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Abstract. This paper introduces a new approach to recover original signals from their nonlinear
mixtures. The method proposed assumes that each observation is a power function of the linear
combinations of the sources, and that the input distributions are bounded. We use a neural
network combining the geometric approach for the adaptive computation of the coefficients of

- the unknown mixing matrix with the gradient descent method in order to compute the power

function degree. Preliminary results obtained from experiments with synthetic and real signals
are included to show the potential and limitations of the procedure.

1 Introduction

The problem of blind separation of sources involves obtaining the signals generated
by p sources, s;, j=1,...,p, from the mixtures detected by p sensors, e, i=1,...,p. The
mixture of the signals takes place in the medium in which they are propagated, and:

€;(t) = F,(5(1),..5;(D),...5,()) , i=1...p ¢))

where F;: ®P—R is a function of p variables from the s-space to the e-space. The goal
of source separation is to obtain p functions, L;, such that:

5;(1) = L;(ey(1),.e,(1),..e,(D)) , j=Ll..p 2

where L;: RP—R is a function of p variables from the e-space to the s-space. The
structure, L, represented by the set of transformations Lj, is the inverse of the set F
of transformations F,. The problem of source separation has traditionally been
considered solved when, instead of obtaining the original signals s,(t), other signals
y;(t) are obtained such that:

¥,(1) = G;(e,(D()ry () 5 j=1op ©)

where G;: :R°—R is a function of p variables from the e-space to the y-space that
generates the sources s;, multiplied by an undefined scale factor (amplification or
attenuation), and in which the indices may be permuted with respect to the original
sources. Analytically these indeterminations can be represented as follows:

Y@ =DPs@®; y® =0 5@ =) .y e, s(ne®¥ 4

where Pe RP? is a permutation matrix, and De RP? is a diagonal matrix. Most of the
approaches discussed in the literature deal with linear mixtures, and so transformation
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F corresponds to a linear application that can be represented by one matrix A=(ay)
while G is represented by another, W (which is termed similar to A™") such that, from
(4), the following is verified:

Wl A =D P ®)

We have previously proposed various procedures, applicable to linear mixtures, that
are based on geometrical properties of source vectors, s(t), and of mixtures, e(t),
obtained from the hypothesis that the sources are bounded [5,6]. This restriction is
plausible since the physical signals (speech, radar, biomedical, etc.) are limited in
amplitude. The present paper aims to extend this method to a type of non-linear
mixture that approximately models the non linearities introduced in sensors. To date,
relatively few studies have been dedicated to the separation of non-linear mixtures and,
using only the standard hypothesis of statistical independence of sources it is not
possible to recover the original signals [9]. We believe that the model represented by
(1) and (2) is too generalized and, in agreement with other authors [1,3,9], that the
* mixture model should be simplified; concurring with [9], we consider a post-nonlinear
model (PNL), according to which signal propagation is performed via a linear
transmission channel, after which the sensors introduce the non linearities. Thus, (1)
may be expressed as:

4
e(t) = F(Y a;5;(8)) 5 i=l..p (©)
j=1

There exists a great variety of sensors, whose transfer characteristics are modelled by
diverse functions [4], e.g. logarithmic or power, and normal practice is to approximate
these by a series expansion. Thus, if x,(t) denominates the signal captured by a sensor,
its output, e,(t), may be represented by a polynomial of the form:

e,(®) = F,(x,()) = ¢y +cyx(@®) +c, x()? + ...+ ¢, x(®" = c, x, ()" 7

where the approximation is valid if |x;|>>1. This is the parametric form considered
in the present work, with xizzaij-sj. Then, the mixing model used is:

p .
e(r) = (Y a,s)" . ijell,...p}, ne R -{0} ®
j=1

We also assume that the elements of the A matrix verify:
a, *0 , Vie({l,.p} ©)

a; > 0 , Vije{l,..,p}

This hypothesis is equivalent to considering each sensor (i) to be sensitive at least to
its associated source (i), and that the influence of the other sources is not inverted.

2. Basis of procedure

In previous papers [7,8] we have shown that, if the sources are bounded, the set of all
their possible values, s(t), forms a p-dimensional hyperparallelepiped in the s-space.
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Similarly, if the mixture is linear, n=1 in (8), the set of all the possible images, e(t),
forms a hyperparallelepiped in the e-space. We have also shown that by taking p
vectors, w;, each one located at one of the edges of the hyperaparallelepiped cone that
contains the mixing space, as column vectors of a matrix W=(wij), we obtain a matrix
that is similar to A and, thus, capable of obtaining the original sources. The problem,
therefore, is reduced to that of identifying, among the mixing vectors obtained from
the outputs of the sensors, those that are located at the edges of the
hyperparallelepiped cone. This can be performed in various ways: for example, where
€,(t)>0, selecting mixing vectors for which e;(t)/e(t) is minimum [6]; i.e.
n
e.(t a..

W, = min{ e’.((t)) } Lo 0>0 = wy=| L) ijeql.p) (0
The value of the expénent, n, is obtained from a parameter k(t), according to the
iterative process described in Section 3, adaptively approaching the value of 1/n. Given
the values of w;; and k(t), the sources, y, may be obtained. Thus, for p=2 we have:

Y,(k,t+1) = ¢, 5,(k, 1+1) = €, ()% - (w(8) ¢;(1))* ; i,je{12}, i»j (1D

where c; = det (W).

