DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 33(2) (2013) 373-385
DOI: https://doi.org/10.7151/dmgt.1672

Star Coloring of Subcubic Graphs

T. Karthick and C.R. Subramanian

Indian Statistical Institute, Chennai Centre
Chennai- 600 113, India

Abstract

A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.

Keywords: vertex coloring, star coloring, subcubic graphs

2010 Mathematics Subject Classification: 05C15, 05C85.

References

[1]M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2-colored P4's, Electron. J. Combin. 11 (2004) #R26.
[2]N.R. Aravind and C.R. Subramanian, Bounds on vertex colorings with restrictions on the union of color classes, J. Graph Theory 66 (2011) 213--234, doi: 10.1002/jgt.20501.
[3]M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobshcheniya Akademii Nauk Gruzinskoi SSR, 93 (1979) 21--24 (in Russian).
[4]T.F. Coleman and J.Y. Cai, The cyclic coloring problem an estimation of sparse Hessian matrices, SIAM Journal of Algebraic and Discrete Methods 7 (1986) 221--235, doi: 10.1137/0607026.
[5]T.F. Coleman and J.J. Moré, Estimation of sparse Hessian matrices and graph coloring problems, Math. Program. 28(3) (1984) 243--270, doi: 10.1007/BF02612334.
[6]G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs, J. Graph Theory 47 (2004) 163--182, doi: 10.1002/jgt.20029.
[7]A.H. Gebremedhin, F. Manne and A. Pothen, What color is your Jacobian? Graph coloring for computing derivatives, SIAM Rev. 47 (2005) 629--705, doi: 10.1137/S0036144504444711.
[8]A.H. Gebremedhin, A. Tarafdar, F. Manne and A. Pothen, New acyclic and star coloring algorithms with applications to computing Hessians, SIAM J. Sci. Comput. 29 (2007) 1042--1072, doi: 10.1137/050639879.
[9]B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390--408, doi: 10.1007/BF02764716.
[10]T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995).
[11]A.V. Kostochka and C. Stocker, Graphs with maximum degree 5 are acyclically 7-colorable, Ars Math. Contemp. 4 (2011) 153--164.
[12]A. Lyons, Acyclic and star colorings of cographs, Discrete Appl. Math. 159 (2011) 1842--1850, doi: 10.1016/j.dam.2011.04.011.
[13]S. Skulrattankulchai, Acyclic colorings of subcubic graphs, Inform. Process. Lett. 92 (2004) 161--167, doi: 10.1016/j.ipl.2004.08.002.
[14]D.B. West, Introduction to Graph Theory, 2nd Edition (Prentice-Hall, Englewood Cliffs, New Jersey, 2000).

Received 7 December 2011
Revised 23 May 2012
Accepted 23 May 2012


Close