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Abstract. In this tutorial, some classical tools of data analysis —and
others less well known— are surveyed in detail, that can be applied to
supervised classification, and in particular to learning with neural net-
works.
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1. Introduction

Supervised learning is performed usually by minimizing some objective func-
tion, that can be an error e in fitting an arbitrary desired function, or a mis-
classification rate ¢. The computation of the latter often raises difficulties. In
fact, if the Bayesian approach is assumed, densities need to be estimated, and
this can become quite difficult in large dimensions. There are direct ways of
computing the total misclassification rates, without going through the Bayesian
formalism, but they are computationally heavy. Yet, they can still be appro-
priate if the best achievable performance are sought under memory constraints
(e.g. low-cost neural networks).

In this paper, links between e-minimization and e-minimization are pointed
out under different aspects. Emphasis is given on kernel estimator of densities,
which seem to perform very well in practical experiments. The principles ex-
posed give birth essentially to off-line algorithms, and recursive algorithms are
not presented for reasons of space.

A side goal of this paper is to give a flavour of the theory on which the
developments of the Elena project were based, and to report some choices that
have been made. The implementation of the subsequently presented tools and
algorithms in the packlib software is being currently completed .

Part of this work has been funded by the ESPRIT-BRA project 6891, supported by the
Commision of the European Communities.
*Also with I3S—-CNRS, 250 av A.Einstein, Sophia-Antipolis, F-06560 Valbonne.
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Organization of the paper

The first section aims mainly at defining notation, and introduces the confusion
matrix. Section 3. summarizes how performance has been chosen to be evalu-
ated. Section 4. reports a result that justifies the use of an e-criterion rather
than a fitting e-criterion. Fixed and variable kernel estimators are described
in section 5., and a suboptimal implementation with clusters is described in
section 6. After some computational considerations in section 7., we close with
some comments on a current work in progress in section 8.

2. Probabilistic framework

The classification problem consists of building a mapping ¢ from a set of pat-
terns (observations), £, to a set of classes, F. It is assumed throughout this
paper that patterns are real valued and of dimension d. In other words, £ = R,
Thus, any pattern z in £ is wished to be associated with a class w;(») € F by
this mapping.

In the context of supervised classification, a set of examples A(N) =
{(z(n),wjn)),1 <n < N} is given, so that mapping ¢ is apparently known at
a finite number of points. This set of input-output pairs is the learning sef. In
the Bayesian approach, the mapping built may not assign all the patterns from
the learning set to their true class. This freedom allows for instance to handle
learning sets where some equal (or very close) patterns appear with different
class labels.

If patterns {z(nr),1 < n < N} in the learning set are known to belong to
classes wj,1 < j < K, it is natural to choose as output space F4 = {w;,1 <
i £ K}. However, as will be recalled shortly, there are reasons to add two
other classes: one for ambiguities, and one for rejections. As a consequence,
mapping ¢ is actually defined from £ onto F = F4 U {wk+1,wK+2}-

In a probabilistic framework, it is assumed that all patterns belonging to
the same class are independently drawn from the same underlying distribution.
In this paper, it is assumed that this distribution admits a density, denoted
p(&|w;).

Assuming uniform losses, the Bayesian approach allows to build the map-
ping that minimizes the total number of misclassifications, provided the condi-
tional densities p(z|w;) and the priors P; = P(w;) are known. More precisely,
since the output space is discrete, the mapping ¢ defines K disjoint domains
Dj = ¢~1(wj) in the input space £, so that in each D; any pattern is assigned
class wj. Then a well-known way of writing the Bayesian risk function is (still
assuming uniform losses):

K
R= 3 Cy(#), Cu@ER [  plulws)du M
iii:jl u€D;
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The integral corresponds to the probability that ¢ assigns the class w; to a
pattern z whereas its true class is w;. The probabilities of error C;;(¢) can be
arranged in a K x K matrix, often called the confusion matriz.

