
Regularizing Generalization Error Estimators:

A Novel Approach to Robust Model Selection

Masashi Sugiyama1,2∗, Motoaki Kawanabe1, Klaus-Robert Müller1,3

1 Fraunhofer FIRST, IDA, Kekuléstr. 7, 12489 Berlin, Germany
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Abstract. A well-known result by Stein shows that regularized estima-
tors with small bias often yield better estimates than unbiased estimators.
In this paper, we adapt this spirit to model selection, and propose reg-
ularizing unbiased generalization error estimators for stabilization. We
trade a small bias in a model selection criterion against a larger variance
reduction which has the beneficial effect of being more precise on a single
training set.

1 Introduction

Almost all learning algorithms proposed so far include some tuning (or hyper)
parameters, and appropriately determining the values of such tuning parame-
ters (i.e., model selection) is crucial for better generalization [8]. Usually, the
values of the tuning parameters are set so that an estimator of the generaliza-
tion error is minimized. So far, several unbiased estimators of the generaliza-
tion error have been proposed, and they have been successfully used as model
selection criteria in various practical learning tasks.

However, unbiased estimators of the generalization error can have large
variance under some severe conditions, making model selection unstable. For
this reason, it is very important to reduce the variance of the unbiased general-
ization error estimators for robust model selection. In this paper, we therefore
propose a method for improving the precision of unbiased generalization error
estimators by regularization. Since we are trying to shrink unbiased estimators
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of the generalization error, this work can be regarded as an application of the
idea of the Stein estimator [3] to model selection.

We focus on the subspace information criterion (SIC) [6, 5], which is an
unbiased estimator of the generalization error measured by the reproducing
kernel Hilbert space norm. It was shown in earlier experiments [7] that a small
regularization of SIC has a stabilization effect. However, it remained open how
to appropriately determine the degree of regularization in SIC.

In this paper, we derive an estimator of the expected squared error be-
tween SIC and the generalization error, and propose determining the degree
of regularization of SIC so that the estimator of the expected squared error is
minimized.

2 Regression Problem and Model Selection

In this section, we formulate the regression problem of approximating a target
function from training samples.

Let us denote the learning target function by f(x), which is a real-valued
function of d variables defined on D ⊂ Rd. We are given a set of n training
examples, each of which consists of a sample point xi ∈ D and a sample value
yi ∈ R. We consider the case that yi is degraded by unknown additive noise εi,
which is independently drawn from a normal distribution with mean zero and
variance σ2. Namely the training examples are expressed as {(xi, yi) | yi =
f(xi)+ εi}n

i=1. In theory, we assume that σ2 is known, although it is estimated
from the training examples in experiments.

We assume that the unknown learning target function f(x) belongs to a
specified reproducing kernel Hilbert space (RKHS) H. Let us denote the repro-
ducing kernel of a functional Hilbert space H by K(x, x′). We will employ the
following kernel regression model f̂(x):

f̂(x) =
n∑

i=1

αiK(x, xi), (1)

where {αi}n
i=1 are parameters to be estimated from training examples. We

estimate the parameters in a linear fashion, i.e., estimated parameters {α̂i}n
i=1

are given by
α̂ = (α̂1, α̂2, . . . , α̂n)� = Xy, (2)

where y = (y1, y2, . . . , yn)� and X is an n-dimensional matrix that does not
depend on the noise {εi}n

i=1. All the discussions in this paper are valid for any
matrix X, but for simplicity we focus on ridge estimation.

α̂λ = Xλy, where Xλ = (K2 + λI)−1K. (3)

I denotes the identity matrix and K is the so-called kernel matrix whose (i, j)-
th element is Ki,j = K(xi, xj).
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We would like to determine the value of the ridge parameter λ so that
f̂(x) well approximates the unknown learning target function f(x). For this
purpose, we need a criterion that measures the closeness of two functions (i.e.,
the generalization measure). In this paper, we measure the generalization error
by the expected squared norm in the RKHS H.

J0(λ) ≡ Eε‖f̂λ − f‖2
H, (4)

where Eε denotes the expectation over the noise {εi}n
i=1 and ‖ · ‖H denotes the

norm in the RKHS H. Using the function space norm as the error measure is
rather common in the field of function approximation. For further discussions
on this generalization measure, readers may refer to [5].

