Considering expressiveness of queries:
we need query languages that manipulate graphs in their
full generality. This means the ability to define constraints
(graph-structural and value) on nodes and edges not in an
iterative one-node-at-a-time manner but simultaneously on
the entire object of interest. This also means the ability to
return a graph (or a set of graphs) as the result and not just
a set of nodes. Another need for native graph databases
is prompted by efficiency considerations. There are heuris-
tics and indexing techniques that can be applied only if we
operate in the domain of graphs.

1.1 Graphs-at-a-time Queries
Abstractly, a graph query takes a graph pattern as in-

put, retrieves graphs from the database which contain (or
are similar to) the query pattern, and returns the retrieved
graphs or new graphs composed from the retrieved graphs.
Examples of graph queries can be found in various domains:

• Find all heterocyclic chemical compounds that contain
a given aromatic ring and a side chain. Both the ring
and the side chain are specified as graphs with atoms
as nodes and bonds as edges.

• Find all protein structures that contain the α-β-barrel
motif [4]. This motif is specified as a cycle of β strands
embraced by another cycle of α helices.

• Given a query protein complex from one species, is it
functionally conserved in another species? The pro-



tein complex may be specified as a graph with nodes
(proteins) labeled by Gene Ontology [12] terms.

• Find all instances from an RDF (Resource Description
Framework [22]) graph where two departments of a
company share the same shipping company. The query
graph (of three nodes and two edges) has the con-
straints that nodes share the same company attribute
and the edges are labeled by a “shipping” attribute.
Report the result as a single graph with departments
as nodes and edges between nodes that share a shipper.

• Find all co-authors from the DBLP dataset (a collec-
tion of papers represented as small graphs) in a spec-
ified set of conference proceedings. Report the results
as a co-authorship graph.

As illustrated above, there is an increasing need for a lan-
guage to query and manipulate graphs with heterogeneous
attributes and structures. The language should be native to
graphs, general enough to meet the heterogeneous nature of
real world data, declarative, and yet implementable. Most
importantly, a graph query language needs to support the
following feature.

• Graphs should be the basic unit of information. The
language should explicitly address graphs and queries
should be graphs-at-a-time, taking one or more collec-
tions of graphs as input and producing a collection of
graphs as output.

1.2 Graph Specific Optimizations
A graph query language is useful only if it can be efficiently

implemented. This is especially important since one en-
counters the usual bottlenecks of subgraph isomorphism. As
graphs are special cases of relations, graph queries can still
be reduced to the relational model. However, the general-
purpose relational model allows little opportunity for graph
specific optimizations since it breaks down the graph struc-
tures into individual relations. Let us consider a simple ex-
ample as follows. Figure 1 shows a graph query and a graph
where each node has a single label as its attribute (nodes
with the same label are distinguished by subscripts).

P

A

B

A1

B1C1 B2

G

C C2

A2

Figure 1: A sample graph query and database graph

An SQL-based implementation would store the graph in
two tables. Table V(vid, label) stores the set of nodes1 where
vid is the node identifier. Table E(vid1, vid2) stores the set
of edges where vid1 and vid2 are end points of each edge.
The graph query can then be implemented by multiple joins:

SELECT V1.vid, V2.vid, V3.vid

FROM V AS V1, V AS V2, V AS V3,

E as E1, E as E2, E as E3

1For convenience, the terms “vertex” and “node” are used
interchangeably in this paper.

WHERE V1.label = ’A’ AND V2.label = ’B’ AND V3.label = ’C’

AND V1.vid = E1.vid1 AND V1.vid = E3.vid1

AND V2.vid = E1.vid2 AND V2.vid = E2.vid1

AND V3.vid = E2.vid2 AND V3.vid = E3.vid2

AND V1.vid <> V2.vid AND V1.vid <> V3.vid

AND V2.vid <> V3.vid;
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V2 V3

E1

E2

E3

Join on
V1.vid = E1.vid1

Figure 2: SQL-based implementation

As can be seen in the above example, the global view
of graph structures is lost in the SQL query. This prevents
pruning of the search space that utilizes local or global graph
structural information. For instance, nodes A2 and C1 in
G can be safely pruned since they have only one neighbor.
Node B2 can also be pruned after A2 is pruned. Further-
more, the SQL query involves many join operations. Tradi-
tional query optimization techniques such as dynamic pro-
gramming do not scale well with the number of joins. This
makes SQL-based implementations inefficient.

1.3 Our Approach
In this paper, we propose GraphQL, a graph query lan-

guage that uses a graph pattern as the basic operational
unit. A graph pattern consists of a graph structure and a
predicate on attributes of the graph. To allow flexible ma-
nipulation on graph structures (useful for definition of graph
queries as well as database graphs), we introduce the notion
of formal languages for graphs. The core of GraphQL is
a graph algebra in which the selection operator is general-
ized to graph pattern matching and a composition opera-
tor is introduced for rewriting matched graphs. In terms
of expressive power, GraphQL is relationally complete and
is contained in Datalog [24]. The nonrecursive version of
GraphQL is equivalent to the relational algebra.

In the second part of the paper, we consider the evaluation
of graph queries. Access methods for the selection operator
turn out to be the main challenge, especially when graphs
are large. We accelerate the basic graph pattern matching
algorithm by three techniques that exploit graph structural
information. First, we generate the search space with lo-
cal pruning using neighborhood subgraphs or their profiles.
Second, we reduce the overall search space simultaneously
using global structural information. Third, we optimize the
search order based on a cost model designed for graphs. As
we demonstrate in experimental results, the combination of
these three techniques allows us to scale to both large queries
and large graphs.

Our work has the following contributions:

1. We introduce the notion of formal languages for graphs.
It is useful for manipulating graphs and is the basis of
our query language (Section 2).

