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ABSTRACT OF THE DISSERTATION

Neurosymbolic Learning and Reasoning for Trustworthy AI

by

Zhe Zeng

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Guy Van den Broeck, Chair

Along with the ubiquitous applications of Artificial Intelligence (AI), the quest for developing

trustworthy AI models intensifies. Deep neural networks, while powerful in learning, fall short

in reasoning with domain knowledge and offering robustness guarantees. Neurosymbolic AI

bridges this gap bymelding the learning capabilities of neural networks and reasoning techniques

from symbolic AI, thus building models that behave as intended. This dissertation demonstrates

my work that addresses the two fundamental challenges in neurosymbolic AI: 1) enabling differ-

entiable learning of deep neural networks under symbolic constraints and 2) performing scalable

and reliable probabilistic reasoning over expressive symbolic constraints. It presents how these

neurosymbolic approaches achieve trustworthiness through explainability, uncertainty quantifi-

cation, and domain-knowledge incorporation. These contributions enable broader applications

of neurosymbolic AI in various domains including scientific discoveries.
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CHAPTER 1

Introduction

Artificial Intelligence (AI), particularly deep learning, has become pervasive in our daily lives and

safety-critical systems. Despite their profound impact, there are increasing concerns about the

reliability and trustworthiness of AI models. Therefore, developing trustworthy AI is a pressing

need and of great importance for the sustainable advancement of AI technologies.

Even though neural networks, the deep learning models, excel in pattern recognition and scal-

ability, they inherently struggle to provide guarantees, explain their decisions, and incorporate

domain knowledge – critical elements for ensuring trustworthiness [LQL23]. On the other hand,

there is a branch of AI called symbolic AI that allows to define models in a transparent way with

high explainability and to express the domain knowledge using constraints. Constraints can take

various forms from graph structures to logical, arithmetic, and physical ones. Such constraints

provide a high-level abstractions of the real-world knowledge, such as safety regulations and sci-

entific phenomenons. Techniques for reasoning over constraints can provide guarantees that the

model decisions are consistent with the knowledge.

Neurosymbolic AI emerges as a promising field that combine the good from both worlds for

the next-generation AI models to enable and support decision-making in the presence of proba-

bilistic uncertainty and symbolic knowledge [GL23, MDM24]. It has been shown to be powerful

in solving challenging tasks that are previously out of the reach of pure deep learning models

or pure symbolic models [TWL24]. The fusion of neural network-based learning with symbolic

reasoning has the potential to revolutionize not only the capabilities of AI models but also their

societal impact and roles in scientific discoveries. However, there are some unique challenges in
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neurosymbolic AI when combining neural networks with constraints. One challenge is that most

symbolic components are non-differentiable which prevents their integration into the gradient-

based learning process of the deep learning models; The other challenge is that reasoning over

the symbolic constraints is #P-hard in general, meaning that the computation can take an unfea-

sibly long time during the inference process and hinder reliable and efficient reasoning over the

neurosymbolic pipeline.

Trustworthy AI can be achieved by neurosymbolic methods in various ways. For example,

when building neurosymbolic models, constraints can be enforced in the output space of a deep

generative model which is a neural network model for data generation such that the generated

data follows certain domain knowledge. Further, queries for trustworthiness such as “how con-

fident the model is for its decision” can be answered by probabilistic reasoning over the neu-

rosymbolic model. Besides, neurosymbolic methods allow for effective learning by restricting

the training to the feasible space defined by the constraints, that is, for any assignments violating

the constraints, they are not considered and always assigned low or zero probabilities.

My research aims to address the aforementioned two fundamental challenges in neurosym-

bolic AI and to build trustworthy AI models using neurosymbolic methods. The main contribu-

tions of this thesis are two-fold, which have been shown to achieve trustworthiness including

explainability, uncertainty quantification and domain-knowledge incorporation:

i) Our proposed methods enable differentiable learning in the presence of symbolic con-

straints by building gradient estimators for the symbolic component, and it allows flexible

integration of the constraints into any parts of the neural network architecture.

ii) We propose novel reasoning algorithms over complex constraints that can be applied to

perform reliable reasoning over neural networks; this is achieved by translating part of

the neural networks into symbolic representations, revealing a deep connection between

neural and symbolic reasoning.

This thesis is organized as follows. It consists of two parts for neurosymbolic learning and

reasoning respectively. Chapter 2, based on [AZN23b] provides how a k-subset constraint can be
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enforced into neural network architectures and how the full pipeline can be effectively trained

by our proposed gradient estimators such that the constraint can be differentiated. The proposed

gradient estimator is further leveraged to derive a probabilistic graph rewiring algorithm for

graph neural networks [QMA24].

Chapter 3 generalizes the same design philosophy of gradient estimators from the k-subset

constraints over discrete domains to the linear equality defined over continuous domains, which

allows introducing inductive bias into the data generation process of deep generative models,

based on a work under review [LSB24].

While the previous two chapters consider hard constraints, that is, constraints with guaran-

teed satisfaction, Chapter 4 focuses on integrating the soft constraints into the training objectives

in count-based weakly supervised learning tasks [SZA23].

The second part focuses on reasoning over complex constraints. Note that in this thesis,

we use treat reasoning and inference as synonyms. Chapter 5 provides sufficient backgrounds in

weightedmodel integration (WMI), a unified framework for probabilistic reasoning over algebraic

constraints, including its formulations and motivations.

Chapter 6 introduce two exact WMI solvers that achieves state-of-art reasoning performance

by exploiting problem structures. While the first solver is search-based and is the first exact

WMI solver that comes with guarantees on tractability [ZB19], the second solver, built using a

message-passing scheme, is able to solver a strictly larger WMI problem class in a tractable way

and is the first WMI solver that can perform amortized inference [ZMY20a].

Chapter 7 is based on [ZMY20b] and starts with theoretical analysis of the inherent hardness

of WMI problems. We derive the computational complexity analysis on WMI inference using

graph structures to characterize its tractability boundary and discover the largest tractable WMI

model class so far. Based on the theoretical understanding, we further propose an approximate

WMI by the idea of performing exact inference on an approximate model.

Chapter 8, based on [ZB23b], shows that by combining exact WMI solvers with the collapsed
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inference scheme from statistical machine learning, they scale to perform uncertain quantifica-

tion for image classification tasks with large Bayesian neural networks, outperforming strong

baselines in Bayesian deep learning including sampling and variational inference.

Chapter 9, the final one, summarizes the thesis and discuss about future research directions.
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Part I

Learning
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CHAPTER 2

Differentiable Learning under Constraints

This chapter tackles a fundamental challenge in Neurosymbolic AI: how to enforce constraints

within the architecture of neural networks while still allowing for end-to-end training. Specifically,

we consider a k-subset constraint which is ubiquitous in machine learning. The incorporation

of constraints is problematic and requires relaxations or approximations in general which can

harm the learning efficiency and model performance. We address this issue by minimizing such

relaxations such that constraints can be incorporated into any part of the neural network with

guaranteed satisfaction and meanwhile the constrained neural networks are effectively trained.

2.1 Background

k-subset sampling, sampling a subset of size k of n variables, is omnipresent in machine learn-

ing. It lies at the core of many fundamental problems that rely upon learning sparse features

representations of input data, including stochastic high-dimensional data visualization [Maa09],

parametric k-nearest neighbors [GWZ18], learning to explain [CSW18], discrete variational auto-

encoders [Rol17], and sparse regression, to name a few. All such tasks involve optimizing an

expectation of an objective function with respect to a latent discrete distribution parameterized

by a neural network, which are often assumed intractable. Score-function estimators offer a cloy-

ingly simple solution: rewrite the gradient of the expectation as an expectation of the gradient,

which can subsequently be estimated using a finite number of samples offering an unbiased es-

timate of the gradient. Simple as it is, score-function estimators suffer from very high variance

which can interfere with training. This provided the impetus for other, low-variance, gradient
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estimators, chief among them are those based on the reparameterization trick, which allows for

biased, but low-variance gradient estimates. The reparameterization trick, however, does not al-

low for a direct application to discrete distributions thereby prompting continuous relaxations,

e.g. Gumbel-softmax [JGP17b, MMT17b], that allow for reparameterized gradients w.r.t the pa-

rameters of a categorical distribution. Reparameterizable subset sampling [XE19b] generalizes

the Gumbel-softmax trick to k-subsets which while rendering k-subset sampling amenable to

backpropagation at the cost of introducing bias in the learning by using relaxed samples.

2.2 Gradient Estimator for k-subset Sampling

We set out with the goal of avoiding all such relaxations. Instead, we fall back to discrete sampling

on the forward pass. On the backward pass, we reparameterize the gradient of the loss function

with respect to the samples as a function of the exact marginals of the k-subset distribution. Com-

puting the exact conditional marginals is, in general, intractable [Rot96a]. We give an efficient

algorithm for computing the k-subset probability, and show that the conditional marginals cor-

respond to partial derivatives, and are therefore tractable for the k-subset distribution. We show

that our proposed gradient estimator for the k-subset distribution, coined Simple, is reminiscent

of the straight-through (ST) Gumbel estimator when k = 1, with the gradients taken with respect

to the unperturbed marginals. We empirically demonstrate that Simple exhibits lower bias and

variance compared to other known gradient estimators, including the ST Gumbel estimator in

the case k = 1.

2.2.1 Problem Statement and Motivation

We consider models described by the equations

θ = hv(x), z ∼ pθ(z |
∑

i zi = k), ŷ = fu(z,x), (2.1)

where x ∈ X and ŷ ∈ Y denote feature inputs and target outputs, respectively, hv : X → Θ and

fu : Z × X → Y are smooth, parameterized maps and θ are logits inducing a distribution over
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Figure 2.1: A comparison of the bias and variance of the gradient estimators (left) and the average

and standard deviation of the cosine distance of a single-sample gradient estimate to the exact

gradient. We used the cosine distance, defined as (1− cosine similarity), in place of the euclidean

distance as we only care about the direction of the gradient, not magnitude. The bias, variance

and error were estimated using a sample of size 10,000. The details of this experiment are provided

in Section 2.2.3.1.

the latent binary vector z. The induced distribution pθ(z) is defined as

pθ(z) =
n∏

i=1

pθi(zi), with pθi(zi = 1) = sigmoid(θi) and pθi(zi = 0) = 1− sigmoid(θi). (2.2)

The goal of our stochastic latent layer is not to simply sample from pθ(z), which would yield

sampleswith aHammingweight between 0 andn (i.e., with an arbitrary number of ones). Instead,

we are interested in sampling from the distribution restricted to samples with a Hamming weight

of k, for any given k. That is, we are interested in sampling from the conditional distribution

pθ(z |
∑

i zi = k).

Conditioning the distribution pθ(z) on this k-subset constraint introduces intricate dependen-

cies between each of the zi’s. The probability of sampling any given k-subset vector z, therefore,

becomes

pθ(z |
∑

i zi = k) = pθ(z)/pθ(
∑

i zi = k) · J∑i zi = kK
where J·K denotes the indicator function. In other words, the probability of sampling each k-

subset is re-normalized by pθ (
∑

i zi = k) – the probability of sampling exactly k items from the

unconstrained distribution induced by encoder hv . The quantity pθ(
∑

i zi = k) =
∑

z pθ (z) ·
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Figure 2.2: The problem setting considered in this section. On the forward pass, a neural net-

work hv outputs θ parameterizing a discrete distribution over subsets of size k of n items, i.e.,

the k-subset distribution. We sample exactly, and efficiently, from this distribution, and feed the

samples to a downstream neural network. On the backward pass, we approximate the true gra-

dient by the product of the derivative of marginals and the gradient of the sample-wise loss.

TasK Map hv Map fu Loss ℓ

Discrete VAE (Sec. 2.2.3.2) Encoder Decoder ELBO

Learn To Explain (Sec. 2.2.3.3) Embedding Regression RMSE

Sparse Regression (Sec. 2.2.3.4) Identity Linear Regression RMSE

Table 2.1: Architectures of the three experiment settings.

J∑i zi = kK appears to be intractable. We show that not to be the case, providing a tractable

algorithm for computing it.

Given a set of samples D, we are concerned with learning the parameters ω = (v,u) of the

architecture in (3.1) through minimizing the training error L, which is the expected loss:

L(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)] with θ = hv(x), (2.3)

where ℓ : Y×Y → R+ is a point-wise loss function. This formulation, illustrated in Figure 2.2,

is general and subsumesmany settings. Different choices ofmappingshv and fu, and sample-wise

loss ℓ define various tasks. Table 2.1 presents some example settings used in our experimental

evaluation.

Learning then requires computing the gradient of Lw.r.t.ω = (v,u). The gradient of Lw.r.t.
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u is

∇uL(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[∂ufu(z,x)
⊤∇ŷℓ(ŷ,y)], (2.4)

where ŷ = fu(z,x) is the decoding of a latent sample z. Furthermore, the gradient of L w.r.t.

v is

∇vL(x,y;ω) = ∂vhv(x)
⊤∇θL(x,y;ω), (2.5)

where∇θL(x,y;ω) := ∇θ Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x), ŷ)], the loss’ gradient w.r.t. the encoder.

One challenge lies in computing the expectation in (3.2) and (3.3), which has no known closed-

form solution. This necessitates a Monte-Carlo estimate via sampling from pθ(z |
∑

i zi = k).

A second, and perhaps more substantial hurdle lies in computing ∇θL(x,y;ω) in (3.4) due

to the non-differentiable nature of discrete sampling. One could rewrite∇θL(x,y;ω) as

∇θL(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)∇θ log pθ (z |
∑

i zi = k)]

which is known as the REINFORCE estimator [Wil92], or the score function estimator (SFE). It

is typically avoided due to its notoriously high variance, despite its apparent simplicity. Instead,

typical approaches [XE19b, PR18] reparameterize the samples as a deterministic transformation

of the parameters, and some independent standard Gumbel noise, and relaxing the deterministic

transformation, the top-k function in this case, to allow for backpropagation.

2.2.2 Simple: Subset Implicit Likelihood Estimation

Our goal is to build a gradient estimator for ∇θL(x,y;ω). We start by envisioning a hypothet-

ical sampling-free architecture, where the downstream neural network fu is a function of the

marginals, µ := µ(θ) := {pθ(zj |
∑

i zi = k)}nj=1, instead of a discrete sample z, resulting in a

loss Lm s.t.

∇θLm(x,y;ω) = ∂θµ(θ)
⊤∇µℓm(fu(µ,x),y). (2.6)

When the marginals µ(θ) can be efficiently computed and differentiated, such a hypothetical

pipeline can be trained end-to-end. Furthermore, [Dom10] observed that, for an arbitrary loss
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function ℓm defined on the marginals, the Jacobian of the marginals w.r.t. the logits is symmetric:

∇θLm(x,y;ω) = ∂θµ(θ)
⊤∇µℓm(fu(µ,x),y) = ∂θµ(θ)∇µℓm(fu(µ,x),y). (2.7)

Consequently, computing the gradient of the loss w.r.t. the logits, ∇θLm(x,y;ω), reduces to

computing the directional derivative, or the Jacobian-vector product, of the marginals w.r.t. the

logits in the direction of the gradient of the loss. This offers an alluring opportunity: the con-

ditional marginals characterize the probability of each zi in the sample, and could be thought of

as a differentiable proxy for the samples. Specifically, by reparameterizing z as a function of the

conditional marginal µ under approximation ∂µz ≈ I as proposed by [NMF21b], and using the

straight-through estimator for the gradient of the sample w.r.t. the marginals on the backward

pass, we approximate our true ∇θL(x,y;ω) as

∇θL(x,y;ω) ≈ ∂θµ(θ)∇zL(x,y;ω), (2.8)

where the directional derivative of the marginals can be taken along any downstream gradient,

rendering the whole pipeline end-to-end learnable, even in the presence of non-differentiable

sampling.

Now, estimating the gradient of the loss w.r.t. the parameters can be thought of as decom-

posing into two sub-problems: (P1) Computing the derivatives of conditional marginals ∂θµ(θ),

which requires the computation of the conditional marginals, and (P2) Computing the gradient

of the loss w.r.t. the samples∇zL(x,y;ω) using sample-wise loss, which requires drawing exact

samples. These two problems are complicated by conditioning on the k-subset constraint, which

introduces intricate dependencies to the distribution, and is infeasible to solve naively, e.g. by

enumeration. We will show simple, efficient, and exact solutions to each problem, at the heart of

which is the insight that we need not care about the variables’ order, only their sum, introducing

symmetries that simplify the problem.
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2.2.2.1 Derivatives of Conditional Marginals

In many probabilistic models, marginal inference is #P-hard [Rot96a, ZMY20b]. However, we ob-

serve that it is not the case for the k-subset distribution. We notice that the conditional marginals

correspond to the partial derivatives of the log-probability of the k-subset constraint. To see this,

note that the derivative of a multi-linear function with respect to a single variable retains all the

terms referencing that variable, and drops all other terms; this corresponds exactly to the unnor-

malized conditional marginals. By taking the derivative of the log-probability, this introduces

the k-subset probability in the denominator, leading to the conditional marginals. Intuitively, the

rate of change of the k-subset probability w.r.t. a variable only depends on that variable through

its length-k subsets.

Theorem 1. Let pθ(
∑

j zj = k) be the probability of exactly-k of the unconstrained distribution

parameterized by logits θ. Let αi := log pθ(zi) denote the log marginals. For every variable Zi, its

conditional marginal is

pθ

(
zi |
∑

j zj = k
)
=

∂

∂αi

log pθ(
∑

j zj = k). (2.9)

To establish the tractability of the above computation of the conditional marginals, we need

to show that the probability of the exactly-k constraint pθ(
∑

i zi = k) can be obtained tractably,

which we demonstrate next.

Proposition 1. The probability pθ (
∑

i zi = k) of sampling exactly k items from the unconstrained

distribution pθ(z) over n items as in Equation 2.2 can be computed exactly in time O(nk).

Proof. Our proof is constructive. As a base case, consider the probability of sampling k = −1

out of n = 0 items. We can see that the probability of such an event is 0. As a second base case,

consider the probability of sampling k = 0 out of n = 0 items. We can see that the probably

of such an event is 1. Now assume that we are given the probability pθ
(∑n−1

i zi = k′), for
k′ = 0, . . . , k, and we are interested in computing pθ (

∑n
i zi = k). By the partition theorem, we
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Algorithm 1 PrExactlyk(θ, n, k)
Input: The logits θ of the distribution, the num-

ber of variables n, and the subset size k

Output: pθ(
∑

i zi = k)

// a[i, j] = pθ(
∑i

m=1 zm = j) for all i, j

initialize a to be 0 everywhere

a[0, 0] = 1 // pθ(
∑0

m=1 zm = 0) = 1

for i = 1 to n do

for j = 0 to k do

// cf. constructive proof of Prop. 1

a[i, j] = a[i− 1, j] · pθi(zi = 0)

+ a[i− 1, j − 1] · pθi(zi = 1)

return a[n, k]

Algorithm 2 Sample(θ, n, k)
Input: The logits θ of the distribution, the num-

ber of variables n, and the subset size k

Output: z = (z1, . . . , zn) ∼ pθ(z |
∑

i zi = k)

sample = [ ], j = k

for i = n to 1 do

// cf. proof of Prop. 2

p = a[i− 1, j − 1]

zi ∼ Bernoulli(p · pθi(zi = 1)/a[i, j])

// Pick next state based on value of sample

if zi = 1 then j = j − 1

sample.append(zi)

return sample

can see that

pθ (
∑n

i zi = k) = pθ
(∑n−1

i zi = k
)
· pθn(zn = 0) + pθ

(∑n−1
i zi = k − 1

)
· pθn(zn = 1)

as events
∑n−1

i zi = k and
∑n−1

i zi = k − 1 are disjoint and, for any k, partition the sample

space. Intuitively, for any k and n, we can sample k out of n items by choosing k of n− 1 items,

and not the n-th item, or choosing k − 1 of n − 1 items, and the n-th item. The above process

gives rise to Algorithm 1, which returns pθ (
∑

i zi = k) in time O(nk).

By the construction described above, we obtain a closed-form pθ(
∑n

i zi = k), which allows

us to compute conditional marginals pθ(zi |
∑

j zj = k) by Theorem 1 via auto-differentiation.

This further allows the computation of the derivatives of conditional marginals

∂θµ(θ)i = ∂θ pθ(zi |
∑

j zj = k)

to be amenable to auto-differentiation, solving problem (P1) exactly and efficiently.
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2.2.2.2 Gradients of Loss w.r.t. Samples

As alluded to in Section 2.2.2, we approximate ∇θL(x,y;ω) by the directional derivative of

the marginals along the gradient of the loss w.r.t. discrete samples z, ∇zL(x,y;ω), where z is

drawn from the k-subset distribution pθ(z |
∑

i zi = k). What remains is to estimate the loss,

necessitating faithful sampling from the k-subset distribution, which might appear daunting.

Exact k-subset Sampling Next we show how to sample exactly from the k-subset distribution

pθ(z |
∑

i zi = k). We start by sampling the variables in reverse order, that is, we sample zn

through z1. The main intuition being that, having sampled (zn, zn−1, · · · , zi+1) with a Hamming

weight of k − j, we sample Zi with a probability of choosing k − j of n − 1 variables and the

n-th variable given that we choose k − j + 1 of n variables. We formalize our intuition below.

Proposition 2. Let Sample be defined as in Algorithm 2. Given n random variables Z1, · · · , Zn,

a subset size k, and a k-subset distribution pθ(z |
∑

i zi = k) parameterized by log probabilities θ,

Algorithm 2 draws exact samples from pθ(z |
∑

i zi = k) in time O(n).

Proof. Assume that variables Zn, · · · , Zi+1 are sampled and have their values to be zn, · · · , zi+1

with
∑n

m=i+1 zm = k − j. By Algorithm 2 we have that the probability for sampling Zi is

pSample(zi = 1 | zn, · · · , zi+1) =
pθ(
∑n

m=i zm = k − j + 1 |
∑

m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

=
pθ(
∑n

m=i+1 zm = k − j | zi = 1,
∑

m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

= pθ(zi = 1 |
∑n

m=i+1 zm = k − j,
∑

m zm = k) (by Bayes’ theorem)

It follows that samples drawn from Algorithm 2 distribute according to pθ(z |
∑

i zi = k).

2.2.2.3 Connection to Straight-Through Gumbel-Softmax

Onemightwonder if our gradient estimator reduces to the Straight-Through (ST) Gumbel-Softmax

estimator, or relates to it in any way when k = 1. On the forward pass, the ST Gumbel Softmax
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Figure 2.3: Bias and variance of Simple and Gumbel Softmax over 10k samples

estimator makes use of the Gumbel-Max trick [MTM14], which states that we can efficiently sam-

ple from a categorical distribution by perturbing each of the logits with standard Gumbel noise,

and taking the MAP, or more formally z = OneHot(argmaxi∈{1,...,k} θi+ gi) ∼ pθ where the gi’s

are i.i.d Gumbel(0, 1) samples, and OneHot encodes the sample as a binary vector.

Since argmax is non-differentiable, Gumbel-Softmax uses the perturbed relaxed samples, y =

Softmax(θ + gi) as a proxy for discrete samples z on the backward pass, using differentiable

Softmax in place of the non-differentiable argmax, with the entire function returning

(z − y). detach() + y where detach ensures that the gradient flows only through the relaxed

samples on the backward pass.

That is, just like Simple, STGumbel-Softmax returns exact, discrete samples. However, whereas

Simple backpropagates through the exactmarginals, STGumbel Softmax backpropagates through

the perturbed marginals that result from applying the Gumbel-max trick. As can be seen in Fig-

ure 2.3, such a minor difference means that, empirically, Simple exhibits lower bias and variance

compared to ST Gumbel Softmax while being exactly as efficient.

Related Work

There is a large body of work on gradient estimation for categorical random variables. [MMT17b,

JGP17b] propose the Gumbel-softmax distribution (named the concrete distribution by the for-

mer) to relax categorical random variables. For more complex distributions, such as the k-subset
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Algorithm 3 The proposed algorithm for the k-subset distribution
function FoRwaRdPass(θ)

// pθ(
∑i

m=1 zm = j) for all i, j

a = PrExactlyk(θ, n, k)

// Sample from pθ(z |
∑

i zi = k)

z = Sample(θ, n, k)

save a for the backward pass

return z

function BacKwaRdPass(∇zℓ(fu(z,x),y))

load θ from the forward pass

// derivatives of pθ(z |
∑

i zi = k)

µ = ∇θ log a[n, k] // by auto-diff

// Return the directional derivative of the

//marginals along the downstream gradients

return JVP(µ,∇zℓ(fu(z,x))

distribution which we are concerned with in this section, existing approaches either use the

straight-through and score function estimators or propose tailor-made relaxations (see for in-

stance [KSE16, CSW18, GWZ18]). We directly compare to the score function and straight-through

estimator as well as the tailored relaxations of [CSW18, GWZ18] and show that we are compet-

itive and obtain a lower bias and/or variance than these other estimators. [TMM17, GCW18]

develop parameterized control variates based on continuous relaxations for the score-function

estimator. Lastly, [PCT20] offers a comprehensible work on relaxed gradient estimators, deriv-

ing several extensions of the softmax trick. All of the above works, ours included, assume the

independence of the selected items, beyond there being k of them. That is with the exception of

[PCT20] which make use of a relaxation using pairwise embeddings, but do not make their code

available. We leave that to future work.

A related line of work has developed and analyzed sparse variants of the softmax function,

motivated by their potential computational and statistical advantages. Representative examples

are [BMN20, PNM19, CNM19, MA16]. SparseMAP [NMB18] has been proposed in the context

of structured prediction and latent variable models, also replacing the softmax with a sparser

distribution. LP-SparseMAP [NM20] is an extension that uses a relaxation of the optimization

problem rather than a MAP solver. Sparsity can also be exploited for efficient marginal inference

in latent variable models [CNA20]. Contrary to our work, they cannot control the sparsity level
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exactly through a k-subset constraint or guarantee a sparse output. Also, we aim at cases where

samples in the forward pass are required.

Integrating specialized discrete algorithms into neural networks is growing in popularity. Ex-

amples are sorting algorithms [CTV19, BTB20, GWZ18], ranking [RMP20, KVW19], dynamic pro-

gramming [MB18, CT19], and solvers for combinatorial optimization problems [BBT20, RSZ20,

SBK20, NMF21b, MFN23, ZMY21a] or even probabilistic circuits over structured output spaces

[ATC22a, Blo19]. There has also been work on making common programming language expres-

sion such as conditional statements, loops, and indexing differentiable through relaxations [PBK21].

