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Abstract

We address the question of selecting a proper training set for neural network time
series prediction or function approximation. As a result of analyzing the relation
between approximation and generalization, a new measure, the generalization factor,
is introduced. Using this factor and cross validation we develop the dynamic pattern
selection algorithm. By employing two time series prediction tasks, we compare
the results for dynamic pattern selection training to results obtained with fixed
training sets. The favorable properties of the dynamic pattern selection, namely
lower computational expense and control of generalization, are demonstrated.

1. Introduction

It is well known that the generalization properties of neural networks used in function
approximation are strongly affected by the size and distribution of the training set.
However, the problem of selecting the optimal training set has not yet been solved. For
good generalization the training set has to contain enough information to fix the network
function f, not only at the training patterns, but on the domain X of the target function

f.

To achieve this we want to adapt the training set during training and employ the net
function to decide whichpattern should be chosen. Plutowski and White [6] have done
some work on active pattern selection, but did not employ cross validation to assess the
generalization properties obtained by the training set. In contrast to their algorithm, the
dynamic pattern selection proposed here, achieves concise training sets by continually
validating the generalization properties of the net [7], [8].

2. Dynamic Pattern Selection

First some definitions concerning approximation, generalization and the training set D
of a neural net are established. It is assumed that D, contains only a finite number of
elements out of X. Given a real number ¢ > 0, we distinguish between three subsets of
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C*°, which is the set of functions with continuous derivatives of every order. First, there
exists the set of e-approximating functions, denoted I, (¢), which contains all functions
J approximating the members in D, to a given precision

sup [|fu(&) — f(@l < e )

#eDy
Second, the set of ¢-interpolating functions F; (¢), with distance

sup [|f(&) — F(E)| < e @

#eX

to f;. Third, the set of functions representable by the the neural net denoted as F,,.
While the sets IF, (¢) depend on D, the sets F;(¢) are completely defined by f,. For
every e the set IF; (o) is subset of IF, (o).

The goal is to select a training set Dy such that minimizing the net error N (DD, ) forces
fn to converge to f; all over X. To achieve this we try to adapt the cutting F,(¢) N F,,
closely to F;(¢). For faithful generalization we demand that the generalization error
is lower then the training error. Formally f, € F.(¢) should implicate f, € F;(e).
To be able to rank the generalization properties of f, it is reasonable to define the
generalization factor

€i(fn)

p(fn) = fa(fn),

where ¢,(f,) is the minimal € such that f, € F,(¢) and ¢;(f,) is minimal such that
fn € Fi(¢). The generalization factor indicates the error we make in optimizing on D,
instead of X. As a result we conclude, that

p(fa) £ 1.0 @)

is a reasonable condition for valid generalization.

3)

The training set may now be controlled to achieve a faithful generalization. The
straightforward strategy, namely to enlarge D, by inserting the maximum error pattern
whenever the generalization factor is beyond one, results in very small training sets [7].
For high precision training, however, the selection process turns out to be to slow. A
more sophisticated approach, using a varying upper bound for the generalization factor,
fixes the problems [8].

The generalization factor p(f, ), namely the distance €;(f,), has to be estimated by
means of a validation set D, . Employing a cross validation strategy, the available data
is split into a training/validation repertoire. The training set D is selected from the the
training repertoire. The validation set D, is randomly chosen out of the validation reper-
toire such that D, | = |D, |'. Employing the net error function N() the generalization
factor is effectively estimated by

&)

1A\ denotes the cardinality of A
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training training generalization | generalization | for/backward
set size error E(Ds) error E(D) factor py, propagations
15 4.29e-3 3+ 2.0e-3 | 2.50e-2 +1.7e-2 5.83 0.54e+6
25 3.77e-3 + 1.8e-3 | 4.80e-3 +£2.0e-3 1.27 0.90e+6
35 2.46e-3 £ 1.2e-3 | 2.90e-3 £+ 1.4e-3 1.18 1.26e+6
50 3.02e-3 & 1.6e-3 | 3.46e-3 +1.8e-3 1.15 1.80e+6
75 2.99e-3 + 1.5¢-3 | 3.14e-3 £ 1.7e-3 1.05 2.70e+6
100 2.90e-3 £ 1.6e-3 | 3.21e-3 £ 1.7e-3 1.10 3.60e+6
150 4.53e-3 +2.1e-3 | 5.08e-3 £ 2.4e-3 1.12 5.40e+6
69 £ 10 | 3.69e-3 4 1.7e-3 | 3.06e-3 & 1.1e-3 0.83 0.74e+6

Tab. 1. Predicting the Henon model. Comparison of the average training and generalization
rms error using a 2-7-1 neural net and different training sets. The patterns in the fixed sets are
approximately equally spaced on the henon attractor.