2. We propose the GraphQL query language. This lan-
guage supports graphs as the basic unit of information,
arbitrary attributes, and set-oriented operations (Sec-
tion 3).



e1 G1

e1

e2

e3

v1

v3v2

graph G1 {
node v1, v2, v3;
edge e1 (v1, v2);
edge e2 (v2, v3);
edge e3 (v3, v1);

}
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graph G2 {
graph G1 as X;
graph G1 as Y;
edge e4 (X.v1, Y.v1);
edge e5 (X.v3, Y.v2);

}
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graph G3 {
graph G1 as X;
graph G1 as Y;
unify X.v1, Y.v1;
unify X.v3, Y.v2;

}

v3
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graph G4 {
node v1, v2;
edge e1 (v1, v2);

   {
node v3;
edge e2 (v1, v3);
edge e3 (v2, v3);

   } | {
node v3, v4;
edge e2 (v1, v3);
edge e3 (v2, v4);
edge e4 (v3, v4);

   };
}
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graph Path {
graph Path;
node v1;
edge e1 (v1, Path.v1);
export Path.v2 as v2;

} | {
node v1, v2;
edge e1 (v1, v2);

}

e1 e1

graph G5 {
graph G5;

   graph G1;
   export G5.v0 as v0;
   edge e1 (v0, G1.v1);
} | { node v0 }

v0

… ...e1
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(a) Simple graph motif (b) Concatenation by edges (c) Concatenation by unification

(d) Disjunction (e) Path and cycle (f) Repetition of motif G1

graph Cycle {
   graph Path;

edge e1 (Path.v1, 
    Path.v2);

}

e1 v2v1v1

Path

Figure 3: Examples of graph motifs

3. We define a graph algebra along the line of the re-
lational algebra. The graph algebra generalizes the
selection operator to graph pattern matching and in-
troduces a composition operator for rewriting matched
graphs. In terms of expressive power, we prove that
the graph algebra is relationally complete and is con-
tained in Datalog (Section 3.3).

4. We propose efficient access methods for the selection
operator over large graphs. Experimental results on
large real and synthetic graphs show that our graph
specific optimizations outperform an SQL-based im-
plementation by orders of magnitude (Sections 4 and
5).

2. FORMAL LANGUAGE FOR GRAPHS
In this section, we introduce the notion of formal lan-

guages for graphs. This notion is useful for composing and
manipulating graph structures. It serves as a basis of our
graph query language.

In classical formal languages [17], a formal grammar con-
sists of a finite set of terminals and nonterminals, and a
finite set of production rules that generate strings of charac-
ters. We extend this notion of formal grammars from strings
to the graph domain, where the basic operational unit is a
graph structure, namely a graph motif. A graph motif can
be either a simple graph or composed of other graph motifs
by means of concatenation, disjunction, and repetition. A
graph grammar is a finite set of graph motifs. The language
of a graph grammar is the set of all graphs derivable from
graph motifs of that grammar.

2.1 Simple Graph Motifs
A simple graph motif is a normal graph. It consists of a

set of nodes and a set of edges. Each node, edge, or graph is
identified by a variable. The variable name can be omitted
if not referenced elsewhere. Nodes and edges correspond
to terminals, whereas graphs correspond to nonterminals.

Every node, edge, or graph may have multiple attributes.
Figure 3(a) shows a simple graph motif and its graphical
representation.

2.2 Complex Graph Motifs
A graph motif can be composed of other graph motifs. In

existing grammars, a string is obtained by concatenation,
disjunction, or repetition of other strings. A string connects
to other strings through its head and tail, which is specified
implicitly. In the graph domain, however, a graph may con-
nect to other graphs through arbitrary nodes. Therefore,
one needs to explicitly specify these interconnections.

2.2.1 Concatenation
A graph motif can be composed of two or more graph mo-

tifs. The constituent motifs can be either left unconnected
or concatenated in one of two ways. One way is to connect
nodes in each motif by new edges. Figure 3(b) shows an
example of concatenation by edges. Graph motif G2 is com-
posed of two motifs G1 of Figure 3(a). The two motifs are
connected by two edges. To avoid name conflicts, aliases are
introduced using the keyword “as.”

The other way of concatenation is to unify nodes in each
motif. Two edges are unified automatically if their respec-
tive end nodes are unified. Figure 3(c) shows an example of
concatenation by unification.

A member of a graph motif refers to a node, an edge, or
a graph motif declared in the body of that motif. A graph
motif is recursive if its body or derived body contains itself
as a member. Member variables are visible from the scope
of declaration and any nested scope. Variables declared in
other scopes can be referenced through their enclosing graph
variables.

2.2.2 Disjunction
A graph motif can be defined as a disjunction of two or

more graph motifs. Figure 3(d) shows an example of dis-
junction. In graph motif G4, two anonymous graph motifs



are declared (comprising of node v3 or nodes v3 and v4).
Only one of them is selected and connected to the rest of
G4. All the constituent graph motifs should have the same
“interface” to the outside.

2.2.3 Repetition (Kleene Star)
In existing formal grammars, a repetition takes the form

S → S ∗
1 . It can also be written as S → S1S | ε. We specify

repetition of graph motifs through this kind of self recursion.
Figure 3(e) shows the construction of a path and a cycle. In
the base case, the path has two nodes and one edge. In
the recurrence step, the path contains itself as a member,
adds a new node v1 which connects to v1 of the nested path,
and exports the nested v2 so that the new path has the same
“interface.” The keyword“export” is equivalent to declaring
a new node and unifying it with the nested node. Graph
motif Cycle is composed of motif Path with an additional
edge that connects the end nodes of the Path.

Recursion in GraphQL is not limited to paths and cycles.
Figure 3(f) illustrates an example where the repetition unit
is a graph motif. Motif G5 contains an arbitrary number of
motif G1 and a root node v0. The declaration recursively
contains G5 itself and a new G1, with G1.v1 connected to v0,
where v0 is exported from the nested G5. The first resulting
graph consists of node v0 alone, the second consists of node
v0 connected to G1 through edge e1, the third consists of
node v0 connected to two instances of G1 through edge e1,
and so on.

3. GRAPH QUERY LANGUAGE
In this section, we describe the graph query language. We

first describe the data model. Next, we define a graph pat-
tern which is the main building block of a graph query. We
then define a graph algebra for the query language and inves-
tigate its expressive power. Finally, we illustrate the graph
query syntax through an example.

3.1 Data Model
In the GraphQL data model, each node, edge, or graph

can have arbitrary attributes. We use a tuple, a list of name
and value pairs, to denote these attributes. The tuple can
have an optional tag that denotes the type of the tuple.
Figure 4 shows a sample graph that represents a paper (the
nodes are unconnected). Node v1 has two attributes “title”
and “year”. Nodes v2 and v3 have a tag “author” and an
attribute “name”.

graph G <inproceedings> {
node v1 <title=”Title1”, year=2006>;
node v2 <author name=”A”>;
node v3 <author name=”B”>; 

};

Figure 4: A sample graph

In the relational model, tuples are the basic unit of in-
formation. Each relational algebraic operator manipulates
collections of tuples. In GraphQL, graphs are the basic unit
of information. Each operator takes one or more collections
of graphs as input and generates a collection of graphs as
output. This is similar to the TAX model [18] where trees
are the basic unit and the operators work on collections of
trees. A graph database consists of one or more collections

of graphs. Graphs in a collection do not necessarily have
identical structures and attributes. However, they can still
be processed in a uniform way by adhering to a graph pat-
tern.