The generalization error J0 includes the unknown learning target function
f(x) so it can not be directly calculated. The subspace information criterion
(SIC) [6, 5] is an estimator of it:

SIC(λ) ≡ 〈KXλy, Xλy〉 − 2〈KXλy, Xuy〉 + 2σ2trace
(
KXλX�

u

)
, (5)

where 〈·, ·〉 denotes the inner product in Rn and Xu = K†. SIC satisfies

EεSIC(λ) = J0(λ) − ‖f‖2
H ≡ J(λ). (6)

Since ‖f‖2
H is constant, SIC is an unbiased estimator of an essential part J

of the generalization error J0. The purpose of this paper is to improve the
precision of SIC. To this end, we briefly review the derivation of SIC in the rest
of this section.

Let α∗ be the parameter vector corresponding to the orthogonal projec-
tion fS(x) of the unknown learning target function f(x) onto the subspace S
spanned by {K(x, xi)}n

i=1:

fS(x) =
n∑

i=1

α∗
i K(x, xi). (7)

Note that fS(x) is the optimal approximation to the target function f(x) in
the kernel regression model (1). Letting ‖α‖2

K = 〈Kα, α〉, we can express the
true generalization error J0 by

J0(λ) = ‖Eεα̂λ − α∗‖2
K + σ2trace

(
KXλX�

λ

)
+ ‖fS − f‖2

H, (8)

where the first and second terms are the squared bias and variance of α̂λ, and
the last one is constant. A key idea of SIC is that the bias term ‖Eεα̂λ−α∗‖2

K

is roughly estimated by ‖α̂λ − α̂u‖2
K , where α̂u is a linear unbiased estimate

of the optimal parameter α∗:

Eεα̂u = α∗, where α̂u = Xuy and Xu = K†. (9)

Then an unbiased estimator of the bias term ‖Eεα̂λ − α∗‖2
K is given by

‖α̂λ − α̂u‖2
K − σ2trace

(
K(Xλ − Xu)(Xλ − Xu)�

)
. (10)

Replacing the bias term ‖Eεα̂λ − α∗‖2
K in Eq.(8) by this unbiased estimator

and ignoring some constant terms, we have SIC given by Eq.(5).

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 163-168



3 Regularization Approach to Stabilizing SIC

As shown in Eq.(6), SIC is an unbiased estimator of an essential part J of
the generalization error J0, and this good property still holds even in finite
sample cases (i.e., non-asymptotic cases). It is demonstrated that SIC can be
successfully applied to the ridge parameter selection when the noise level is low
or medium [5]. However, when the noise level is very high, the performance of
SIC sometimes becomes unstable because the variance of SIC can be large. In
this section, we propose a method for stabilizing SIC.

Our previous work [7] showed that the instability of SIC is mainly caused
by the large variance of the unbiased estimate α̂u, which played an essential
role in the derivation of SIC. In order to reduce the variance of SIC, the paper
[7] proposed replacing the linear unbiased estimate α̂u by a linear regularized
estimate α̂γ . Namely, the bias term ‖Eεα̂λ − α∗‖2

K in Eq.(8) is estimated by
using ‖α̂−α̂γ‖2

K instead of ‖α̂−α̂u‖2
K . The regularized estimate α̂γ is slightly

biased, so its expectation Eεα̂γ no longer agrees with the true parameter α∗.
However, the ‘scatter’ of α̂γ may be far smaller than that of the unbiased
estimate α̂u. The following discussion is valid for any linear estimator α̂γ , but
here we focus on the ridge estimator for simplicity.

α̂γ = Xγy, where Xγ = (K2 + γI)−1K. (11)

γ (≥ 0) is the regularization parameter that controls the degree of regularization
in SIC. We refer to SIC with Xu replaced by Xγ as the regularized SIC (RSIC):

RSIC(λ; γ) ≡ 〈KXλy, Xλy〉 − 2〈KXλy, Xγy〉 + 2σ2trace
(
KXλX�

γ

)
. (12)

The notation RSIC(λ; γ) means that RSIC is a function of the ridge parameter
λ with a tuning parameter γ. Note that when γ = 0, RSIC agrees with the
original SIC. It was experimentally shown that this regularization approach
works effectively for stabilizing SIC [7]. However, the value of the regularization
parameter γ should be appropriately determined, which is still a open problem.
This is the problem that we tackle in this paper.

Let us consider the expected squared error (ESE) between RSIC and J ,
where J is an essential part of the generalization error J0 (see Eq.(6)):

ESERSIC(γ; λ) ≡ Eε(RSIC(λ; γ) − J(λ))2. (13)

The notation ESERSIC(γ; λ) means that we treat ESERSIC as a function of the
regularization parameter γ and ESERSIC depends on the ridge parameter λ.
Our aim is to determine γ in RSIC so that the above ESERSIC is minimized.