Then it has been shown [12] [14] [17] [2] that minimizing R has the following
solution: the class wj(,) is assigned to observation z € £ if and only if:

(@) = Arg Max (P, plolws)} = Arg Max {p(z,w:)}. o)

The decision is unambiguous at a point z of £ if all p(z,w;)’s are different.
But if the largest value is reached by several classes, there is an ambiguity. One
can distinguish between two kinds of ambiguity:

o All values of p(z,w;) are very small, in which case one cannot reasonably
assign to z one of the classes present in the learning set. In that case,
z is assigned the reject class, wi41. This occurs on a domain denoted
Dk 41 in the input space £.

o Otherwise, there are at least two large and equal values of p(z,w;) for
some ¢’s. Then, there is an ambiguity of decision between those classes,
and class wg 42 is (provisionally) assigned to pattern z. This occurs in a
domain Dg 4 of £, that is the union of all other domains boundaries.

It is sometimes convenient to add two columns to the confusion matrix,
one for ambiguities, and the other for rejections. Then we end up with a
K x K + 2 matrix whose rows sum up to one, because now U.,’-{;isz =¢&,and
Je p(uw;) du = 1,Vi.

Now, it is clear that knowing a mapping on a finite set will never provide the
complete definition of the.mapping.on £ without further information. That’s
why supervised classification is usually carried out by assuming -sometimes
implicitly— a parametric model, either on the classifying rules (as in neural
networks), or on the conditional densities (as in Bayesian approaches). When
the number of parameters is very large, the model is (somewhat abusively)
referred to as non parametric. We shall see in section 5. one of these non
parametric models.

3. Classification errors

3.1. Apparent confusion matrix
By definition, the best confusion matrix is attained by the exact Bayesian

classifier. But in practice, domains D; are only estimated by domains ﬁj, and

we are talking about performances of an estimated classifier ¢. The confusion
matrix corresponding to ezact performances of the estimated classifier is given
by:

Cii(@) = [, plukws) du. 3)
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Similarly, exact performances cannot in general be calculated, because den-
sities p(ujw;) must be replaced by estimates, that are denoted here p(ulw;).
Here estimates are denoted differently on purpose, because there is no obli-
gation to use the same density estimates to determine the classifier, and to
compute its performances. Thus the estimated confusion takes the expression:

Cuy@) = [ alukor)du, @

Since estimates p(u|w;) are intended to be integrated on an arbitrary do-
main, it is necessary to choose them in such a way that this computation is
easy to carry out, bearing in mind that only the integrated value is important
(a local accuracy is superflous). In fact, for computational tractability, it is
quasi always assumed that the density p(u|w;) has the simple form:

Hulw)=ai Y 6u—2(m)), 5)

z(m)Ew;

where (u) denotes the Dirac distribution, and a; is a coefficient chosen so that
the estimated density sum up to one. It may be checked that this calculation
of the confusion reduces to a mere counting of the misclassified patterns.

If estimates ¢ and p(ujw;) are using the same data, then the resulting con-
fusion matrix is called apparent, because it is too optimistic. ‘Some authors
refer to this computation as the Resubstitution method [15]. It is well known
that these two estimates should be independent for the confusion to be unbi-
ased. In particular, this is achieved if the classifier and the performances are
computed by using two disjoint sets of data. It is talked about cross-validation
procedures.

3.2. Computation by cross-validation

Even if this family of procedures is quite well known, it may be useful to say
a word on this topic. The simplest procedure is the Holdout. The available
data are partitioned into two sets, one dedicated to learning, and the other
to performance evaluation. The drawback is that part of the data is not used
at all for learning. To face this objection, one can run several Holdouts, and
average the performances obtained, but this becomes very costly.

There is however a case where the Averaged Holdout is not that costly,
namely when the performance set is reduced to a single pattern. In that case,
the learning is made on N —1 patterns, so that one can hope to have almost the
best possible classifier. Since the partition is now {N —1}{1}, there are only N
possible distinct runs to perform and to average. If the N partitions are tested,
the procedure is referred to as the totally Averaged Leave One Out (ALOO).
This seems to be the best way to fully use the information contained in the
data, without biasing the performance estimation. Moreover, as pointed out
by Fukunaga, there is often the possibility to derive the ALOO performances
from those obtained by the Resubstitution [14] with little extra work.
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There are close links between the ALOO and the general theory of the
Jackknife. Efron has also pointed out that the Bootstrap may also be viewed
as an extension of the Jackknife [15].