3.2 Graph Patterns
Essentially, a graph pattern is a graph motif plus a pred-

icate on attributes of the motif. A graph pattern is used to
select graphs of interest. It is the main building block of a
graph query.

Definition 1. (Graph Pattern) A graph pattern is a pair
P = (M,F), where M is a graph motif and F is a predicate
on the attributes of the motif.

The predicate F can be a combination of boolean or arith-
metic comparison expressions. Figure 5 shows a sample
graph pattern. The predicate can be broken down to pred-
icates on individual nodes or edges, as shown on the right
side of the figure.

graph P {
node v1;
node v2;

} where v1.name=”A”
and v2.year>2000;

or
graph P {

node v1 where name=”A”;
node v2 where year>2000;

};

Figure 5: A sample graph pattern

Next, we define the notion of graph pattern matching
which generalizes subgraph isomorphism with evaluation of
the predicate.

Definition 2. (Graph Pattern Matching) A graph pattern
P(M,F) is matched with a graph G if there exists an injec-
tive mapping φ: V (M) → V (G) such that i) For ∀ e(u, v) ∈
E(M), (φ(u),φ(v)) is an edge in G, and ii) predicate Fφ(G)
holds.

A graph pattern is recursive if its motif is recursive (see
Section 2.2.1). A recursive graph pattern is matched with a
graph if one of its derived motifs is matched with the graph.

Mapping :
(P.v1) G.v2
(P.v2) G.v1

Figure 6: A mapping between the graph pattern in
Figure 5 and the graph in Figure 4

Figure 6 shows an example of graph pattern matching
between the pattern in Figure 5 and the graph in Figure 4.

Once a graph pattern is matched to a graph, the binding
between them can be used to access the graph. This allows
one to access a collection of graphs uniformly even though
they may have heterogenous structures and attributes. We
use a matched graph to denote the binding between a graph
pattern and a graph.

Definition 3. (Matched Graph) Given an injective map-
ping φ between a pattern P and a graph G, a matched graph
is a triple 〈φ,P, G〉 and is denoted by φP(G).

Although formally a triple, a matched graph has all char-
acteristics of a graph. Thus, all concepts that apply to a



graph also apply to a matched graph, e.g., a collection of
matched graphs is also a collection of graphs.

A graph pattern can match a graph in multiple places,
resulting in multiple bindings (matched graphs). This is
considered further when we discuss the selection operator in
Section 3.3.1.

3.3 Graph Algebra
We define a graph algebra along the lines of the rela-

tional algebra. However, there are two important distinc-
tions. First, the selection operator is now generalized to
graph pattern matching. Second, a composition operator is
introduced to generate new graphs from matched graphs.

3.3.1 Selection
A selection operator σ is defined using a graph pattern

P. It takes a collection of graphs C as input and produces a
collection of graphs that match the graph pattern, denoted
by σP(C).

A graph pattern can match a graph many times. Thus,
a selection could return many instances for each graph. We
use an option “exhaustive” to specify whether it should re-
turn one or all possible mappings from the graph pattern
to the graph. Whether one or all mappings are required
depends on the application. The output is a collection of
matched graphs:

σP(C) = {φP(G) | G ∈ C}

3.3.2 Cartesian Product and Join
A Cartesian product operator takes two collections of graphs

C and D and produces a collection of graphs as output. Each
output graph is composed of a graph from C and another
from D. The constituent graphs are unconnected:

C ×D = { graph { graph G1, G2; } | G1 ∈ C, G2 ∈ D}

The join operator can be defined by a Cartesian product
followed by a selection: C &'P D = σP(C ×D).

In a valued join, the join condition is a predicate on at-
tributes of the constituent graphs, e.g.,“G1.name=G2.name.”
In a structural join, the constituent graphs can be concate-
nated by edges or unification. This is specified using a com-
position operator which is described next.

3.3.3 Composition
The composition operator generates new graphs by com-

bining information from matched graphs. We first define
graph templates that specify the output structure of the
graphs, and then define the composition operator.

Definition 4. (Graph Template) A graph template T con-
sists of a list of formal parameters which are graph patterns,
and a template body that defines a graph by using variables
from the graph patterns.

Once actual parameters (matched graphs) are given, a
graph template is instantiated to a real graph. This is simi-
lar to the invocation of a function: the template body is the
function body; the graph patterns are the formal parame-
ters; the matched graphs are the actual parameters. The
resulting graph can be denoted by TP1..Pk

(G1, ..., Gk).
Figure 7 shows a sample graph template TP and an in-

stantiated graph TP(G). P is the formal parameter of the

TP = graph {
node v1 <label=P.v1.name>;
node v2 <label=P.v2.title>;
edge e1 (v1, v2);

   }

TP (G) = graph {
node v1 <label=”A”>;
node v2 <label=”Title1”>;
edge e1 (v1, v2);

      }

Figure 7: A graph template and its instantiation. P
and G are shown in Figure 5 and Figure 4.

template. The template body consists of two nodes con-
structed from P and an edge between them. Given the ac-
tual parameter G, the template is instantiated to a graph.

A primitive composition operator ω is defined using a
graph template TP which has a single parameter. It takes
a collection of matched graphs C as input and produces a
collection of graphs as output:

ωTP
(C) = {TP(G) | G ∈ C}

In general, a composition operator may allow two or more
collections of graphs as input. This can be expressed by a
primitive composition operator and the Cartesian product
operator:

ωTP1,P2
(C1, C2) = ωTP

(C1 × C2),

where P = graph { graph P1, P2; }.

Projection and Renaming, two other operators of the re-
lational algebra, can be expressed using the composition op-
erator. The set operators (union, difference, intersection)
can also be defined easily. In terms of expressive power,
the five operators (selection, Cartesian product, primitive
composition, union, and difference) are complete.

Algebraic laws are important for query optimization. Since
our graph algebra is defined along the lines of the relational
algebra, laws of relational algebra carry over.

