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Abstract. This paper deals with multilayered perceptrons modelling
for time series analysis. Based on recent results about the least-squares
estimation for non-linear time series, we propose a complete and feasi-
ble statistical methodology for both parameter estimation (learning pro-
cess) and model selection (architecture selection). In particular, we solve
the parameter pruning problem for multilayer perceptron models with a
stepwise search ‘method by using a least squares BIC* criterion which is
proved to be consistent.

1. Introduction

One of the most important applications of the multilayered perceptrons is time
series modeling and forecasting. See for example (Weigend and Gershenfeld,
1994, [8] or Cottrell et al., 1995, [1]) for references. However, estimation and
identification of such models often require sophisticated techniques and it is
not easy to determine the suited architecture. Many papers deal with the
techniques of pruning irrelevant parameters, mainly in the regression setting.
See for example (Le Cun et al., 1990, [4], Moody, 1992, [6], Murata et al., 1994,
[7], etc.). The present paper proposes theoretical results in the time series
setting (valid in the regression setting t00).

We consider a family of models called Neural AutoRegressive model (NAR),
defined by :

Y:f = fW(th—l,-'-,th—p)'i_gt
K P
= w+ Z oo (Z BijYi—i + ﬂ0j> + & (1)
j=1 =1
where Y;_;,i = 1,...,p are lags of the series (}}), fw denotes a function

implemented by a multilayered perceptron with one output unit, p input linear
units, K hidden units supplied with a sigmoid function ¢. The variable ¢; is
an ii.d. noise, with mean 0 and constant variance o2, independent from the
past of the series.
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In this work, we will take into account only real variables. But all the
properties we present here can be straightforwardly expanded to the multi-
dimensional case.

Let W = {(Ozj)ogjg_}{, (,Bij)OSiSp,lSng} be the parameter vector. Given
T + p observations (Y_p11,...,Ys,Y1,...,Yr) of the series, we estimate W by
minimizing the sum of squared residuals (the Error Function):

t=T

Sr(W) =" (¥ — fw(Yie1,---, Yip)? . (2)

t=1

Let Wz =ArgminS7(W) denote the least squares estimate of W. Its com-
putation can be carried out with any minimization method. In this paper,
we will not be concerned with the delicate minimization problem and Wr is
assumed to be the true minimum of the Error Function Sy(W). As the max-
imum likelihood estimator, the least squares estimator is a particular form of
minimum contrast estimator (see Guyon, 1995, [2]).

2. Asymptotic results on the least squares esti-
mation

Let us consider the NAR model defined by equation (1). We will denote
the components of the parameter vector W by W = (w;)1<i<m where m =
(p+2)K + 1 and by Wy its (unknown) true value. Recently, (Mangeas and
Yao, 1996, [5]) have considered the asymptotic properties of the least squares
estimator for general NAR processes. Let Y(?) = (Yt(p ))t>0 be the vector pro-
cess, defined by Yt(p) = (Y,...,Yi_pq1) for t > 0. The sequence (V;?) is
homogeneous Markov chain with state space R?. The vector (y1,...,yp) € R?
is denoted by §. The assumptions that will be made below ensure the sta-
bility of the chain Y®), In particular, this chain will have unique invariant
distribution pw,. In (Mangeas and Yao, 1996, [5]), the authors prove :

Theorem 1  Strong consistency and asymptotic normality For the
model (1), with ¢(z) = tanh(z), assume the following:

1. (e¢)t>0 is a centered, i.i.d. sequence, independent of the initial states
(Y_pt1,-..,Y0), such that E &% < o,

2. W belongs to a compact subset W of the m-dimensional Euclidean space
o
R™, such that Wy eW.

3. (Identifiability condition) For any W different from Wy, fw # fw, in
the sense that there is a § € R? such that fw(§) # fw,(G).

4. The following m x m matriz

So= [ [ptv @ @], wwldi) @

Oow; Ow; 1<i,5<m

134



ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 133-138

18 positive definite. Then,

(a) The least squares estimator Wr is strongly consistent, that is it converges
almost surely to Wy when T tends to +oo.

(b) Independently of any initial distribution of the Markov chain Y ® | the
term VT [WT - Wo] converges in distribution to the multivariate Gaus-
sian distribution N'(0,02%5").

The residual variance o? is in practice estimated by 62 = %ST(WT), and
the matrix £y by £o = %VzST(WT) which can also be approximated by

= SV PNV f, (FP)

It is worthy to note that these conditions are very weak with respect to the
usual normality assumptions.

3. Almost sure identification of a true model

Thus, by applying the existing results on model selection by penalized contrasts
(Guyon, 1995, [2]), we establish an almost sure identification of a true model,
when.there are a finite number of possible models having a common dominant
model.

More precisely, assume that we have a fixed bound M for all possible model
dimensions. Thus let W C RM™ and F,,, be a dominant model, whose pa-
rameter vector is denoted Wiax = (w1, ws,...,wy ). Consider the finite fam-
ily F = {(w1,ws,...,wp)/some components are set to 0}, respecting a set of
constraints linked to the interpretation of the components of W in the neural
network. These restrictions are equivalent to giving a priority to the different
ways for pruning weights (to first prune the weights between the input units
and the hidden units).

For a F € F, sub-model of Fi,x, we denote by m(F) the number of its non
null parameters, i.e. the dimension of the parameter vector W, and Wyg the
set of possibles values of W. The true model, which is a sub-model of Fy,,, is
denoted by Fp and the true value of the parameter vector is Wy with dimension
m(Fo) .