[XDC20] propose optimal transport to obtain differentiable sorting methods for top-k classifica-

tion.

2.2.3 Empirical Evaluation

We conduct experiments on four different tasks: 1) A synthetic experiment designed to test the

bias and variance, as well as the average deviation of Simple compared to a variety of well-

established estimators in the literature. 2) A discrete k-subset Variational Auto-Encoder (DVAE)

setting, where the latent space models a probability distribution over k-subsets. We will show

that we can compute the evidence lower bound (ELBO) exactly, and that, coupled with exact

sampling and our Simple gradient estimator, we attain a much lower loss compared to state of

the art in sparse DVAEs. 3) The learning to explain (L2X) setting, where the aim is to select

the k-subset of words that best describe the classifier’s prediction, where we show an improved

mean-squared error, as well as precision, across the board. 4) A novel, yet simple task, sparse

linear regression, where, in a vein similar to L2X, we wish to select a k-subset of features that

give rise to a linear regression model, avoiding overfitting the spurious features present in the

data. Table 2.1 details the architecture with the objective functions. Our code is publicly available

at github.com/UCLA-StarAI/SIMPLE.
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2.2.3.1 Synthetic Experiments

We carried out a series of experiments with a 5-subset distribution, and a latent space of dimen-

sion 10. We set the loss to L(θ) = Ez∼pθ(z|
∑

i zi=k)[‖z − b‖2], where b is the groundtruth logits

sampled fromN (0, I). Such a distribution is tractable: we only have
(
10
5

)
= 252 k-subsets, which

are easily enumerable and therefore, the exact gradient, the golden standard, can be computed in

closed form.

In this experiment, we are interested in three metrics: bias, variance, and the average error of

each gradient estimator, where the latter is measured by averaging the deviation of each single-

sample gradient estimate from the exact gradient. We used the cosine distance, defined as 1−

cosine similarity as the measure of deviation in our calculation of the metrics above, as we only

care about direction.

We compare against four different baselines: exact, which denotes the exact gradient; Soft-

Sub [XE19b], which uses an extension of the Gumbel-Softmax trick to sample relaxed k-subsets on

the forward pass; I-MLE, which denotes the IMLE gradient estimator [NMF21b], where approx-

imate samples are obtained using perturb-and-map (PAM) on the forward pass, approximating

the marginals using PAM samples on the backward pass; and score function estimator, SFE.

We tease apart Simple’s improvements by comparing three different flavors: Simple-f, which

only uses exact sampling, falling back to estimating the marginals using exact samples; Simple-b,

which uses exact marginals on the backward pass with approximate PAM samples on the for-

ward pass; and Simple, coupling exact samples on the forward pass with exact marginals on the

backward pass.

Our results are shown in Figure 2.1 As expected, we observe that SFE exhibits no bias, but

high variance whereas SoftSub suffers from both bias and variance, due to the Gumbel noise

injection into the samples to make them differentiable. We observe that I-MLE exhibits very

high bias, as well as very low variance. This can be attributed to the PAM sampling, which in

the case of k-subset distribution does not sample faithfully from the distribution, but is instead
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Figure 2.4: ELBO against # of epochs. (Left) Comparison of Simple against different flavors of

IMLE on the 10-subset DVAE, and (Right) against ST Gumbel Softmax on the 1-subset DVAE.

biased to sampling only the mode of the distribution. This also means that, by approximating

the marginals using PAM samples, there is a lot less variance to our gradients. On to our Simple

gradient estimator, we see that it exhibits less bias as well as less variance compared to all the other

gradient estimators. We also see that each estimated gradient is, on average, much more aligned

with the exact gradient. To understand why that is, we compare Simple, Simple-f, and Simple-

b. As hypothesized, we observe that exact sampling, Simple-f, reduces the bias, but increases

the variance compared to I-MLE, this is since, unlike the PAM samples, our exact sample span

the entire sample space.We also observe that, even compared to I-MLE, Simple-b, reduces the

variance by marginalizing over all possible samples.

2.2.3.2 Discrete Variational Auto-Encoder

Next, we test our Simple gradient estimator in the k-subset discrete variational auto-encoder

(DVAE) setting, where the latent variables model a probability distribution over k-subsets, and

has a dimensionality of 20. Similar to prior work [JGP17b, NMF21b], the encoding and decoding

functions of the VAE consist of three dense layers (encoding: 512-256-20x20; decoding: 256-512-

784). The DVAE is trained to minimize the sum of reconstruction loss and KL-divergence of the

k-subset distribution and the constrained uniform distribution, known as the ELBO, on MNIST.

In prior work, the KL-divergence was approximated using the unconditional marginals, ob-
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Algorithm 4 Entropy(θ, n, k)
Input: The logits θ of the distribution, the number of variables n, and the subset size k

Output: H(z) = −Ez∼pθ(z|
∑

i zi=k)[log p(z)]

h = zeros(n, k)

for i = k to n do

for j = 0 to k do

// p(zi |
∑i

m=1 zm = j)

p = a[i− 1, j − 1] ∗ pθi(zi = 1)/a[i, j]

h[i, j] = Hb(p) + p ∗ h[i− 1, j]+

(1− p) ∗ h[i− 1, j + 1]

return h

tained simply through a Softmax layer. Instead we show that the KL-divergence between the

k-subset distribution and the uniform distribution can be computed exactly. First note that,

through simple algebraic manipulations, the KL-divergence between the k-subset distribution

and the constrained uniform distribution can be rewritten as the sum of negative entropy,−H(z),

where z ∼ pθ (z |
∑

i zi = k) and log the number of k-subsets, log
(
n
k

)
, reducing the hardness of

computing the KL-divergence, to computing the entropy of a k-subset distribution, for which Al-

gorithm 4 gives a tractable algorithm. Intuitively, the uncertainty in the distribution over a se-

quence of length n, k of which are true, decomposes as the uncertainty over Zn, and the average

of the uncertainties over the remainder of the sequence.

Proposition 3. Let Entropy be defined as in Algorithm 4. Given variables, Z1, · · · , Zn, and a

k-subset distribution pθ(z |
∑

i zi = k), Algorithm 4 computes entropy of pθ (z |
∑

i zi = k).

We plot the loss ELBO against the number of epochs, as seen in Figure 2.4. We compared

against I-MLE using sum-of-gamma noise as well as Gumbel noise for PAM sampling, on the 10-

subset DVAE, and against ST Gumbel Softmax on the 1-subset DVAE. We observe a significantly
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lower loss on the test set on the 10-subset DVAE, partly attributable to the exact ELBO computa-

tion, but also on the 1-subset DVAE compared to ST Gumbel Softmax, where the sole difference

is the backward pass.

2.2.3.3 Learning to Explain

The BeeRAdvocate dataset [MLJ12] consists of free-text reviews and ratings for 4 different as-

pects of beer: appearance, aroma, palate, and taste. The training set has 80k reviews for the aspect

AppeaRance and 70k reviews for all other aspects. In addition to the ratings for all reviews, each

sentence in the test set contains annotations of the words that best describe the review score with

respect to the various aspects. We address the problem introduced by the L2X paper [CSW18]

of learning a k-subset distribution over words that best explain a given rating. We follow the

architecture suggested in the L2X paper, consisting of four convolutional and one dense layer.

We compare to relaxation-based baselines L2X [CSW18] and SoftSub [XE19b] as well as to

I-MLE which uses perturb-and-MAP to both compute an approximate sample in the forward

pass and to estimate the marginals. Prior work has shown that the straight-through estimator

(STE) did not work well and we omit it here. We used the standard hyperparameter settings of

[CSW18] and choose the temperature parameter t ∈ {0.1, 0.5, 1.0, 2.0} for all methods. We used

the standard Adam settings and trained separate models for each aspect using MSE as point-wise

loss ℓ. Table 2.3 lists results for k ∈ {5, 10, 15} for the ARoma aspect. The mean-squared error

(MSE) of Simple is almost always lower and its subset precision never significantly exceeded by

those of the baselines. Table 2.2 shows results on the remaining aspects Appearance, Palate, and

Taste for k = 10.

2.2.3.4 Sparse Linear Regression

Given a library of feature functions, the task of sparse linear regression aims to learn from data

which feature subset best describes the nonlinear partial differential equation (PDE) that the

data are sampled from. We propose to tackle this task by learning a k-subset distribution over

the feature functions. During learning, we first sample from the k-subset distribution to decide
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Method
Appearance Palate Taste

Test MSE Precision Test MSE Precision Test MSE Precision

Simple (Ours) 2.35 ± 0.28 66.81 ± 7.56 2.68 ± 0.06 44.78 ± 2.75 2.11 ± 0.02 42.31 ± 0.61

L2X (t = 0.1) 10.70 ± 4.82 30.02 ± 15.82 6.70 ± 0.63 50.39 ± 13.58 6.92 ± 1.61 32.23 ± 4.92

SoftSub (t = 0.5) 2.48 ± 0.10 52.86 ± 7.08 2.94 ± 0.08 39.17 ± 3.17 2.18 ± 0.10 41.98 ± 1.42

I-MLE (τ = 30) 2.51 ± 0.05 65.47 ± 4.95 2.96 ± 0.04 40.73 ± 3.15 2.38 ± 0.04 41.38 ± 1.55

Table 2.2: Results for three aspects with k = 10: test MSE and subset precision, both ×100

Method
k = 5 k = 10 k = 15

Test MSE Precision Test MSE Precision Test MSE Precision

Simple (Ours) 2.27 ± 0.05 57.30 ± 3.04 2.23 ± 0.03 47.17 ± 2.11 3.20 ± 0.04 53.18 ± 1.09

L2X (t = 0.1) 5.75 ± 0.30 33.63 ± 6.91 6.68 ± 1.08 26.65 ± 9.39 7.71 ± 0.64 23.49 ± 10.93

SoftSub (t = 0.5) 2.57 ± 0.12 54.06 ± 6.29 2.67 ± 0.14 44.44 ± 2.27 2.52 ± 0.07 37.78 ± 1.71

I-MLE (τ = 30) 2.62 ± 0.05 54.76 ± 2.50 2.71 ± 0.10 47.98 ± 2.26 2.91 ± 0.18 39.56 ± 2.07

Table 2.3: Results for aspect Aroma: testMSE and subset precision, both×100, for k ∈ {5, 10, 15}.

which feature function subset to choose. With k chosen features, we perform linear regression

to learn the coefficients of the features from data, and then update the k-subset distribution logit

parameters by minimizing RMSE.

To test our proposed approach, we follow the experimental setting in PySINDy [SCQ20,

KSF22] and use the dataset collected by PySINDy where the samples are collected from the

Kuramoto–Sivashinsky (KS) equation, a fourth-order nonlinear PDE known for its chaotic be-

havior. This PDE takes the form vt = −vxx − vxxxx − vvx, which can be seen as a linear combi-

nation of feature functions V = {vxx, vxxxx, vvx} with the coefficients all set to a value of−1. At

test time, we use the MAP estimation of the learned k-subset distribution to choose the k feature
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functions. For k = 3, our proposed method achieves the same performance as the state-of-the-art

solver on this task, PySINDy. It identifies the KS PDE from data by choosing exactly the ground

truth feature function subset V , obtaining an RMSE of 0.00622 after applying linear regression

on V .

2.3 Simple for Graph Rewiring

Besides the applications shown in the previous section, this section demonstrates how Simple ex-

cels at a complex tasks, probabilistically rewiring message-passing graph neural networks (MPNNs).

MPNNs emerge as powerful tools for processing graph-structured input. However, they operate

on a fixed input graph structure, ignoring potential noise and missing information. Furthermore,

their local aggregation mechanism can lead to problems such as over-squashing and limited ex-

pressive power in capturing relevant graph structures. Existing solutions to these challenges have

primarily relied on heuristic methods, often disregarding the underlying data distribution. Hence,

devising principled approaches for learning to infer graph structures relevant to the given predic-

tion task remains an open challenge. We devise probabilistically rewired MPNNs (PR-MPNNs),

which learn to add relevant edges while omitting less beneficial ones using differentiable k-subset

sampling andwe show that when combinedwith Simple, PR-MPNNs show superior performance.

2.3.1 Background

Graph-structured data is prevalent across various application domains, including fields like chemo-

and bioinformatics [BO04, JEP21, RNE22], combinatorial optimization [CCK23], and social-network

analysis [EK12], highlighting the need for machine learning techniques designed explicitly for

graphs. In recent years,message-passing graph neural networks (MPNNs) [KW17, GSR17, SGT08a,

VCC18] have become the dominant approach, showing promising performance in tasks such as

predicting molecular properties [KGG20, JEP21] or enhancing combinatorial solvers [CCK23].

However, MPNNs have a limitation due to their local aggregation mechanism. They focus on

encoding local structures, severely limiting their expressive power [MRF19, MLM21, XHL19]. In
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addition, MPNNs struggle to capture global or long-range information, possibly leading to phe-

nomena like under-reaching [BKM20] or over-squashing [AY21]. Over-squashing, as explained

by [AY21], refers to excessive information compression from distant nodes due to a source node’s

extensive receptive field, occurring when too many layers are stacked. Existing strategies to mit-

igate over-squashing rely on heuristic rewiring methods that may not adapt well to a prediction

task or employ computationally intensive global attention mechanisms. Furthermore, the impact

of probabilistic rewiring on a model’s expressive power remains unclear.

We formalize the necessary notations and concepts as below.

Notations Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . . }} to

denote multisets, i.e., the generalization of sets allowing for multiple instances for each of its

elements. A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges

E(G) ⊆ {{u, v} ⊆ V (G) | u 6= v}. If not otherwise stated, we set n := |V (G)|, and the graph is

of order n. We also call the graph G an n-order graph. For ease of notation, we denote the edge

{u, v} in E(G) by (u, v) or (v, u). Throughout this section, we use standard notations, e.g., we

denote the neighborhood of a vertex v by N(v) and ℓ(v) denotes its discrete vertex label, and so

on.

1-dimensional Weisfeiler–Leman algorithm The 1-WL or color refinement is a well-studied

heuristic for the graph isomorphism problem, originally proposed by [WL68]. Formally, let G =

(V (G), E(G), ℓ) be a labeled graph. In each iteration, t > 0, the 1-WL computes a node coloring

C1
t : V (G)→ N, depending on the coloring of the neighbors. That is, in iteration t > 0, we set

C1
t (v) := RELABEL

((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all nodes v ∈ V (G), where RELABEL injectively maps the above pair to a unique natural

number, which has not been used in previous iterations. In iteration 0, the coloring C1
0 := ℓ. To

test if two graphsG andH are non-isomorphic, we run the above algorithm in “parallel” on both

graphs. If the two graphs have a different number of nodes colored c ∈ N at some iteration, the

1-WL distinguishes the graphs as non-isomorphic. Moreover, if the number of colors between
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two iterations, t and (t+ 1), does not change, i.e., the cardinalities of the images of C1
t and C1

i+t

are equal, or, equivalently,

C1
t (v) = C1

t (w) ⇐⇒ C1
t+1(v) = C1

t+1(w),

for all nodes v and w in V (G), the algorithm terminates. For such t, we define the stable coloring

C1
∞(v) = C1

t (v), for v in V (G). The stable coloring is reached after at most max{|V (G)|, |V (H)|}

iterations [Gro17]. It is easy to see that the algorithm cannot distinguish all non-isomorphic

graphs [CFI92]. Nonetheless, it is a powerful heuristic that can successfully test isomorphism

for a broad class of graphs [BK79]. A function f : V (G) → Rd, for d > 0, is 1-WL-equivalent if

f ≡ C1
∞.

Message-passing graph neural networks Intuitively, MPNNs learn a vectorial representation,

i.e., a d-dimensional real-valued vector, representing each vertex in a graph by aggregating in-

formation from neighboring vertices. Let G = (G,L) be an attributed graph, following, [GSR17]

and [SGT08b], in each layer, t > 0, we compute vertex features

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))
∈ Rd,

where UPD(t) and AGG(t) may be differentiable parameterized functions, e.g., neural networks,

and h(t)
v = Lv. In the case of graph-level tasks, e.g., graph classification, one uses

hG := READOUT
(
{{h(T )

v | v ∈ V (G)}}
)
∈ Rd,

to compute a single vectorial representation based on learned vertex features after iteration T .

Again, READOUT may be a differentiable parameterized function, e.g., a neural network. To

adapt the parameters of the above three functions, they are optimized end-to-end, usually through

a variant of stochastic gradient descent, e.g., [KB15], together with the parameters of a neural

network used for classification or regression.

2.3.2 Probabilistically Rewired MPNNs

By leveraging recent progress in differentiable k-subset sampling [AZN23a], we derive prob-

abilistically rewired MPNNs (PR-MPNNs). Concretely, we utilize an upstream model to learn
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prior weights for candidate edges. We then utilize the weights to parameterize a probability

distribution constrained by so-called k-subset constraints. Subsequently, we sample multiple

k-edge adjacency matrices from this distribution and process them using a downstream model,

typically an MPNN, for the final predictions task. To make this pipeline trainable via gradient

descent, we adapt recently proposed discrete gradient estimation and tractable sampling tech-

niques [AZN23a, NMF21a, XE19a]; see Figure 2.5 for an overview of our architecture. Our the-

oretical analysis explores how PR-MPNNs overcome MPNNs’ inherent limitations in expressive

power and identifies precise conditions under which they outperform purely randomized ap-

proaches. Empirically, we demonstrate that our approach effectively mitigates issues like over-

squashing and under-reaching. In addition, on established real-world datasets, our method ex-

hibits competitive or superior predictive performance compared to traditional MPNNmodels and

graph transformer architectures. Overall, PR-MPNNs pave the way for the principled design of

more flexible MPNNs, making them less vulnerable to potential noise and missing information.

Here, we outline PR-MPNNs based on recent advancements in discrete gradient estimation

and tractable sampling techniques [AZN23a]. Let An denote the set of adjacency matrices of n-

order graphs. Further, let (G,X) be a n-order attributed graph with an adjacency matrix A(G) ∈

An and node attribute matrix X ∈ Rn×d, for d > 0. A PR-MPNN maintains a (parameterized)

upstreammodel hv : An×Rn×d → Θ, typically a neural network, parameterized by v, mapping an

adjacency matrix and corresponding node attributes to unnormalized edge priors θ ∈ Θ ⊆ Rn×n.

In the following, we use the priors θ as parameters of a (conditional) probabilitymass function,

pθ(A(H)) :=
n∏

i,j=1

pθij(A(H)ij),

assigning a probability to each adjacency matrix in An, where pθij(A(H)ij = 1) = sigmoid(θij)

and pθij(A(H)ij = 0) = 1− sigmoid(θij). Since the parameters θ depend on the input graph G,

we can view the above probability as a conditional probability mass function conditioned on the

graph G.

Unlike previous probabilistic rewiring approaches, e.g., [FNP19], we introduce dependencies
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between the graph’s edges by conditioning the probability mass function pθij(A(H)) on a k-

subset constraint. That is, the probability of sampling any given k-edge adjacency matrix A(H),

becomes

p(θ,k)(A(H)) :=


pθ(A(H))/Z if ‖A(H)‖1 = k,

0 otherwise,
with Z :=

∑
B∈An : ∥B∥1=k

pθ(B). (2.10)

The original graph G is now rewired into a new adjacency matrix Ā by combining N samples

A(i) ∼ p(θ,k)(A(G)) for i ∈ [N ] together with the original adjacency matrix A(G) using a differ-

entiable aggregation function g : A
(N+1)
n → An, i.e., Ā := g(A(G),A(1), . . . ,A(N)) ∈ An. Subse-

quently, we use the resulting adjacency matrix as input to a downstream model fd, parameterized

by d, typically an MPNN, for the final predictions task.

We have so far assumed that the upstreamMPNN computes one set of priors hv : An×Rn×d →

Rn×n whichwe use to generate a new adjacencymatrix Ā through sampling and then aggregating

the adjacency matrices A(1), . . . ,A(N). In Section 7.3, we show empirically that having multiple

sets of priors from which we sample is beneficial. Multiple sets of priors mean that we learn an

upstream model hv : An × Rn×d → Rn×n×M where M is the number of priors. We can then

sample and aggregate the adjacency matrices from these multiple sets of priors.

Learning to sample To learn the parameters of the up- and downstream model ω = (v,u) of

the PR-MPNN architecture, we minimize the expected loss

L(A(G),X, y;ω) := EA(i)∼p(θ,k)(A(G))

[
ℓ
(
fu
(
g
(
A(G),A(1), . . . ,A(N)

)
,X
)
, y
)]

,

with y ∈ Y , the targets, ℓ a point-wise loss such as the cross-entropy orMSE, andθ = hv(A(G),X).

To minimize the above expectation using gradient descent and backpropagation, we need to ef-

ficiently draw Monte-Carlo samples from p(θ,k)(A(G)) and estimate ∇θL the gradients of an

expectation regarding the parameters θ of the distribution p(θ,k).

Sampling To sample an adjacency matrix A(i) from p(θ,k)(A(G)) conditioned on k-edge con-

straints, and to allow PR-MPNNs to be trained end-to-end, we use Simple [AZN23a], a recently
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proposed gradient estimator. Concretely, we can use Simple to sample exactly from the k-edge

adjacency matrix distribution p(θ,k)(A(G)) on the forward pass. On the backward pass, we com-

pute the approximate gradients of the loss (which is an expectation over a discrete probability

mass function) regarding the prior weights θ using

∇θL ≈ ∂θµ(θ)∇Aℓ with µ(θ) := {p(θ,k)(A(G)ij)}ni,j=1 ∈ Rn×n,

with an exact and efficient computation of the marginals µ(θ) that is differentiable on the back-

ward pass, achieving lower bias and variance. We show empirically that Simple [AZN23a] outper-

forms other sampling and gradient approximationmethods such as Gumbel SoftSub-ST [XE19a]

and I-MLE [NMF21a], improving accuracy without incurring a computational overhead.

Computational complexity The vectorized complexity of the exact sampling and marginal in-

ference step is O(log k log l), where k is from our k-subset constraint, and l is the maximum

number of edges that we can sample. Assuming a constant number of layers, PR-MPNN’s worst-

case training complexity is O(l) for both the upstream and downstream models. Let n be the

number of nodes in the initial graph, and l = max({ladd, lrm}), with ladd and lrm being the max-

imum number of added and deleted edges. If we consider all of the possible edges for ladd, the

worst-case complexity becomesO(n2). Therefore, to reduce the complexity in practice, we select

a subset of the possible edges using simple heuristics, such as considering the top ladd edges of the

most distant nodes. During inference, since we do not need gradients for edges not sampled in

the forward pass, the complexity is O(l) for the upstream model and O(L) for the downstream

model, with L being the number of edges in the rewired graph.

2.3.3 Expressive Power of Probabilistically Rewired MPNNs

Wenow, for the first time, explore the extent towhich probabilisticMPNNs overcome the inherent

limitations of MPNNs in expressive power caused by the equivalence to 1-WL in distinguishing

non-isomorphic graphs [XLT18, MRF19]. Moreover, we identify formal conditions under which

PR-MPNNs outperform popular randomized approaches such as those dropping nodes and edges

uniformly at random. We first make precise what we mean by probabilistically separating graphs
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Figure 2.5: Overview of the probabilistically rewired MPNN framework. PR-MPNNs use an up-

stream model to learn priors θ for candidate edges, parameterizing a probability mass function

conditioned on exactly-k constraints. Subsequently, we sample multiple k-edge adjacency ma-

trices (here: k = 1) from this distribution, aggregate these matrices (here: subtraction), and use

the resulting adjacency matrix as input to a downstream model, typically an MPNN, for the final

predictions task. On the backward pass, the gradients of the loss ℓ regarding the parameters θ are

approximated through the derivative of the exactly-k marginals in the direction of the gradients

of the point-wise loss ℓ regarding the sampled adjacency matrix. We use recent work to make

the computation of these marginals exact and differentiable, reducing both bias and variance.

by introducing a probabilistic and generally applicable notion of graph separation.

Let us assume a conditional probability mass function p : An → [0, 1] conditioned on a given

n-order graph, defined over the set of adjacency matrices of n-order graphs. In the context of PR-

MPNNs, p is the probability mass function defined in Section 2.3.2 but it could also be any other

conditional probability mass function over graphs. Moreover, let f : An → Rd, for d > 0, be a

permutation-invariant, parameterized function mapping a sampled graph’s adjacency matrix to a

vector in Rd. The function f could be the composition of an aggregation function g that removes

the sampled edges from the input graph G and of a downstream MPNN. Now, the conditional
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probability mass function p separates two graphs G and H with probability ρ with respect to f if

EḠ∼p(·|G),H̄∼p(·|H)

[
f(A(Ḡ)) 6= f(A(H̄))

]
= ρ,

that is, if in expectation over the conditional probability distribution, the vectors f(A(Ḡ)) and

f(A(H̄)) are distinct with probability ρ.

In what follows, we analyze the case of p being the exactly-k probability distribution defined

in Equation 2.10 and f being the aggregation function removing edges and a downstreamMPNN.

However, our framework readily generalizes to the case of node removal. Following Section 2.3.2,

we sample adjacency matrices with exactly k edges and use them to remove edges from the

original graph. We aim to understand the separation properties of the probability mass function

p(k,θ) in this setting and for various types of graph structures. Most obviously, we do not want to

separate isomorphic graphs and, therefore, remain isomorphism invariant, a desirable property

of MPNNs.

Theorem 2. For sufficiently large n, for every ε ∈ (0, 1) and k > 0, we have that for almost all

pairs, in the sense of [BES80], of isomorphic n-order graphsG andH and all permutation-invariant,

1-WL-equivalent functions f : An → Rd, d > 0, there exists a probability mass function p(θ,k) that

separates the graph G and H with probability at most ε with respect to f .

Theorem 2 relies on the fact that most graphs have a discrete 1-WL coloring. For graphswhere

the 1-WL stable coloring consists of a discrete and non-discrete part, the following result shows

that there exist distributions p(θ,k) not separating the graphs based on the partial isomorphism

corresponding to the discrete coloring.