3.4 FLWR Expressions
We adopt the FLWR (For, Let, Where, and Return) ex-

pressions in XQuery [3] as the syntax of our graph query
language. Since a graph algebra has been defined, we skip
the query syntax for brevity.

graph P {
node v1 <author>;
node v2 <author>;

};
C:= graph {}; 
for P exhaustive in doc(“DBLP”) 
let C:= graph {

graph C;
node P.v1, P.v2;

    edge e1 (P.v1, P.v2);
unify P.v1, C.v1 where P.v1.name=C.v1.name;
unify P.v2, C.v2 where P.v2.name=C.v2.name;

}

Figure 8: A graph query that generates a co-
authorship graph from the DBLP dataset

Figure 8 shows an example that generates a co-authorship
graph C from a collection of papers. The query states that
any pair of authors in a paper should appear in the co-
authorship graph with an edge between them. The graph
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DBLP:graph G1 {
   node v1 <author name=”A”>;
   node v2 <author name=”B”>;
};
graph G2 {
   node v1 <author name=”C”>;
   node v2 <author name=”D”>;
   node v3 <author name=”A”>;
};
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Figure 9: A possible execution of the Figure 8 query

pattern P matches a pair of authors in a paper. The for
clause selects all such pairs from the data source. The let
clause places each pair in the co-authorship graph and adds
an edge between them. The unifications ensure that each
author appears only once. Again, two edges are unified au-
tomatically if their end nodes are unified.

Figure 9 shows a running example of the query. The
DBLP collection consists of two graphs G1 and G2. The
pair of author nodes (A, B) is first chosen and an edge is
inserted between them. The pair (C, D) is chosen next and
the (C, D) subgraph is inserted. When the third pair (A, C)
is chosen, unification ensures that the old nodes are reused
and an edge is added between existing A and C. The pro-
cessing of the fourth pair adds one more edge and completes
the execution.

The query can be translated into a recursive algebraic
expression:

C = σJ(ωτ
P,C

(σP (“DBLP”), {C}))

where σP (“DBLP”) corresponds to the for clause, τP,C is
the graph template in the let clause, and J is a graph
pattern for the join condition: P.v1.name = C.v1.name &
P.v2.name = C.v2.name. The algebraic expression turns
out to be a structural join that consists of three primitive
operators: Cartesian product, primitive composition, and
selection.

3.5 Expressive Power
We first show that the relational algebra (RA) is contained

in GraphQL.

Theorem 1. (RA ⊆ GraphQL) For any RA expression,
there exists an equivalent GraphQL algebra expression.

Proof. We can represent a relation (tuple) in GraphQL
using a graph that has a single node with attributes as the

tuple. The primitive operations of RA (selection, projection,
Cartesian product, union, difference) can then be expressed
in GraphQL. The selection operator can be simulated using
a graph pattern with the given predicate as the selection con-
dition. For projection, one rewrites the projected attributes
to a new node using the composition operator. Other op-
erations (product, union, difference) are straightforward as
well.

Next, we show that GraphQL is contained in Datalog.
This is proved by translating graphs, graph patterns, and
graph templates into facts and rules of Datalog.

Theorem 2. (GraphQL ⊆ Datalog) For any GraphQL
algebra expression, there exists an equivalent Datalog pro-
gram.

Proof. We first translate all graphs of the database into
facts of Datalog. Figure 10 shows an example of the trans-
lation. Essentially, we rewrite each variable of the graph as
a unique constant string, and then establish a connection
between the graph and each node and edge. Note that for
undirected graphs, we need to write an edge twice to per-
mute its end nodes.

graph G <attr1=value1> {
node v1, v2, v3;
edge e1(v1, v2);

};

graph(‘G’).
node(‘G’, ‘G.v1’).
node(‘G’, ‘G.v2’).
node(‘G’, ‘G.v3’).
edge(‘G’, ‘G.e1’, ‘G.v1’, ‘G.v2’).
edge(‘G’, ‘G.e1’, ‘G.v2’, ‘G.v1’).
attribute(‘G’, ‘attr1’, value1).

Figure 10: The translation of a graph into facts of
Datalog

For each graph pattern, we translate it into a rule of Dat-
alog. Figure 11 gives an example of such translation. The
body of the rule is a conjunction of the constituent elements
of the graph pattern. The predicate of the graph pattern is
written naturally. It can then be shown that a graph pat-
tern matches a graph if and only if the corresponding rule
matches the facts that represent the graph.

Subsequently, one can translate the graph algebraic op-
erations into Datalog in a way similar to translating RA
into Datalog. Thus, we can translate any GraphQL algebra
expression into an equivalent Datalog program.

graph P {
node v2, v3;
edge e1(v3, v2);

} where P.attr1 > value1;

Pattern(P, V2, V3, E1):-
   graph(P),
   node(P, V2),
   node(P, V3),
   edge(P, E1, V3, V2),
   attribute(P, ‘attr1’, Temp),
   Temp > value1.

Figure 11: The translation of a graph pattern into
a rule of Datalog

It is well known that nonrecursive Datalog (nr-Datalog)
is equivalent to RA. Consequently, the nonrecursive version
of GraphQL (nr-GraphQL) is also equivalent to RA.

Corollary 1. nr-GraphQL ≡ RA.



4. ACCESS METHODS
In this section, we discuss access methods for the selec-

tion operator, i.e., given a graph pattern and a collection of
graphs, how to produce a collection of matched graphs.

Generally, a graph database can be classified into two cat-
egories. One category is a large collection of small graphs,
e.g., chemical compounds. The main challenge for this cat-
egory is to reduce the number of pairwise graph pattern
matchings. A number of graph indexing techniques have
been proposed to address this challenge [15, 29, 35].

In the second category, the graph database consists of
a few very large graphs, e.g., protein interaction networks,
Web information, social networks. The challenge here is to
accelerate the graph pattern matching itself. In this paper,
we focus on access methods for large graphs. However, the
proposed methods are also applicable to small graphs.

We first describe the basic graph pattern matching algo-
rithm in Section 4.1, and then discuss accelerations to the
basic algorithm in Sections 4.2, 4.3, and 4.4. We restrict
our attention to nonrecursive graph patterns and in-memory
processing.

4.1 Graph Pattern Matching
A graph pattern matching takes a graph pattern P and

a graph G as input, and produces one or all feasible map-
pings as output. It is used as a subroutine for the selection
operator. Algorithm 1 outlines the basic algorithm.

The predicate of graph pattern P is rewritten as predi-
cates on individual nodes Fu’s and edges Fe’s. Predicates
that cannot be pushed down, e.g., u1.label=u2.label, remain
as the graph-wide predicate F . We define the feasible mates
of node u as follows.

Definition 5. (Feasible Mates) The feasible mates Φ(u) of
node u is the set of nodes in graph G that satisfies predicate
Fu:

Φ(u) = {v|v ∈ V (G),Fu(v) = true}.