3. Linearizing the power function

From (11) we can adaptively obtain the centred signals y(t)=Y,(1)-<Y(t)>, and
compute the parameter k(t) using the gradient descent method. This method minimizes
the cost or error function, E(t), incrementally updating the value of k(t) according to
the error gradient, as follows:

1) = k(1) — . 9E(1) 12
k(t+1) =k(t) - «(t) () (12)

where o(t) is an adaptation gain which, as in [2], we believe may be obtained by
using, again, the gradient method for the same error function:

OE(t)

a(t+l) =a(f) -8 ——= (13)
(¢+1) = a(?) da.(0)

where & is the learning rate of ot). For the error function, we propose using the
correlation between signals y,(k,t) and y,(kt), as follows:

E@®) = <y (k0 3,0 > = [[ 360 y, (k) di di (14)

The objective, then, of the gradient descent procedure, is to obtain the values of k and
o. that minimize the correlation between y,(k,t) and y,(k,t). By deriving E(t) with
respect to k, we obtain:

OE(t)

N
. (15)
ak(r) DIRACLRACY

=[5 (1) y, (ko) de =

=z~
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where the incremental form of the integral is included in (18) and N gives the number
of iterations. As the error function is known, the partial derivative of E(t) with respect
to ot) can be calculated directly, as follows:

gE(t) JE(t) dk(r) _ OE(Y) . B 5 B(O) = k(1) (16)
o (1) ok(t) da(r) ok(t) oo (1)
Assuming that o(t) does not vary too fast, and deriving (12), we obtain:

Ok(t+1) - k(t+1) - B(t+1) = B(D) - OE(@®) —a) - 2 (9E(® (17)
do(f) da(r+1) k() o () \ k(D

From (16), it is easy to see that the last partial derivative of (17) depends on the

derivative of the error gradient, which can be calculated as follows:

d’E(r) _ 3 Ey;(k 0 3,k t)J

k(1) - 3k(r)

1 N
-NZ [3,(k,0) {e; Ine, - (wyye ) In(wy e} +,(k,1) ef e, - (we,)* In(wye,)
t=1

(18)
To sum up, k(t) can be adaptively computed by the following expressions:
1) = OE(Y) 19
a(t+l) = a(t) -8.B(2). TS 19
B(+1)= () (1-a (. TED) _ D 20)

oKX = k()
together with (12), (15) and (18).

4. Simulation results

The procedure may be mapped on two simultaneous neural networks, implementing
(11), (12), (15), (18), (19) and (20), in order to adaptively obtain the separated signals
yi(k,t), the matrix W and k(t), which identifies both the medium and the sensor.
Throughout the process, k(t) is adapted according to (12). This section shows the
convergence of wy(t), k(t), at) and B(t) during the process. The parameter & is fixed
at a value of 0.5. The initial value for k(t) was k(0)=1. The simulations are as follows:
Simulation 1: n = 10. Figure 1 shows the results of the separation of two synthetic
signals, corresponding to two uniform noises, distorted with a power function of
degree n=10. The elements of A were a;;=a,,=1 and a ;=a,=0.25. The obtained
weights were w;=w,,=1 and w,=w,;=9.5.107; here, 0. was non-adaptive with value
0=0.2 and, in the convergence (4000 iterations), k°=0.102 and 9E(t)/0k(t)=2.5.10°. The
values of the crosstalk, c(i), for each signal i, were c(1)=-32 dB and c(2)=-28 dB.

Simulation 2. n = 0.1. Figure 2 shows the results of the separation of two real signals,
the Spanish words "ocho" (eight) and "nueve" (nine), distorted with a power function
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of degree n=0.1. The elements of A were a;;=a,,=1 and a;,;=a,;=0.5. The obtained
weights were w;;=w,,=1 and w,,=w,,=0.933; here, o0 was adaptive with a value in the
convergence (4000 iterations) of ci(t)=10, where k°(t)=9.9, B(t)=0.1, oE(t)/ok(t)=-2.10"
and 9°E(t)/ok*(t)=5.10". The values of the crosstalk, c(i), for the signal i, were c(1)=-
39 dB and c¢(2)=-45 dB.

5 Conclusions

This paper introduces an approach to separate p unknown sources, linearly mixed and
distorted by a power function of degree n. The method, based on geometric
considerations to determine the mixing matrix, W, adaptively computes the exponent
of the function, n=k”, by means of decorrelation of the outputs, y,(k,t). An artificial
neural network is simulated to recursively separate sources and to obtain, in an
_ unsupervised way, their weights; the gradient descent method is used to adapt k(t), and
* simulations show that no limitation to the value of n exists, except n<0. The procedure
may only be applied to media with coefficients a; that are positive, and for good
separation it is necessary to obtain vectors close to the edges of the parallelepiped
containing the mixing space. Future work will concern the study of other types of
nonlinear mixtures and the extension of this method to more than two signals.
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Figure 1. Simulation 1: Two random noises and n=10.
(a) k(t) (b) s(t), e(t) and y(t) when k=k°.
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Figure 2. Simulation 2: Two real signals and n=0.1.
(a) k(t) (b) s(t), e(t) and y(t) when k=k°.