3.3. Confidence intervals

Denote A;(N) the subset of the learning set .A(N) that contains patterns be-
longing to class w;, and N; its cardinality, Y N; = N. In addition, denote M;;
the number of patterns from A;(N) that have been misclassified in class w;.
The entry Cj; of the confusion matrix can be estimated by the ratio:

; M:

Cij = N:J . (6)

In order to acces to confidence intervals for matrix C, one can remark that each
M;; follows a binomial distribution:

prob(M.-j = m) = ( ]::: ) CZ‘ (1 - C,'j)Ni—m. (7)

There exists sophisticated ways of approximating the quantiles of C";j, based
on this distribution [20] and standard tables can be used. Note that, if N; is
large, one can reasonably assimilate C;; to a Gaussian variable with mean Ci;;
and variance C,?j, even if this approximation is very crude. In fact, an error
of 5% or even 10% on the confidence interval is of little importance for our
use. Nevertheless, if Cj; is close to 0 or 1, this approximation becomes too
pessimistic. Strictly speaking, (7) is valid for a single holdout. Other more
complete approaches include significance testing, but are not addressed in this
paper.

As an example, if N; = 50, and C;; = 0.2, then true value of the confusion
entry satisfies approximately 0.1 < C;; < 0.3 with a probability of 0.95, whereas
for N; = 1000, it satisfies 0.18 < Cy; < 0.22.

4. Fitting errors

Assume each class w; is represented in F by an element z; of an Hilbert space,
so that we can admit that 7 C R™ for some m. Assume also that the mapping
#(+) is coded by a set of parameters W so that ¢(-) = ®(-, W), where ® is fixed.
One approach of the problem is to search for a W so that ®(-, W) fits the input-
output relations given by the learning set A(N) the best way, in the sense of
the norm on F:

N
.1
W= ArgMin = 3 llzicn) = ®(2(n), W)II* ®)

n=1

We shall refer to this criterion as the output Minimum Quadratic Error (MQE).
For instance, learning algorithms dedicated to the MultiLayer Perceptron an-
swer that problem.
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The first key remark to make is that the coding of outputs has a strong
influence on the result obtained, and that it is completely arbitrary. Take an
example if the number of classes is K = 3. Here are some possible choices:

o wa(3). (1) (D wa(3) () (Do

and many others can be thought of. A natural question is to know whether the
minimization of (8) would lead to the Bayesian solution, and with what output
coding.

A partial answer has been given in [26], but a more complete one —but less
well known— has been devised in [6]. The basic result is summarized by the
following theorem proved in [26], and extended in [6] to general losses:

Theorem 1 Denote N; the number of patterns belonging to class w; in the
learning set A(N). Assume that the absolute minimum in (8) is reached. Then
(-, W) tends to the best approzimation of the Bayesian solution as every N;
tends to infinity provided coding (9)ii is chosen.

This theorem shows that the power of the output error criterion (8) is rather
limited, and also tends to say that the other output codings are inappropriate.
In fact, other codings just yield other Bayesian solutions with different loss
matrices, as proved in [6].

When the learning set is limited, it may be rather uninteresting to have
such asymptotic results at hand. A usual practice is to extend the database by
duplicating R times the original one and adding independent and identically
distributed noises in each duplication. The following result gives then more
insights in what happens in the finite sample case:

Theorem 2 Under the same hypotheses as in theorem 1, and if every N; > 0
remains fized, then as R tends to infinity ®(-, W) tends to the best approzima-
tion of the estimated Bayesian solution, obtained by replacing densities by their
kernel estimates.

The proof given in appendix also gives conditions on the noise density for
the estimate to be consistent. In particular, there is a close link between the
noise density and the kernel function used (see section 5.). It seems thus more
direct to build constructively the asymptotic limit, towards which the MQE
solution will tend in the best case (i.e. if the absolute minimum is reached).
And this leads us to kernel estimators of density.