The algorithm consists of two phases. The first phase
(lines 1–4) retrieves the feasible mates for each node u in the
pattern. The resulting product Φ(u1)× ..×Φ(uk) forms the
search space over which the second phase of the algorithm
(Lines 7–26) searches for subgraph isomorphism.

Definition 6. (Search Space) The search space of a graph
pattern matching is defined as the product of feasible mates
for each node of the graph pattern: Φ(u1)×..×Φ(uk), where
k is the size of the graph pattern.

The second phase (lines 7–27) searches in a depth-first
manner for matchings between the graph pattern and the
graph. Procedure Search(i) iterates on the ith node to find
feasible mappings for that node. Procedure Check(ui, v)
examines if ui can be mapped to v by considering their edges.
Line 12 maps ui to v. Lines 13–16 continue to search for the
next node or if it is the last node, evaluate the graph-wide
predicate. If it is true, then a feasible mapping φ : V (P) →
V (G) has been found and is reported (line 15). Line 16 stops
searching immediately if only one mapping is required.

The graph pattern and the graph are represented as a ver-
tex set and an edge set, respectively. In addition, adjacency
lists of the graph pattern are used to support line 21. For
line 22, edges of graph G can be represented in a hashtable
where keys are pairs of the end points. To avoid repeated

Algorithm 1: Graph Pattern Matching

Input: Graph Pattern P, Graph G
Output: One or all feasible mappings φP(G)

foreach node u ∈ V (P) do1

Φ(u) ← {v|v ∈ V (G),Fu(v) = true}2

// Local pruning and retrieval of Φ(u) (Section 4.2)3

end4

// Reduce Φ(u1) × .. × Φ(uk) globally (Section 4.3)5

// Optimize search order of u1, .., uk (Section 4.4)6

Search(1);7

void Search(i)8

begin9

foreach v ∈ Φ(ui), v is free do10

if not Check(ui, v) then continue;11

φ(ui) ← v;12

if i < |V (P)| then Search(i + 1);13

else if Fφ(G) then14

Report φ ;15

if not exhaustive then stop;16

end17

end18

boolean Check(ui, v)19

begin20

foreach edge e(ui, uj) ∈ E(P), j < i do21

if edge e′(v,φ(uj)) +∈ E(G) or not Fe(e
′) then22

return false;23

end24

return true;25

end26

evaluation of edge predicates (line 22), another hashtable
can be used to store evaluated pairs of edges.

The worst-case time complexity of Algorithm 1 is O(nk)
where n and k are the sizes of graph G and graph pattern P,
respectively. This complexity is a consequence of subgraph
isomorphism that is known to be NP-hard. In practice, the
running time depends on the size of the search space. Next,
we discuss possible ways to accelerate Algorithm 1 by reduc-
ing this search space and exploring it in the best order.

1. How to reduce the size of Φ(ui) for each node ui? How
to efficiently retrieve Φ(ui)?

2. How to reduce the overall search space Φ(u1) × .. ×
Φ(uk)?

3. How to optimize the search order?

We present three techniques that respectively address the
above questions. The first technique prunes each Φ(ui) in-
dividually and retrieves it efficiently through indexing. The
second technique prunes the overall search space by con-
sidering all nodes in the pattern simultaneously. The third
technique applies ideas from traditional query optimization
to find the right search order.

4.2 Local Pruning and Retrieval of Feasible
Mates

We can index attributes of the graph nodes for fast re-
trieval of feasible mates. This avoids a sequential scan of
all nodes in a large graph. To reduce the size of Φ(ui) even



further, we can go beyond nodes and consider neighborhood
subgraphs of the nodes. The neighborhood information can
be exploited to prune infeasible mates at an early stage.

Definition 7. (Neighborhood Subgraph) Given graph G,
node v and radius r, the neighborhood subgraph of node v
consists of all nodes within distance r (number of hops) from
v and all edges between the nodes.

Node v is a feasible mate of node ui only if the neighbor-
hood subgraph of ui is sub-isomorphic to that of v (with
ui mapped to v). Note that if the radius is 0, then the
neighborhood subgraphs degenerate to nodes.

Although neighborhood subgraphs have high pruning power,
they incur a large computation overhead. This overhead can
be reduced by representing neighborhood subgraphs by their
light-weight profiles. For instance, one can define the pro-
file as a sequence of the node labels in lexicographic order.
The pruning condition then becomes whether a profile is a
subsequence of the other.

P

A

B

A1

B1C1 B2

G

C C2

A2

Figure 12: A sample graph pattern and graph
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Retrieve by nodes:
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Retrieve by neighborhood 
subgraphs:
{A1} X {B1} X {C2}

Retrieve by profiles of 
neighborhood subgraphs:
{A1} X {B1, B2} X {C2}

Figure 13: Feasible mates using neighborhood sub-
graphs and profiles. The resulting search spaces are
also shown for different pruning techniques.

Figure 12 shows the sample graph pattern P and the
database graph G again for convenience. Figure 13 shows
the neighborhood subgraphs of radius 1 and their profiles for
nodes of G. If the feasible mates are retrieved using node
attributes, then the search space is {A1, A2} × {B1, B2} ×
{C1, C2}. If the feasible mates are retrieved using neighbor-
hood subgraphs, then the search space is {A1}×{B1}×{C2}.
Finally, if the feasible mates are retrieved using profiles, then
the search space is {A1}×{B1, B2}×{C2}. These are shown
in the right side of Figure 13.

Algorithm 2: Refine Search Space

Input: Graph Pattern P, Graph G, Search space
Φ(u1) × .. × Φ(uk), level l

Output: Reduced search space Φ′(u1) × .. × Φ′(uk)

begin1

foreach u ∈ P, v ∈ Φ(u) do Mark 〈u, v〉;2

for i ← 1 to l do3

foreach u ∈ P, v ∈ Φ(u), 〈u, v〉 is marked do4

//Construct bipartite graph Bu,v5

NP(u), NG(v): neighbors of u, v;6

foreach u′ ∈ NP(u), v′ ∈ NG(v) do7

Bu,v(u′, v′) ←

{

1 if v′ ∈ Φ(u′);
0 otherwise.8

end9

if Bu,v has a semi-perfect matching then10

Unmark 〈u, v〉;11

else12

Remove v from Φ(u);13

foreach u′ ∈ NP(u), v′ ∈ NG(v), v′ ∈ Φ(u′)14

do Mark 〈u′, v′〉;
end15

end16

if there is no marked 〈u, v〉 then break;17

end18

end19

If the node attributes are selective, e.g., many unique at-
tribute values, then one can index the node attributes using
a B-tree or hashtable, and store the neighborhood subgraphs
or profiles as well. Retrieval is done by indexed access to
the node attributes, followed by pruning using neighborhood
subgraphs or profiles. Otherwise, if the node attributes are
not selective, one may have to index the neighborhood sub-
graphs or profiles. Recent graph indexing techniques [7, 15,
19, 29, 31, 34, 35, 36, 37] or multi-dimensional indexing
methods such as R-trees can be used for this purpose.