3. [Experimental Results

The properties of the dynamic pattern selection will be demonstrated by solving two
nonlinear signal prediction tasks. The results will be compared to neural networks
trained on fixed training sets. For training a batch mode backpropagation algorithm with
adapted learning rate and momentum {10}, [9] is used. The generalization performance
of the neural networks is estimated by means of an independent validation set Dy, , as
has been suggested by Hecht-Nielsen [3].

In the first experiment the chaotic time series of the henon model 2]

(:L'n.H) _ (yn+1—cc-:c';z1
Yn+1 - bz,

is predicted. In table (1) the results for a number of fixed training sets are compared
with the dynamic pattern selection. The normalized rms error E() for the training set
D, and the independent validation set Dy, is given. The fixed training sets with 35-100
patterns give the best results. Using dynamic pattern selection, on average, 69 patterns
are selected. The total cost for training is estimated by the number of forward/backward

propagations through the net. In the case of dynamic pattern selection the cost is
considerably lower than that for training on any of the appropriate fixed training sets.

) with (a=14,b=0.23) ©)

In figure (1) the relation between the generalization factor p, and the number of training
epochs is shown. The small fixed training sets do not guarantee a valid generalization.
The fixed training set with 75 patterns achieves a nearly stable generalization factor.
Compared to this, the dynamically selected mean of 69 patterns is quite reasonable.

Along with the size of the training set, the distribution of the training patterns has a
considerable effect on the generalization results. A typical distribution obtained by
the dynamic pattern selection is shown in figure (2). The distribution is obviously not
uniform, but reflects the error distribution of the net function.
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Fig. 1. Generalization factor p, as a function of training epochs for learning to predict the henon

model. A fixed training set with 75 patterns is necessary to achieve a generalization factor near
one.

Available data -
Selected Patterns <

Fig. 2. A typical distribution of training patterns on the prediction function of the henon model.
Depicted is the distribution of training patterns subsequent to 1000 training epochs.
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Fig. 3. Generalization factor p, as a function of training epochs for learning to predict the
Mackey-Glass model.

training training generalization | generalization | for/backward
set size error E(D,) error E(Dy) factor pu propagations
500 2.47e-2 £3.6e-3 | 2.73e-2 £ 3.4e-3 1.11 60e+6
207 £ 11 | 4.62e-2+39¢e-3 | 2.74e-2 + 1.4e-3 0.59 18e+6

Tab. 2. Predicting the Mackey-Glass model. Comparison of the average training and general-
ization rms error using a 6-10-10-1 neural net and different training sets.

The second example is the prediction of the Mackey-Glass model

a-z(t—71)
1+ z(t —1)19)

Lapedes and Farber [4], [S] demonstrated the prediction of the Mackey-Glass time
series (r = 30) using a neural net with six input units, two hidden layers with ten
units each and a linear output unit. These settings are chosen here, t0o. Lapedes
and Farber used a fixed training set with 500 examples. Results for this training set
and the dynamic pattern selection are shown in table (2). Achieving the same average
generalization precision, the dynamically selected training sets contain, on average, 207
training patterns. The cost is lower by a factor of three. In figure (3) the average
generalization factor with respect to the training epoch is depicted. In case of the fixed
training sets the generalization factor is steadily increasing, this is a consequence of the
suboptimal distribution of patterns in those sets.

() = —b-z(t) with (a=02,b=0.1). 0}

4. Comparison to online training

It is widely accepted that, in the case of redundant data, the online mode of the back-
propagation algorithm will yield superior results than the batch mode. Therefore we
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compared the computational expenses for online training with Search-Then-Converge
learning rate schedule [1] and batch mode training with dynamic pattern selection. The
neural nets have been trained to predict a piano signal given 15000 training patterns.
Despite the preceding optimization for the online training algorithm and the fact that in
the case of dynamic training sets only 50 out of the 15000 patterns have been selected
(resulting in a considerable overhead for the selection procedure), the total expense for
the batch mode, dynamic pattern selection has been lower then that of the online trammg
by a factor of three.
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