5. Keljnel estimators

One of the most interesting estimator of densities is known as the kernel esti-
mator, sometimes abusively called Parzen estimator, as we shall see. It has not
only nice consistency properties, but also can provide continuous estimates re-
gardless of the number of patterns available in the learning set, which is of great
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practical interest, as opposed to histograms for instance. General statements
about kernel estimators can be found in [23] [18] [27] [11] [19].

With the notation introduced in section 3., the kernel estimate of p(x|w;)
takes the form:

plujwi) = — Z h(n Y (uh_(:(;)l)) , (10)

a;(n)eA

where h(n;1) is strictly positive and K(-) is the kernel function. The choice of
the kernel gives the estimator its basic finite sample properties; for instance, if
K(-) is positive and twice differentiable, then so is p.

If h(n;i) depends only on N; and not on n, then the estimator is said to
have a fixed width, or to be a fixed kernel estimator, in short. This estimator
was originally proposed by Parzen {24], and Cacoullos [4] extended it to the
multichanne] case. The suggestion of a variable width has been proposed inde-
pendently by Wagner [29] and Breiman [3]. Thus the variable kernel estimator
should not be called a Parzen estimator, for the sake of clarity.

Throughout this section, the reasoning is carried out for a fixed class w;, so
that for conciseness index ¢ may be dropped, being understood that statements
exposed for A, h(n), N, p(u) will be applied to A;, h(n;?), N;, p(u|w;), and so
forth.

Moreover, it is convenient to decompose the width factor h(n) into a global
factor h and a local weighting factor n(n), so that estimator (10) rewrites for
any fixed class label i:

o) = A3 nn) K (rm==2). (1)

n=1

Of course since thls decomposition is not unique, one can arbitrarily impose in
addition that Hn—l n(n) =1

5.1. Fixed kernel estimator

It is assumed here that n(n) = 1,V¥n. In the finite sample case, it has been
proved by Rosenblatt [25] that kernel estimators of density are always biased,
except for particular distributions.

On the other hand, they can be proved to be consistent. In fact, under the
following conditions, it has been proved that the estimator f(u) is asymptoti-
cally unbiased:

K(u)>0, K(u)<oo, and /K(u) du=1, (12)
llull?K(w) >0 a5 |ju||— oo, (13)

h—0 as N — o0, (14)

Nh 00 as N-—ooo. . (15)
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Conditions (12) to (14) ensure that p(u) converges to p(u) at every continuity
point of p(u), but the convergence is in mean. With the additional condition
(15) on the convergence speed of h, then the convergence is in quadratic mean.
Actually similar results hold under slighlty less restrictive assumptions (e.g.
the kernel may not be requested to be positive) [4] [29] [21].

The proof is easy to carry out when the kernel is twice differentiable and
symmetric about the origin. Moreover in that case, it is possible to argue for a
choice of an optimal width. In fact, after the change of variable y = (u —z)/h,
bias and variance of estimator (11) can be expressed as:

B = [ K()pu=hu)dy—p(w) (16)
2
V(e = N}iﬁ / Kz(y)p(u-hy)dy—% [ / K (y)p(u—hy)dy] -(17)

Now expand p(u — hy) about u as:
ot B o 3
p(u— hy) = p(u) + hi(w)" y + 5y H(w) y + O(h%), (18)
where p is the gradient of p and p the matrix of its second derivatives. Next

using the fact that K(-) is symmetric about the origin, we obtain the asymptotic
approximations:

B(u) = h?z Trace{p(u) Vk } + O(h?), (19)
V() = I—Vl"‘;ﬂl{kp(u) +0 (‘1\,—’;:5) . (20)

where fx & J K?(u)du and Vg &ef J K(u)uuT du. The case where the kernel
is isotropic is interesting, i.e. , when K(-) is a function only of the norm of
its argument. Then Vg = I, and the bias reduces to the simple expression
B(u) = h? Ap/2, Ap denoting the Laplacian of p.