4.3 Joint Reduction of Search Space
We reduce the overall search space iteratively by the re-

finement procedure of pseudo subgraph isomorphism, an ap-
proximation algorithm previously developed in [15]. Essen-
tially, this technique checks for each node u and its feasi-
ble mate v whether the adjacent subtree of u in P is sub-
isomorphic to that of v in G. This check can be done re-
cursively on the depth of the adjacent subtrees: the level l
subtree of u is sub-isomorphic to that of v only if a bipartite
graph Bu,v between neighbors of u and v has a semi-perfect
matching, i.e., all neighbors of u are matched. In the bipar-
tite graph at level l, an edge is present between two nodes u′

and v′ only if the level l − 1 subtree of u′ is sub-isomorphic
to that of v′.

Algorithm 2 outlines the refinement procedure. At each
iteration (lines 3–18), a bipartite graph Bu,v is constructed
for each u and its feasible mate v (lines 5–9). If Bu,v has no
semi-perfect matching, then v is removed from Φ(u), thus
reducing the search space (line 13).

The algorithm has two implementation improvements on
the refinement procedure discussed in [15]. First, it avoids
unnecessary bipartite matchings. A pair 〈u, v〉 is marked if
it needs to be checked for semi-perfect matching (lines 2,



4). If the semi-perfect matching exists, then the pair is un-
marked (lines 10–11). Otherwise, the removal of v from Φ(u)
(line 13) may affect the existence of semi-perfect matchings
of the neighboring 〈u′, v′〉 pairs. As a result, these pairs
are marked and checked again (line 14). Second, the 〈u, v〉
pairs are stored and manipulated using a hashtable instead
of a matrix. This reduces the space and time complexity
from O(k · n) to O(

∑k
i=1 |Φ(ui)|). The overall time com-

plexity is O(l ·
∑k

i=1 |Φ(ui)| · (d1d2 + M(d1, d2))) where l is
the refinement level, d1 and d2 are maximum degrees of P
and G respectively, and M() is the time complexity of max-
imum bipartite matching (O(n2.5) for Hopcroft and Karp’s
algorithm [16]).
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Figure 14: Refinement of the search space

Figure 14 shows an execution of Algorithm 2 on the ex-
ample in Figure 12. At level 1, A2 and C1 are removed from
Φ(A) and Φ(C), respectively. At level 2, B2 is removed from
Φ(B) since the bipartite graph BB,B2

has no semi-perfect
matching (note that A2 was already removed from Φ(A)).

Whereas the neighborhood subgraphs discussed in Sec-
tion 4.2 prune infeasible mates by using local information,
the refinement procedure in Algorithm 2 prunes the search
space globally. The global pruning has a larger overhead and
is dependent on the output of the local pruning. Therefore,
both pruning methods are indispensable and should be used
together.

4.4 Optimization of Search Order
Next, we consider the search order of Algorithm 1. The

goal here is to find a good search order for the nodes. Since
the search procedure is equivalent to multiple joins, it is sim-
ilar to a typical query optimization problem [5]. Two prin-
cipal issues need to be considered. One is the cost model for
a given search order. The other is the algorithm for finding
a good search order. The cost model is used as the objective
function of the search algorithm. Since the search algorithm
is relatively standard (e.g., dynamic programming, greedy
algorithm), we focus on the cost model and illustrate that
it can be customized in the domain of graphs.

4.4.1 Cost Model
A search order (aka a query plan) can be represented as

a rooted binary tree whose leaves are nodes of the graph
pattern and each internal node is a join operation. Figure 15
shows two examples of search orders.

A B C

(a) (b)

A C B

Figure 15: Two examples of search orders

We estimate the cost of a join (a node in the query plan
tree) as the product of cardinalities of the collections to be
joined. The cardinality of a leaf node is the number of fea-
sible mates. The cardinality of an internal node can be esti-
mated as the product of cardinalities of collections reduced
by a factor γ.

Definition 8. (Result size of a join) The result size of join
i is estimated by

Size(i) = Size(i.left) × Size(i.right) × γ(i)

where i.left and i.right are the left and right child nodes of
i respectively, and γ(i) is the reduction factor.

A simple way to estimate the reduction factor γ(i) is to
approximate it by a constant. A more elaborate way is to
consider the probabilities of edges in the join: Let E(i) be
the set of edges involved in join i, then

γ(i) =
∏

e(u,v)∈E(i)

P (e(u, v))

where P (e(u, v)) is the probability of edge e(u, v) condi-
tioned on u and v. This probability can be estimated as

P (e(u, v)) =
freq(e(u, v))

freq(u) · freq(v)

where freq() denotes the frequency of the edge or node in
the large graph.

Definition 9. (Cost of a join) The cost of join i is esti-
mated by

Cost(i) = Size(i.left) × Size(i.right)

Definition 10. (Cost of a search order) The total cost of
a search order Γ is estimated by

Cost(Γ) =
∑

i∈Γ

Cost(i)

For example, let the input search space be {A1}×{B1, B2}×
{C2}. If we use a constant reduction factor γ, then Cost(A &'
B) = 1 × 2 = 2, Size(A &' B) = 2γ, Cost((A &' B) &' C) =
2γ × 1 = 2γ. The total cost is 2 + 2γ. Similarly, the total
cost of (A &' C) &' B is 1 + 2γ. Thus, the search order
(A &' C) &' B is better than (A &' B) &' C.

4.4.2 Search Order
The number of all possible search orders is exponential

in the number of nodes. It is expensive to enumerate all
of them. As in many query optimization techniques, we
consider only left-deep query plans, i.e., the outer node of
each join is always a leaf node. The traditional dynamic
programming would take an O(2k) time complexity for a



graph pattern of size k. This is not scalable to large graph
patterns. Therefore, we adopt a simple greedy approach
in our implementation: at join i, choose a leaf node that
minimizes the estimated cost of the join.

