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Abstract. The problem of model selection is considerably important for
acquiring higher levels of generalization capability in supervised learning.
In this paper, we propose a new criterion for model selection named the
subspace information criterion (SIC). Computer simulations show that
SIC works well even when the number of training examples is small.

1. Introduction

Supervised learning is obtaining an underlying rule from training examples,
and can be regarded as a function approximation problem. In virtually all
learning methods, the quality of the learning results depends heavily on the
complexity of models.

The problem of model selection has been studied from various standpoints:
information statistics [1, 3], Bayesian statistics [5, 2], stochastic complexity [4],
and structural risk minimization [6]. Many model selection criteria devised so
far use asymptotic approximation in their derivation, so they do not work well
when the number of training examples is small

In this paper, we propose a new criterion for model selection from the
functional analytic viewpoint. We call this criterion the subspace information
criterion (SIC). SIC estimates the generalization error by utilizing noise char-
acteristics, instead of asymptotic approximation. Our computer simulations
show that SIC works well even when the number of training examples is small.

2. Mathematical foundation of model selection

Let us consider the problem of obtaining an approximation to a target function
f(x) of L variables from a set of M training examples. Training examples are
made up of input signals xm ∈ D ⊂ RL and corresponding output signals
ym ∈ C:

{(xm, ym) | ym = f(xm) + nm}M
m=1, (1)
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where ym is degraded by additive noise nm. Let θ be a set of factors deter-
mining learning results. θ includes, for example, the number and type of basis
functions, and parameters in learning algorithms. We call θ a model. Let f̂θ be
a learning result obtained with a model θ. Assuming that f and f̂θ belong to
a Hilbert space H , the problem of model selection is described as follow.

Definition 1 (Model selection) From given models, find the one minimiz-
ing the generalization error defined as

En‖f̂θ − f‖2, (2)

where En and ‖ · ‖ denote the ensemble average over the noise and the norm
in H, respectively.

3. Subspace information criterion

In this section, we derive a model selection criterion named the subspace infor-
mation criterion (SIC).

Let y, z, and n be M -dimensional vectors whose m-th elements are ym,
f(xm), and nm, respectively:

y = z + n. (3)

Let Xθ be a mapping from y to f̂θ:

f̂θ = Xθy. (4)

Xθ is called a learning operator. In the derivation of SIC, we assume the
following conditions.

1. The learning operator Xθ is linear.

2. The mean noise is zero.

3. An unbiased learning result f̂u has been obtained with a linear operator
Xu:

Enf̂u = f, f̂u = Xuy. (5)

Assumption 1 implies that the range of Xθ becomes a subspace of H . It
follows from Eqs.(5), (3), and Assumption 2 that

Enf̂u = EnXuy = EnXuz + EnXun = Xuz. (6)

Hence, Assumption 3 yields
Xuz = f. (7)

As shown in the following section, Assumption 3 holds if M ≥ dim(H) under
general conditions. The unbiased learning result f̂u is used for estimating the
generalization error of f̂θ.
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It is well-known that the generalization error of f̂θ is decomposed into the
bias and variance:

En‖f̂θ − f‖2 = ‖Enf̂θ − f‖2 + En‖f̂θ − Enf̂θ‖2. (8)

It follows from Eqs.(4) and (3) that Eq.(8) yields

En‖f̂θ − f‖2 = ‖Xθz − f‖2 + tr (XθQX∗
θ ) , (9)

where tr (·) denotes the trace of an operator, Q is the noise covariance matrix,
and X∗

θ denotes the adjoint operator of Xθ. Let X0 be an operator defined as

X0 = Xθ − Xu. (10)

Then, the bias of f̂θ can be expressed by using f̂u as

‖Xθz − f‖2 = ‖f̂θ − f̂u‖2 − 2Re〈Xθz − f, X0n〉 − ‖X0n‖2, (11)

where ‘Re’ stands for the real part of a complex number and 〈·, ·〉 denotes
the inner product in H . The second and third terms of the right-hand side of
Eq.(11) can not be directly calculated since f and n are unknown. Accordingly,
we replace them with the averages of them over the noise. Then, the second
term vanishes since the mean noise is zero, and the third term yields

En‖X0n‖2 = tr (X0QX∗
0 ) . (12)

Note that this approximation gives an unbiased estimate of the bias:

En

(
‖f̂θ − f̂u‖2 − tr (X0QX∗

0 )
)
= ‖Xθz − f‖2. (13)

To guarantee that the bias is non-negative, we adopt the following term as an
approximation of the bias:

‖Xθz − f‖2 ≈
[
‖f̂θ − f̂u‖2 − tr (X0QX∗

0 )
]
+

where [t]+ = max(0, t). (14)

Substituting Eq.(14) into Eq.(9), we have the following model selection crite-
rion.