Clearly, as h decreases, the bias decreases but the variance increases. The
trade-off is to minimize the integrated mean square error:

e(h) = /e(u; h)du; e(u;h) = B(u)® + V(u). (21)

Then it is easy to see that this error reaches a unique minimum for a value A,
satisfying:

N hi+ / Ap(u)du = d . (22)
Three conclusions can be drawn from here. First, we have an (asymptotically)
optimal value for the width factor, provided Ap is given. In practice, the

calculation of [ A%p requires the use of a rough estimator, based on (32) for
instance. We shall go back to that in the next section.
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Second, the minimum error obtained is

e(h,) = (g + 1) ﬁﬂx

This minimal error is of order O(N~'h~¢). In other words, since h, =
O(N-Y(@+49) e(h,) = O(N-*/(4+%)) and B(u) and V(u) are of same order.

Third, e(h,) is proportional to Bk. It is thus convenient to utilize kernel
functions that have a small fx.

Actually, one can even find what is the best kernel function to be used with
this respect. Epanechnikov had early noticed this fact in the scalar case [13],
resorting to standard tools from calculus of variations. But this extends to the
multivariate case, if K () is isotropic: the positive kernel that minimizes Sx
under the constraint of unit covariance is given by

K(u)=a—buTu, foruTu<a/b, and K(u)= 0elsewhere. (23)

Coefficients a and b are choosen so as to satisfy [K(u)du = 1 and
JK@u)uTudu=d:
4
_d+2 (d+4\"? d o
K(u) = s (—d—> [1 Tra u] , (24)
and 94 is the volume of the the unit bowl in dimension d:
df2
def . T
"= [apE) (25)

The point is that the kernel obtained is of compact support, which is of
practical interest: in order to compute the density at a point u, only patterns
located in the neighborhood of u are necessary (in a bowl of radius h+/1 + 4/d).

Though suboptimal from this point of view, the family of so-called gener-
alized Gaussian kernels are of interest in certain cases [16]:

Ky(u) = By e Msv'™ul, (26)

where coefficients A; and B, are to be determined in order to have a unit sum
of the density, and a unit variance. The exact expressions of these coefficients

are:
a bd/? b

B"'=gc1_+W’ Ag == (27)
. d d+2. _ _ d
with a = I(3), b=(5), e=T(3). (28)

If g = 1, the distribution is clearly Gaussian. One of the advantages in using
such kernels, is that they have large tails, which allows making a non ambiguous
decision in a larger domain in the input space.
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5.2. Variable kernel estimators

For finite sample sizes, the fixed kernel estimate is not very satisfactory. In
fact, one one hand isolated patterns are supposed to account for tails of the
density, and should have a large width factor, whereas concentrated patterns
that are supposed to produce a sharp peak should have a small width factor.
Keeping the same width factor everywhere obviously impedes meeting those
uncompatible requirements.

It is clear that the bias will be much better if the width factor is allowed
to vary with location, especially for samples of reduced size. This has been
noticed in [3] and proved in [22] for k-NN kernel estimators.

Denote Dy (u) the distance between point u and its nearest k** neighboring
pattern. If Vp(u) is the volume of the hypersphere of radius Dy (u) centered at
u, we must have as N tends to infinity:

=~ 5(4) Vo (u), (29)

by definition of a density. This yields the classical result that the density may
be roughly approximated by:

A E 1
u)~ & Vo)’ (30)
where Vp(u) = v4 Dy (u)?, with 4 as defined in (25).

This classical approach cannot be used directly since the estimate obtained
is not continuous, and integrates to infinity. A simple way to fix this problem
is to use Di(u) to choose the local weighting factor n(n) in (11):

" = B (31

i
&
[

(32)

Note that if we use a uniform kernel (constant value in the unit bowl and zero
elsewhere), then we get the k-NN estimator (30).

Mack and Rosenblatt have analyzed the asymptotic local bias and variance
of such an estimator. They have found that the optimal value for integer &
should increase with N as N®, b = 4/(d + 4) [22]. In practice, one should also
pay attention to the fact that k should be large enough to avoid a null value
of Di(z(n)) for some n. Another way to avoid null values of Di(z(n)) is to
clip them below. In any case, if we assume a law of the form k = a N, the
constant factor a remains very difficult to find. This is the same problem as
for h in the fixed kernel estimator.