5. EXPERIMENTAL STUDY
In this section, we evaluate the performance of the pro-

posed access methods on large real and synthetic graphs.
The access methods were written in Java with Sun JDK
1.6.

For comparison, we implement the SQL-based approach
to graph pattern matching as described in Figure 2, except
that only a count of the results is returned so as to min-
imize the communication cost. We use MySQL 5.0.45 as
the database server. MySQL is configured as: storage en-
gine=MyISAM (non-transactional), key buffer size=256M.
Other parameters are set as default. For each large graph,
two tables V(vid, label) and E(vid1, vid2) are created as in
Figure 2. B-tree indices are built for each field of the tables.

All the experiments were run on an AMD Athlon 64 X2
4200+ 2.2GHz machine with 2GB memory running MS Win
XP Pro.

5.1 Biological Network
We experimented with a yeast protein interaction net-

work [1]. This graph consists of 3112 nodes and 12519 edges.
Each node represents a unique protein and each edge repre-
sents an interaction between proteins.

To allow for meaningful queries, we add Gene Ontology
(GO) [12] information to the proteins. This ontology is a
hierarchy of categories that describes cellular components,
biological processes, and molecular functions of genes and
their products (proteins). Each GO term is a node in the
hierarchy and has one or more parent GO Terms. Each
protein has one or more GO terms. The original GO terms
in the yeast network consist of 2205 distinct labels. We relax
these GO terms by using their high level ancestors, which
consist of 183 distinct labels. This relaxation allows us to
find more meaningful and general patterns. At the same
time, it makes the problem harder since the labels are less
selective. We index the node labels using a hashtable, and
store the neighborhood subgraphs and profiles with radius
1 as well.

We evaluate the access methods using two extreme kinds
of graphs as queries: cliques and paths. For biological data-
sets, the former may correspond to protein complexes, while
the latter may correspond to transcriptional or signaling
pathways.

5.1.1 Clique Queries
We generated clique queries by varying the sizes of cliques

from 2 to 7 (sizes greater than 7 have no answers). For each
size, we generate a complete graph and assign each node a
random label. The random label is selected from the top 40
most frequent labels. We generate 1000 clique queries and
average the results. The queries are divided into two groups
according to the number of answers returned: low hits (less
than 100 answers) and high hits (more than 100 answers).
Queries having no answers are not counted in the statistics.
If a query has too many hits (more than 1000), then the
graph pattern matching is terminated immediately and the
query is counted in the group of high hits.

We evaluate the pruning power of the retrieval methods

and the refinement step by comparing their resulting search
space to the baseline search space. The baseline search space
consists of feasible mates by checking node attributes only.
The reduction ratio of search space is defined by

γ(Φ,Φ0) =
|Φ(u1)|× .. × |Φ(uk)|
|Φ0(u0)|× .. × |Φ0(uk)|

where Φ0 refers to the baseline search space.
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Figure 16: Search space for clique queries

Figure 16 shows the reduction ratios of search space by dif-
ferent methods. “Retrieve by profiles”finds feasible mates by
checking profiles and “Retrieve by subgraphs” finds feasible
mates by checking neighborhood subgraphs (Section 4.2).
“Refined search space” refers to search space reduction by
the refinement step discussed in Section 4.3 (the input search
space is generated by “Retrieve by profiles”). In the refine-
ment step, the maximum refinement level + is set as the size
of the query. As can be seen from the figure, the refinement
procedure always reduces the search space retrieved by pro-
files. Retrieval by subgraphs results in the smallest search
space. This is due to the fact that neighborhood subgraphs
for a clique query is actually the entire clique.
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Figure 17: Running time for clique queries (low hits)

Figure 17(a) shows the average processing time for in-
dividual steps under varying clique sizes. The individual
steps include retrieval by profiles, retrieval by subgraphs,
refinement, search with the optimized order (Section 4.4),
and search without the optimized order. The time for find-
ing the optimized order is negligible since we take a greedy
approach in our implementation. As shown in the figure,
retrieval by subgraphs has a large overhead although it pro-
duces a smaller search space than retrieval by profiles. An-
other observation is that the optimized order improves upon
the search time.

Figure 17(b) shows the average total query processing
time in comparison to the SQL-based approach on low hits
queries. The “Optimized” processing consists of retrieval by



profiles, refinement, optimization of search order, and search
with the optimized order. The“Baseline”processing consists
of retrieval by node attributes and search without the op-
timized order on the baseline space. The query processing
time in the “Optimized” case is improved greatly due to the
reduced search space.

The SQL-based approach takes much longer time and does
not scale to large clique queries. This is due to the un-
pruned search space and the large number of joins involved.
Whereas our graph pattern matching algorithm (Section 4.1)
is exponential in the number of nodes, the SQL-based ap-
proach is exponential in the number of edges. For instance,
a clique of size 5 has 10 edges. This requires 20 joins between
nodes and edges (as illustrated in Figure 2).

5.1.2 Path Queries
The second class of queries that we considered is at the

other extreme of connectivity: path queries. The size of
this query was varied between 2 and 10. The input search
space for the refinement step is “Retrieve by profiles.” Other
settings were similar to that for clique queries.
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Figure 18: Search space for path queries
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Figure 19: Running time for path queries (low hits)

Figure 18 shows the reduction ratios for path queries. Un-
like clique queries, the refinement step (Section 4.3) here
produces the smallest search space. This is because the re-
finement step reduces the overall search space, whereas local
pruning (either by profiles or by subgraphs) cannot capture
global information.

Figure 19(a) shows the individual time for path queries
(some of the plots are not visible because of small values).
The individual steps take less time than those for clique
queries. This is because the path queries are simpler than
clique queries. The search steps (with and without the op-
timized order) are negligible. This is a result of the small
search space produced by the refinement step. Figure 19(b)
shows the total time for path queries. The “Optimized” pro-

cessing here consists of retrieval by profiles, refinement, op-
timization of search order, and search with the optimized
order. Again, the “Optimized” processing improves greatly
upon the “Baseline” processing. The SQL-based processing
scales better than in the case of clique queries since path
queries requires less number of joins. But it still takes much
more time than “Optimized” processing.

5.2 Synthetic Graphs
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Figure 20: Search space and running time for indi-
vidual steps (synthetic graphs, low hits)
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Figure 21: Running time (synthetic graphs, low
hits)

We also evaluate the access methods on synthetic graphs.
The synthetic graphs are generated using a simple Erdős-
Rényi [11] random graph model: generate n nodes, and
then generate m edges by randomly choosing two end nodes.
Each node is assigned a label (100 distinct labels in total).
The distribution of the labels follows Zipf’s law, i.e., prob-
ability of the xth label p(x) is proportional to x−1. The
queries are generated by randomly extracting a connected
subgraph from the synthetic graph.