Let Wr r be the least squares estimator of W restricted to F,

Wr.p = Arg min Sr(W)
and Sr(F) (instead of Sp(Wr r)) the associated minimum of the Error Func-

tion. Also let (c(t)) be a positive sequence of real numbers. The penalized
least-squares contrast with penalization rate (c(t)) takes the form

CWP(T,F) = ﬁ%ﬁ@ + C(T—T)m(p). (4)
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Let By = Argminpc r CWP(T, F) be the estimated model, which is the result
of two successive minimizations for a fixed T: a minimization on a continuous
space, to compute WT) r and S7(F}, and a minimization on a finite space, to
compute ﬁ‘T.

With these definitions, the following result and its complete proof can be
found in (Mangeas and Yao, 1996, [5]).

Theorem 2 Assume that the conditions of theorem (1) hold. Suppose also
the penalization rate ¢(T') is such that
. c(T) . o(T) 2 A
lim —= = — =

im = 0, and hmTlnf ST > ° 3 (5)
where A (resp. A) is the largest (resp. smallest) eigenvalue of the matriz .
Then, the pair (Fr, Wy 5, ) converges a.s. to the true value (Fo, Wo).

From Theorem 2, we can now propose a an almost sure identification
methodology to determine the true model within the set of the Fy,,« sub-models:

Let the term -y be some positive constant!. A logarithmic penalization rate
c(t) = vInt clearly meets the above conditions (5). Taking such a penalization
rate yields the following least squares BIC* criterion for model selection:

T B () ©)

We will use this criterion in the sequel. One should note the difference between
BIC* and the usual BIC criterion: BIC = In §—T—%ﬂ + 2Lm(F). They have
both a logarithmic penalization rate but their first terms differ since the BIC
criterion is an approximation based on maximum likelihood estimation.

Let U%max be the residual variance associated to Fpa.x. We remind also
that Wnax = (w1, w2,...,wa) denotes the associated dominant parameter
vector. Theoretically, in order to estimate the true model, we would have
to exhaustively explore a finite family and compute BIC* for all sub-models
F € F. But the number of these sub-models is exponentially large (as 2)
and it is impossible to do it in practice. So, as in linear regression analysis, we
propose a Statistical Stepwise Method (SSM) to guide the search in F. Such a
descending strategy is based on the asymptotic normality of the estimator Wr.
See [1] for previous presentations of the SSM algorithm, with several examples.
The SSM pruning method is related to the OBD algorithm defined by (Le Cun
et al., 1990, [4]), because they choose in the same way the next parameter to
be candidate for pruning. But their algorithm does not provide any stopping
criterion, thus it needs a performance estimate on a set of external data.

Using the results about the almost sure identification model, we have a
theoritical stopping criterion: the BIC* criterion. The principle is to stop
the deletion as soon as the criterion BIC* increases. This the main difference
between this new strategy and the one described in [1].

BIC* = BIC*(T, F) =

1The constant  have in practice the same order of magnitude as the variance o2. So the
criterion BIC* does not depend on the scale of the series terms.
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4. Computer-generated example

In order to test the accuracy of the BIC* criterion and of the identification
strategy described section 3, we investigate a simulation experiment. The
true architecture as well as the true parameter vector Wy and the associ-
ated noise (g,) are known. The choosen model (see also figure 1) is: X; =
tan(—0.5X;—1 — 1.5X;_3 + 0.5) + tan(X;—3 — 0.5) + 0.5 + ;. The goal is to
determine if we can retrieve the true architecture within a set of over and
sub connected architectures. Since this simulation is not that complex, we
can compare the exhaustive search with the SSM methodology described pre-
viously. The search is performed over the set of the sub-architectures of the
dominant model described figure 2.

X1
Xi—2

Xi—3

“Figure 1: True architecture

Figure 2: Dominant Architecture.

We generate independantly 50 sequences of 1000 points. The true architec-
ture, with 8 connexions, is shown fig 1. The associated noise (£;) is an i.i.d.
Gaussian sequence with 62 = 0.1. The used dominant model, with 16 connex-
ions, is shown fig 2. Concerning the BIC* criterion, we set v = 03 = 0.1. In
order to avoid local minima, the parameter estimation is computed by taking
the best one among 10 independant runs.

Final Percentage Final Percentage
architecture | over 50 runs architecture | over 50 runs
T 0.73 T 0.62
A 0.12 A 0.22
B 0.10 B 0.16
Table 1: Exhaustive search perfor-  Table 2: Statistical Stepwise Method

mances. performances.

Table 1 shows the three ”"best” architectures: T',A,B (minimizing the BIC*
criterion) selected by the exhaustive search over 50 runs. As expected, the
true architecture T appears 73% of the time. The other winners A et B are
equivalent to the architecture T but with respectively one connexion more and
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one connexion off. They appear respectively 12% and 10% of the time. Table 2
shows the three best architectures selected by SSM over 50 runs. One can note
that this strategy yield exactly the same three architectures. 7' is found in 62%
of the runs.

5. Conclusion

Currently we are working to extend the main results of the paper in three
directions. First, we want to add exogeneous variables as inputs in the network,
and consider a NARX model. Second, we introduce lags of the error in order to
use a non linear neural “ARMA” model. Third, we deal with multi-dimensional
time series leading to perceptrons with multiple output units. In this multi-
dimensional case, we minimize the generalized sum of squares, weighted by the
inverse of the variance-covariance matrix of the data vector.
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