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Abstract. In most machine learning applications the time series to
predict is fixed and one has to learn a prediction model that causes the
smallest error. In this paper choosing the time series to predict is part of
the optimization problem. This time series has to be a linear combination
of a priori given time series. The optimization problem that we have to
solve can be formulated as choosing the linear combination of a priori
known matrices such that the smallest singular vector is minimized. This
problem has many local minima and can be formulated as a polynomial
system which we will solve using a polynomial system solver. The proposed
prediction algorithm has applications in algorithmic trading in which a
linear combination of stocks will be bought.

1 Introduction

It is beneficial to have a linear combination of assets instead of one asset for
several reasons: in modern portfolio theory [1] the aim is selecting a set of assets
that has collectively lower risk than any individual asset, in pairs trading [2] a
market neutral trading strategy is used that enables traders to profit from virtu-
ally any market conditions (uptrend, downtrend, or sideways movement). In this
paper we select the linear combination of assets that minimizes the prediction
error. The proposed optimization problem, which is the main contribution of
this paper, is solved using a polynomial solver that uses solely basic linear alge-
bra tools. Solving multivariate polynomial systems is normally done in the field
of computational algebraic geometry [3]. Another class of polynomial solvers are
homotopy continuation methods. These are a symbolic-numerical hybrid [4, 5].

∗Research supported by: Research Council KUL: GOA/11/05 Ambiorics, GOA/10/09
MaNet , CoE EF/05/006 Optimization in Engineering (OPTEC) en PFV/10/002 (OPTEC),
IOF-SCORES4CHEM, several PhD/postdoc & fellow grants; Flemish Government: FWO:
PhD/postdoc grants, projects: G0226.06 (cooperative systems and optimization), G0321.06
(Tensors), G.0302.07 (SVM/Kernel), G.0320.08 (convex MPC), G.0558.08 (Robust MHE),
G.0557.08 (Glycemia2), G.0588.09 (Brain-machine) research communities (WOG: ICCoS, AN-
MMM, MLDM); G.0377.09 (Mechatronics MPC); IWT: PhD Grants, Eureka-Flite+, SBO
LeCoPro, SBO Climaqs, SBO POM, O&O-Dsquare; Belgian Federal Science Policy Office:
IUAP P6/04 (DYSCO, Dynamical systems, control and optimization, 2007-2011); IBBT;
EU: ERNSI; FP7-HD-MPC (INFSO-ICT-223854), COST intelliCIS, FP7-EMBOCON (ICT-
248940), FP7-SADCO ( MC ITN-264735), ERC HIGHWIND (259 166); Contract Research:
AMINAL; Other: Helmholtz: viCERP; ACCM. The scientific responsibility is assumed by its
authors.

357

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



The remainder of this paper is organized as follows. First we give a moti-
vating example in Section 2. Section 3 explains the optimization problem. The
polynomial solver is discussed in Section 4. In Section 5 the algorithm is applied
on a toy data set. Finally, Section 6 concludes the paper.

2 Motivating Example

Suppose time series v1(t) and v2(t) are defined as follows

v1(1) = e1(1), v1(t) = 0.8v1(t− 1) + 0.6e1(t) t = 2, ...,m (1)
v2(1) = e2(1), v2(t) = −0.6v2(t− 1) + 0.8e2(t) t = 2, ...,m (2)

where for any t, e1(t) and e2(t) are mutually independent i.i.d. gaussian variables
with mean 0 and variance 1. Suppose y1(t) and y2(t) are generated as follows[

y1(t)
y2(t)

]
= A

[
v1(t)
v2(t)

]
with A =

[√
0.5

√
0.5√

0.25
√

0.75

]
. (3)

One can notice y1(t), y2(t) have mean 0 and variance 1 as well. The expected
square errors for the optimal first order autoregressive predictor equal

E(y1(t)− b1y1(t− 1))2 = 0.99 with b1 = 0.1,

E(y2(t)− b2y2(t− 1))2 = 0.9375 with b2 = −0.25.

These expected square errors are much worse than the lowest achievable expected
square errors for v1(t) and v2(t) which are respectively 0.36 and 0.64. The linear
combination of y1(t) and y2(t) with mean square value equal to 1 that causes
the smallest expected square error for the optimal first order autoregressive
predictor is v1(t) = 3.35y1(t) − 2.73y2(t). This is the solution that we hope
to approximate with our algorithm given a finite number of datapoints of time
series y1(t) and y2(t). In case y1(t) and y2(t) represent stock returns, buying
the linear combination resulting in v1(t) will probably cause higher returns than
both y1(t) and y2(t) because v1(t) can be predicted much better.

3 Optimization Problem

The most general optimization problem that we consider in this paper is

min
a,b,c

J(a, b, c) = ‖Y a− f(a, b, c)‖22 s.t.