We first fix the size of synthetic graphs n as 10K, m = 5n,
and vary the query size between 4 and 20. Figure 20 and
Figure 21(a) shows the search space and time. We found
that the best combination is retrieval by profiles, followed
by the refinement step, and search with the optimized or-
der. Again, the search steps take little time due to the small
search space produced by the refinement step. The SQL-
based processing takes much longer time and is not appro-
priate for large queries.

Then, we set the query size to 4, and vary the size of
synthetic graphs n between 10K and 320K and m = 5n.
Figure 21(b) shows the total time. As can be seen, the “Op-
timized” processing scales better than the “Baseline” pro-
cessing for increasing graph sizes. The SQL-based approach
also scales to large graphs for small queries, but it still takes
much longer time than the “Optimized” processing.



To summarize our experiments, retrieval by profiles pro-
duces small search space with little overhead. The refine-
ment step (Section 4.3) greatly reduces the search space.
The overhead of the search step is well compensated by the
extensive reduction of search space. A practical combina-
tion would be retrieval by profiles, followed by refinement,
and then search with an optimized order. This combination
scales well with various query sizes and graph sizes. SQL-
based processing is not scalable to large queries. Overall, the
optimized processing performs orders of magnitude better
than the SQL-based approach. While small improvements
in SQL-based implementations can be achieved by careful
tuning and other optimizations, the results show that query
processing in the graph domain has clear advantages.

6. RELATEDWORK
A number of query languages have been proposed for

graphs. GraphLog [10] represents both data and queries as
graphs. In terms of expressive power, GraphLog was showed
equivalent to stratified linear Datalog. GOOD [14] is a
graph-oriented object data model that transforms graphs by
node and edge addition and deletion. GraphDB [13] uses an
object-oriented data model for database graphs and queries.
GOQL [30] also uses an object-oriented graph data model
and is an extension to OQL. PQL [21] is a pathway query
language for biological networks. The language is derived
from SQL and is implemented on top of an RDBMS.

Some of the recent interest in graph query languages has
been spurred by Semantic Web and the accompanying
SPARQL query language [23]. This model describes a graph
by a set of triples, each of which describes an (attribute,
value) pair or an interconnection between two nodes. The
SPARQL query language works primarily through a pattern
which is a constraint on a single node. All possible match-
ings of the pattern are returned from the graph database.
A general graph query language could be more powerful by
providing primitives for expressing constraints on the entire
result graph simultaneously.

In XML databases, TAX [18] is a tree algebra for XML.
TAX uses a pattern tree to match interesting nodes. The
pattern tree consists of a tree structure and a predicate on
nodes of the tree. GraphQL generalizes this idea to describe
a graph pattern.

GraphQL is different from the above query languages in
that graphs are chosen as the basic unit. In comparison to
SQL, GraphQL has a similar algebraic system, but the alge-
braic operators are defined directly on graphs. In compar-
ison to OODB, GraphQL queries are set-oriented, whereas
OODB accesses objects in a navigational manner. On data
representation, GraphQL is semistructured and does not
cast strict and pre-defined data types or schemas on graphs.
In contrast, SQL presumes a strict schema in order to store
data. Furthermore, GraphQL can be efficiently implemented
using graph specific optimizations. Table 1 outlines the main
differences between GraphQL and other query languages.

Graph grammars have been used previously for modeling
visual languages and graph transformations in various do-
mains [26, 25]. Our work is different in that our emphasis
has been on a query language and database implementa-
tions.

In graph indexing, GraphGrep [29] uses enumerated paths
as index features to filter unmatched graphs. GIndex [35]
uses discriminative frequent fragments as index features to

Table 1: Comparison of different query languages
Language Basic unit Query style Semi-

structured
GraphQL graphs set-oriented yes
SQL tuples set-oriented no
TAX trees set-oriented yes
GraphLog nodes/edges logic pro. -
OODB (GOOD, nodes/edges navigational no
GraphDB, GOQL)

improve filtering rates and reduce index sizes. Closure-
tree [15] organizes graphs into a tree-based index structure
using graph closures as the bounding boxes. GString [19]
converts graph querying to subsequence matching. TreePi [36]
uses frequent subtrees as index features. Williams et al. [34]
decompose graphs and hash the canonical forms of the re-
sulting subgraphs. SAGA [31] enumerates fragments of graphs
and answers are generated by assembling hits of the query
fragments. FG-index [7] uses frequent subgraphs as index
features. Frequent graph queries are answered without ver-
ification and infrequent queries require only a small number
of verifications. Zhao et al. [37] show that frequent tree-
features plus a small number of discriminative graphs are
better than frequent graph-features. While the above tech-
niques can be used as access methods for the case of a large
collection of small graphs, this paper addresses access meth-
ods for the case of a single large graph.

Another line of graph indexing addresses reachability
queries in large directed graphs [6, 8, 9, 27, 32, 33]. In a
reachability query, two nodes are given and the answer is
whether there exists a path between the two nodes. Reach-
ability queries correspond to recursive graph patterns which
are paths (Figure 3(e)). Indexing and processing of reach-
ability queries are generally based on spanning trees with
pre/post-order labeling [6, 32, 33] or 2-hop-cover [8, 9, 27].
These techniques can be incorporated into access methods
for recursive graph pattern queries.

7. CONCLUSION
We have presented GraphQL, a novel query language for

graphs with arbitrary attributes and sizes. GraphQL has
a number of appealing features. Graphs are the basic unit
and graph structures are composable using the notion of
formal languages for graphs. We developed efficient access
methods for the selection operator using the idea of neigh-
borhood subgraphs and profiles, refinement of the overall
search space, and optimization of the search order. Exper-
imental studies on real and synthetic graphs validated the
access methods.

In summary, graphs are prevalent in multiple domains.
This paper has demonstrated the benefits of working with
native graphs for queries and database implementations.
Translations of graphs into relations are unnatural and can-
not take advantage of graph-specific heuristics. The cou-
pling of graph-based querying and native graph-based data-
bases produces interesting possibilities from the point of
view of expressiveness and implementation techniques. We
have barely scratched the surface and much more needs to
be done in matching characteristics of queries and databases
to appropriate heuristics. The results of this paper are an
important first step in this regard.
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