Definition 2 (Subspace information criterion) Among the given models,
select the one minimizing the following SIC:

SIC =
[
‖f̂θ − f̂u‖2 − tr (X0QX∗

0 )
]
+
+ tr (XθQX∗

θ ) . (15)

The model minimizing SIC is called the minimum SIC model (MSIC model),
and the learning result obtained by the MSIC model is called the MSIC learning
result. The generalization capability of the MSIC learning result measured by
Eq.(2) is expected to be the best.
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Unlike well-known Akaike’s information criterion (AIC) [1] and the Bayesian
information criterion (BIC) [5], SIC estimates the generalization error by utiliz-
ing the noise characteristics instead of asymptotic approximation. Therefore,
SIC is expected to work well even when the number of training examples is
small. Indeed, computer simulations performed in the following section sup-
port this claim.

AIC-type criteria are said to be effective only in the selection of nested
models [3]. In contrast, no restriction is imposed on models in SIC.

4. Computer simulation

In this section, computer simulations are performed to demonstrate the effec-
tiveness of SIC compared with the network information criterion (NIC) [3], a
generalized AIC.

Let the learning target function f(x) be

f(x) =
√
2(sinx + 2 cosx − sin 2x− 2 cos 2x + sin 3x

− cos 3x + 2 sin 4x− cos 4x + sin 5x− cos 5x), (16)

and training examples {(xm, ym)}M
m=1 be

xm = −π − π

M
+

2πm

M
, ym = f(xm) + nm, (17)

where the noise nm is subject to the normal distribution with mean 0 and
variance 3. Let us consider the following set of models:

{SN}20
N=1, (18)

where SN is a Hilbert space spanned by {1, sinnx, cosnx}N
n=1, and the inner

product is defined as

〈f, g〉 = 1
2π

∫ π

−π

f(x)g(x)dx. (19)

We adopt the least mean squares (LMS) learning aimed at minimizing the
training error :

M∑
m=1

∣∣∣f̂θ(xm)− ym

∣∣∣2 . (20)

Our task is to find the best model minimizing

Error =
1
2π

∫ π

−π

∣∣∣f̂θ(x)− f(x)
∣∣∣2 dx. (21)

Let us consider the following model selection methods for M = 50 and M =
200.
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Figure 1: Simulation results when the numbers of training examples are 50
(left) and 200 (right). The top graphs show the values of the error measured
by Eq.(21), SIC, and NIC in each model, denoted by the solid, dashed, and
dotted lines, respectively. The horizontal axis denotes the highest order N
of trigonometric polynomials (see Eq.(18)). The middle and bottom graphs
show the target function f(x) (solid line), training examples (’◦’), MSIC and
minimum NIC (MNIC) learning results (dashed lines).
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(A) SIC: Let H = S20 which includes all models. Since the learning result
obtained with S20 is unbiased, it is adopted as f̂u. The noise covariance
matrix Q is estimated by assuming Q = σ2I and estimating σ2 as

σ̂2 =
M∑

m=1

∣∣∣f̂u(xm)− ym

∣∣∣2
/

(M − dim(H)) . (22)

(B) NIC: The squared loss is adopted as the loss function. The distribution
of sample points given by Eq.(17) is regarded as a uniform distribution.

In both (A) and (B), no a priori information is used and the LMS estimator
is commonly adopted. Hence, the efficiency in these model selection methods
can be fairly compared by this simulation.

Fig.1 shows the simulation results. These results show that when M = 200,
both SIC and NIC give reasonable learning results. However, when it comes
to the case when M = 50, SIC outperforms NIC. This implies that SIC works
well even when the number of training examples is small.

5. Conclusion

We proposed a new model selection criterion called the subspace information
criterion (SIC). In SIC, the generalization error is estimated by utilizing the
noise characteristics instead of asymptotic approximation. Computer simula-
tions showed that SIC works well even when the number of training examples
is small.
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