Even if the latter estimator is apparently of better use, it may still not
integrate to one, and is not differentiable [22]. For this reason, it has been
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adopted in Packlib [5] a more sophisticated approach. The local weighting
factor 7(n) is estimated by minimizing the local mean square error e(u;h)
defined in (21); this idea is (comparatively) quite recent, for it has been first
advanced twelve years ago in [1]. Here, this error of course also depends on
7n(n), and our goal is now to compute its bias and variance components.

Start as in the fixed kernel case, and write the mean of estimator (11):

Ea(w = [ 12 K (1) 25

The expectation is eventually the limit of the finite sum as N tends to infinity.
For convenience, the —somewhat abusive— notation 7(z) has been assumed,
being understood that n(z(n)) = 7(n). Now perform the change of variable as
before, y = (u — z)/h, and obtain:

) plo)ds (33)

Ep(u) = / (v — hy)? K (yn(u — hy)) p(u — hy) dy. (34)

The difference is that now 3 terms must be expanded in Taylor series, compared
to a single one in the fixed kernel case. The expansions are written in a similar
manner as in (18). After a number of rather heavy manipulations, and taking
into account the symmetry of the kernel function, we obtain:

ace Blu) _, 2(u)p(u)”  di(u) p(u)
iy s [ (557 -2 200 - 20
A(w)i(w)”

+ =5 7(u) ——55— Py )>]+0(h4). (35)

In the scalar case (d = 1), this formula reduces to that obtained in [1]. As
Abramson pointed out, if p(u) = (u)l/ 2, this bias reduces to O(h“) On the
other hand, the expansion of the variance is very simple, since it is sufficient
(as in the fixed kernel tase) to go up to order zero:

B(u) =

VW) = gz P 1))+ 0 (s ) - (36)

The most surprising fact is that with an appropriate choice of n(u), the bias
is cancelled, leaving total freedom to choose h in order to reduce arbitrarily the
variance (i.e. h large).

There are some practical comments to make, that limit those conclusions.
If n(u) = p(u)'/? is chosen, then it may happen that 5(u) be null, which
is forbidden by our assumptions. If necessary, 7(u) may have to be clipped
below. Next, since h needs to be small for the expansion of the bias to be
valid, an arbitrarily large value of h would not be acceptable.

The complete practical algorithm is described in section 7., and overcomes
these difficulties. Other criteria than the mean square error can be used, and
in particular, the final classification error [8].
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6. Suboptimality by clustering

There are two reasons for building suboptimal solutions based on clustering.
Imagine our classifier.is intended to be implemented in a cheap product, and
that there are strong hardware limitations. Then estimator (11) cannot be
used directly because all patterns z(n) need to be stored. So it is relevant in
that case to design a classifier that would use the available resources in the
very best way, regardless of the learning complexity [8]. The other reason is
that if it is wished to still use estimator (11), then a rough (pilot) estimator of
the density is necessary to determine h. The estimator presently proposed can
be used for this purpose.

In this section, we consider that data in each class w; of the learning set
A(N) have been clustered into @; disjoint groups Gy;i,1 < q < Q. Denote
N(g; i) the number of patterns in group G,;. We have E 1 N(g;9) =
Then from the Bayes rule:

plulws) = —ZP(Gq,.)p(uIGq,.) (37)

q—l

This shows first that the density may change after vector quantization, because
of the presence of weigths P(G,;). Next, this relation suggests the following
reconstruction formula, if P(Gg;) is estimated by the ratio N(g;4)/N, and P;
by 13, = N; / N:

- 1 L N(q;%) u—Clqg; 9]
Bilules) = 37 ; ot ( o(g;9) ) ’ (38)

where a single width factor o(g;i) has been used within each cluster. This
relation can equivalently be obtained by replacing z(n) by the centroid C[g; ]
of its group in (10). In this approach, all clusters are spherical. This may
be a problem because a large number of spherical clusters may be required to
approximate data containing anisotropic clusters.