{
‖Y a‖2 = 1
f(a, b, c) =

∑nb

i=1 biXia+ Uc.
(4)

This optimization problem has the following parameters and variables:

• Matrix Y ∈ Rm×na represents na time series, each containing m data-
points. To avoid overfitting m should be much larger than na. With

reference to the motivating example Y is
[
y1(2) y1(3) ... y1(m)
y2(2) y2(3) ... y2(m)

]T

.
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• Vector a ∈ Rna contains the coefficients corresponding to a linear combi-
nation of Y . The resulting time series becomes Y a.

• Matrix Xi ∈ Rm×na contains time series dependent inputs such that input
Xia corresponds to time series Y a for every a. In the motivating example

nb equals 1 and X1 becomes
[
y1(1) y1(2) ... y1(m− 1)
y2(1) y2(2) ... y2(m− 1)

]T

.

• The vector b ∈ Rnb contains linear regression coefficients such that bi
corresponds to input Xia.

• The matrix U ∈ Rm×nc contains the external inputs which are independent
from the time series. The nc inputs at row j are the external inputs
corresponds to the jth datapoint in the time series. To add a constant
offset one can add a column containing ones to U . In the motivating
example there is no U .

• The vector c ∈ Rnc contains regression coefficients corresponding to the
external inputs.

The constraint ‖Y a‖2 = 1 ensures the mean square value of the resulting time
series equals 1 and thus avoids the solution in which a equals the zero vector.
The optimization problem can be reformulated with U† the pseudo-inverse of U

min
a,b

J(a, b) = aT (Y ′ −
n∑

i=1

biX
′
i)

T (Y ′ −
nb∑
i=1

biX
′
i)a (5)

s.t. ‖Y a‖2 = 1 (6)

where c = U†(Y −
∑nb

i=1 biXi)a, Y ′ = (I − UU†)Y and X ′i = (I − UU†)Xi.
In the optimum, a equals the right singular vector of (Y ′ −

∑n
i=1 biX

′
i) cor-

responding to the smallest singular value σna
. The prediction error in this op-

timum equals σ2
na

. Adding the Lagrange multiplier λ to enforce the constraint
‖Y a‖2 = 1 gives the Lagrangian

L(a, b, λ) = aT (Y ′ −
nb∑
i=1

biX
′
i)

T (Y ′ −
nb∑
i=1

biX
′
i)a+ λ(1− aTY TY a) (7)

The first-order optimality conditions that need to be satisfied are

∂L(a, b, λ)
∂a

= 2(Y ′ −
nb∑
i=1

biX
′
i)

T (Y ′ −
nb∑
i=1

biX
′
i)a− 2λY TY a = 0 (8)

∂L(a, b, λ)
∂bi

= 2aTX ′Ti (Y ′ −
nb∑
i=1

biX
′
i)a = 0 i = 1, ..., nb (9)

∂L(a, b, λ)
∂λ

= 1− aTY TY a = 0. (10)

This is a system of n = na + nb + 1 polynomial equations of degree 3 or less.
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4 Polynomial Solver

A quick overview of the basic polynomial root-finding algorithm is given for the
case that there are no roots with multiplicities and roots at infinity. More details
for the case of multiplicities and roots at infinity can be found in [6, 7]. The main
computational tool of the algorithm is either the singular value decomposition
(SVD) or rank-revealing QR decomposition and the eigenvalue decomposition.

Algorithm 4.1
Input: system of the n-variate polynomials F = f1, . . . , fs of
degrees d1, . . . , ds

Output: kernel K
1: M ← coefficient matrix of F up to degree d =

∑s
i=1 di − n+ 1

2: s← nullity of M
3: Z ← basis null space from SVD(M) or QR(M)
4: S1 ← row selection matrix for s linear independent rows of Z
5: S2 ← row selection matrix for shifted rows of S1 Z
6: B ← S1 Z
7: A← S2 Z
8: [V,D]← solve eigenvalue problem B V D = AV
9: K ← Z V

The first step in the algorithm is to construct the coefficient matrix of the
polynomial system F containing equations (8), (9) and (10) up to a degree
d =

∑s
i=1 di − n + 1. In order to explain how this coefficient matrix is made

we first need to explain how multivariate polynomials are represented by their
coefficient vectors. This is achieved by simply storing the coefficients of the
polynomial into a row vector according to a certain monomial ordering. In
principle any monomial ordering can be used. We refer to [3] for more details
on monomial orderings. The following example illustrates this for a bivariate
polynomial of degree 2.

Example 4.1 The vector representation of 2 + 3x1 − 4x2 + x1x2 − 7x2
2 is

( 1 x1 x2 x2
1 x1x2 x2

2

2 3 −4 0 1 −7
)
.