An unbiased estimator of ESERSIC is given by

ÊSERSIC(γ; λ) = 〈By, y〉2 − σ2‖(B + B�)y‖2 − 2σ2trace (B) 〈By, y〉
+σ4trace

(
B2 + B�B

)
+ σ4trace (B)2

+σ2‖(C + C�)y‖2 − σ4trace
(
C2 + C�C

)
, (14)
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Table 1: Normalized mean test errors and their standard deviations. The
results of the best method and all other methods with no significant difference
(95% t-test) are described in bold face.

Data SIC RSIC Cross Validation Empirical Bayes

Abalone 1.0131± 0.0002 1.0144± 0.0002 1.0146± 0.0002 1.0204 ± 0.0003
Boston 1.0001± 0.0007 1.0016± 0.0007 1.0071± 0.0007 1.1406 ± 0.0008

Bank-8fm 1.0001± 0.0001 1.0703 ± 0.0001 1.0708 ± 0.0001 1.0030 ± 0.0001
Bank-8nm 1.0001± 0.0004 1.0002± 0.0004 1.0461 ± 0.0005 1.0477 ± 0.0005
Bank-8fh 1.0604 ± 0.0004 1.0025± 0.0003 1.0026± 0.0003 1.0003± 0.0003
Bank-8nh 1.0987 ± 0.0004 1.0028± 0.0005 1.2177 ± 0.0008 1.4200 ± 0.0008
Kin-8fm 1.0000± 0.0001 1.0000± 0.0001 1.0010± 0.0001 1.4548 ± 0.0004
Kin-8nm 1.0104± 0.0011 1.0097± 0.0010 1.0241 ± 0.0007 1.0371 ± 0.0006
Kin-8fh 1.1103 ± 0.0002 1.0021± 0.0003 1.0057± 0.0003 1.2025 ± 0.0001
Kin-8nh 1.1015 ± 0.0008 1.0451 ± 0.0009 1.0017± 0.0004 1.0361 ± 0.0004

where B and C are n-dimensional matrices defined by

B = 2X�
u KXλ − 2X�

γ KXλ and C = X�
λ KXλ − 2X�

γ KXλ. (15)

We propose determining the value of γ (for each ridge parameter λ) so that
ÊSERSIC is minimized. Consequently, the ridge parameter λ is determined as
follows.

λ̂RSIC = argmin
λ

RSIC(λ; γ̂λ), where γ̂λ = argmin
γ

ÊSERSIC(γ; λ). (16)

4 Simulations

In this section, the effectiveness of the proposed method is experimentally in-
vestigated by using 10 standard benchmark data sets provided by DELVE
[2]. For convenience, every attribute is normalized to [0, 1]. 100 randomly
selected samples {(xi, yi)}100

i=1 are used for training. For the DELVE data
sets, we can not calculate the true generalization error since the true func-
tion f is unknown. Instead, we evaluate the performance by the mean squared
test error using the samples not used for training. The Gaussian kernel with
standard deviation 1 is employed, and the ridge parameter λ is selected from
{10−3, 10−2, 10−1, . . . , 103}. As ridge parameter selection strategies, we com-
pare SIC, RSIC, the leave-one-out cross-validation, and an empirical Bayesian
method [1]. The noise variance σ2 is estimated by

σ̂2
λ = ‖KXλy − y‖2/(n − trace (KXλ)). (17)

The simulation is repeated 100 times for each data set, randomly selecting the
training set {(xi, yi)}100

i=1 in each trial. Note that the test samples also vary in
each trial.

Simulation results are summarized in Table 1, showing that RSIC gives the
best or comparable results for 8 out of 10 data sets. It is interesting to note
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that RSIC outperforms SIC for the data sets with high noise (Bank-8fh, Bank-
8nh, Kin-8fh, and Kin-8nh), while RSIC is fairly comparable to SIC for the
data sets with medium noise (Bank-8nm, Kin-8fm, and Kin-8nm). Therefore,
RSIC is shown to improve the degraded performance of SIC in the high noise
cases, and it tends to maintain the good performance of SIC in the medium
noise cases. From this result, we conjecture that RSIC should be regarded as
a practical model selection criterion for choosing the ridge parameter.

5 Conclusions

In this paper, we proposed using Stein’s idea in the context of model selection,
i.e., we suggested that the use of a biased estimator, e.g., by means of regular-
ization, can yield more stable and thus better estimators of the generalization
error than its unbiased counterpart. Thus we sacrificed the unbiasedness for the
sake of variance reduction in a model selection criterion by actively optimizing
and balancing out this bias/variance trade-off. Further theoretical analysis and
experimental evaluation are included in an extended version [4].
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