Proposition 4. Let ε ∈ (0, 1), k > 0, and let G and H be graphs with identical 1-WL stable

colorings. Let VG and VH be the subset of nodes of G and H that are in color classes of cardinality 1.

Then, for all choices of 1-WL-equivalent functions f , there exists a conditional probability distribution

p(θ,k) that separates the graphs G[VG] and H[VH ] with probability at most ε with respect to f .

Existing methods such as DropGNN [PMF21] or DropEdge [RHX20] are more likely to sep-

arate two (partially) isomorphic graphs by removing different nodes or edges between discrete
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color classes, i.e., on their (partially) isomorphic subgraphs. For instance, we prove that pairs of

graphs withm edges exist where the probability of non-separation under uniform edge sampling

is at most 1/m. This is undesirable as it breaks the MPNNs’ permutation-invariance in these

parts.

Now that we have established that distributions with priors from upstream MPNNs are more

likely to preserve (partial) isomorphism between graphs, we turn to analyze their behavior in

separating the non-discrete parts of the coloring. The following theorem shows that PR-MPNNs

are more likely to separate non-isomorphic graphs than probability mass functions that remove

edges or nodes uniformly at random.

Theorem 3. For every ε ∈ (0, 1) and every k > 0, there exists a pair of non-isomorphic graphs G

and H with identical and non-discrete 1-WL stable colorings such that for every 1-WL-equivalent

function f ,

(1) there exists a probability mass function p(k,θ) that separatesG andH with probability at least

(1− ε) with respect to f ;

(2) removing edges uniformly at random separates G and H with probability at most ε with

respect to f .

Finally, we can also show a negative result, namely that there exist classes of graphs for which

PR-MPNNs cannot do better than random sampling.

Proposition 5. For every k > 0, there exist non-isomorphic graphs G and H with identical 1-WL

colorings such that every probability mass function p(θ,k) separates the two graphs with the same

probability as the distribution that samples edges uniformly at random.

Related Work

MPNNs are inherently biased towards encoding local structures, which limits their expressive

power [MRF19, MLM21, XHL19]. Specifically, they are at most as powerful as distinguishing
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Figure 2.6: Comparison between PR-MPNN and DropGNN on the 4-Cycles dataset. PR-MPNN

rewiring is almost always better than randomly dropping nodes, and is always better with 10

priors.

non-isomorphic graphs or nodes with different structural roles as the 1-dimensional Weisfeiler–

Leman algorithm [WL68], a simple heuristic for the graph isomorphism problem; see Section 2.3.1.

Additionally, they cannot capture global or long-range information, often linked to phenomena

such as under-reaching [BKM20] or over-squashing [AY21], with the latter being heavily inves-

tigated in recent works.

Graph rewiring Several recent works aim to circumvent over-squashing via graph rewiring.

Perhaps the most straightforward way of graph rewiring is incorporating multi-hop neighbors.

For example, [BYS22] rewires the graphs with k-hop neighbors and virtual nodes and also aug-

ments them with positional encodings. MixHop [APK19], SIGN [FRE20], DIGL [GWG19], and

SP-MPNN [ADC22] can also be considered as graph rewiring as they can reach further-away

neighbors in a single layer. Particularly, [GDB23] rewires the graph similarly to [ADC22] but

with a novel delay mechanism, showcasing promising empirical results. Several rewiring meth-

ods depend on particular metrics, e.g., Ricci or Forman curvature [BMS22] and balanced Forman

curvature [TDC21]. In addition, [DLV22, SVV23] utilize expander graphs to enhance message

passing and connectivity, while [KBM22] resort to spectral techniques, and [BKW22] propose a

greedy random edge flip approach to overcome over-squashing. Refining [TDC21], [DGB23] ana-

lyzed how the architectures’ width and graph structure contribute to the over-squashing problem,
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showing that over-squashing happens among nodes with high commute time, stressing the im-

portance of rewiring techniques. Contrary to our proposed method, these strategies to mitigate

over-squashing either rely on heuristic rewiring methods or use purely randomized approaches

that may not adapt well to a given prediction task. Furthermore, the impact of existing rewiring

methods on a model’s expressive power remains unclear and we close this gap with our work.

Graph transformers Different from the above, graph transformers [DRG22, HHL23, MGM23,

RGD22, COB22] and similar global attention mechanisms [LWJ21, WJW21] marked a shift from

local to global message passing, aggregating over all nodes. While not understood in a princi-

pled way, empirical studies indicate that graph transformers possibly alleviate over-squashing;

see, e.g., [MGM23]. However, all transformers suffer from their quadratic space and memory

requirements due to computing an attention matrix.

2.3.4 Empirical Evaluation

We explore to what extent our probabilistic graph rewiring leads to improved predictive perfor-

mance on synthetic and real-world datasets. Concretely, we answer the following questions.

Q1 Can probabilistic graph rewiringmitigate the problems of over-squashing and under-reaching

in synthetic datasets?

Q2 Is the expressive power of standard MPNNs enhanced through probabilistic graph rewiring?

That is, can we verify empirically that the separating probability mass function of Sec-

tion 2.3.3 can be learned with PR-MPNNs and that multiple priors help?

Q3 Does the increase in predictive performance due to probabilistic rewiring apply to (a) graph-

level molecular prediction tasks and (b) node-level prediction tasks involving heterophilic

data?

Datasets To answer Q1, we utilized the TRees-NeighboRsMatch dataset [AY21]. Addition-

ally, we created the TRees-LeafCount dataset to investigate whether our method could mitigate

under-reaching issues. To tackle Q2, we performed experiments with the Exp [ACG20] and CSL
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datasets [MSR19] to assess how much probabilistic graph rewiring can enhance the models’ ex-

pressivity. In addition, we utilized the 4-Cycles dataset from [Lou20, PMF21] and set it against

a standard DropGNN model [PMF21] for comparison while also ablating the performance dif-

ference concerning the number of priors and samples per prior. To answer Q3 (a), we used the

established molecular graph-level regression datasets Alchemy [CCH19], Zinc [JCB17, DJL20],

ogbg-molhiv [HFZ20], QM9 [HYL17], LRGB [DRG22] and five datasets from the TUDataset

repository [MKB20]. To answer Q3 (b), we used the CoRnell, Wisconsin, Texas node-level

classification datasets [PWC20].

Baseline andmodel configurations For our upstreammodel hv , we use an MPNN, specifically

the GIN layer [XHL19]. For an edge (v, w) ∈ E(G), we compute θvw = ϕ([hT
v ||hT

w]) ∈ R,

where [·||·] is the concatenation operator and ϕ is an MLP. After obtaining the prior θ, we rewire

our graphs by sampling two adjacency matrices for deleting edges and adding new edges, i.e.,

g(A(G),A(1),A(2)) := (A(G) − A(1)) + A(2) where A(1) and A(2) are two sampled adjacency

matrices with a possibly different number of edges, respectively. Finally, the rewired adjacency

matrix (or multiple adjacency matrices) is used in a downstream model fu : An × Rn×d → Y ,

typically anMPNN, with parametersu andY the prediction target set. For the instance where we

have multiple priors, as described in Section 2.3.2, we can either aggregate the sampled adjacency

matrices A(1), . . . ,A(N) into a single adjacency matrix �A that we send to a downstream model as

described in Figure 2.5, or construct a downstream ensemble with multiple aggregated matrices
�A1, . . . , �AM . In practice, we always use a downstream ensemble before the final projection layer

when we rewire with more than one adjacency matrix, and we do rewiring by both adding and

deleting edges.

All of our downstream models fd and base models are MPNNs with GIN layers. When we

have access to edge features, we use the GINE variant [HLG20] for edge feature processing. For

graph-level tasks, we use mean pooling, while for node-level tasks, we take the node embedding

hT
v for a node v. The final embeddings are then processed and projected to the target space by an

MLP.
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Figure 2.7: Example graph from the TRees-LeafCount test dataset with radius 4 (left). PR-

MPNN rewires the graph, allowing the downstream MPNN to obtain the label information from

the leaves in one massage-passing step (right).

For Zinc, Alchemy, and ogbg-molhiv, we compare our rewiring approaches with the base

downstream model, both with and without positional embeddings. Further, we compare to GPS

[RGD22] and SAT [COB22], two state-of-the-art graph transformers. For the TUDataset, we

compare with the reported scores from [GRC23] and use the same evaluation strategy as in

[XHL19, GRC23], i.e., running 10-fold cross-validation and reporting the maximum average vali-

dation accuracy. For different tasks, we search for the best hyperparameters for sampling and our

upstream and downstream models. For Zinc, Alchemy, and ogbg-molhiv, we evaluate multiple

gradient estimators in terms of predictive power and computation time. Specifically, we compare

Gumbel SoftSub-ST [MMT17a, JGP17a, XE19a], I-MLE [NMF21a], and Simple [AZN23a]. The

results in terms of predictive power are detailed in Table 2.4.

Experimental results and discussion Concerning Q1, our rewiring method achieves per-

fect test accuracy up to a problem radius of 6 on both TRees-NeighboRsMatch and TRees-

LeafCount, demonstrating that it can successfully alleviate over-squashing and under-reaching,

see Figure 2.8. For TRees-LeafCount, our model can create connections directly from the leaves

to the root, achieving perfect accuracy with a downstream model containing a single MPNN

layer. We provide a qualitative result in Figure 2.7. Concerning Q2, on the 4-Cycles dataset,

our probabilistic rewiring method matches or outperforms DropGNN. This advantage is most

pronounced with 5 and 10 priors, where we achieve 100% task accuracy using 20 samples, as
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Figure 2.8: Test accuracy of our rewiringmethod on the TRees-NeighboRsMatch [AY21] dataset,

compared to the reported accuracies from [MGM23].

detailed in Figure 2.6. On the Exp dataset, we showcase the expressive power of probabilistic

rewiring by achieving perfect accuracy, see Table 2.5. Besides, our rewiring approach can dis-

tinguish the regular graphs from the CSL dataset without any positional encodings, whereas the

1-WL-equivalent GIN obtains only random accuracy. Concerning Q3 (a), the results in Table 2.4

show that our rewiringmethods consistently outperform the base models on Zinc, Alchemy, and

ogbg-molhiv and are competitive or better than the state-of-the-art GPS and SAT graph trans-

former methods. On TUDataset, see Table 2.7, our probabilistic rewiring method outperforms

existing approaches and obtains lower variance on most of the datasets, with the exception being

NCI1, where our method ranks second, after theWL kernel. Hence, our results indicate that prob-

abilistic graph rewiring can improve performance for molecular prediction tasks. ConcerningQ3

(b), we obtain performance gains over the base model and other existing MPNNs, indicating that

data-driven rewiring has the potential of alleviating the effects of over-smoothing by removing

undesirable edges and making new ones between nodes with similar features. The graph trans-

former methods outperform the rewiring approach and the base models, except on the Texas

dataset, where our method gets the best result. We speculate that GIN’s aggregation mechanism

for the downstream models is a limiting factor on heterophilic data. We leave the analysis of
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combining probabilistic graph rewiring with downstream models that address over-smoothing

for future investigations.

2.4 Discussion

The key to the success of Simple is the capability of exact reasoning over the k-subset constraint

as the constraint probabilities of the exact samples from the constrained distribution serve as

an informative proxy for gradient updates. This paradigm can be potentially generalized to any

constraints; that is, the problem of differentiable learning under constraints can be reduced to

the problem of tractable computation of the constraint probability. An interesting direction for

future work is to come up with efficient approximations of Simple for complex constraints.
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Table 2.4: Comparison between PR-MPNN and baselines on three molecular property prediction

datasets. We report results for PR-MPNN with different gradient estimators for k-subset sam-

pling: Gumbel SoftSub-ST [MMT17a, JGP17a, XE19a], I-MLE [NMF21a], and Simple [AZN23a]

and compare them with the base downstream model, and two graph transformer architectures.

The variant using SIMPLE consistently outperforms the base models and is competitive or better

than the two graph transformers. We use green for the best model, blue for the second-best, and

red for third. We note with + Edge the instances where edge features are provided and with -

Edge when they are not.

Zinc OGBG-molhiv Alchemy

- Edge ↓ + Edge ↓ + Edge ↑ + Edge ↓

GI
N

ba
cK

bo
ne

K-ST SAT 0.166±0.007 0.115±0.005 0.625±0.039 N/A

K-SG SAT 0.162±0.013 0.095±0.002 0.613±0.010 N/A

Base 0.258±0.006 0.207±0.006 0.775±0.011 11.12±0.690

Base w. PE 0.162±0.001 0.101±0.004 0.764±0.018 7.197±0.094

PR-MPNNGmb (ouRs) 0.153±0.003 0.103±0.008 0.760±0.025 6.858±0.090

PR-MPNNImle (ouRs) 0.151±0.001 0.104±0.008 0.774±0.015 6.692±0.061

PR-MPNNSim (ouRs) 0.139±0.001 0.085±0.002 0.795±0.009 6.447±0.057

PN
A

GPS N/A 0.070±0.004 0.788±0.010 N/A

K-ST SAT 0.164±0.007 0.102±0.005 0.625±0.039 N/A

K-SG SAT 0.131±0.002 0.094±0.008 0.613±0.010 N/A
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Table 2.5: Comparison between the base GIN

model, PR-MPNN, and other more expressive

models on the Exp dataset.

Model AccuRacy ↑

GIN 0.511±0.021

GIN + ID-GNN 1.000±0.000

OSAN 1.000±0.000

PR-MPNN (ouRs) 1.000±0.000

Table 2.6: Comparison between the base GIN

model and probabilistic rewiring model on

CSL dataset, w/o positional encodings.

Model AccuRacy ↑

GIN 0.100±0.000

GIN + PosEnc 1.000±0.000

PR-MPNN (ouRs) 0.998±0.008

PR-MPNN + PosEnc (ouRs) 1.000±0.000
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Table 2.7: Comparison between PR-MPNN and other approaches as reported in [GRC23, KBM22,

PMF21]. Our model outperforms existing approaches while keeping a lower variance in most of

the cases, except for NCI1, where the WL Kernel is the best. We use green for the best model,

blue for the second-best, and red for third.

Model Mutag PTC_MR PRoteins NCI1 NCI109

GK (k = 3) [SVP09] 81.4±1.7 55.7±0.5 71.4±0.3 62.5±0.3 62.4±0.3

PK [NGB16] 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A

WL KeRnel [SSV11] 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 N/A

DGCNN [ZCN18] 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 N/A

IGN [MBS19b] 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5

GIN [XHL19] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 N/A

PPGNs [MBS19a] 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4

NatuRal GN [HCW20] 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 83.0±1.9

GSN [BFZ22] 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 83.5±2.3

CIN [BFW21] 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6

CAN [GBT23] 94.1±4.8 72.8±8.3 78.2±2.0 84.5±1.6 83.6±1.2

CIN++ [GRC23] 94.4±3.7 73.2±6.4 80.5±3.9 85.3±1.2 84.5±2.4

FoSR [KBM22] 86.2±1.5 58.5±1.7 75.1±0.8 72.9±0.6 71.1±0.6

DRopGNN [PMF21] 90.4±7.0 66.3±8.6 76.3±6.1 81.6±1.8 80.8±2.6

PR-MPNN (10-fold CV) 98.4±2.4 74.3±3.9 80.7±3.9 85.6±0.8 84.6±1.2
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CHAPTER 3

Linear-Equality Constrained Deep Generative Models

This chapter focuses on the same challenge of differentiable learning under constraints as the

previous chapter but extends from the discrete domains to the continuous ones, from k-subset

constraint to linear-equality constraints. Enforcing linear-equality constraints poses unique chal-

lenges to the design of gradient estimators. Our aim is to tackle these complexities, demonstrating

that our methods, while broadly applicable to any neural networks, enable robust and efficient

enforcement of constraints, particularly in deep generative models.

3.1 Background

The linear equality constraint is ubiquitous not only in machine learning such as learning sparse

features [CSW18] but also in scientific applications such as modeling charge-neutral molecules

in chemistry [RSS20] and count-aware cell type deconvolution in biology [LWZ23]. Even though

deep generativemodels (DGMs) havemade great progress in synthesizing realistic data in various

domains, they struggle to learn such constraints from data while these constraints can encode

necessary domain knowledge of the task at hand. For example, a DGM trained on a charge-neutral

molecule dataset often generates molecules where the charges of each atom do not sum to zero.

That is, DGMs are excellent at approximating complex distributions but can fail to capture simple

constraints [SDC24]. However, such constraints should be integrated into the DGMs to generate

realistic data guaranteed to follow the domain knowledge.

While its discrete counterpart, known as k-subset constraints, has been thoroughly studied

for being enforced into deep learning models [XE19c, NMF21b, AZN23a], how to integrate linear
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equality into DGMs with continuous or discrete domains is underexplored. [AAB19, FNC20]

study the problemwhen the linear equalities are constraints to the optimization problems instead

of data distributions. While one can ignore the constraints in the training and use post-processing

of the generated data, it harms the generation performance. [SDC24] considers linear inequalities

enforced on DGMs by minimally moving the sample into the feasible space defined by the linear

inequalities but it does not apply to linear equalities.

3.2 Gradient Estimator for Linear Equalities

This section shows how to integrate linear constraints that encode background knowledge into

different DGMs. We start by characterizing the settings when the training objective admits a

closed-form expression even though the data distribution is constrained, and thus the DGM al-

lows end-to-end training as in standard settings. We show in the experiment section that such

scenarios are common in real-world applications. For the more general settings when no closed-

from objectives are available, we propose several gradient estimators by the principle that con-

strainedmarginal probabilities can serve as an informative proxy for gradient updates as observed

in [NMF21b, AZN23a] and provide a comparison of their bias and variance. The proposed esti-

mators enable linear equality to be enforced not just on the data distribution but also on the

distribution of latent variables. With our method, DGMs are transformed into the corresponding

constrained DGMs that generate data guaranteed to satisfy the linear constraints.

To evaluate our approach, we modify the MNIST dataset to be constrained by a constant sum

of pixel values and conduct an extensive experimental analysis to compare DGMs and their con-

strained counterparts. Results show that DGMs often fail to satisfy the constraints, that is, they

are incapable of learning the domain knowledge. Their constrained counterparts, on the contrary,

always generate compliant samples and have better generation quality due to the inductive bias

from the constraints. By further comparing the training time, we demonstrate that the injection

of the constraints brings little overhead. We also include a real-world experiment on a scientific

application where the task is to predict the atomic partial charges on metal-organic frameworks
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under a charge-neutral constraint where our method achieves state-of-the-art predictive perfor-

mance.

Problem Statement We consider a general constrained model described by the equations

θ = hv(x), z ∼ pθ(z |
∑

i zi = k), ŷ = fu(z), (3.1)

where x ∈ X and ŷ ∈ Y denote feature inputs and target outputs, respectively, hv : X → Θ and

fu : Z → Y are smooth, parameterized mappings. θ are parameters inducing a distribution over

the latent variables z conform to a Gaussian distributionN (µ,Σ)where parameters θ = (µ,Σ)

consist of the mean vector µ ∈ Rn and the covariance matrixΣ ∈ Rn×n. That is, z has its proba-

bility density function (p.d.f.) defined as pθ(z) = 1
(2π)n/2|Σθ |1/2

exp
(
−1

2
(z − µθ)

⊤Σ−1
θ (z − µθ)

)
.

A linear equality
∑

i zi = k with k ∈ R is enforced over the distribution pθ(z) inducing a con-

ditional distribution pθ(z |
∑

i zi = k). This formulation is general and it subsumes various

neural network models that integrate the linear equality constraint in 1) output (when the map-

ping fu is the identity function), where the goal of constrained generative modeling is to learn

the parameters θ such that the constrained model distribution pθ approximates the underlying

data distribution; or 2) latent space, where the constrained generative modeling learns a con-

strained posterior distribution pθ over latent variables. The training of such models is performed

by optimizing an expected loss as below,

L(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z),y)] with ω = (v,u) and θ = hv(x), (3.2)

where ℓ : Y × Y → R+ is a point-wise loss function. Figure 2.2 shows a visualization of the

model. Note that in this work we formulate the linear equality constraint as an unweighted

sum of variables for ease of notation while all of our theoretical results can be extended to a

weighted sum of variables of the form
∑

i αizi = k with αi ∈ R for any i. We explore other

the distributional assumptions and present results on Poisson distributions for discrete variables

with infinite domain in Section 3.2.2.3.
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3.2.1 Closed-Form Expected Loss

Before we tackle the challenging task of deriving gradient estimators for training DGMs, it is cru-

cial to first address a fundamental question: when is a gradient estimator necessary, and when

is it not? A short answer is that when the expected loss in Equation 3.2 admits a closed-form

expression, standard training can be applied to the constrained DGMs and thus no gradient esti-

mator is needed. This section presents our theoretical results on characterizing when such closed

forms are available.

The first assumption we make is that the mapping fu is an identity function, that is, ŷ = z, as

it can introduce high non-linearity that easilymakes a closed-form impossible. Thenwe show that

when the element-wise loss ℓ is L1 or L2 loss, the expected loss admits a closed-form expression

as below.

Proposition 6 (Gaussian Closed-form Expected Loss). Let z ∼ N (µ,Σ). Let y = (y1, . . . , yn)
T

be the ground truth vector subject to the equality constraint
∑n

j=1 yj = k. Then it holds that

i) when ℓ is L1 loss, L(θ) =
∑n

i=1 σi

√
2
π
exp

(
−(µi−yi)

2

2σ2
i

)
+ (µi − yi) erf

(
µi−yi√

2σ2
i

)
;

ii) when ℓ is L2 loss, L(θ) =
∑n

i=1 µ
2
i + σ2

i − 2yiµi + y2i ,

with µi := µi +
Σi,i+

∑n
j ̸=i Σi,j∑n

t=1 Σt,t+
∑n

j ̸=t Σt,j

(
k −

∑n
j=1 µj

)
and σ2

i := Σi,i −
(Σi,i+

∑n
j ̸=i Σi,j)

2∑n
t=1 Σt,t+

∑n
j ̸=t Σt,j

.

We further generalize our results to a system of linear equality constraints.

Corollary 1. The closed-form expressions for L(θ) defined under L1 loss and L2 loss under the

constraint Az = k, where A ∈ Ra×n and rank(A) = a < n, are identical to those presented in

Proposition 6, except that the parameters are defined as follows,

µi = µi + eT
i ΣA

(
AΣAT

)−1
(k −Aµ) and σ2

i = eT
i Σei − eT

i ΣAT
(
AΣAT

)−1
AΣei

where ei is a standard basis vector in Rn with only i-th entry being 1 and otherwise 0.

Later we will empirically show that the closed-form expected loss derived above leads to

state-of-the-art predictive performance in a scientific application as in Section 3.2.3.4.
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3.2.2 Method

As we move on to the general setting where the expected loss in Equation 3.2 does not admit a

closed form, standard auto-differentiation can not be directly applied to the expected loss due to

two main obstacles. First, for the gradient of L w.r.t. parameters u in the decoder mapping fu

defined as

∇uL(x,y;ω) = Ez∼pθ(z|
∑

i zi=k)[∂ufu(z,x)
⊤∇ŷℓ(ŷ,y)] (3.3)

with ŷ = fu(z) being the decoding of a latent sample z, the expectation does not allow closed-

form solution in general and requires Monte-Carlo estimations by sampling z from the con-

strained distribution pθ(z |
∑

i zi = k). Another issue arises in the gradient of L w.r.t. parame-

ters v in the encoder mapping which is defined as

∇vL(x,y;ω) = ∂vhv(x)
⊤∇θL(x,y;ω) (3.4)

where the obstacle lies in the computation of the gradient ofLw.r.t. θ defined as∇θL(x,y;ω) :=

∇θ Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x), ŷ)] that requires gradient estimators. In this section, we tackle the

gradient estimation for the linear equality constraint by solving the aforementioned two subprob-

lems: (P1) how to sample exactly from the constrained distribution pθ(z |
∑

i zi = k) and (P2)

how to estimate ∇θL(x,y;ω). By combining solutions to these two subproblems, we manage to

train the constrained DGMs in an end-to-end manner. We summarize our proposed estimators

in Table 3.1.

3.2.2.1 Exact Sampling

We find that the constrained distribution pθ(z |
∑

i zi = k) is still a Gaussian distribution and

thus it is straightforward to sample exactly from this distribution as long as we obtain the mean

vector and the covariance matrix of this Gaussian. We formally state our findings as below.

Proposition 7 (Gaussian Constrained Distribution). Given z = (z1, . . . , zn)
T ∼ N (µ,Σ), the

constrained distribution pθ(z |
∑n

j=1 zj = k) is equivalent to an n − 1 dimensional multivariate
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Table 3.1: Summary of gradient estimators. The first block presents baseline estimators and the

second presents our proposed ones. In the forward pass, we sample exactly from the constrained

distribution by Proposition 7. In the backward pass, we use m(θ) as a differntiable proxy.

GRadient EstimatoR PRoxy m(θ) DescRiption

Random - Sample a random gradient from N (0, I)

Unconstrained Marginal pθ(zi) P.d.f. of unconstrained z as a proxy for z

Constrained Marginal pθ

(
zi|
∑n

j=1 zj = k
)

P.d.f. of conditional marginals as a proxy for z

Marginal Expectation Ezi∼pθ(zi|
∑n

j=1 zj=k)[zi] Expectation of conditional marginals as a proxy for z

Gaussian distribution with meanµ ∈ Rn−1 and covariance matrixΣ ∈ Rn−1×n−1 defined as below,

µi = µi +
Σi,i +

∑n
j ̸=i Σi,j∑n

t=1 Σt,t +
∑n

j ̸=t Σt,j

(
k −

n∑
j=1

µj

)

Σi,j =


Σi,i −

(Σi,i+
∑n

j ̸=i Σi,j)
2∑n

t=1 Σt,t+
∑n

j ̸=t Σt,j
i = j

Σi,j −
(Σi,i+

∑n
j ̸=i Σi,j)(Σj,j+

∑n
k ̸=j Σj,k)∑n

t=1 Σt,t+
∑n

j ̸=t Σt,j
i 6= j

.

3.2.2.2 Gradient Estimators

[NMF21b, AZN23a] observe that in the discrete case when z are Bernoulli variables, the prob-

lematic term in Equation 3.4 can be effectively approximated as

∇θL(x,y;ω) ≈ ∂θm(θ)∇zℓ(x,y;ω), (3.5)

where m(θ) := {pθ(zi |
∑n

j=1 zi = k)}nj=1 denotes the conditional marginal probabilities. The

intuition behind this is that the conditional marginals characterize the probability of each zi in

the generated sample and can serve as a differentiable proxy allowing for end-to-end training.