To palliate this limitation, another more accurate reconstruction procedure
involves a positive definite matrix L[g;i] that accounts for clusters shape:

. N(q;i L{g; 7~ Y(u — Clg; ¢
Paluled) = Z,,(ff,)?: (e ). o

It remains to estimate centroids C[g;i], shape factors L[g;é], and width
factors o(g; ) or h(g;i). We describe below one reasonable solution. Assume
the clusters are sufficiently well separated so that the kernel tails of neighboring
clusters vanish. Then, with the description above, the density estimate within
a cluster reduces to a single mode. Yet, in reconstructions (38) and (39), only
moments of order 1 and 2 are used, so that the density within a cluster may
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be approximated by a Gaussian density. In other words, K(-) can be assumed
to be a radial Gaussian kernel for this calculation (but only that one):

K (u) = (27) Y2 ezp{—(lu|l*/2}.

With this approximation, maximum likelihood estimates can be easily com-
puted. If , (u|w;) is maximized with respect to C[g; ] and o(g;7), we obtain:

1
Clgi = mz(n%mz(n), (40)
o(gi)? = éfv‘(i_)(% lle(r) = Cls AP (4)

Next, if p,(u|w;) is maximized with respect to C[g;i], h(g;?) and L[g;1], we
obtain:

Lig;i] L[g;i]" = A[q,i], with (42)
Alg;d] = > (2(n) - Clg;il)(x(n) - Clg; )T, (43)

(q’ )z(n)EG,
h(g;i)® = det L[g;i]. (44)

Thus, L[g;$] is any positive square root of A[g; ], for instance its lower trian-
gular Cholesky factor. Of course, this estimate is biased. To remove the bias,
one can replace N(g;i) by N(g;i) — 1, as usual.

However, it is clear that these solutions are not the best possible, neither
with respect to criterion e(u;h) defined in (21), nor with respect to the mis-
classification rate. Since the final goal is actually classification, a criterion
measuring deviations from the true densities, like e(u; h), is not the most ap-
propriate, especially if memory resources are strongly limited.

Thus, it has been proposed in [8] to find the best parameter set, {Q;, C[g; 1],
o(g; i), h(q;%), L[g;1]}, in the Bayes sense. The best solution obtained may —or
may not- yield good density estimates, it does not matter, but it will lead to
the best classification rate. Other approaches exist if the number of clusters is
large, and their size small [28].

7. Computational aspects

7.1. Computation of the Laplacian

There are practical obstacles in computing the optimal value of the kernel width
h. One could think of computing it by using (22), where the Laplacian of the
true p(u) is replaced by the one of a rough estimate pr(z), yielding:

Kp0) A pale) = 52 S ittt ar (1) ©20) )

n=1
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Estimated widths k and # can be those given by (32) and (31) for instance.
But the integration is made difficult because of the squaring of the sum, that
introduces cross-terms.

A “brute force” approximation is then to replace the integration by a dis-
crete sum over the available patterns z(n):

N

/ Ap(u) du ~ 71,- S A? pp(a(n)). (46)

n=1
The obtained value (though acceptable) is likely to be too large [10].

Another alternative is to use the estimate provided by clustering in section
6. The rough estimate is of the form:

Qi
pr(ulws) =Y p(ulGqy) (47)
g=1
Qi :
= 3 [det(2r Alg; )] ~/* exp{—5 (u — Clas )7 Alg; 1w - Clas D}
g=1

Now, since the Gaussian family enjoys a reproductive property, cross prod-

ucts yield again a Gaussian density up to a multiplicative term, and are easy

to integrate. As a consequence, we have access to an analytic expression of

J A%pr(u) du. Approximating the density p(u) by a Gaussian mixture where

the parameters are estimated suboptimally might be considered very crude,

but it is not. Of course one could optimize these parameters further [8}, but it
- would be superflous for the only purpose of computing [ AZp(u) du.