We can now define the coefficient matrix of a multivariate polynomial system
up to a degree d.

Definition 4.1 Given a set of n-variate polynomials f1, . . . , fs, each of degree
di (i = 1, . . . , s) then the coefficient matrix of degree d, M(d), is the matrix
containing the coefficients of

M(d) =
(
fT
1 x1f

T
1 ... xd−d1

n fT
1 fT

2 x1f
T
2 ... xd−ds

n fT
s

)T (11)

where each polynomial fi is multiplied with all monomials from degree 0 up to
d− di for all i = 1, . . . , s.
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Note that the coefficient matrix not only contains the original polynomials
f1, . . . , fs but also ’shifted’ versions where we define a shift as a multiplica-
tion with a monomial. The dependence of this matrix on the degree d is of
crucial importance, hence the notation M(d). It can be shown [8] that the de-
gree d =

∑s
i=1 di − n + 1 provides an upper bound for the degree for which

all the solutions of the polynomial system appear in the kernel of M(d). This
brings us to step 2 of Algorithm 4.1. The number of solutions of F are counted
by the dimension of the kernel of M(d). For the case that there are no multiplic-
ities and no solutions at infinity, this is then simply given by the Bezout bound
mB =

∏s
i=1 di. Steps 3 up to 9 find all these solutions from a generalized eigen-

value problem which is constructed from exploiting the structure of the canonical
kernel. The canonical kernel K is a n-variate Vandermonde matrix. It consists
of columns of monomials, ordered according to the chosen monomial ordering
and evaluated in the roots of the polynomial system. This monomial structure
allows to use a shift property which is reminiscent of realization theory. This
shift property tells us that the multiplication of rows of the canonical kernel K
with any monomial corresponds with a mapping to other rows of K. This can
be written as the following matrix equation

S1KD = S2K (12)

where S1 and S2 are row selection matrices and D a diagonal matrix which
contains the shift monomial on the diagonal. S1 will select the first mB linear
independent rows of K. The canonical kernel K is unfortunately unknown but
a numerical basis Z for the kernel can be computed from either the SVD or QR
decomposition. This basis Z is then related to K by means of a linear transform
V , K = ZV . Writing the shift property (12) in terms of the numerical basis Z
results in the following generalized eigenvalue problem

BVD = AV (13)

where B = S1Z and A = S2Z are square nonsingular matrices. The eigenvalues
D are then the shift monomial evaluated in the different roots of the polyno-
mial system. The canonical kernel K is easily reconstructed from K = ZV .
The monomial ordering used in Algorithm 4.1 is such that the first row of the
canonical kernel corresponds with the monomial of degree 0. Therefore, after
normalizing K such that its first row contains ones, all solutions can be read off
from the corresponding first degree rows.

5 Example

In this Section we obtain the solutions using the algorithms discussed in this
paper given 100 datapoints of the time series y1(t) and y2(t) as defined in (3).
Table 1 shows that the solution with the lowest training error has, after normal-
ization, a generalization error 0.363 close to the lowest achievable generalization
error 0.360. This solution is approximately a multiple of v1(t) as we hoped for.
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Table 1: Real-valued solutions of the polynomial system of the time series y1(t)
and y2(t) for 100 datapoints per time series. The optimized parameters are a1,
a2, b and λ, the mean square training error is denoted as Etr and the generaliza-
tion error, after normalization such that (6) is satisfied out-of-sample, is denoted
as Egen. Every linear combination of y1(t) and y2(t) can be written as a linear
combination of v1(t) and v2(t) such that a1y1(t) + a2y2(t) = a′1v1(t) + a′2v2(t).
For each pair of symmetric solutions only one solution is shown in the table.
The other solution has parameters equal to respectively −a1, −a2, b and λ.

a1 a2 b λ Etr Egen a′1 a′2
Sol1 3.362 -2.705 0.808 0.308 0.308 0.363 1.025 0.035
Sol2 -2.279 3.047 -0.590 0.650 0.650 0.652 -0.088 1.027
Sol3 3.888 -4.057 0.000 1.000 1.000 1.000 0.720 -0.765
Sol4 0.398 0.616 0.000 1.000 1.000 1.000 0.590 0.815

6 Conclusion

In this paper we proposed an algorithm in which both the time series to predict
and the prediction model are learned. On a toy example, the optimum found
by our algorithm is close to the actual optimum. These results are promising
towards real data sets such as predicting a linear combination of stock returns.
Making the algorithm more scalable in the sense that a large number of time
series and a large number of regression coefficients bi can be handled, is one of
the main challenges towards future research. Also, an extension towards blind
source separation [9] is interesting to investigate.
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