We generalize this intuition to the linear-equality constrained distribution in the continuous do-

mains and perform an analysis of its effectiveness. The continuous setting mostly differs from
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the discrete one in that there are two choices of m(θ): 1) the conditional marginal probability

density pθ(zi|
∑n

j=1 zj = k); and 2) the expectation of zi under the conditional marginal, that

is, Ezi∼pθ(zi|
∑n

j=1 zj=k)[zi].

While these two quantities are the same in discrete cases, we make an interesting observation

in our empirical study that in continuous domains, the use of expectation is consistently more

effective than the conditional marginals. We further provide a baseline estimator that chooses

m(θ) to be the unconstrained marginals pθ(zi), meaning that the constraint is ignored during

the training process; empirical results show that such ignorance can harm model performance

even though the constraint is enforced at inference time. We refer the readers to the experimental

section for the empirical results.

The remaining question is how to obtain the closed-form m(θ) for different estimators. We

present below the theoretical results for the constrained marginals and their expectations.

Proposition 8 (Gaussian Conditional Marginal and Expectations). Given z = (z1, . . . , zn)
T ∼

N (µ,Σ), the conditional marginal pθ(zi |
∑n

j=1 zj = k) follows a univariate Gaussian dis-

tribution with mean µi = µi +
Σi,i+

∑n
j ̸=i Σi,j∑n

t=1 Σt,t+
∑n

j ̸=t Σt,j

(
k −

∑n
j=1 µj

)
and variance σ2

i = Σi,i −
(Σi,i+

∑n
j ̸=i Σi,j)

2∑n
t=1 Σt,t+

∑n
j ̸=t Σt,j

. Further, the expectation of the marginal distribution is µi.

We also present theoretical results on a system of linear equality constraints.

Proposition 9. Let z ∼ N (µ,Σ). The constrained distribution pθ(z | Az = k) is equivalent

to an n − a dimensional multivariate Gaussian distribution with mean µ ∈ Rn−a and covariance

matrix Σ ∈ R(n−a)×(n−a) defined as below,

µ = Eµ+EΣAT
(
AΣAT

)−1
(k −Aµ) and Σ = EΣET −EΣAT

(
AΣAT

)−1
AΣET

whereE ∈ Rn−a×n contains the first n−a rows of an identity matrix I ∈ Rn×n. Themarginal

distribution subject to the constraint pθ(zi | Az = k) can also be computed in closed form.

Specifically, with ei being a standard basis vector, it holds that pθ(zi | Az = k) ∼ N (µi, σ
2
i ),

with µi = µi + eT
i ΣA

(
AΣAT

)−1
(k −Aµ) and σ2

i = eT
i Σei − eT

i ΣAT
(
AΣAT

)−1
AΣei.

47



Related Work

A substantial amount of research has been devoted to estimating gradients for categorical ran-

dom variables. [MMT16] and [JGP16] proposed to refactor the non-differentiable sample from

a categorical distribution with a differentiable sample from a novel Gumbel-Softmax distribu-

tion, which enables automatic differentiation. Gradient estimation under linear equality con-

straints for categorical random variables has been widely studied. Existing methods either em-

ploy the score function and straight-through estimator or suggest custom relaxation [KSE16,

CSW18, GWZ18, XE19b]. [XE19b] extends the Gumbel-softmax technique to k-subsets, enabling

backpropagation for k-subset sampling. However, this comes at the trade-off of introducing some

bias in the learning process due to the use of relaxed samples. While score function estimators

offer a seemingly simple solution, it is widely acknowledged that they are prone to exhibiting ex-

ceedingly high variance. A recently introduced gradient estimator known as SIMPLE [AZN23a]

surpasses its predecessors but is limited to Bernoulli random variables. Our work deviates from

previous research on gradient estimation under linear equality constraints by investigating exact

sampling as well as closed-form loss function for Gaussian and Poisson random variables, which

are commonly used in scientific applications. We also extended the SIMPLE estimator [AZN23a]

to Gaussian and Poisson random variables.

Extensive research has been conducted on numerical sampling from multivariate normal dis-

tributions while adhering to various constraints. [AMD14] reviewed classical Gibbs Sampling

on a standard simplex (samples are positive and sum to one) and proposed using Hamiltonian

Monte Carlo (HMC) methods. Efficient sampling methods for multivariate normal distributions

truncated by hyperplanes(Ax = b, where dim(x) = N and rank(A) = n < N ) were investi-

gated by [MBR22] and [CCZ17]. While these studies focus on numerical simulations, our study

aims to derive closed-form solutions for not only linear equality constraint but also a system of

linear equality constraint. Our theoretical findings, combined with closed-form loss functions,

enable researchers to seamlessly incorporate constraints into machine learning models while
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(a) Gaussian L1 (b) Gaussian L2

(c) Poisson L1 (d) Poisson L2

Figure 3.1: Comparisons of different gradient estimators for point-wise loss ℓ being L1 and L2

loss applied to Gaussian and Poisson variables are conducted. To evaluate the direction of the

gradient, we utilized the cosine distance, defined as 1 - cosine similarity. The bias, variance,

and error of the estimators are assessed using a sample size of 10,000. The bias and variance

for Marginal Expectation applied to Poison random variable are extremely close to zero but not

identically zero.

maintaining the probabilistic nature of random variables.

Integrating constraints as background knowledge into deep learning models has been widely

studied. Traditional methods propose to add penalty terms to the loss function for constraint

violations [DGM12, XZF18, FBD19, BGS22, SGL24]. While these methods are relatively straight-

forward to implement, they do not guarantee constraint satisfaction. Alternative approaches,

such as [ATC22b], [GL21], and [SDC24], incorporate background knowledge into the topology

of the network itself. In the context of generative tasks, [DAG20] incorporate propositional logic

constraints in Generative Adversarial Networks for structured object generation, while [MMS22]

demonstrate the integration of [DKT07] with variational autoencoders.
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3.2.2.3 Beyond Gaussian

In this section, we present the theoretical results when z are Poisson variables defined over dis-

crete domains. Similar to the Gaussian setting, we find that when the element-wise loss ℓ is

L1 or L2 loss and the mapping fu is an identity function, the expected loss admits closed-form

expressions.

Proposition 10 (PoissonClosed-formExpected Loss). Let z = (z1, . . . , zn)
T , where zi ∼ Poisson(θi).

Let y = (y1, y2, . . . , yn)
T be the ground truth vector subject to the equality constraint

∑n
i=1 yi = k

with k ∈ N+. Then it holds that

i) when ℓ is L1 loss,

L(θ) =
n∑

i=1

(k − bkpi − dic)piBin(bkpi − dic; k, pi)

+ bkpi − dic(1− pi)Bin(bkpi − dic; k, pi)− 2diF (bkpi − dic; k, pi) + di;

ii) when ℓ is L2 loss, L(θ) =
∑n

i=1 kpi (1− pi) + k2p2i − 2yikpi + y2i ,

where Bin denotes the probability mass function (p.m.f.) of a binomial distribution and F denotes

a regularized incomplete beta function. di = kpi − yi and pi =
θi∑n

j=1 θj
.

In the general setting when there is no closed-form solution for the expected loss, we first

show that exact sampling from the constrained distribution can be achieved as it takes its form

as a multinomial distribution.

Proposition 11 (PoissonConstrainedDistribution). Given z = (z1, . . . , zn)
T with zi ∼ Poisson(θi),

the constrained distribution pθ(z |
∑n

j=1 zn = k) is equivalent to a multinomial distribution with

parameter k and probabilities θ1∑n
j=1 θj

, . . . , θn∑n
j=1 θj

.

In the backward pass, the results below allow us to derive gradient estimators with either the

conditional marginals or the expectation of the conditional marginal as a differentiable proxy.
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Proposition 12 (Poisson Conditional Marginal and Expectations). Given z = (z1, . . . , zn)
T with

zi ∼ Poisson(θi), the conditional marginal pθ(zi |
∑n

j=1 zj = k) follows a binomial distribution

with parameter k and probability θi∑n
j=1 θj

. Further, its expectation is kθi∑n
j=1 θj

.

3.2.3 Empirical Evaluation

We conduct a comprehensive empirical analysis of our proposed method across four different

tasks: 1) Synthetic experiments where the ground truth gradients are available and thus we can

compare the bias and variance of different estimators. 2) A variational autoencoder (VAE) set-

ting where the posterior of the latent variables is constrained by the linear equality and gradient

estimators are necessary for end-to-end training. It allows us to compare the effectiveness of

different estimators in terms of generation performance. 3) Another VAE setting where the un-

derlying data distribution is constrained by linear equality. We compare various VAE models

and their constrained counterparts, where the success of linear equality integration consistently

boosts model performance. 4) A scientific application where a charge-neutral constraint is en-

forced into the charge predictions of the message-passing neural networks (MPNNs) and the

expected loss admits a closed-form solution in this setting.

3.2.3.1 Synthetic Experiments

Weconsider synthetic settingswhere the ground truth gradients can be obtained by taking deriva-

tives of the closed-form expected loss as stated in Section 3.2.1 such that we can compare how

good the gradient approximations are for each gradient estimator. The distance between the es-

timated and the ground truth gradient vectors is measured by the cosine distance, defined as 1 -

cosine similarity. We evaluate the performance of gradient estimators on threemetrics: bias, vari-

ance, and average error. We compare the two proposed gradient estimators, ConstrainedMarginal

and Marginal Expectation, with two baseline estimators, Random and Unconstrained Marginal as

defined in Table 3.1.

Results are shown in Figure 3.1, where Marginal Expectation significantly outperforms the
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Figure 3.2: Comparison of gradient estimators for VAE with constrained latent space. Negative

log-likelihood (NLL), negative ELBO (NELBO), and reconstruction loss (RL) are averaged over 5

trials.

others in all cases. Estimator Unconstrained Marginal has similar performances to Random which

is expected since it discards the constraint information. What is interesting is that estimator

Constrained Marginal, even though it is informed by the constraint, it also performs as bad as

Random. Even though in the Bernoulli setting, Marginal Expectation and Constrained Marginal

are the same estimator as shown in [AZN23a], we show that in the Gaussian and Poisson setting,

the former is capable of providing decent gradient approximations while the latter is not.

3.2.3.2 Constrained Latent Space

We further test the four gradient estimators in Table 3.1 under the setting where the VAE model

has its latent space constrained by linear equality, that is, the latent variables should sum to a

constant. The VAE is trained on the MNIST dataset using the evidence lower bound (ELBO) as ob-

jective, which consists of a reconstruction loss (RL) and the KL divergence between a constrained

approximate posterior pθ(z |
∑

i zi = k,x) and a prior of the latent space.

Experiment results are presented in Figure 3.2 where the generative performance is evalu-

ated using test negative likelihood, estimated using importance sampling [BGS16], ELBO, and

reconstruction loss. Results show that the estimator Marginal Expectation outperforms all other

estimators, which is consistent with the approximation results that we observe in the synthetic
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experiments in Figure 3.1. Unconstrained Marginal and Constrained Margianl have similar per-

formance, both better than Random.

3.2.3.3 Constrained Data Generation

We consider a setting where the underlying data generation distribution is constrained by linear

equality as domain knowledge. We modify the MNIST dataset such that for each image, all the

pixel values sum to be 100. The first row in Figure 3.3 shows the original MNIST images and

our processed ones in the second row. The processed images are then the inputs to various VAE

models and their constrained counterparts.

We consider three VAE models: Vanilla VAE [KW22], Ladder VAE [SRM16], and Graph VAE

[HGM18]. We compare the performance of these models and their contained counterparts inte-

grated with linear equality using estimatorMarginal Expectation as it shows the best performance

so far. All the VAE models are trained using ELBO as objectives.

The performance of the VAEs is evaluated from three aspects. (1) Generative Ability: We

use test log-likelihood (LL) log pθ(x) estimated using 5,000 importance-weighted samples, ELBO,

and Reconstruction Loss (RL) to measure the models’ performance, accuracy, and generalization

capabilities. (2) Constraint Violation Rate: We measure the proportion of reconstructed testing

data that violates the equality constraint. (3) Training Time: We record the average training time

of all the models for one epoch. All results are averaged over 5 independent runs. The results are

summarized in Table 3.2.

We find out that the vanilla VAE and other VAEs have high constraint violation rates. On the

contrary, ourmethod can constrain themodel such that their generated data satisfy the constraint

while also achieving better generative performance due to the inductive bias. In order to show

that the addition of Marginal Expectation has basically no impact on speed, for each model we

measure the training time of 1 epoch. We also test the average training time where the results

show that the constrained versions are less than 10% slower than the unconstrained version.

Marginal Expectation adds less than 1 second of additional training time for VAE and Ladder
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Table 3.2: Comparison on VAE Generative Ability. The constrained VAE models achieve similar

or better performance in terms of their generative ability while strictly satisfying the constraints.

The unconstrained counterparts have a high constraint violation rate.

Model LL ↑ ELBO ↑ RL ↓ Violation ↓

VAE −22.42± 0.29 −23.41± 0.22 15.00± 0.46 0.30± 0.06

Constrained VAE −21.48± 0.18 −22.62± 0.07 12.79± 0.11 0± 0

Ladder VAE −24.25± 0.07 −30.84± 0.51 23.06± 0.54 0.38± 0.02

Constrained Ladder VAE −23.86± 0.06 −30.78± 0.08 23.40± 0.16 0± 0

Graph VAE −22.74± 0.11 −23.54± 0.18 15.45± 0.41 0.29± 0.09

Constrained Graph VAE −21.61± 0.20 −22.53± 0.06 12.73± 0.21 0± 0

VAE.

3.2.3.4 Partial Charge Predictions for Metal-Organic Frameworks

Metal-organic frameworks (MOFs) represent a class of materials with awide range of applications

in chemistry and materials science. Predicting properties of MOFs, such as partial charges on

metal ions, is essential for understanding their reactivity and performance in chemical processes.

However, it is challenging due to the complex interactions between metal ions and ligands and

the requirement that the predictions need to satisfy the charge neutral constraint, that is, an

exactly-zero constraint.

We adopt the same model as [RSS20] where the charges are assumed to be Gaussian and the

element loss is L1. Our model architecture extends the Message Passing Neural Network (MPNN)

framework and incorporates linear-equality constraint for Gaussian variables, ensuring strict ad-

herence to the critical constraint. The core innovation involves replacing the conventional L1 loss

with the closed-form Gaussian loss function 6 as well as the negative log likelihood of the con-
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Figure 3.3: The first row displays the original MNIST images, while the second row shows the

constrained versions that are input to the VAEs. We compare the reconstructed images produced

by various VAE models and their contained counterparts integrated with linear equality.

strainedmultivariate Gaussian. The L1 loss function penalizes deviations from the linear-equality

constraint while considering the probabilistic nature of Gaussian variables, and the negative log

likelihood loss models the observed data with higher probability. This comprehensive approach

not only enables our model to capture complex structural relationships in MOFs but also ensures

accurate predictions of partial charges while respecting the crucial linear-equality constraint, en-

hancing its applicability in a wide range of graph-based applications, including those pertaining

to metal-organic frameworks.

Additionally, we also devise an ensemble methodology to enhance the predictive performance

and robustness of our linear-equality constrained MPNN model. To achieve this, we adopt a

systematic approach encompassingmodel variability, aggregation strategies and cross-validation.

Two instances of the linear-equality constrained MPNN model are trained with variations in

initialization. We apply the averaging aggregation technique to combine the predictions from
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these models. Performance assessment is conducted through cross-validation techniques. The

ensemble’s performance is evaluated on a separate test dataset to ascertain its generalization

ability. This ensemble approach not only elevates predictive accuracy but also fortifies themodel’s

resilience, rendering it highly effective for complex tasks, including those pertaining to metal-

organic frameworks.

The prediction performance of our four proposed approaches is presented in Table 3.3, com-

pared with baseline approaches reported by [RSS20]. Results show that training using negative

log likelihood loss and closed-form expected loss achieves better performance as MPNN (vari-

ance) which is considered to be the strongest baseline approach. When further combined with

the ensemble method, our approach achieves significantly better predictions.

3.3 Discussion

In this chapter, we present the continuous counterpart of Simple and the subtlety of how to define

the constrained marginal probabilities as a proxy for the gradient updates. For discrete samples,

both constrained marginal probabilities and the constrained marginal expectation of a sample are

the same but for continuous variables, they are different, and interestingly only the latter works

well as shown in the empirical evaluations, showing that it is consistently more informative than

the previous one.
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Table 3.3: The prediction performances of different models for estimating partial charges onmetal

ions are presented. Comparing to the baseline MPNN (variance), both the closed-form loss func-

tion and Likelihood loss function yield superior Mean Absolute Deviation (MAD) results. More-

over, ensemble methods (second block) notably boost the predictive performance of all.

MetHod MAD ↓ NLL ↓

(charge neutrality enforcement) mean ± std mean ± std

Constant Prediction 0.324± 0.007 —

Element-mean (uniform) 0.154± 0.002 —

Element-mean (variance) 0.153± 0.002 —

MPNN (uniform) 0.0260± 0.0008 109.8± 6.9

MPNN (variance) 0.0251± 0.0010 −19.9± 71.1

Closed-form (ours) 0.0245± 0.0009 1.14e+8± 3.15e+8

Likelihood (ours) 0.0248± 0.0008 -252± 24.7

MPNN (variance) + Ensemble 0.0238± 0.0007 −45.2± 55.8

Closed-form + Ensemble (ours) 0.0230± 0.0008 1.51e+7± 1.29e+7

Likelihood + Ensemble (ours) 0.0231± 0.0007 -180± 38.3
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CHAPTER 4

Learning from Weak Supervisions as Constraints

In the previous two chapters, we consider “hard” constraints, that is, such constraints are guar-

anteed to be satisfied in the deep learning pipeline. In this chapter, we consider “soft” constraints

instead, where the models are encouraged to satisfy such constraints in the learning process. Fur-

ther, instead of enforcing the constraints into the model architectures, this chapter is dedicated

to the integration of soft constraints by modifying the loss functions. Specifically, we choose the

count-based weakly supervised learning tasks to show that by translating the count supervision

into soft constraints and using our methods to incorporate such constraints, model performance

can be greatly boosted.

4.1 Count-Based Weakly Supervised Learning

Weakly supervised learning [Zho18] enables a model to learn from data with restricted, partial

or inaccurate labels, often known as weakly-labeled data. Weakly supervised learning fulfills a

need arising in many real-world settings that are subject to privacy or budget constraints, such

as privacy sensitive data [WIB11], medical image analysis [BDO18], clinical practice [QCC], per-

sonalized advertisement [BD20] and knowledge base completion [GTH15, ZD18], to name a few.

In some settings, instance-level labels are unavailable. Instead, instances are grouped into bags

with corresponding bag-level labels that are a function of the instance labels, e.g., the proportion

of positive labels in a bag. A key insight that we bring forth is that such weak supervision can

very often be construed as enforcing constraints on label counts of data.

More concretely, we consider three prominent weakly supervised learning paradigms. The
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x y

0

0

1

1

(a) Classical

{xi}ki=1 ỹ =
∑

yi/k

0

1/3

3/5

(b) LLP

{xi}ki=1 ỹ = max{yi}

0

1

1

(c) MIL

x ỹ

?

1

?

?

(d) PU Learning

Table 4.1: A comparison of the tasks considered in the three weakly supervised settings, LLP (cf.

Section 4.1.1), MIL (cf. Section 4.1.2) and PU learning (cf. Section 4.1.3), against the classical fully

supervised setting for binary classification, using digits from the MNIST dataset.

first paradigm is known as learning from label proportions [QSC08]. Here the weak supervision

consists in the proportion of positive labels in a given bag, which can be interpreted as the count

of positive instances in such a bag. The second paradigm, whose supervision is strictly weaker

than the former, is multiple instance learning [ML97, DLL01]. Here the bag labels only indicate

the existence of at least one positive instance in a bag, which can be recast as to whether the

count of positive instances is greater than zero. The third paradigm, learning from positive and

unlabeled data [DDG99, LDG00], grants access to the ground truth labels for a subset of only the

positive instances, providing only a class prior for what remains. We can recast the class prior as

a distribution of the count of positive labels.

We formally introduce the aforementioned weakly supervised learning paradigms below. For

notation, let X ∈ Rd be the input feature space over d features and Y = {0, 1} be a binary label

space. We write x ∈ X and y ∈ Y for the input and output random variables respectively.

Recall that in fully-supervised binary classification, it is assumed that each feature and label

pair (x,y) ∈ X × Y is sampled independently from a joint distribution p(x,y). A classifier
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f is learned to minimize the risk R(f) = E(x,y)∼p[ℓ(f(x),y)] where ℓ : [0, 1] × Y → R≥0 is

the cross entropy loss function. Typically, the true distribution p(x,y) is implicit and cannot

be observed. Therefore, a set of n training samples, D = {(xi,yi)}ni=1, is used and the empirical

risk, R̂(f) = 1
n

∑n
i=1 ℓ(f(xi),yi), is minimized in practice. In the count-based weakly supervised

learning settings, the supervision is given at a bag level instead of an instance level. We formally

introduce these settings as below.

4.1.1 Learning from Label Proportions

Learning from label proportions (LLP) [QSC08] assumes that each instance in the training set is

assigned to bags and only the proportion of positive instances in each bag is known. One example

is in light of the coronavirus pandemic, where infection rates were typically reported based on

geographical boundaries such as states and counties. Each boundary can be treated as a bag with

the infection rate as the proportion annotation.

The goal of LLP is to learn an instance-level classifier f : X → [0, 1] even though it is

trained on bag-level labeled data. Formally, the training dataset consists of m bags, denoted by

D = {(Bi, ỹi)}mi=1 where each bag Bi = {xj}kj=1 consist of k instances and this k could vary

among different bags. The bag proportions are defined as ỹi =
∑k

j=1 yj/k with yj being the

instance label that cannot be accessed and only ỹi is available during training. An example is

shown in Figure 4.1b. We do not assume that the bags are non-overlapping while some existing

work suffers from this limitation including [SZ20].

4.1.2 Multiple Instance Learning

Multiple instance learning (MIL) [ML97, DLL01] refers to the scenario where the training dataset

consists of bags of instances, and labels are provided at bag level. However, in MIL, the bag

label is a single binary label indicating whether there is a positive instance in the bag or not as

opposed to a bag proportion defined in LLP. A real-world application of MIL lies in the field of

drug activity [DLL01]. We can observe the effects of a group of conformations but not for any

specific molecule, motivating a MIL setting. Formally, in MIL, the training dataset consists of m
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Table 4.2: A summary of the labels and objective functions for all the settings considered in this

chapter.

TasK Label Label Level Objective

Classical Fully Supervised Binary y Instance Level −y log p(y)− (1− y) log(1− p(y))

Learning from Label Proportion Continuous ỹ =
∑

i yi/k Bag Level − log p(
∑

ŷi = kỹ)

Multiple Instance Learning Binary ỹ = max{yi} Bag Level −ỹ log p(
∑

ŷi ≥ 1)− (1− ỹ) log p(
∑

i ŷi = 0)

Learning from Positive

and Unlabeled Data
Binary ỹ Instance Level

1) DKL(Bin(k, β) ‖ p(
∑

i ŷi))

2) − log p(
∑

ŷi = kβ)

bags, denoted by D = {(Bi, ỹi)}mi=1, with a bag consisting of k instances, i.e., Bi = {xj}kj=1. The

size k can vary among different bags. For each instance xj , there exists an instance-level label yj

which is not accessible. The bag-level label is defined as ỹi = maxj{yj}. An example is shown

in Figure 4.1c.

The main goal of MIL is to learn a model that predicts a bag label while a more challenging

goal is to learn an instance-level predictor that is able to discover positive instances in a bag. In

this work, we aim to tackle both by training an instance-level classifier whose predictions can be

combined into a bag-level prediction as the last step.

4.1.3 Learning from Positive and Unlabeled Data

Learning from positive and unlabeled data or PU learning [DDG99, LDG00] refers to the setting

where the training dataset consists of only positive instances and unlabeled data, and the un-

labeled data can contain both positive and negative instances. A motivation of PU learning is

persistence in the case of shifts to the negative-class distribution [PNS15], for example, a spam

filter. An attacker may alter the properties of a spam email, making a traditional classifier require

a new negative dataset [PNS15]. We note that taking a new unlabeled sample would be more effi-

cient, motivating PU learning. Formally, in PU learning, the training datasetD = Dp∪Du where

Dp = {(xi, ỹi = 1)}np

i=1 is the set of positive instances with xi from p(x | y = 1) and ỹ denoting
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whether the instance is labeled, and Du = {(xi, ỹi = 0)}nu
i=1 the unlabeled set with xi from

pu(x) = β p(x | y = 1) + (1− β) p(x | y = 0), (4.1)

where the mixture proportion β := p(y = 1 | ỹ = 0) is the fraction of positive instances among

the unlabeled population. Although the instance label y is not accessible, its information can be

inferred from the binary selection label ỹ: if the selection label ỹ = 1, it belongs to the positively

labeled set, i.e., p(y = 1 | ỹ = 1) = 1; otherwise, the instancex can be either positive or negative.

An example of such a dataset is shown in Figure 4.1d.

The goal of PU learning is to train an instance-level classifier. However, it is not straight-

forward to learn from PU data and it is necessary to make assumptions to enable learning with

positive and unlabeled data [BD20]. In this work, we make a commonly-used assumption for

PU learning, selected completely at random (SCAR), which lies at the basis of many PU learning

methods.

Definition 1 (SCAR). Labeled instances are selected completely at random, independent from input

features and the positive distribution p(x | y = 1), that is, p(ỹ = 1 | x,y = 1) = p(ỹ = 1 | y = 1).

4.2 A Unified Approach: Count Loss

In this section, we derive objectives for the three weakly supervised settings, LLP, MIL, and PU

learning, from first principles. Our proposed objectives bridge between neural outputs, which

can be observed as counts, and arithmetic constraints derived from the weakly supervised labels.