7.2. Description of the algorithm

The kernel choosen is isotropic (radial function), and can be either the Epanech-
nikov kernel (24), or a generalized Gaussian kernel (26). The algorithm pro-
posed to compute the estimate (11) is two-pass (Rough-Refined Estimator):

1. A rough estimate pr(z) is obtained at any point z(n) of the learning set
by using the kernel k-NN estimator (11) with #jr(z) and hgr defined by

(31), (32).
2. Next, this variable kernel estimate is refined by assuming the new value
of fj(n):
N -1/2
i(n) = pr(ea)]/? | T pr(za)| - (48)
=1

3. Optionally, a new value of h may be refined in accordance with section
7.1.

Performances are evaluated by using the ALOO procedure briefly described in
section 3.2.
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8. Suboptimality by dimension partitioning

In order to estimate a density in dimension d with a given accuracy, there is
a minimum number Ny, of samples required. This number is unfortunately
an exponential function of the dimension. Of course, some estimators perform
better than others, but the tendency as d increases is the same for all of them.
As a consequence, one can expect that it will be very difficult to estimate a
density in large dimension, because samples will be too small.

It is worth knowing what is a small sample size, and what is a large di-
mension. Silverman reported the value of Ny, as a function of d. Based on
extensive simulations, he found the value of N that gave a relative error on a
Gaussian density of 10%, when using a kernel estimator with Gaussian kernel
[27].

An affine approximation of log N would gives the following result [9]:
1
logm Nmin > 0.6 (d— Z) (49)

Let’s just give an example. If d = 10, this gives Ny, > 708,000. This
motivates strongly the reduction of the dimension. However, there are cases
where one cannot project the data on a smaller-dimensional subspace without
loosing significant information.

In this section, we propose another approach based on dimension parti-
tioning. Assume that a density p(u) defined on the space £ = RR? can be
approximated by a product of densities as:

p(u) = p1(u1) p2(u2), (50)

:; . Then densities p; and p, can be much more easily estimated

since they share the same sample size, but need to be estimated in reduced
dimension. If this is not enough, the procedure can be iterated further.

But the decomposition (50) means that the d-dimensional random variable
z has been splitted into two statistically independent random variables z; and
z3. This problem, that we can refer to as the Independent Subspace Analysis
(ISA), was addressed in [7], and an algorithm has been proposed there to
construct variables u; and u;. We consider this is a major area of research for
future years, both in data analysis and numerical analysis.

where u = (
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Appendix

Proof of theorem 2

The proof given here is a particular case of another one already published in
French in [6], where general losses were considered.

Proof. Denote € the MQE criterion, for finite N and R:

KN 1

e(NyR)y= ) — —
k=1 N Nk

R
Y =3 Ik &a(n) + 2, 1), WP, (51)

z(n)Ewk r=1
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where the w(n,r)’s denote additive noises drawn from a given density p,(u).
Now let:

ﬁk = —JJ\L\:- (52)
&x(w) = ||zeny)— (u, W)|I? forz(n) € wi. (53)

This is possible since the output y(n) depends only on k. Assume every N; is
non zero and let R tend to infinity. We get:

K
- 1
g(N,00) = ZP;, /pz(u) A E Ex(z(n) + u) du. (54)
k=1 k z(n)Ewr
Make the change of variable v = z(n) + u and define
. 1
polor) = 5= Do pav—2(n)). (55)
z(n)Ewk

It can be obtained then:

K A~
e(N,00) =Y A, / B(vlwr) €x(v) dv. (56)
k=1
Define next:
K ~
o) = Y Bup(vlwr), (57)
k=1
gr(v) = Pi pvlwr) g&zl)wk). (58)

Now the error can be expressed as:

K
e(N,00) = / 5(0) [19(0, W)|[2 dv — 2 / S G (0) B (Wyv)doter,  (59)
k=1
where ¢; is independent of the ®;’s. A short manipulation finally leads to:

o,00) = [ 50) 1800, W) = 4P dv + 3, (60)

where €5 is independent of vector @, and § is the vector with components gi.
This last result shows that the mapping ®(-, W) obtained is the one closest to
§(v). Yet, this is an estimate of the Bayesian discriminating functions gi(v) =
P;. p(vjwi)/p(v). In other words, if the family of functions ®(-, W) is sufficiently
large, the largest ®;(W;v) will be reached for the same k as the largest gi(v),
yielding the same decision. 0
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