The idea is to capture how close the classifier is to satisfying the arithmetic constraints on its

outputs. They can be easily integrated with deep learning models, and allow them to be trained

end-to-end. For the three objectives, we show that they share the same computational building

block: given k instances {xi}ki=1 and an instance-level classifier f that predicts p(ŷi | xi) with

ŷ denoting the prediction variable, the problem of inferring the probability of the constraint on

counts
∑k

i=1 ŷi = s is to compute the count probability defined below:

p(
k∑

i=1

ŷi = s | {xi}ki=1) :=
∑
ŷ∈Yk

J k∑
i=1

ŷi = sK k∏
i=1

p(ŷi | xi)
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Algorithm 5 Count Probability p(
∑k

i=1 ŷi = s)

Input: A set of k log probabilities {ti}ki=1 with ti := log p(ŷi = 1), the number of instances k,

and a label sum s

Output: log probabilities log p(
∑k

i=1 ŷi = s) or a set of log probability {log p(
∑k

i=1 ŷi = s)}ks=0

// A[i,m] = log p(
∑i

j=1 yj = m) ∀i, m

Initialize an array A to be −Inf everywhere

A[0, 0] = 0 // p(
∑0

j=1 yj = 0) = 1

Compute t′i ← log1mexp(ti) // log p(yi = 0)

for i = 1 to k do

for m = 0 to s do

a+ = A[i− 1,m− 1] + ti

a− = A[i− 1,m] + t′i

A[i,m] = logsumexp(a+, a−)

return A[k, s] or A[k, :]
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where J·K denotes the indicator function and ŷ denotes the vector (ŷ1, · · · , ŷk). For succinctness,

we omit the dependency on the input and simply write the count probability as p(
∑k

i=1 ŷi = s).

Next, we show how the objectives derived from first principles can be solved by using the count

probability as an oracle. We summarize all proposed objectives in Table 4.2. Later, we will show

how this seemingly intractable count probability can be efficiently computed by our proposed

algorithm.

LLP setting. Given a bag B = {xi}ki=1 of size k and its weakly supervised label ỹ, by def-

inition, it can be inferred that the number of positive instances (count) in the bag is kỹ. Our

objective is to minimize the negative log probability − log p(
∑

i ŷi = kỹ). Notice that when

each bag consists of only one instance, that is, when the bag-level supervisions are reduced to

instance-level ones, this objective is exactly cross-entropy loss. We further show that our method

is risk-consistent, that is, the optimal classifier under our proposed loss provides predictions con-

sistent with the underlying risk as in the supervised learning setting.

MIL setting. Given a bag B = {xi}ki=1 of size k and a single binary label ỹ as its weakly

supervised label, we propose a cross-entropy loss as below

ℓ(B, ỹ) = −ỹ log p(
∑

ŷi ≥ 1)− (1− ỹ) log p(
∑

ŷi = 0).

Notice that in the above loss, the probability term p(
∑

ŷi = 0) is accessible to the oracle for

computing count probability, and the other probability term p(
∑

ŷi ≥ 1) can simply be obtained

from 1− p(
∑

ŷi = 0), i.e., the same call to the oracle since all prediction variables ŷi are binary.

PU Learning setting. Recall that for the unlabeled data Du in the training dataset, an unla-

beled instance xi is drawn from a mixture distribution as shown in Equation 4.1 parameterized

by a mixture proportion β = p(y = 1 | ỹ = 0). Under the SCAR assumption, even though only

a class prior is given, we show that the mixture proportion can be estimated from the dataset.

Proposition 13. With SCAR assumption and a class prior α := p(y = 1), the mixture proportion

β := p(y = 1 | ỹ = 0) can be estimated from dataset D.
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Proof. First, the label frequency p(ỹ = 1 | y = 1) denoted by c can be obtained by

c =
p(ỹ = 1,y = 1)

p(y = 1)
=

p(ỹ = 1)

p(y = 1)
(by the definition of PU learning).

that is, c = p(ỹ = 1)/α. Notice that p(ỹ = 1) can be estimated from the dataset D by counting

the proportion of the labeled instances. Thus, we can estimate the mixture proportion as below,

β =
p(ỹ = 0 | y = 1)p(y = 1)

p(ỹ = 0)
=

(1− p(ỹ = 1 | y = 1))p(y = 1)

1− p(ỹ = 1)
=

(1− c)α

1− αc
.

The probabilistic semantic of the mixture proportion is that if we randomly draw an instance

xi from the unlabeled population, the probability that the true label yi is positive would be β.

Further, if we randomly draw k instances, the distribution of the summation of the true labels∑k
i=1 yi conforms to a binomial distribution Bin(k, β) parameterized by the mixture proportion

β, i.e.,

p(
k∑

i=1

yi = s) =

(
k

s

)
βs(1− β)k−s. (4.2)

Based on this observation, we propose an objective to minimize the KL divergence between the

distribution of predicted label sum and the binomial distribution parameterized by the mixture

proportion for a random subset drawn from the unlabeled population, that is,

DKL

(
Bin(k, β) ‖ p(

k∑
i=1

ŷi)

)
=

k∑
s=0

Bin(s; k, β) log Bin(s; k, β)
p(
∑k

i=1 ŷi = s)

whereBin(s; k, β) denotes the probability mass function of the binomial distributionBin(k, β).

Again, the KL divergence can be obtained by k + 1 calls to the oracle for computing count prob-

ability p(
∑k

i=1 ŷi = s). The KL divergence is further combined with a cross entropy defined over

labeled data Dp as in the classical binary classification training as the overall objective.

As an alternative, we propose an objective for the unlabeled data that requires fewer calls

to the oracle: instead of matching the distribution of the predicted label sum with the binomial

distribution, this objective matches only the expectations of the two distributions, that is, to

maximize p(
∑k

i=1 ŷi = kβ) where kβ is the expectation of the binomial distribution Bin(k, β).

We present empirical evaluations of both proposed objectives in the experimental section.
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Figure 4.1: An example of how to compute the count probability in a dynamic programming

manner. Assume that an instance-level classifier predicts three instances to have p(y1 = 1) = 0.1,

p(y2 = 1) = 0.2, and p(y3 = 1) = 0.3 respectively. The algorithm starts from the top-left cell

and propagates the results down right. A cell has its probability p(
∑i

j=0 yj = s) computed by

inputs from p(
∑i−1

j=0 yj = s) weighted by p(yi = 0), and p(
∑i−1

j=0 yj = s − 1) weighted by

p(yi = 1) respectively, as indicated by the arrows.

Tractable Computation of Count Probability In the previous section, we show how the

count probability p(
∑k

i=1 ŷi = s) serves as a computational building block for the objectives de-

rived from first principles for the three weakly supervised learning settings. With a closer look at

the count probability, we can see that given a set of instances, the classifier predicts an instance-

level probability for each and it requires further manipulation to obtain count information; ac-

tually, the number of joint labelings for the set can be exponential in the number of instances.

Intractable as it seems, we show that it is indeed possible to derive a tractable computation for

the count probability based on a result from [AZN23b].

Proposition 14. The count probability p(
∑k

i=1 ŷi = s) of sampling k prediction variables that

sums to s from an unconstrained distribution p(y) =
∏k

i=1 p(ŷi) can be computed exactly in time

O(ks). Moreover, the set {p(
∑k

i=1 ŷi = s)}ks=0 can also be computed in time O(k2).

The above proposition can be proved in a constructive way where we show that the count

probability p(
∑k

i=1 ŷi = s) can be computed in a dynamic programming manner. We pro-

vide an illustrative example of this computation in Figure 4.1. In practice, we implement this
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computation in log space for numeric stability which we summarized as Algorithm 5, where

function log1mexp provides a numerically stable way to compute log1mexp(x) = log(1 −

exp(x)) and function logsumexp a numerically stable way to compute logsumexp(x, y) =

log(exp(x) + exp(y)). Notice that since we show it is tractable to compute the set {p(
∑k

i=1 ŷi =

s)}ks=0, for any two given label sum s1 and s2, a count probability p(s1 ≤
∑

i ŷi ≤ s2) where

the count lies in an interval, can also be exactly and tractably computed. This implies that our

tractable computation of count probabilities can potentially be leveraged by other count-based

applications besides the three weakly supervised learning settings in the last section.

Related Work

Weakly Supervised Learning. Besides settings explored in our work there are many other

weakly-supervised settings. One of which is semi-supervised learning, a close relative to PU

Learning with the difference being that labeled samples can be both positive and negative [ZG22,

Zhu05]. Another is label noise learning, which occurs when our instances are mislabeled. Two

common variations involve whether noise is independent or dependent on the instance [FV13,

SKP22]. A third setting is partial label learning, where each instance is provided a set of labels

of which exactly one is true [CST11a]. An extension of this is partial multi-label learning, where

among a set of labels, a subset is true [XH18].

UnifiedApproaches. There exists some literature in regards to “general” approaches forweakly

supervised learning. One example being the method proposed in [Hul14], which provides a pro-

cedure that minimizes the empirical risk on “fuzzy” sets of data. The paper also establishes guar-

antees for model identification and instance-level recognition. Co-Training and Self-Training are

also examples of similar techniques that are applicable to a wide variety of weakly supervised set-

tings [BM98, Yar95]. Self-training involves progressively incorporating more unlabeled data via

our model’s prediction (with pseudo-label) and then training a model on more data as an iterative

algorithm [KMZ21]. Co-Training leverages two models that have different “views” of the data

and iteratively augment each other’s training set with samples they deem as “well-classified”.
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They are traditionally applied to semi-supervised learning but can extend to multiple instance

learning settings [LZW11, XTX13, LZS23].

LLP. [QSC08] first introduced an exponential family based approach that used an estimation of

mean for each class. Others seek to minimize “empirical proportion risk” or EPR as in [YCK14],

which is centered around creating an instance-level classifier that is able to reproduce the la-

bel proportions of each bag. As mentioned previously, more recent methods use bag poste-

rior approximation and neural-based approaches [AC17, TL20]. One such method is Proportion

Loss (PL) [TL20], which we contrast to our approach. This is computed by binary cross entropy

between the averaged instance-level probabilities and ground-truth bag proportion.

MIL. MIL finds its earlier approaches with SVMs, which have been used quite prolifically and

still remain one of the most common baselines. We start with MI-SVM/mi-SVM [ATH02] which

are examples of transductive SVMs [CCG18] that seek a stable instance classification through

repeated retraining iterations. MI-SVM is an example of an instance space method [CCG18],

which identifies methods that classify instances as a preliminary step in the problem. This is

in contrast to bag-space or embedded-space methods that omit the instance classification step.

Furthermore, [WYT18] remains one of the hallmarks of the use of neural networks for Multi-

Instance Learning. [ITW18], utilize a similar approach but with attention-based mechanisms.

PU learning. [BD20] groups PU Learning paradigms into three main classes: two step, bi-

ased, and class prior incorporation. Biased learning techniques train a classifier on the entire

dataset with the understanding that negative samples are subject to noise [BD20]. We will focus

on a subset of biased learning techniques (Risk Estimators) as they are considered state-of-the-

art and relevant to us as baselines. The Unbiased Risk Estimator (uPU) provides an alternative

to the inefficiencies in manually biasing unlabeled data [PNS14, PNS15]. Later, Non-negative

Risk Estimator (nnPU) [KND17] accounted for weaknesses in the unbiased risk estimator such as

overfitting.
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Count Loss. To our knowledge, viewing the computation of the “bag posterior” as probabilistic

is new. However, the prior approaches do this implicitly. Many approaches have tried to approx-

imate the “bag posterior” by averaging the instance-level probabilities in a bag [AC17, TL20]. In

MIL settings, among instance-level approaches, the MIL-pooling is an implicit “bag posterior”

computation. These include mean, max, and log-sum-exp pooling to approximate the likelihood

that a bag has at least one positive instance [WYT18]. But again, these are all approximations of

what our computation does exactly. In PU Learning, to our best knowledge, the view of unlabeled

data as a bag annotated with the mixture proportion is new.

Neuro-Symbolic Losses. In this section, we have dealt with a specific form of distributional

constraint. Conversely, there has been a plethora of work exploring the integration of hard sym-

bolic constraints into the learning of neural networks. This can take the form of enforcing a

hard constraint [ATC22a], whereby the network’s predictions are guaranteed to satisfy the pre-

specified constraints. Or it can take the form of a soft constraint [XZF18,MDK18, AWC21, AWC22,

ALT22, ACB23] whereby the network is trained with an additional loss term that penalizes the

network for placing any probability mass on predictions that violate the constraint. While in

this work we focus on discrete linear inequality constraints defined over binary variables, there

is existing work focusing on hybrid linear inequality constraints defined over both discrete and

continuous variables and their tractability [BPB15, ZMY21b, ZMY20b]. The development of in-

ference algorithms for such constraints and their applications such as Bayesian deep learning

remain an active topic [ZB19, KMZ19, ZMY20a, ZB23a].

4.3 Empirical Evaluation

In this section, we present a thorough empirical evaluation of our proposed count loss on the

three weakly supervised learning problems, LLP, MIL, and PU learning.1

1Code and experiments are available at https://github.com/UCLA-StarAI/CountLoss
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4.3.1 Learning from Label Proportions

We experiment on two datasets: 1) Adult with 8192 training samples where the task is to predict

whether a person makes over 50k a year or not given personal information as input; 2) Magic

Gamma Ray Telescope with 6144 training samples where the task is to predict whether the elec-

tromagnetic shower is caused by primary gammas or not given information from the atmospheric

Cherenkov gamma telescope [DG17].2

We follow [SZ20] where two settings are considered: one with label proportions uniformly

on [0, 1
2
] and the other uniformly on [1

2
, 1]. Additionally, we experiment on a third setting with

label proportions distributing uniformly on [0, 1] which is not considered in [SZ20] but is the

most natural setting since the label proportion is not biased toward either 0 or 1. We experiment

on four bag sizes n ∈ {8, 32, 128, 512}.

Count loss (CL) denotes our proposed approach using the loss objective defined in Table 4.2 for

LLP.We compare our approachwith amutual contamination framework for LLP (LMMCM) [SZ20]

and against Proportion Loss (PL) [TL20].

Results and Discussions We show our results in Table 4.3. Our method showcases superior

results against the baselines on both datasets and variations in bag sizes. Especially in cases with

lower bag sizes, i.e. 8, 32, CL greatly outperforms all other methodologies. Among our baselines

are methods that approximate the bag posterior (PL), which we show to be less effective than

optimizing the exact bag posterior with CL.

4.3.2 Multiple Instance Learning

We first experiment on the MNIST dataset [LeC98] and follow the MIL experimental setting in

[ITW18]: the training and test set bags are randomly sampled from the MNIST training and

test set respectively; each bag can have images of digits from 0 to 9, and bags with the digit 9 are

labeled positive. Moreover, the dataset is constructed in a balancedway such that there is an equal

2Publicly available at archive.ics.uci.edu/ml
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Figure 4.2: MIL MNIST dataset experiments with decreased numbers of training bags and lower

bag size. Left: bag sizes sampled from N (10, 2); Right: bag sizes sampled from N (5, 1). We plot

the mean test AUC (aggregated over 3 trials) with standard errors for 4 bag sizes. Best viewed in

color.

amount of positively and negatively labeled bags as in [ITW18]. The task is to train a classifier

that is able to predict bag labels; the more challenging task is to discover key instances, that is, to

train a classifier that identifies images of digit 9. Following [ITW18], we consider three settings

that vary in the bag generation process: in each setting, bags have their sizes generated from a

normal distribution being N (10, 2),N (50, 10),N (100, 20) respectively. The number of bags in

training set n is in {50, 100, 150, 200, 300, 400, 500}. Thus, we have 3× 7 = 21 settings in total.

Additionally, we introduce experimental analysis on how the performance of the learning methods

would degrade as the number of bags and total samples in training set decreases, by modulating

the number of training bags n to be {10, 20, 30, 40} and selecting bag sizes from N (5, 1) and

N (10, 2).

We also experiment on the Colon Cancer dataset [SRT16] to simulate a setting where bag in-

stances are not independent. The dataset consists of 100 total hematoxylin-eosin (H&E) stained

images, each of which contains images of cell nuclei that are classified as one of: epithelial, in-

flammatory, fibroblast, and miscellaneous. Each image represents a bag and instances are 27×27

patches extracted from the original image. A positively labeled bag or image is one that contains

the epithelial nuclei. For both datasets, we include the Attention and Gated Attention mecha-
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Figure 4.3: A test bag from our MIL experiments, where we set only the digit 9 as a positive

instance. Highlighted in red are digits identified to be positive with corresponding probability

beneath.

nism [ITW18] as baselines. We also use the MIL objective defined in Table 4.2.

Results and Discussions For the MNIST experiments, CL is able to outperform all other

baselines or exhibit highly comparable performance for bag-level predictions as shown in Ta-

ble 4.4. A more interesting setting is to compare how robust the learning methods are if the

number of training bags decreases. [WYT18] claim that instance-level classifiers tend to lose

against embedding-based methods. However, we show in our experiment that this is not true

in all cases as seen in Figure 4.2. While Attention and Gated Attention are based on embedding,

they suffer from amore severe drop in predictive performance than CLwhen the number of train-

ing bags drops from 40 to 10; our method shows great robustness and consistently outperforms

all baselines. The rationale we provide is that with a lower number of training instances, we

need more supervision over the limited samples we have. Our constraint provides this additional

supervision, which accounts for the difference in performance.

We provide an additional investigation in Figure 4.3 to show that our approach learns effec-

tively and delivers accurate instance-level predictions under bag-level supervision. In Figure 4.3,

we can see that even though the classifier is trained on feedback about whether a bag contains

the digit 9 or not, it accurately discovers all images of digit 9.

Our experimental results on the Colon Cancer dataset are shown in Table 4.5. We show that

both our proposed objectives are able to consistently outperform baseline methods on all met-
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Figure 4.4: MNIST17 setting for PU Learning: We compute the average discrete distribution for

CL and CVIR, over 5 test bags, each of which contain 100 instances. A ground truth binomial

distribution of counts is also shown.

rics. Interestingly, we do not expect CL to perform well when instances in a bag are dependent;

however, the results indicate that our count loss is robust to these settings.

4.3.3 Learning from Positive and Unlabeled Data

We experiment on dataset MNIST and CIFAR-10 [KH09a], following the four simulated settings

from [GWS21]: 1) Binarized MNIST: the training set consist of images of digits 0− 9 and images

with digits in range [0, 4] are positive instances while others as negative; 2) MNIST17: the training

set consist of images of digits 1 and 7 and images with digit 1 are defined as positive while 7 as

negative; 3) Binarized CIFAR: the training set consists of images from ten classes and images from

the first five classes is defined as positive instances while others as negative; 4) CIFARCat vs. Dog:

the training set consist of images of cats and dogs and images of cats are defined as positive while

dogs as negative. The mixture proportion is 0.5 in all experiments. The performance is evaluated

using the accuracy on a test set of unlabeled data.

As shown in Table 4.2, we propose two objectives for PU learning. Our first objective is

denoted by CL whereas the second approach is denoted by CL-expect. We compare against the
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Conditional Value Ignoring Risk approach (CVIR) [GWS21], nnPU [KND17], and uPU [PNS15].

Results and Discussions Accuracy results are presented in Table 4.6 where we can see that

our proposed methods perform better than baselines on 3 out of the 4 simulated PU learning

settings. CL-expect builds off a similar “exactly-k” count approach, which we have shown to

work well in the label proportion setting. The more interesting results are from CL where we

fully leverage the information from a distribution as supervision instead of simply using the

expectation. We think of this as applying a loss on each countweighted by their probabilities from

the binomial distribution. We provide further evidence that our proposed count loss effectively

guides the classifier towards predicting a binomial distribution as shown in Figure 4.4: we plot the

count distributions predicted by CL and CVIR as well as the ground-truth binomial distribution.

We can see that CL is able to generate the expected distribution, proving the efficacy of our

approach.

4.4 Discussion

In this chapter, we present a unified approach to several weakly-supervised tasks, i.e., LLP, MIL,

PU. We construct our approach based on the idea of using weak labels to constrain count-based

probabilities computed from model outputs. A future direction for our work can be to extend to

multi-class classification as well as explore the applicability to other weakly-supervised settings,

e.g. label noise learning, semi-supervised learning, and partial label learning [CST11b, NDR13,

Zhu05].
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Table 4.3: LLP results across different bag sizes. We report the mean and standard deviation of the

test AUC over 5 seeds for each setting. The highest metric for each setting is shown in boldface.

Dataset Dist Method 8 32 128 512

Adult [0, 12 ] PL 0.8889± 0.0024 0.8782± 0.0036 0.8743± 0.0039 0.8678± 0.0085

Adult [0, 12 ] LMMCM 0.8728± 0.0019 0.8693± 0.0047 0.8669± 0.0041 0.8674± 0.0040

Adult [0, 12 ] CL (Ours) 0.8984± 0.0013 0.8848± 0.0041 0.8743± 0.0052 0.8703± 0.0070

Adult [12 , 1] PL 0.8781± 0.0038 0.8731± 0.0035 0.8699± 0.0057 0.8556± 0.0180

Adult [12 , 1] LMMCM 0.8584± 0.0164 0.8644± 0.0052 0.8601± 0.0045 0.8500± 0.0186

Adult [12 , 1] CL (Ours) 0.8854± 0.0022 0.8738± 0.0039 0.8675± 0.0043 0.8607± 0.0056

Adult [0, 1] PL 0.8884± 0.0030 0.8884± 0.0008 0.8879± 0.0025 0.8828± 0.0051

Adult [0, 1] LMMCM 0.8831± 0.0026 0.8819± 0.0006 0.8821± 0.0017 0.8786± 0.0052

Adult [0, 1] CL (Ours) 0.8985± 0.0010 0.8891± 0.0013 0.8871± 0.0021 0.8790± 0.0056

Magic [0, 12 ] PL 0.8900± 0.0095 0.8510± 0.0032 0.8405± 0.0110 0.8332± 0.0149

Magic [0, 12 ] LMMCM 0.8918± 0.0077 0.8799± 0.0113 0.8753± 0.0157 0.8734± 0.0092

Magic [0, 12 ] CL (Ours) 0.9088± 0.0056 0.8830± 0.0097 0.8926± 0.0049 0.8864± 0.0107

Magic [12 , 1] PL 0.9066± 0.0016 0.8818± 0.0108 0.8769± 0.0101 0.8429± 0.0443

Magic [12 , 1] LMMCM 0.8911± 0.0083 0.8790± 0.0091 0.8684± 0.0046 0.8567± 0.0292

Magic [12 , 1] CL (Ours) 0.9105± 0.0020 0.8980± 0.0059 0.8851± 0.0255 0.8816± 0.0083

Magic [0, 1] PL 0.9039± 0.0029 0.8870± 0.0037 0.9002± 0.0092 0.8807± 0.0200

Magic [0, 1] LMMCM 0.9070± 0.0026 0.9048± 0.0058 0.9113± 0.0058 0.8934± 0.0097

Magic [0, 1] CL (Ours) 0.9173± 0.0018 0.9102± 0.0057 0.9146± 0.0051 0.9088± 0.0039
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Table 4.4: MIL experiment on the MNIST dataset. Each block represents a different distribution

from which we draw bag sizes—First Block: N (10, 2), Second Block: N (50, 10), Third Block:

N (100, 20). We run each experiment for 3 runs and report mean test AUC with standard error.

The highest metric for each setting is shown in boldface.

Training Bags 50 100 150 200 300 400 500

Gated Attention 0.775± 0.034 0.894± 0.012 0.935± 0.005 0.939± 0.006 0.963± 0.002 0.959± 0.002 0.966± 0.003

Attention 0.807± 0.026 0.913± 0.006 0.940± 0.004 0.942± 0.007 0.957± 0.002 0.961± 0.005 0.965± 0.004

CL (Ours) 0.818 ± 0.024 0.906± 0.009 0.929± 0.005 0.946± 0.001 0.952± 0.004 0.962± 0.002 0.963± 0.002

Gated Attention 0.943± 0.005 0.949± 0.009 0.970± 0.005 0.977± 0.001 0.983± 0.002 0.986± 0.004 0.987± 0.002

Attention 0.936± 0.010 0.962± 0.006 0.970± 0.001 0.977± 0.002 0.981± 0.002 0.987± 0.001 0.987± 0.002

CL (Ours) 0.939± 0.010 0.960± 0.002 0.964± 0.007 0.972± 0.002 0.982± 0.003 0.982± 0.001 0.987± 0.002

Gated Attention 0.975± 0.003 0.981± 0.004 0.992± 0.002 0.987± 0.004 0.996± 0.001 0.998± 0.001 0.990± 0.004

Attention 0.984± 0.001 0.982± 0.001 0.996± 0.000 0.987± 0.007 0.992± 0.004 0.994± 0.002 0.998± 0.000

CL (Ours) 0.981± 0.007 0.989± 0.000 0.996± 0.002 0.995± 0.001 0.996± 0.002 0.993± 0.003 0.999± 0.001

Table 4.5: MIL: We report mean test accuracy, AUC, F1, precision, and recall averaged over 5

runs with std. error on the Colon Cancer dataset. The highest value for each metric is shown in

boldface.

Method Accuracy AUC F1 Precision Recall

Gated Attention 0.909± 0.014 0.908± 0.013 0.886± 0.021 0.916± 0.020 0.879± 0.020

Attention 0.893± 0.015 0.890± 0.008 0.876± 0.017 0.908± 0.016 0.879± 0.018

CL (Ours) 0.915± 0.008 0.912± 0.010 0.903± 0.010 0.936± 0.014 0.898± 0.007
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Table 4.6: PU Learning: We report accuracy and standard deviation on a test set of unlabeled

data, which is aggregated over 3 runs. The results from CVIR, nnPU, and uPU are aggregated

over 10 epochs, as in [GWS21], while we choose the single best epoch based on validation for

our approaches. The highest metric for each setting is shown in boldface.

Dataset Network CL-expect (Ours) CL (Ours) CVIR nnPU nPU

Binarized MNIST MLP 95.9± 0.15 96.4± 0.01 96.3± 0.07 96.1± 0.14 95.2± 0.19

MNIST17 MLP 98.7± 0.17 99.0± 0.19 98.7± 0.09 98.4± 0.20 98.4± 0.09

Binarized CIFAR ResNet 79.2± 0.27 80.1± 0.34 82.3± 0.18 77.2± 1.03 76.7± 0.74

CIFAR Cat vs. Dog ResNet 76.5± 1.86 74.8± 1.64 73.3± 0.94 71.8± 0.33 68.8± 0.53
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Part II

Reasoning
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CHAPTER 5

Foundations: Weighted Model Integration

In the previous chapters, we demonstrate that the learning performance under constraints highly

depends on the capability of probabilistic reasoning over constraints. This chapter addresses an-

other fundamental challenge in Neurosymbolic AI: how to perform scalable and reliable proba-

bilistic reasoning over expressive symbolic constraints. Instead of considering specific constraints,

we aim for a general framework that handles complex constraints and performs probabilistic

reasoning in a principled way.

Weighted model integration (WMI) is a such a framework for performing advanced proba-

bilistic inference in hybrid domains, i.e., on distributions over mixed continuous-discrete random

variables and in the presence of complex logical and arithmetic constraints. This chapter is ded-

icated to provide the background on WMI.

5.1 Overview

In many real-world scenarios, performing probabilistic inference requires reasoning over do-

mains with complex logical and arithmetic constraints while dealing with variables that are het-

erogeneous in nature, i.e., both continuous and discrete.

Consider for example the task of matching players in a game by their skills. Performing

probabilistic inference for this task has been popularized by [MCZ18] and is at the core of several

online gaming services. A probabilistic model for this task has to deal with continuous variables,

such as the player and team performance, and reason over discrete attributes such as membership

in a squad and the achieved scores. Moreover, such a model would need to take into account
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constraints such as the team performance being bounded by that of the players in it, and that

forming a squad boosts performance. Ultimately, this translates into performing probabilistic

inference in the presence of logical and arithmetic constraints and dependencies.

These hybrid scenarios are beyond the reach of probabilistic models including variational au-

toencoders [KW13] and generative adversarial networks [GPM14], whose inference capabilities,

despite their recent success, are limited. Classical probabilistic graphical models [KF09], while

providing more flexible inference routines, are generally incapacitated when dealing with con-

tinuous and discrete variables at once [SW11], or they tend to make simplistic [HG95, LW89] or

overly strong assumptions about their parametric forms [YBR14]. Even recent efforts in model-

ing these hybrid scenarios while delivering tractable inference [MVD18, VMP19] can not perform

inference in the presence of complex constraints.

Weighted Model Integration (WMI) [BPB15, MPS17] is a recent framework for probabilistic

inference that offers all the aforementioned “ingredients” needed for hybrid probabilistic reason-

ing with logical constraints, by design. WMI leverages the expressive language of Satisfiability

ModuloTheories (SMT) [BMR10] for describing problems over continuous and discrete variables.

Moreover, WMI provides a principled way to perform hybrid probabilistic inference: asking for

the probability of a complex query with logical and arithmetic constraints can be done by inte-

grating weight functions over the regions that satisfy the constraints and query at hand.

5.2 Formalization

Notation. We use uppercase letters for random variables (e.g., X,B) and lowercase letters for

their assignments (e.g., x, b). Bold uppercase letters denote sets of variables (e.g., X ,B) and their

lowercase denote their assignments (e.g., x, b). We represent logical formulas by capital Greek

letters, (e.g., Λ,Φ,∆), and literals (i.e., atomic formulas or their negation) by lowercase ones

(e.g., ϕ, δ) or ℓ. We denote satisfaction of a formula Φ by one assignment x by x |= Φ and we

denote its corresponding indicator function as Jx |= ΦK. For undirected graphs, neigh denotes

the set of neighboring nodes; for directed ones, pa and ch denote the parent node and the set of
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child nodes respectively.

Satisfiability Modulo Theories (SMT). SMT [BT18] generalizes the well-known SAT prob-

lem [BHM09] to determining the satisfiability of a logical formula w.r.t. a decidable theory. Rich

mixed logical/arithmetic constraints can be expressed in SMT for hybrid domains. In particu-

lar, we consider quantifier-free SMT formulas in the theory of linear arithmetic over the reals,

or SMT(LRA). Here, formulas are propositional combinations of atomic Boolean literals and

of atomic LRA literals over real variables, for which satisfaction is defined in a natural way.

W.l.o.g. we assume SMT formulas to be in conjunctive normal form (CNF). In the following, we

will use the shorthand SMT to denote SMT(LRA).

Example 1 (SMT representation of a skill matching system). In a skill rating system for online

games, the team performance XT of each team T is defined by the performance Xi of each player i

in team T , both of which are real variables. The team performance XT is also related to a Boolean

variable B indicating whether players in the team form a squad, i.e., a group of friends, which offsets

(boosts) the team performance. We can build an SMT formula Γ of the relationship among these

variables as follows. For brevity, we omit the domains for real variables in the formula.

Γ :=
∧
i∈T

| XT −Xi |< 1
∧

(B⇒ XT > 2)

We show in Figure 5.1 the feasible regions of formula Γ i.e., the volumes for which the constraints are

satisfied.

Example 2 (SMT representation of a house price model). For a house i, let pricei be its price and

sqfti its square footage. We can build a simple SMT(LRA) formula of the relationship between these

real variables, with the corresponding solution space depicted in Figure 5.2. That is, SMT(LRA)

formula Γi is

Γi := (pricei < 10 · sqfti + 1000) ∨ (pricei < 20 · sqfti + 100)

∧ (0 < pricei < 3000) ∧ (0 < sqfti < 200).
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Figure 5.1: Feasible region (left) of formula Γwith one player and primal graph (right) of formula

Γ with n players from Example 1.

Weighted Model Integration (WMI). Weighted Model Integration (WMI) [BPB15, MPS17]

provides a framework for probabilistic inference with models defined over the logical constraints

given by SMT formulas.

Definition 2. (WMI) Let X be a set of continuous random variables defined over R, and B a set

of Boolean random variables defined over B = {true,false}. Given an SMT formula ∆ over

X and B, and a weight function w : (x ,b) 7→ R+ belonging to some parametric weight function

family Ω, the weighted model integration (WMI) task computes

WMI(∆, w;X ,B) ≜
∑
b∈B|B|

∫
(x,b)|=∆

w(x, b) dx. (5.1)

That is, summing over all possible Boolean assignments b ∈ B|B| while integrating over the

weighted assignments of X making the evaluation of the formula SAT: (x, b) |= ∆.

Weight functions w are usually defined as products of literal weights [BPB15, CD08, ZB19].

That is, for a set of literals L, a set of per-literal weight functionsW = {wℓ(x)}ℓ∈L is given, with

weight functions wℓ defined over variables in literal ℓ. Then, the weight of assignment (x, b) is:

w(x, b) =
∏

ℓ∈L
wℓ(x)

Jx,b|=ℓK.
When all variables are Boolean (i.e., X = ∅), the per-literal weights wℓ(x) are constants and we

retrieve the original definition of the well-known weighted model counting (WMC) task [CD08]

as a special case of WMI. In this section, we assume that all per-literal weights are from some

certain weight function family, and for literals not in the set L, their weights are the constant
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Figure 5.2: Feasible region of SMT theory Γi from Example 2

function one. This setting is expressive enough to approximate many continuous distributions

[BPB15].

Example 3 (WMI formulation of a skill matching system). Consider the team performance SMT

model Γ in Example 1. Assume that a set of per-literal weights wℓi(XT , Xi) = 0.1 · (XT + Xi −

6)2 is associated to literals ℓi = XT − Xi < 1, quantifying how likely the team performance

is upper bounded by player performances. Then the WMI of the formula Γ with two players is

WMI(Γ, w;X ,B) ≈ 170.69.

Example 4 (WMI formulation of a house price model). Consider a formula (b ∨ ¬b) ∧ Γi where

b is a Boolean variable and Γi is as defined in Example 2. Consider the set of literals L = {b, (0<

pricei < 3000)} and per-literal weight functions P = {pb, p(0<pricei<3000)}, with pb(x) = 1.5 and

p(0<pricei<3000)(x) = price2i . Then, in worlds with both literals in L satisfied, our weight function is

pb(pricei, sqfti) · p(0<pricei<3000)(pricei, sqfti) = 1.5 · price2i .

In worlds where b is false and only (0 < pricei < 3000) is satisfied, the weight function is price2i .

Intuitively, WMI(∆, w;X ,B) equals the partition function of the unnormalized probability

distribution induced by weights w on formula ∆. In the following, we will adopt the shorthand

WMI(∆, w) for computing the WMI with all the variables in ∆ in scope. The set of weight

functions w together act as an unnormalized probability density while the formula ∆ represents

logical constraints defining its structure. Therefore, it is possible to compute the (nownormalized)

probability of any logical query Φ expressible as an SMT formula involving complex constraints:

Pr∆(Φ) = WMI(∆ ∧ Φ, w) / WMI(∆, w).
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Example 5 (WMI inference for skill rating). Suppose we want to quantify the squad effect in a 2v2

game. Specifically, given two teams T1 and T2 whose players have the same performance, but team

T1 is a squad while T2 is not, that is, Φc = (B1 = true ∧ B2 = false). We wonder what is the

probability of query Φ = XT1 > XT2 , that is team T1 wins and T2 loses. The probability of query Φ

can be computed by two WMI tasks as follows.

Pr∆(Φ |Φc) =
WMI(∆ ∧ Φc ∧ Φ, w)

WMI(∆ ∧ Φc, w)
=

4, 206

7, 225
≈ 58.22%

with the SMT formula ∆ := Γ1 ∧Γ2 where the two sub-formulas Γ1 and Γ2 model the two teams as

in Example 1.

W.l.o.g, from here on we will focus on WMI problems on continuous variables only. We can

safely do this since a WMI problem defined on continuous and Boolean variables of the form

WMI(∆, w;X ,B) can always be reduced in polytime to a new WMI problem WMI(∆′, w′;X ′)

on continuous variables only, by properly introducing auxiliary variables in X ′ to account for

Boolean variables B without increasing the problem size [ZB19].

5.3 Related Work

WMI generalizes weighted model counting (WMC) [SBK05] to hybrid domains [BPB15]. WMC

is one of the state-of-the-art approaches for inference in many discrete probabilistic models. Ex-

isting exact WMI solvers for arbitrarily structured problems include DPLL-based search with

numerical [BPB15, MPS17, MPS19] or symbolic integration [SOG16] and compilation-based al-

gorithms [KMS18, ZDD19].

Motivated by their success in WMC, [BBP16] present a caching scheme for WMI that al-

lows reusing computations at the cost of not supporting algebraic constraints between variables.

Different from usual, [MAD17] adopt Gaussian distributions, while [ZDD19] fixed univariate

parametric assumptions for weight functions. Many recent efforts in WMI converged in the py-

wmi [KMZ19] python framework.
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Among the exact WMI solvers, the majority ignores the problem structure to be as general-

purpose as possible [BPB15, MPS17, MPS19, KMS18]. However, by doing so they are unable to

scale beyond tens of variables in practice. Conversely, our recent efficient alternatives such as

SMI [ZB19] and MP-WMI [ZMY20a] can greatly scale but only on WMI problems amenable to

tractable inference. We further leverage the strengths of the latter to efficiently solve iterative

integration problems in building approximate WMI solvers.

So far, most approximate WMI solvers rely on sampling, and as such inherit all the classical

issues of Monte Carlo approaches like poor scalability and convergence [CC96]. Among these,

SAMPO [ZDD19] employs Gibbs sampling but does not support generic polynomial weights. A

very recent alternative is a fully polynomial randomized approximation scheme [ACD20]. How-

ever, it can only operate on DNF SMT formulas, and it is not applicable to our CNF representation

as a conversion into DNF can blow up the problem size. Other MCMC variants [ASA15, AD15,

ASW16] operating with algebraic constraints, while more effective, cannot be readily used for

WMI inference problems. The only alternative to sampling schemes is the hashing-based WMI

algorithm [BBP15a] which is known to perform poorly on non-trivial problems due the hardness

of calibrating the tilt [CFM14].

Research on learning WMI distributions from data is at its early stages. Parameter learning

for piecewise constant densities has been addressed in [BPB15]. Recently, an approach for jointly

learning the structure and parameters of a WMI problem has been proposed in [MKT20]. Devel-

oping faster inference algorithms is thus beneficial in learning scenarios as, typically, learning a

full model requires numerous calls to an inference procedure. WMI inference is closely related

to probabilistic program inference, where complex arithmetic and logical constraints are induced

by the program structure or its abstraction [HMB17, HBM18].
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CHAPTER 6

Exact Inference Over Constraints

Despite the appealing features of WMI, current state-of-the-art WMI solvers are far from being

applicable to high-dimensional real-world scenarios. This is due to the fact that most solvers

ignore the dependency structure of the problem, here expressible through the notion of a primal

or factor graph of an SMT formula [DM07]. Thus, their practical utility is limited by their inability

to scale up the WMI inference. This chapter presents two proposed exact WMI solvers that are

capable of leveraging the dependency structure and thus achieve superior inference performance

than the existing solvers.

6.1 Search-based WMI Solver

As a first approach to leverage structure, we propose a search-based inference procedure for exact

model integration that leverages decomposition to speed up inference. We demonstrate how lo-

cal structure encoded in SMT theories gives rise to context-specific decomposition during search,

reducing the number of models to be generated and integrated over. The integration problem is

decomposed into sub-problems by instantiating shared variables and recursing independently on

the resulting simplified SMT theories. We show how to choose finitely many values to instan-

tiate continuous variables with, and subsequently do polynomial interpolation to recover exact

answers to WMI problems. Our complexity analysis proves the first tractability result for a non-

trivial class of WMI problems. Moreover, our experimental evaluation shows that our solver is

drastically faster than existing solvers on WMI problems with sparse, tree-shaped primal graphs.
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Figure 6.1: WMI runtime on independent model in Example 6.

6.1.1 Structure in WMI Problems

This section shows how to reduce WMI to model integration (MI) problems whose structural

independence properties can be captured by graph abstractions.

6.1.1.1 Independence

We begin by motivating why we want to exploit independence structure during probabilistic

reasoning.

Example 6. Consider n houses, and conjoin the theory Γi from Example 2 n times, once for each

house, into a larger SMT theory Γ = ∧ni=1Γi. The n houses are independent since no formula in Γ

connects properties of different houses. Thus, the WMI of Γ can be computed by multiplying the WMI

of each individual theory Γi.

Figure 6.1 takes a trivial weight function and compares existing WMI solvers on this simple problem.

None is able to exploit the extreme independence structure in Γ. Our proposed method SMI, however,

runs in linear time, as expected by the trivial factorization.

This explosion in runtime is due to the fact that existing solvers ignore independence be-

tween variables in the SMT(LRA) theory. However, in discrete graphical models and WMC,

leveraging independence to decompose problems is at the core of all exact inference methods,

and search-based algorithms in particular [Dar09, DM07]. Specifically, exact discrete inference

methods create independence even when it is not immediately present, by performing a case

analysis on selected discrete variables, instantiating them to all values, and simplifying themodel.
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Figure 6.2: Primal graph and search tree for (y ∨ x1) ∧ (y ∨ x2).

Through this process, search-based inference algorithms induce and exploit context-specific inde-

pendence [BFG96]. The decompositions afforded by (conditional and context-specific) indepen-

dence vastly reduce the computational cost of inference. Example 6 illustrated that this intuition

carries over to WMI problems.

In what follows, we first describe the graph abstraction of SMT theories that characterizes

dependencies between variables. These form the basis of our algorithm. Second, we show how

WMI in hybrid domains can be reduced to unweighted MI in real domains. Hence, the solver we

develop in this section will target MI problems.

6.1.1.2 Graph Abstarction of SMT

Primal graphs are often used to characterize variable dependencies. For the example Boolean CNF

formula θB = (y ∨ x1)∧ (y ∨ x2) the primal graph is shown in Figure 6.2a. Its edges encode that

variable pairs (y, x1) and (y, x2) appear in the same clause, while (x1, x2) never appear together,

and are thus independent given y. Similarly, we will use primal graphs for SMT theories to

capture variable dependency information as follows.

Definition 3. (Primal graph of SMT) The primal graph of an SMT(LRA) CNF is an undirected

graph whose vertices are all variables and whose edges connect any two variables that appear in the

same clause.
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Figure 6.3: Primal graph and feasible region from Example 7.

Example 7. Consider the following theory θn.

θn =


(−1 ≤ y ≤ 1) ∧ (−0.5 ≤ x1, · · · , xn ≤ 0.5)

(xi + 1 ≤ y) ∨ (y ≤ xi − 1), for all i ∈ [n]

Figure 6.3 shows its primal graph and solution space.

While there are many flavors of search-based exact inference, including recursive condi-

tioning [Dar01], DPLL model counting [SBK05], knowledge compilation [CD08], and SumProd

algorithms [BDP09], we use the And/Or-search framework to illustrate the required concepts

[Nil82, DM07].

The And/Or search algorithm for WMC problems recursively simplifies a discrete counting

problem by alternating between two steps. The first (OR) step selects a Boolean variable and tries

to instantiate it to both true and false (we will later see how to choose the variable). The second

(AND) step finds ways of partitioning theWMC problem into independent sub-problems that can

be solved separately. Such sub-problems are introduced by instantiating variables in the OR step

in a way that creates independence. The OR step is also called the Shannon expansion. The AND

step is also referred to as component caching [SBK05] or detecting decomposability [CD08].

This process is illustrated in Figure 6.2b for the earlier Boolean CNF θB . Circles denote OR-

step variables whose square-node children are its instantiations. After instatiating y, the search

tree creates independent problems for x1 and x2. This independence can be read off directly
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from the primal graph in Figure 6.2a. Search-based algorithms (with caching) are known to run

efficiently on WMC problems with a tree or tree-like primal graph [Dar09, BDP09].

6.1.1.3 WMI to Model Integration Reduction

This section casts hybrid WMI problems into MI problems over only real variables. We consider

the case where per-literal weight functions are monomials – functions of the form βxα1
1 · · · xαn

n

over real variables xi where β ∈ R and αi ∈ N. We further assume that literals in L also appear

in the theory, and that literals and their weights range over the same real variables.

We first show that anyWMI problemwith Boolean variables can be reduced to aWMI problem

without Booleans. Then we show that WMI problems with per-literal weights can be reduced to

an unweighted MI problem where the weight function is 1.

Proposition 15. For each problemWMI(θ, w | x, b) there exists an equivalent problemWMI(θ′, w′ |

x′) without Boolean variables b such that

WMI(θ, w | x, b) = WMI(θ′, w′ | x′)

and the primal graphs of θ and θ′ are isomorphic.

This reduction encodes Boolean variables using fresh real variables and replaces each Boolean

atom and its negation by two exclusive LRA atoms over those real variables. Proposition 15 al-

lows us to focus onWMI problems without Boolean variables involved. Certain weight functions

can also be reduced, as we show next.

Proposition 16. For each problem WMI(θ, w | x) with per-literal weights w as defined in this

section, there exists an equivalent unweighted problem MI(θ′ | x′) s.t.

WMI(θ, w | x) = MI(θ′ | x′).

Moreover, when weightsw are defined over univariate literals, theories θ and θ′ have identical primal

graph treewidth [RS86].
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This reduction encodes weights using auxiliary parameter variables. For each literal over

which a weight is defined, two set of clauses will be appended such that if the literal holds, the

MI over the auxiliary variables equals the monomial weight function; otherwise, it equals 1.

Crucially, both reductions can be constructed in polynomial time. Similar efficient reductions

exist for arbitrary polynomial weight functions, but can slightly increase treewidth.

Example 8. Consider SMT(LRA) theory (b∨¬b)∧Γi with literal setL and per-literal weight func-

tionsP as defined in Example 4. There exists an equivalentMI problemMI(∆ | x∪{λb, zb, z
(1)
i , z

(2)
i })

with a weight function of 1 and without Boolean variables. Its SMT(LRA) theory∆ is shown below.

Note that its primal graph remains a tree.

∆ =


Γi ∧ (−1 < λb < 1) ∧j=1,2 (0 < z

(j)
i < pricei)

λb > 0 ⇒ (0 < zb < 1.5)

¬(λb > 0)⇒ (0 < zb < 1).

6.1.2 Method

The goal of our work is to take advantage of the independence structure in SMT(LRA) theories

to reduce the computational cost of model integration. Our solution is to exploit context-specific

independence by search.

One obstacle is that to introduce independence in discrete search, we instantiate a variable

with all values in its domain. Unfortunately, when the variable has a real domain (e.g., y ∈ [0, 1]),

we cannot instantiate it with every value in its domain, since there are uncountably many (see

Figure 6.4a). This basic limitation has precluded the use of search-based inference in continuous

graphical models.

We overcome this problem by observing thatMI is an integration over a piecewise polynomial,

which can be fully recovered from a finite number of points. Specifically, for real variable y in

theory θ, if we instantiate the variable y with a value α, then the MI of theory θ ∧ (y = α) is the

density ofWMI(θ, w) at y = α. Recall that a polynomial function p(y)with degree d defined over
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Figure 6.4: Continuous search trees for θ2 from Example 7.

an interval I is uniquely defined by its values at d+1 distinct points in I , and that a closed-form

expression for p(y) can be recovered exactly and efficiently.

Consider again the theory Γi from Example 2. As shown in Figure 5.2, function f(α) =

MI(Γi ∧ (sqfti = α)) is a piecewise polynomial with three intervals. We can recover all three

polynomials from a finite number of points, and thus obtain the integration of f(α), that is,

the model integration MI(Γi). This motivates the search-based model integration algorithm we

develop next.

6.1.2.1 Variable Instantiation

We first show that when per-literal weight functions P are polynomials, WMI of theory θ can be

obtained by doing search with finite instantiations on real variables.

Proposition 17. Let y be a real variable in SMT(LRA) theory θ with a tree primal graph. If per-

literal weight functions P are polynomials, the WMI is an integration over a univariate piecewise

polynomial p(y), that is,

WMI(θ, w | x, b) =
∫
I

p(y)dy (6.1)

where piecewise polynomial p(y) is integrated over set I = {y∗ | ∃x̂∗, ∃b∗ s.t. θ(y∗, x̂∗, b∗) is SAT}

with x̂ being the remaining real variables.
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Figure 6.5: Piecewise polynomial p(y) as defined in Proposition 17 for theory θ2 from Example 7,

whose integration is MI(θ2). The two polynomials p−(y) and p+(y) are unknown, but we can

recover them from a finite number of points.

The set I is a union of disjoint supports for piecewise polynomial p(y). We refer to these

intervals as “pieces”. To describe our MI algorithm, we first assume in this section that these

intervals and their polynomial degrees are given. Our method to explicitly find these intervals

and degrees will be given in Section 6.1.2.2.

Although Proposition 17 holds for WMI problems with polynomial per-literal weight func-

tions in general, we use the insights from Section 6.1.1.3 to only focus on MI problems. For

interval set I defined in Proposition 17, suppose we are given the interval pieces [l, u] ∈ I and

degrees d of their associated polynomials. If we instantiate variable y with d+1 distinct values in

each piece [l, u] of degree d, and solve any sub-problems recursively, we can recover polynomial

pl,u(y) defined on interval [l, u] by performing interpolation on d + 1 points. Finally, MI of the

full theory θ can be computed as follows.

MI(θ, w | x, b) =
∑

[l,u]∈I

∫ u

l

pl,u(y)dy. (6.2)

For example, consider theory θ2 from Example 7. We can interpret MI(θ2) as an integration

over piecewise polynomial p(y) whose intervals [−1,−0.5] and [0.5, 1] both have associated de-

gree two. After instantiating y to three values in each interval, we get two independent sub-MI

problems that contain variable x1 and variable x2 respectively. By solving these sub-problems,

we obtain three points fitted by each polynomial p−(y) and p+(y) as shown in Figure 6.5. There-

93



Algorithm 6 SMI: Search-Based Model Integration
Input: T : pseudo tree, θ: SMT(LRA) theory

Output: p: MI of theory θ

1: if T is a forest of trees T ′ then

2: θ′ ← sub-theories containing variables in T ′

3: return
∏

T ′ SMI(T ′, θ′)

4: p = 0, y = root(T ), STy = set of subtrees below y

5: I = PE_NODE(θ, y)

6: for all polynomial piece {[l, u], d} ∈ I do

7: select d+ 1 distinct values αi’s in [l, u]

8: pi ← SMI(STr, θ |(y=αi))

9: pl,u(y)← polynomial interpolation on (αi, pi)’s

10: p← p+
∫ u

l
pl,u(y)dy

11: return p

fore, we can recover both by polynomial interpolation and can obtain MI(θ2) by Equation 6.2.

Figure 6.4b depicts the search space of our algorithm on interval [0.5, 1].

The above discussion has shown that for MI problems, we can instantiate a real variable to

finitely many values, decompose the problem into independent parts, and then solve the sub-

problems recursively. Algorithm 6 follows exactly this strategy for search-based model integra-

tion. The role of pseudo trees will be explained in Section 6.2.2.4. The remaining problem is how

to exactly obtain pieces [l, u] and their associated degrees d in function PE_NODE. We address

this problem next.

6.1.2.2 Finding Pieces via Critical Points

Recall that by Proposition 17, WMI of SMT(LRA) theory θ can be rewritten as WMI(θ, w |

x, b) =
∫
I
p(y)dy where p(y) is a piecewise polynomial, set I is a union of disjoint support of
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polynomials in p(y), and each piece [l, u] ∈ I is associated with a polynomial degree d. We hope

that when a real variable y in theory θ is chosen to be instantiated, we can exactly find all pieces

and their associated degrees for piecewise polynomial p(y).

It turns out that this can be achieved. While integrating over satisfying assignments with

respect to a certain variable given an SMT(LRA) theory, integration upper bounds and lower

bonds are defined by its literals. Changes in integration bounds give rise to different pieces of

integration and therefore result in the piecewise nature of the polynomial in Proposition 17. In

our method we determine these pieces by collecting points where certain bounds meet. Further,

by propagating polynomial piece and degree information in a bottom-upmanner along the primal

graph, we can obtain the pieces and degree for the chosen piecewise polynomial.

We will first describe our method in a basic case where there are only two real variables in

the theory. Then we extend this approach to theories with tree primal graphs.

6.1.2.3 Base Case: Pieces of Two Real Variables

First we investigate a simple case where there are only two real variables x and y in SMT(LRA)

theory θ. Recall that we are solving an unweighted MI problem. We would like to find pieces and

associated degrees for variable y such that we can instantiate y as in Section 6.1.2.1:

p(y) =

∫
θ(x,y)

1 dx =
∑

[l(y),u(y)]∈I(y)

∫ u(y)

l(y)

1 dx =
∑

[l(y),u(y)]∈I(y)

u(y)− l(y)

where set I(y) is defined as

{[l(y), u(y)] | ∀x ∈ [l(y), u(y)], θ(x, y) is SAT}. (6.3)

That is, for any fixed value y∗, the set I(y∗) consists of intervals of consistent values for variable

x. For any [l(y), u(y)] ∈ I(y), it gives a pair of integration bounds for variable x. Further by

integrating over x we can obtain a polynomial with respect to variable y.

Each piece [l, u] corresponds to a certain class of values that gives the same symbolic inte-

gration bounds to variable x. The two values y = l and y = u are endpoints of the piece only if
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integration bound set I(y) changes at these points, since the piecewise polynomial p(y) is defined

by these bounds. That is, for arbitrarily small ϵ, we have I(l − ϵ) 6= I(l + ϵ), and it also holds at

point y = u. We formally define critical points below.

Definition 4. (Critical Point) Let θ be an SMT(LRA) theory with two real variables, and denote

one of the real variables by y. Let I(y) be an integration bound set as defined in Equation 6.3. Then

y = α is a critical point if for arbitrarily small ϵ, it holds that I(α− ϵ) 6= I(α + ϵ).

Remark. The comparison of set I(y) is done symbolically. That is, for two distinct values α, β,

we say I(α) = I(β) if they have the same set of symbolic integration bounds. For example, if at

y = α, I(y) = {[1, y]} and at y = β 6= α, I(x) = {[1, y]}, it holds that I(α) = I(β). However, if

at y = α, I(y) = {[1, y]} and at y = β, I(y) = {[y, 2]}, then we say I(α) 6= I(β).

Our idea is that, if we can find all critical points y = αwhere the set I(y) changes, thenwe can

partition real domains of y into disjoint intervals, such that any support of piecewise polynomial

p(y) is either one of these intervals or a union of some intervals. For the resulting interval [l, u],

we can apply an SMT(LRA) solver to θ′ = θ ∧ (l < y < u) to check whether it is a satisfiable

piece of function p(y); if this is true, we can obtain the polynomial degree of pl,u(y) defined over

this piece by simply traversing theory θ′.

6.1.2.4 General Case: Pieces of Tree Structures

Given an SMT(LRA) theory θ with a tree-shape primal graphG, our goal is to enumerate pieces

and their associated degrees for the root variable y, building on the algorithm we developed in

the base case above. This can be done in a bottom-up manner with tree primal graphs.

Specifically, we first partition theory θ into sub-theories θr,c and θGc for each c, such that

θ =
∧

c(θr,c ∧ θGc), where variables c are the child variables of root r, and graph Gc is the sub-

tree rooted at variable c. Each theory θr,c contains only variables r and c, on which we can apply

the enumeration for the base case above, and each theory θGc contains only variables in sub-tree

Gc. This is possible provided that the primal graph of theory θ has a tree structure, which is why

our algorithm is restricted to SMT(LRA) theories with tree-shaped primal graphs.
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For each child variable c, we first obtain its pieces with respect to theory θGc in a recursive

way. Then we can apply our enumeration algorithm for two-variable theory PE_EDGE to theory

θr,c with the given pieces of variable c. What we would get are sets of pieces for each child

variable c. To be consistent with theory θ, we need to take intersections of these sets which we

refer to as the shattering operation. Finally, the resulting intersections are pieces and polynomial

degrees for root variable r.

As described above, our piece enumeration algorithm is applicable toMI problems for theories

with tree primal graphs. Moreover, it is also applicable to WMI problems whose SMT theory

has a tree primal graph and whose per-literal weights are monomials over univariate literals as

described in Section 6.1.1.3, since our reduction process can preserve the tree structure of the

primal graph.

6.1.2.5 Complexity Analysis

Inference over networks involving real variables raises considerable challenges for inference, and

network structures that are tractable in the discrete case, such as polytrees, give rise to NP-hard

inference problems in the hybrid case [KF09]. We show that the complexity of our algorithm is

mainly exponentially bounded by the tree height of the primal graph.

Our search algorithm for MI needs to choose which variables to instantiate first. This choice

can be based on a tree data structure that orders the variables. Such a tree characterizes the

computational complexity as it does for discrete And/Or search algorithms. We first formally

defined the tree that helps guide our search.

Definition 5. (Pseudo Tree) Given an undirected graph G with vertices and edges (V,EG), a

pseudo tree for G is a directed rooted tree T with vertices and edges (V,ET ), such that any edge e

that is in G but not in T must connect a vertex in T to one of its ancestors.

That is, edge e = (v1, v2) such that e ∈ EG and e /∈ ET implies that either vertex v1 is an

ancestor of vertex v2 in T or vertex v2 is an ancestor of vertex v1 in T . Note that the pseudo tree
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(b) Runtime on 3-ary tree graphs.
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Figure 6.6: (a)-(c) MI execution time on SMT(LRA) with tree primal graphs. (d)-(f) Example tree

primal graphs.

has the same set of vertices asG. Such a pseudo tree guides SMI (Algorithm 6) in deciding which

variable to instantiate, and when to decompose.

Next, we analyze the complexity of SMI. Since our algorithm performs search, its time and

space complexity is characterized by the size of its search space. Our analysis does not take

caching improvements into consideration.

Theorem 4. (Size of Search Space) Consider an SMT(LRA) theory θ with a tree-shaped primal

graph with height hp, and a pseudo tree T with l leaves and height ht. Let m be the number of

LRA literals in θ, and n be the number of real variables. Then the size of the SMI search space is

O(l · (n3 ·mhp)ht).

Hence, we can conclude that the complexity of our algorithm is bounded exponentially by

tree heights of both the primal graph and pseudo tree. In fact, for any tree-shaped primal graph,

we can always choose a pseudo tree whose height ht is O(logn) to guide the search [DM07].

Moreover, the number of leaves l in pseudo tree T is no larger than the number of nodes n. Thus,

we have the following corollary.
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Corollary 2. Following the notation in Theorem 4, with properly chosen pseudo tree T whose tree

height ht is O(logn), the size of the search space generated by SMI is O
(
n1+3 logn+hp logm).

Therefore, the complexity of our algorithm is mainly decided by tree heights of primal graphs

hp. In theworst case when tree primal graphs have heightO(n) – for instance path graphs, whose

tree height is n when rooted at the start node – then the worst-case complexity of our algorithm

is O(nn logm) by Corollary 2. That is, the time complexity is worst-case super-exponential.

In cases when the tree primal graph has tree height of size O(logn), the complexity of our

algorithm is O(n1+(3+logm) logn) which is of quasi-polynomial complexity, and considered to be

efficient. Trees with tree height in O(logn) are a general class of trees used in various models.

Balancing trees like AVL trees and full k-ary trees are of tree height O(logn). Another example

is a star graph, which has one internal node and all other nodes as leaves. This graph corresponds

to the well-known naive Bayes structure for directed graphical models. It is the primal graph of

a theory modeling independent variables predicting one and the same dependent (class) variable.

The tree height of star graphs is constant 1 when choosing the internal node as root. Hence, our

algorithm runs efficiently on such WMI problems.

6.1.3 Empirical Evaluation

We analyze the performance of our search-based MI algorithm on SMT(LRA) theories with tree

primal graphs. First, we show that our algorithm is efficient for theories whose primal graphs

have constant tree heights, or tree heights of log scale w.r.t. the number of real variables n. For

theories whose primal graph has tree height inO(n) – the cases where our algorithm has super-

exponential worst-case complexity in theory – empirical results show that our algorithm still runs

efficiently. We also consider a more complex house price model where house sizes are dependent,

as opposed to those in Example 6. Moreover, the house price model has non-trivial weight func-

tions that our algorithm first reduces to a MI problem as outlined in Section 6.1.1.3. We compare

our algorithm to alternative WMI solvers and conclude that it significantly outperforms existing

solvers on these benchmarks.
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Benchmarks We compare our algorithm (SMI) with other WMI solvers. The block-clause-

strategy-based solver (BC) [BPB15] iteratively generates new models by adding the negation of

the latest model to the formula for the following iteration. The all-satisfying-assignments-based

solver (ALLSMT) [BBP16] first generates the set of all LRA-satisfiable total truth assignments

on atoms that propositionally satisfy the theory. The implementation of [SOG16] (PRAiSE) is

a variable-elimination-based solver. The predicate-abstraction-based solver (PA) [MPS17] ex-

ploits the power of SMT-based predicate abstraction to reduce the number of models to be inte-

grated over. Both the extended algebraic-decision-diagram-based solver (XADD) [KMS18] and

sentential-decision-diagram-based solver (Symbo) [ZDD19] use circuit-based compilation lan-

guages and exploits the circuit structures.

6.1.3.1 Tree Primal Graphs

We investigate the performance of our algorithm on SMT(LRA) theories with three types of

tree primal graphs: 1) star graphs, consisting of one center node connected to all other nodes,

and no other connections; 2) full 3-ary trees, whose non-leaf vertices have exactly three children

and all levels are full except for some rightmost position of the bottom level; 3) path graphs,

consisting of linearly connected nodes. These structural constraints arise naturally in data and

many probabilistic graphical modeling problems.

For each graph type, given a number of nodes n, we introduce n real variables which we

denote by x = {x0, x1, · · · , xn−1} with bounded domains ∀i, (−1 ≤ xi ≤ 1). Denote the graph

by G = (V,E) where V = {0, 1, · · · , n− 1} is the vertex set and E = {(i, j), i, j ∈ V } the edge

set. We perform MI for the following theories and increasing n.

θ(x) =


∧

i∈V (−1 ≤ xi ≤ 1)∧
(i,j)∈E ((xi + 1 ≤ xj) ∨ (xj ≤ xi − 1))

Figure 6.6 shows example primal graphs and the execution time of experiments comparing

SMI with baselines.
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Figure 6.7: Runtime and primal graph for house price model.

For MI over theories with all three types of tree primal graphs, our algorithm significantly

outperform other WMI solvers in terms of execution time. The runtime curves of other solvers

grow seemingly exponentially while our curve grows slowly with the number of real variables.

For theories with star graphs and full 3-ary trees as primal graphs, the time curves of SMI are

consistent with the complexity analysis in Section 6.2.2.4 stating that our algorithm has quasi-

polynomial complexity. For theories with path graphs as primal graphs, which are still sparse

graphs, we perform caching and the runtime curve grows slowly, even though our worst-case

analysis allows for a super-exponential time complexity.

6.1.3.2 House Price SMT(LRA) Model

In Example 6 we performed MI for multiple houses based on extreme independence assump-

tions. Nowwe consider a more complicated case where houses are not independent and there are

Boolean variables in the SMT(LRA) model. Moreover, we choose non-trivial per-literal weight

functions in order to evaluate our algorithm for reducing WMI to unweighted MI problems.

Specifically, we consider n houses that are located along a street. Each house i has its price

and square footage model as in Example 2. Also, we enforce the constraint that square footage

between two neighboring houses should not vary too much and we use a Boolean variable b to

indicate whether or not these houses are located in an urban area. This gives the following SMT
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theory.

Γstreet =


(b ∨ ¬b) ∧

∧n
i=1 Γi∧n−1

i=1 (sqfti ≤ sqfti+1 + offset)

with offset a constant characterizing maximum difference in square footage between two neigh-

boring houses. For weights w, consider the set of literals L = {b} ∪ {0 < pricei < 3000, i =

1, · · · , n} and per-literal weight functions P = {pb} ∪ {p(0<pricei<3000), i = 1, · · · , n}, with

pb(x) = 1.5 and p(0<pricei<3000)(x) = price2i for all i. Then, in worlds where all literals in L

are satisfied, our weight function is 1.5
∏n

i=1 price
2
i . In worlds where b is false but other literals

are satisfied, the weight function is
∏n

i=1 price
2
i . Figure 6.7 shows an example primal graph and

WMI runtime for this house price model.

6.2 Message-Passing WMI Solver

While SMI directly exploits the problem structure encoded in primal graphs, in order to perform

a tractable reduction, SMI is limited to a restricted set of weights, and hence a very narrow set of

WMI problems. To build more powerful exactWMI solvers, wemake the following contributions.

First, we theoretically trace the boundaries for the classes of tractable WMI problems known in

the literature. Second, we expand these boundaries by devising a polytime algorithm for exact

WMI inference on a class that is strictly larger than the class previously known to be tractable.

Our proposed WMI solver, called MP-WMI, adopts a novel message-passing scheme for WMI

problems. It is able to exactly compute all the variable marginal densities at once. By doing so, we

are able to scale inference beyond the capabilities of all current exact WMI solvers. Moreover, we

can amortize inference inter-queries for rich SMT queries that conform to the problem structure.

6.2.1 Tractability Analysis

Themajor efforts in advancingWMI inference have been so far concentrated on devising sophisti-

cated WMI solvers to deliver exact inference routines for general scenarios without investigating

the effect of the structure of a WMI problems on its complexity. Little to no attention has gone
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to formally understand which classes of WMI problems can be guaranteed to be solved exactly

and in polynomial time, that is, tractably.

One notable exception can be found in [ZB19] where the search-based MI (SMI) solver is

introduced. WMI problems for which SMI guarantees polytime exact inference constitute the

first class of tractable WMI. Intuitively, SMI solves MI problems by using search to leverage the

conditional independence among variables.

As in [ZB19] we characterize the structure of an SMT formula via its primal graph.

Definition 6. (Primal graph of SMT) The primal graph of an SMT formula ∆ is an undirected

graph G∆ whose vertices are variables in formula∆ and whose edges connect any two variables that

appear in a same clause in the formula ∆.

An example primal graph of the SMT formula in Example 1 is shown in Figure 5.1. The

SMI solver guarantees polynomial time execution for the class of MI problems with certain tree-

shaped primal graphs, which we denote as treeMI.

Definition 7. (treeMI Problem Class) Let treeMI be the set of all MI problems over real variables

whose SMT formula ∆ induces a primal graph G∆ with treewidth one and with bounded diameter

d. Problems in treeMI can be solved in polytime via SMI [ZB19].

Note that in Definition 7 the primal graph diameter here plays the role of a constant since,

otherwise, SMI complexity can be worst-case exponential in diameter d. In the following we will

try to answer if larger classes than treeMI are still amenable to tractable inference. We start by

demonstrating a novel result that states the hardness of a larger class ofMI problems, still focusing

on dependencies between two variables, but allowing for non-tree-shaped primal graphs.

Definition 8. (2MI Problem Class) Let 2MI be the set of all MI problems over real variables whose

SMT formula ∆ is a conjunction of clauses comprising at most two variables.

Note that a clause comprising at most two variables can be a conjunction of arbitrarily many

literals. Moreover, when there are more than two variables in a clause, in the primal graph there

103



2WMI(⌦P)
<latexit sha1_base64="qxWmLr6kcargWtXE+IYCfX/Xo/c="></latexit>

2MI<latexit sha1_base64="qX/zlid+Qj4GX+kBO6Xv0TcgEoU="></latexit>

treeMI
<latexit sha1_base64="lmWjg5jbDZpJxh1kwiiXPh2yLAo="></latexit>

treeWMI(⌦P)
<latexit sha1_base64="mh8c7+jiz9r9IQYHwFhl7TG+7cI="></latexit>

treeWMI(⌦SMI)
<latexit sha1_base64="GIjG56ebkCUCAH1pwIjWsRziBUM="></latexit>

⇢
<latexit sha1_base64="iSH1xmywe3N+BQeIoDXlgGETl6k="></latexit>

Figure 6.8: The current landscape of classes of WMI problems. We enlarge the boundaries

of tractable WMI inference from treeMI to treeWMI and prove the hardness of 2MI and 2WMI.

must be a loop and thus the treewidth of the primal graph is larger than one. Hence all MI

problems with tree-shaped primal graph must be in the class 2MI.

Theorem 5. (Hardness of 2MI) Given an MI problem in 2MI with an SMT formula ∆, computing

MI(∆) is #P-hard.

Sketch of Proof. The proof is done by reducing the #P-complete problem #2SAT to an MI problem

in 2MI with an SMT formula ∆ such that counting the number of satisfying assignments to the

#2SAT problem equates to the MI of formula ∆.

FromTheorem 5 it follows that the problem class 2WMI(Ω), i.e., theWMI problems with SMT

formulas being a conjunction of clauses comprising at most two variables, and with per-literal

weights in weight function family Ω, is also hard since class 2MI is a sub-class of 2WMI(Ω).

We revert our attention to WMI problems exhibiting a dependency tree structure. Notice that

for WMI problems, the tractability not only depends on the logical structure defined by the SMT

formulas, but also the statistical structure defined by weight functions. Next in our analysis, we

take into consideration the weight function families. Analogously to what Definition 7 states,

we introduce the notion of treeWMI(Ω) with the associated weight function family specified as

follows.
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Definition 9. (treeWMI(Ω) Problem Class) Let treeWMI(Ω) be the set of all WMI problems over

real variables whose SMT formula∆ induces a primal graphG∆ with treewidth one andwith bounded

diameter d, and whose per-literal weights are in a function family Ω.

[ZB19] propose a WMI-to-MI reduction such that some treeWMI(Ω) problems with polyno-

mial weights are reduced in polynomial time to treeMI problems amenable to tractable inference

by the SMI solver. Intuitively, the reduction process introduces auxiliary continuous variables

and SMT formulas over these variables to encode the polynomial weight functions. We refer the

readers to [ZB19] for a detailed description of the reduction. However, as shown next, the set of

treeWMI problems that can be reduced to treeMI is rather limited.

Definition 10. (ΩSMI Weight Function Family) Let ΩSMI be the family of per-literal weight func-

tions that are monomials associated with either (i) univariate literals or (ii) a literal that appears

exclusively in a unit clause, i.e., a clause consisting of a single literal.

Theorem 6. Let ρ be the polytime WMI-to-MI reduction for treeWMI(Ω) problems as defined

in [ZB19]. Then the image {ρ(ν) | ν ∈ treeWMI(Ω)} ⊂ treeMI if-and-only-if Ω ⊂ ΩSMI.

Sketch of Proof.The necessary condition can be proved by the reduction process and the sufficient

one can be proved by contradiction.

Therefore, the SMI solver is limited to a rather restricted subset of treeWMI(Ω) since from

the definition of ΩSMI we can tell that it is a strict subset of monomial per-literal weights. In

order to enlarge the tractable class of WMI problems, next we will define a rich family of weight

functions.

Definition 11. (Tractable Weight Conditions) Let Ω be a family of per-literal weight functions.

We say that the tractable weight conditions (TWC) hold for Ω if we have:

(i) closedness under product: ∀f, g ∈ Ω, f · g ∈ Ω;

(ii) tractable symbolic integration: ∀f ∈ Ω, the symbolic antiderivative of function f can be

tractably computed by symbolic integration;
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(iii) closedness under definite integration: ∀f ∈ Ω with its antiderivative denoted by F , given

integration bounds l(x), u(x) in LRA with x ∈ X , F (u(x))− F (l(x)) ∈ Ω.

Some example weight function families that satisfy TWC include the polynomial family, ex-

ponentiated linear function family and the function family resulting from their product. More-

over note that piecewise function families, when pieces belong to the above families, also satisfy

TWC. It turns out that the weight function families that satisfy TWC subsume and extend all the

parametric weight functions adopted in the WMI literature so far. The following proposition is a

direct result from the fact that the piecewise polynomial weight family ΩP is a strict superset of

the family ΩSMI.

Proposition 18. Let ΩP be the piecewise polynomial weight function family. The WMI problem

class treeWMI(ΩP) is a strict superset of problem class treeWMI(ΩSMI).

Theorem 7. If a weight function familyΩ satisfies TWC as in Definition 11, WMI problems in class

treeWMI(Ω) are tractable, i.e., they can be solved in polynomial time.

The proof to the above theorem is provided in the next two sections by construction where

in Section 6.2.2 we proposed our WMI solver, called MP-WMI, operating on WMI problems in

treeWMI(Ω) with its complexity analysis in Section 6.2.2.4. A summary of the WMI problem

classes is shown in Figure 6.8.

6.2.2 Method

Message passing on tree-structured graphs has achieved remarkable attention in the PGM liter-

ature [Pea88, KFL01]. Its classical formulation and efficiency relies on compact factor represen-

tations allowing easy computations. However, adapting existing message-passing algorithms to

WMI inference is non-trivial. This is due to the fact that inference is computed in a hybrid struc-

tured space with logical and arithmetic constraints. We present our message-passing scheme by

first deriving a factorized representation of WMI problems.
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6.2.2.1 Factor Graph Representation of WMI

In the literature of WMC, incidence graphs are proposed to characterize the structure of problems

defined by Boolean CNF formulas [SS10]. Incidence graphs are bipartite graphs with clause nodes

and variable nodes, where a clause and a variable node are joined by an edge if the variable occurs

in the clause. We derive the analogous representation for the more general SMT formulas, which

we then turn into a factor graph of WMI problems.

Recall that for the joint distribution represented by a WMI problem, the support is defined by

the logical constraints and the unnormalized density is defined by weight functions. In the fol-

lowing, we first factorize the SMT formula∆ of aWMI problemWMI(∆, w) in the class treeWMI:

∆ =
∧
i∈V

∆i ∧
∧
i,j∈E

∆ij (6.4)

where the set V is the index set of variables and the set E is the index pairs of variables in the

same clause. Then a WMI problem can be conveniently represented as a bipartite graph, known

as factor graph, that includes two sets of nodes: variable nodes Xi, and factor nodes fS , where

S denotes a factor scope, i.e., the set of indices of the variables appearing in it. A variable node

Xi is connected to a factor node fS if and only if i ∈ S . Specifically, the factors are defined as

follows:

fS(xS) =
∏

Γ∈CLS(∆S)

JxS |= ΓK ∏
ℓ∈LITS(Γ)

wℓ(xS)
JxS |=ℓK (6.5)

where xS denotes the restriction of x to the variables in factor fS and analogously ∆S is the

restriction of formula ∆ to the clauses over the variables in S . Here, the set of clauses in the

SMT formula ∆ is denoted by CLS(∆), and the set of literals in a clause Γ is denoted by LITS(Γ).

Intuitively, the factors include the parameterized densities as in the classic PGM literature, here

represented by the per-literal weights, but also the structure enforced by the logical constraints

in the SMT formula, via the indicator functions. Figure 6.9 shown an example of a factor graph.

As in every tree-shaped factor graphs, we define an unnormalized joint distribution corre-
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Figure 6.9: Factor graph (left) of formula Γ with two players and piecewise polynomial mes-

sages (right) sent from the three factor nodes to variable node XT when solving the WMI in

Example 3 by MP-WMI.

sponding to the WMI problem in the form of a product of factors as follows.

p(x) =
∏
S

fS(xS) =
∏
i∈V

fi(Xi)
∏
i,j∈E

fij(Xi, Xj) (6.6)

By construction, it is easy to see that the normalization constant of such a distribution equals

computing the corresponding weighted model integral.

Proposition 19. Given a problem WMI(∆, w) in treeWMI, let p(x) being the unnormalized joint

distribution as defined in Equation 6.6. Then the partition function of distribution p(x) is equal to

WMI(∆, w).

6.2.2.2 Message-Passing Scheme

Deriving a message-passing scheme for WMI poses unique and considerable challenges. First,

different from discrete domains, on continuous or hybrid domains one generally does not have

universal and compact representations for messages, and logical constraints inWMImake it even

harder to derive such representations. Moreover, marginalization over real variables requires

integration over polytopes, which is already #P-hard [DF88]. The integration poses the problem

of whether the messages defined are integrable and how hard it is to perform the integration. In

the following part, we will present our solutions to these challenges by first describing a general

message-passing scheme for WMI and then investigating of which form the messages are, given

certain weight families.
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Given the factorized representation of WMI in Section 6.2.2.1, our message-passing scheme,

called MP-WMI and summarized in Algorithm 7, comprises exchanging messages between nodes

in the factor graph. Before the message passing starts, we choose an arbitrary node in the factor

graph as root and orient all edges away from the root to define the message sending order. MP-

WMI operates in two phases: an upward pass and a downward one. First, we send messages up

from the leaves to the root (upward pass) such that each node has all information from its children

and then we incorporate messages from the root down to the leaves (downward pass) such that

each node also has information from its parent. The messages are formulated as follows.

Proposition 20. Both messages mfij→Xi
from factor node to variable node and messages mXi→fij

from variable node to factor node have iterative formulations as follows.

(i) mfij→Xi
(xi) =

∫
fij(xi, xj) ·mXj→fij

(xj) dxj ;

(ii) mXi→fS
(xi) =

∏
fS′∈neigh(Xi)\fS mfS′→Xi

(xi).

For the start of sending messages, when a leaf node is a variable node Xi, the message that it

sends along its one and only edge to a factor fS ismXi→fS
(ci) = 1; in the casewhen a leaf node is a

factor node fi, the message from the factor node fi to a variable node Xi is mfi→Xi
(xi) = fi(xi).

Even though the weight function family is not specified here, it can be shown that when the

integration in Proposition 20 is well-defined, i.e., the integrands are integrable, then the messages

are univariate piecewise functions, which is a striking difference with classical message-passing

schemes.

Proposition 21. For any problem in treeWMI, the messages as in Proposition 20 are univariate

piecewise functions.

The specific form of messages also depends on the chosen weight function family as men-

tioned in Section 6.2.1. For example, when the weight functions are chosen to be polynomials, the

messages are piecewise polynomials, as in the example in Figure 6.9. We show how to compute

the piecewise polynomial messages in Algorithm 8 with functions critical-points and get-msg-

pieces as subroutines to compute the numeric and symbolic integration bounds for the message
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Algorithm 7 MP-WMI(∆)
1: Vup ← sort variable nodes in factor graph

2: for [ doupward pass]each Xi ∈ Vup

3: send-message(Xi,fi,pa(i))

4: send-message(fi,pa(i), Xpa(i))

5: Vdown ← sort nodes in set Vup in reverse order

6: for [ dodownward pass]each Xi ∈ Vdown

7: for each Xc ∈ ch(Xi) do

8: send-message(Xi, fic)

9: send-message(fic, Xc)

10: return {mXi→fs
,mfs→Xi

}(xi,fs)∈E

pieces. Both of them can be efficiently implemented, see [ZB19] for details. The actual integra-

tion of the polynomial pieces can be efficiently performed symbolically, as supported by many

scientific computing packages.

When MP-WMI terminates, the information stored in the obtained messages is sufficient to

compute the unnormalized marginals for each variable and it is independent of the choice of root.

Moreover, the integration of unnormalized marginals equals to WMI(∆, w).

Proposition 22. Let ∆ be an SMT formula with a tree factor graph and with per-literal weights w.

For any variable Xi, the unnormalized marginal p(xi) is

p(xi) =
∏

fS∈neigh(Xi)
mfS→Xi

(xi).

Moreover, the partition function for any xi is the WMI of SMT formula ∆, i.e., WMI(∆, w) =∫
xi
p(xi)dxi.

6.2.2.3 Amortization

Wewill show that by leveraging the messages pre-computed in MP-WMI, we are able to speed up

(amortize) inference time over multiple queries on formula∆. More specifically, when answering
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Algorithm 8 send-message(s, t)
1: if s = Xi and t = fij then

2: Return
∏

fs′∈neigh(Xi)\fij mfs′→Xi

3: else if s = fij and t = Xi then

4: P ← critical-points(mXj→fij
,∆ij)

5: I ← intervals-from-points(P)

6: for interval I ∈ I consistent with formula ∆ij do

7: 〈ls, us, p〉 ← get-msg-pieces(mXj→fij
, I, w)

8: p′(xi)←
∫ us

ls
p(xi, xj) dxj

9: mfij→Xi
← mfij→Xi

+ Jxi ∈ IK · p′(xi)

10: return ms→t

queries that do not change the tree structure in the factor graph of formula ∆, we only need to

update messages that are related to the queries while other messages are pre-computed. Some

examples are SMT queries on a node variable or queries over a pair of variables that are connected

by an edge in the factor graph, since these queries either add leaf nodes or do not change existing

nodes. Thus we can reuse the local information encoded in messages.

Proposition 23. Let WMI(∆, w) be a problem in treeWMI, and Φ be an SMT query over a factor

f ∗
s involving a variable Xi ∈ X . Given pre-computed messages {mfS→Xi

}fS∈neigh(Xi),

WMI(∆ ∧ Φ) =

∫
R
m∗

f∗
s→Xi

(xi)·∏
fs∈neigh(Xi)\f∗

s

mfs→Xi
(xi)dxi

with message m∗
f∗
s→Xi

computed over factor f ∗
s (xs) := fs(xs) · Jxs |= ΦK as in Proposition 20.

Pre-computing messages can dramatically speed up inference by amortization, as we will

show in our experiments, especially when traversing the factor graph is expensive or the number

of queries is large.
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6.2.2.4 Complexity Analysis

This section provides a complexity analysis of our proposedWMI solverMP-WMI. Given the SMT

formula∆with a tree factor graph with a chosen root node, each factor node would be traversed

exactly once in each phase of the message-passing scheme. We denote the set of directed factor

nodes by F := {
−→
fs} = {f+

s , f
−
s | fs ∈ V} where f+

s denotes the factor node fs visited in the

upward pass and f−
s denotes the one visited in downward pass respectively.

To characterize the message-passing scheme, we define a nilpotent matrix A as follows. The

matrix A ∈ N|F|×|F| has both its columns and rows denoted by the factor nodes in set F . At

each column denoted by
−→
fs , only entries at rows denoted by factor nodes visited right after

−→
fs

are non-zero.

Proposition 24. The nilpotent matrix A as described above has its order at most the diameter of

the factor graph.

Next we show how to define the non-zero entries in matrixAwith parameters about the SMT

formulas in WMI problems.

Proposition 25. Suppose that the two variables Xi and Xj are connected in the factor graph by a

factor fij associated with a sub-formula ∆ij of size c, then in MP-WMI:

(i) the number of pieces in message mXi→fij
is bounded by

∑
ms, where ms is the number of

pieces in message mfs→Xi
with fs ∈ neigh(Xi)\fij ;

(ii) the number of pieces in message mfij→Xj
is bounded by 2mc + c2 with m being the number

of pieces in message mXi→fij
.

Now we show how to use the matrix A to bound the number of pieces in messages. We

define the non-zero entries in the nilpotent matrixA to be 2cwith c being a constant that bounds

the size of sub-formulas associated to factors. Define a vector v(t) ∈ N|
−→
E | for the state of the

message-passing scheme at step t – by state it means that each entry in vector v(t) is denoted by

a factor node in set F and the entry denoted by
−→
fs bounds the number of pieces in the message
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sent to fs in the MP-WMI. For the initial state vector v(0), it has all non-zero entries to be c, the

constant bounding the sub-formula size, and these entries are those denoted by
−→
fs = f+

s with

factor node fs connected with a leaf.

Proposition 26. LetA be the nilpotent matrix and v the initial state vector as described above. Also

let v(t) := Av(t−1) + c2 · sgn(Av(t−1)) with sgn being the sign function. Then each entry in vector

v(t) denoted by
−→
fs bounds the number of pieces in the message mXi→fs

received by factor fs from

some variable node Xi at step t in MP-WMI.

Proposition 27. Let A be the nilpotent matrix and v(t) the state vectors as described above. The

total number of pieces in the all the messages is bounded by ‖
∑d

t=0 v
(t) ‖1 with d being the diameter

of the factor graph. Moreover, it holds that ‖
∑d

t=0 v
(t) ‖1 is of O((4nc)2d+2).

This gives the worst-case total number of message pieces in MP-WMI. From Proposition 27,

it holds that the problems in class treeWMI(Ω) with the weight function family Ω satisfying

TWC are tractable to MP-WMI, since the complexity of MP-WMI is the total number of message

piecesmultiplied by the symbolic integration cost of each piece, which is tractable for functions in

familyΩ by definition. This finishes the constructive proof forTheorem 7 in Section 6.2.1. Notice

the complexity of WMI problems depends on the graph structures. In our experiments, we will

compare solvers onWMI problemswith three representative problem classes with different factor

graph diameters.

6.2.3 Empirical Evaluation

In this Section, we aim to answer the following research questions:1 Q1) Can we effectively scale

WMI inference with MP-WMI? Q2) How beneficial is inter-query amortization with MP-WMI?

To answer Q1, we generated a benchmark of WMI problems with tree-shaped primal graphs

of different diameters: star-shaped graphs (STAR), complete ternary trees (SNOW) and linear

1Our implementation ofMP-WMI and the code for reproducing our empirical evaluation can be found athttps:
//github.com/UCLA-StarAI/mpwmi.
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Figure 6.10: Results of the comparison between MP-WMI, WMI-PA and F-XSDD on WMI prob-

lems with tree dependencies. In this setting, MP-WMI remarkably scales to problems having up

to 60 variables on STAR, while solving SNOW and PATH problems having up to 90 variables,

considerably “raising the bar” for the size of tractable WMI inference problems.
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Figure 6.11: Log-log plot of cumulative time (seconds, y-axis) for MP-WMI (orange, red, brown)

and SMI (blue, green, purple) over STAR, SNOW and PATH primal graphs (see text) with 10, 20

and 30 variables for increasing numbers of univariate and bivariate queries (x-axis). For every

class, MP-WMI takes up to two order of magnitude less time when amortizing 100 queries, while

being faster than SMI on a single query.

chains (PATH). These structures were originally investigated by the authors of SMI and are pro-

totypical of tree shapes that can be encountered in real-world scenarios such as phylogenetic

trees [NK00], hierarchies in file and networks systems [VGR81], and natural language gram-

mars [PBT06].

We sampled random SMT formulas withN variables with the tree structures described above

and polynomial weights mapping a subset of literals to a random non-negative polynomials. We

generated problems with N ranging from 2 to 20 with step size 2, and from 20 to 100 with
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step size 10. We compared our MP-WMI python implementation against the following base-

lines: WMI-PA [MPS19], a solid general-purpose WMI solver exploiting SMT-based predicate

abstraction techniques that is less sensitive to the problem structure; and F-XSDD(BR) [ZKD19],

a compilation-based solver achieving state-of-the-art results in several WMI benchmarks.

Fig. 6.10 shows that, with timeout being an hour, our proposed solver MP-WMI is able to scale

up to 60 variables for STAR problems and up to 90 variables for SNOW and PATH problems, while

the other two solvers stop at problem size 20 for all three classes. Note that the results are in line

with those reported in [ZKD19]. This answersQ1 affirmatively, raising the bar of the size of WMI

problems that can be solved exactly up to 100 variables.

We tackle Q2 by comparing MP-WMI with SMI [ZB19] on tree-structured MI problems. SMI

is a search-based MI solver that has been shown to be efficient for such problems. WMI-PA, F-

XSDD and the SGDPLL(T) [SOG16] solver are not included in the comparison since they were

already shown in [ZB19] to not be competitive on such problems. The synthetic SMT formulas

range over n ∈ {10, 20, 30} variables with tree factor graphs being STAR, SNOW and PATH. We

generate 100 univariate or bivariate random queries for each MI problem.

Figure 6.11 shows the cumulative runtime of answering random queries by both solvers. As

expected, MP-WMI takes a fraction of the time of SMI (up to two order of magnitudes) to answer

100 univariate or bivariate queries in all experimental scenarios, since it is able to amortize infer-

ence inter-query. More surprisingly, by looking at the first point of each curve, we can tell that

MP-WMI is even faster than SMI to compute a single query. This is because SMI solves polyno-

mial integration numerically, by reconstructing the univariate polynomials before the numeric

integration via interpolation, e.g., Lagrange interpolation; while in MP-WMI we adopt symbolic

integration. Hence the complexity of the former is always quadratic in the degree of the polyno-

mial, while for the latter the average case is linear in the number of monomials in the polynomial

to integrate, which in practice might be much less than the degree of the polynomial.
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6.3 Discussion

In this chapter, we first introduce a search-based WMI algorithm that exploits structural inde-

pendence properties to improve efficiency. For WMI on SMT(LRA) theories with tree primal

graphs and piecewise polynomial weight functions, it decomposes WMI problems during search.

A complexity analysis showed that for balanced tree primal graphs, it yields quasi-polynomial

complexity. By further theoretically tracing the boundaries of tractable WMI inferece, we intro-

duce another exact WMI solver based on message-passing, MP-WMI, which is efficient on a rich

class of tractable WMI problems with tree-shaped factor graphs, the largest known so far. Fur-

thermore, MP-WMI dramatically reduces the answering time of multiple queries by amortizing

local computations and allows to compute all marginals and moments simultaneously.
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CHAPTER 7

Approximate Inference Over Constraints

Beyond our effort on exactWMI solvers, we advance theWMI framework on two fronts. First, we

deepen the theoretical understanding of the complexity ofWMI inference on real-world problems

by proving hardness results. Second, we deliver an efficient and accurate approximateWMI solver

as a practical algorithmic solution to deploy WMI inference at a larger scale.

7.1 On the hardness of WMI

While the general formulation of WMI we have provided in the previous section is elegant and

appealing for advanced probabilistic reasoning, it is, however, not practical in general. In fact, it

requires solving an arbitrarily complex integral, which is a #P-hard problem [BBD11].

To fill this gap, recent works have started looking for classes of tractable WMI problems, i.e.,

problems for which a solution can be computed exactly in polytime [ZB19, ZMY20a]. These

classes of problems can be characterized by two parameters: the treewidth and the diameter of

the primal graph of the SMT formulas considered, where the latter is generally expressed as a

function of the number of variables in the problem. Note that this is strikingly different from

classical discrete probabilistic graphical models, where most of the complexity results are stated

in terms of the treewidth alone [KF09, Rot96b].

Definition 12. (WMI(Ω, δ, t) Problem Class) LetWMI(Ω, δ, t) be the class of WMI problems

over models of the form (∆,W) on real domains, having primal graph G∆ with diameter ofO(δ(n))

and treewidth t, where n is the number of variables in the formula∆; and having per-literal weights

W in a function family Ω.
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The largest tractable WMI class known so far has been introduced in our previous work

[ZMY20a] as WMI(Ω, log(n), 1), i.e., the class of problems over n real variables whose pri-

mal graph is tree-shaped (treewidth 1) and has diameter of length logarithmic in n, and whose

weight functions belong to a function familyΩ satisfying some conditions called tractable weight

conditions (TWCs).

Definition 13. (TWCs) Given a parametric weight function family Ω, it satisfies the TWCs iff

i) it is closed under product, i.e., ∀f, g ∈ Ω, f · g ∈ Ω;

ii) it is closed under definite integration, i.e., ∀f ∈ Ω, F (u(x)) − F (l(x)) ∈ Ω where F is the

antiderivative of f , and l(x), u(x) are SMT(LRA) integration bounds for any x ∈ X ;

iii) the symbolic antiderivative of any f ∈ Ω can be tractably computed by symbolic integration.

Examples of weight functions in family Ω include the largely adopted family of (piecewise)

polynomials [BPB15], the family of exponentiated linear functions and the family of their prod-

ucts. In the following analysis, we will restrict our attention to weight function families satisfying

the TWCs.

In [ZMY20a] the tractability of problem classWMI(Ω, log(n), 1) is demonstrated by con-

struction, where they introduce a message passing scheme, named MP-WMI, that runs in poly-

time on tree-shaped and diameter-bounded primal graphs. That is, some sufficient conditions for

tractable WMI classes are provided. Here we provide a finer charting of the “tractable islands”

of WMI problems by questioning the necessity of the above conditions while looking for larger

tractable classes. We prove that unless P = NP , larger classes are not tractable. We begin by

proving that increasing the diameter of a tree-shaped problem structure makes it hard.

Theorem 8. Let WMI(Ω, n, 1) be the class of WMI problems whose weight function family Ω

satisfies the TWCs. Then inference inWMI(Ω, n, 1) is #P-hard.

Proof. We prove our complexity result by reducing a #P-complete variant of the subset sum prob-

lem [GJ02] to an MI problem over an SMT(LRA) formula ∆ with tree primal graph whose di-

ameter is n. This problem is a counting version of subset sum problem saying that given a set of
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positive integers S = {s1, s2, · · · , sn}, and a positive integer L, the goal is to count the number

of subsets S ′ ⊆ S such that the sum of all the integers in the subset S ′ equals to L. Notice that

our proof can be applied to rational numbers as well and we assume binary representations for

numbers.

First, we reduce the counting subset sum problem in polynomial time to a model integration

problem by constructing the following SMT(LRA) formula∆ on real variables X whose primal

graph is shown in Figure 7.1:

X1 X2 X3
Xn−1 Xn

s2 s3 sn

s1

Figure 7.1: Primal graph G∆ used for the #P-hardness reduction in Theorem 8. We construct the

corresponding formula ∆ such that G∆ has maximum diameter (it is a chain). We graphically

augment graph G∆ by introducing blue nodes to indicate that integers si in set S are contained

in clauses between two variables.

∆ =



s1 −
1

2n
< x1 < s1 +

1

2n︸ ︷︷ ︸
ℓ(1,0)

∨− 1

2n
< x1 <

1

2n︸ ︷︷ ︸
ℓ(1,1)

xi−1 + si −
1

2n
< xi < xi−1 + si +

1

2n︸ ︷︷ ︸
ℓ(i,0)

∨ xi−1 −
1

2n
< xi < xi−1 +

1

2n︸ ︷︷ ︸
ℓ(i,1)

, i = 2, · · ·n

For brevity, we denote the first and the second literal in the i-th clause by ℓ(i, 0) and ℓ(i, 1)

respectively as shown above. Also We choose two constants l = L− 1
2
and u = L+ 1

2
.

In the following, we prove that nnMI(∆ ∧ (l < Xn < u)) equals to the number of subset

S ′ ⊆ S whose element sum equals to L, which indicates that WMI problem whose tree primal

graph has diameter O(n) is #P-hard.

Let ak = (a1, a2, · · · , ak) be some assignment to Boolean variables (A1, A2, · · · , Ak) with

ai ∈ {0, 1}, i ∈ [k]. Given an assignment ak, we define subset sums to be S(ak) ≜
∑k

i=1 aisi,

and formulas ∆ak ≜
∧k

i=1 ℓ(i, ai).
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Claim9. Themodel integration for formula∆ak with an given assignmentak ∈ {0, 1}k isMI(∆ak) =

( 1
n
)k. Moreover, for each variable Xi in ∆ak , its satisfying assignments consist of the interval

[
∑i

j=1 ajsj−
i
2n
,
∑i

j=1 ajsj+
i
2n
]. Specifically, the satisfying assignments for variableXn in formula

∆an can be denoted by the interval [S(an)− 1
2
, S(an) + 1

2
].

Proof. (Claim 9) First we prove thatMI(∆ak) = ( 1
n
)k. For brevity, denote aisi by ŝi. By definition

of model integration and the fact that the integral is absolutely convergent (since we are integrat-

ing a constant function, i.e., one, over finite volume regions), we have the following equation.

MI(∆ak) =

∫
(x1,··· ,xk)|=∆ak

1 dx1 · · · dxk =

∫ ŝ1+
1
2n

ŝ1− 1
2n

dx1 · · ·
∫ xk−2+ŝk−1+

1
2n

xk−2+ŝk−1− 1
2n

dxk−1

∫ xk−1+ŝk+
1
2n

xk−1+ŝk− 1
2n

1 dxk

Observe that for the most inner integration over variable xk, the integration result is 1
n
. By doing

this iteratively, we have that MI(∆ak) = ( 1
n
)k.

Next we prove that satisfying assignments for variable Xi in formula ∆ak is the interval

[
∑i

j=1 ajsj −
i
2n
,
∑i

j=1 ajsj +
i
2n
] by mathematical induction. For i = 1, since X1 is in interval

[a1s1− 1
2n
, a1s1+

1
2n
], the statement holds in this case. Suppose that the statement holds for i = m,

i.e. variableXm has its satisfying assignments in interval [
∑m

j=1 ajsj−
m
2n
,
∑m

j=1 ajsj+
m
2n
]. Since

variableXm+1 has its satisfying assignments in interval [Xm+am+1sm+1− 1
2n
, Xm+am+1sm+1+

1
2n
], then its satisfying assignments consist interval [

∑m+1
j=1 ajsj − m+1

2n
,
∑m+1

j=1 ajsj +
m+1
2n

], that

is, the statement also holds for i = m+ 1. Thus the claim holds.

The above claim shows how to compute the model integration of formula∆ak . We will show

in the next claim how to compute the model integration of formula ∆an conjoined with a query

l < Xn < u.

Claim 10. For each assignmentan ∈ {0, 1}n, the model integration of formula∆an∧(l < Xn < u)

falls into one of the following cases:

i) If S(an) < L or S(an) > L, it holds that MI(∆an ∧ (l < Xn < u)) = 0.

ii) If S(an) = L, it holds that MI(∆an ∧ (l < Xn < u)) = ( 1
n
)n.
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Proof. (Claim 10) From the previous Claim 9, it is shown that variable Xn has its satisfying as-

signments in interval [S(an)− 1
2
, S(an)+ 1

2
] in formula∆an for each an ∈ {0, 1}n. If S(an) < L,

given that S(an) is a sum of positive integers, then it holds that S(an) + 1
2
≤ (L − 1) + 1

2
=

L − 1
2
= l and therefore, MI(∆an ∧ (l < Xn < u)) = 0; similarly, if S(an) > L, then it holds

that S(an) − 1
2
≥ u and therefore, MI(∆an ∧ (l < Xn < u)) = 0. If S(an) = L, by Claim 9

we have that the satisfying assignment interval is inside the interval [l, u] and thus it holds that

MI(∆an ∧ (l < Xn < u)) = MI(∆an) = ( 1
n
)n.

In the next claim, we show how to compute the model integration of formula∆ as well as for

formula ∆ conjoined with query l < Xn < u based on the already proven Claim 9 and Claim 10.

Claim 11. The following two equations hold:

i) MI(∆) =
∑

an MI(∆an).

ii) MI(∆ ∧ (l < Xn < u)) =
∑

an MI(∆an ∧ (l < Xn < u)).

Proof. (Claim 11) Observe that for each clause in∆, literals are mutually exclusive since each si is

a positive integer. Then we have that formulas ∆an are mutually exclusive and meanwhile ∆ =∨
an ∆an . Thus it holds that MI(∆) =

∑
an MI(∆an). Similarly, we have formulas (∆an ∧ (l <

Xn < u))’s are mutually exclusive andmeanwhile∆∧(l < Xn < u) =
∨

an ∆an∧(l < Xn < u).

Thus the second equation holds.

From the above claims, we can conclude that MI(∆ ∧ (l < Xn < u)) = t( 1
n
)n where t is the

number of assignments an s.t. S(an) = L. Notice that for each an ∈ {0, 1}n, there is a one-to-

one correspondance to a subset S ′ ⊆ S by defining an as ai = 1 if and only if si ∈ S ′; and S(an)

equals to L if and only if the sum of elements in S ′is L. Therefore nnMI(∆ ∧ (l < Xn < u))

equals to the number of subset S ′ ⊆ S whose element sum equals to L. This finishes the proof

for the statement that inference inWMI(Ω, n, 1) is #P-hard.

Next, we turn our attention to another class of WMI problems, the classWMI(Ω, log(n), 2),

having logarithmic diameter but treewidth 2. This class is also supposed to be “easy” in the sense
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X1,1

X2,2

X2,1

∑
s

Xk,1

Xk+1,2

Xk+1,1

∑
s

Xk,n
2

Xk+1,n

Xk+1,n−1

∑
s

s1

s2

sn−1

sn

Figure 7.2: Primal graph used for #P-hardness reduction in Theorem 7. We also put blue nodes to

indicate that integer si’s in set S are contained in some clauses and that model integration over

some cliques is the sum of some si’s.

that it extends the tractable class WMI(Ω, log(n), 1) by slightly increasing the treewidth by

one. Unfortunately, inference inWMI(Ω, log(n), 2) is also hard.

Theorem 12. Let WMI(Ω, log(n), 2) be the class of WMI problems whose parametric weight

function family Ω satisfies the TWCs. Then inference inWMI(Ω, log(n), 2) is #P-hard.

Proof. Again we prove our complexity result by reducing the #P-complete variant of the subset

sum problem [GJ02] to an MI problem over an SMT(LRA) formula ∆ with primal graph whose

diameter is O(logn) and treewidth two. In the #P-complete subset sum problem, we are given a

set of positive integers S = {s1, s2, · · · , sn}, and a positive integer L. Notice that our proof can

be applied to rational numbers as well and we assume binary representations for numbers. The

goal is to count the number of subsets S ′ ⊆ S such that the sum of all the integers in S ′ equals

L.

First, we reduce this problem in polynomial time to a model integration problem with the

following SMT(LRA) formula ∆ where variables are real and u and l are two constants. Its

primal graph is shown in Figure 7.2. Consider n = 2k, n, k ∈ N.
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∆ =
∧
i∈[n]

(− 1

4n
< Xk+1,i <

1

4n
∨ − 1

4n
+ si < Xk+1,i <

1

4n
+ si)

∧
∆t

where ∆t =
∧

j∈[k],i∈[2j ]

− 1

4n
+Xj+1,2i−1 +Xj+1,2i < Xj,i <

1

4n
+Xj+1,2i−1 +Xj+1,2i

For brevity, we denote all the variables by X and denote the literal − 1
4n

< Xk+1,i <
1
4n

by

ℓ(i, 0) and literal − 1
4n

+ si < Xk+1,i < 1
4n

+ si by ℓ(i, 1) respectively. Also We choose two

constants l = L− 1
2
and u = L+ 1

2
. In the following, we prove that (2n)2n−1MI(∆∧ (l < X1,1 <

u)) equals to the number of subset S ′ ⊆ S whose element sum equals to L, which indicates that

model integration problem with primal graph whose diameter is O(logn) and treewidth two is

#P-hard.

Letan = (a1, a2, · · · , an) ∈ {0, 1}n be some assignment to Boolean variables (A1, A2, · · · , An).

Given assignment an, define sum as S(an) ≜
∑n

i=1 aisi, and formula as∆an ≜
∧n

i=1 ℓ(i, ai)∧∆t.

Claim 13. Themodel integration for formula∆an with given an ∈ {0, 1}n isMI(∆an) = ( 1
2n
)2n−1.

Moreover, for each variable Xj,i in formula ∆an , its satisfying assignments consist of the interval

[
∑

l alsl −
2k−j+2−1

4n
,
∑

l alsl +
2k−j+2−1

4n
] where l ∈ {l | Xk+1,l is a descendant of Xj,i}. Specifi-

cally, the satisfying assignments for the root variable X1,1 can be denoted the interval [S(an) −
2n−1
4n

, S(an) + 2n−1
4n

] ⊂ [S(an)− 1
2
, S(an) + 1

2
].

Proof. (Claim 13) First we prove that MI(∆an) = ( 1
2n
)2n−1. For brevity, denote aisi by ŝi. By

definition of model integration and the fact that the integral is absolutely convergent (since we

are integrating a constant function, i.e., one, over finite volume regions), we have the following

MI(∆an) =

∫
x|=∆an

1 dX

=

∫ 1
4n

+ŝn

− 1
4n

+ŝn

dxk+1,n · · ·
∫ 1

4n
+ŝ1

− 1
4n

+ŝ1

dxk+1,1

∫ 1
4n

+xk+1,n−1+xk+1,n

− 1
4n

+xk+1,n−1+xk+1,n

dxk,2k−1 · · ·
∫ 1

4n
+x2,1+x2,2

− 1
4n

+x2,1+x2,2

1 dx1,1 .

Observe that for the most inner integration over variable x1,1, the integration result is 1
2n

.

By doing this iteratively, we have that MI(∆ak) = ( 1
2n
)2n−1 where the 2n − 1 comes from the
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number of variables.

Then we prove that satisfying assignments for variable Xj,i in formula ∆an lie in the inter-

val [
∑

l alsl −
2k−j+2−1

4n
,
∑

l alsl +
2k−j+2−1

4n
] where l ∈ {l | Xk+1,l is a descendant of Xj,i} by

performing mathematical induction in a bottom-up way.

For j = 1, any variable Xk+2−j,i with i ∈ [2k+2−j] has satisfying assignments consisting of

the interval [aisi − 1
4n
, aisi +

1
4n
]. Thus the statement holds for this case.

Suppose that the statement holds for j = m, that is, for any i ∈ [2k+2−m], any variable

Xk+2−m,i has satisfying assignments consisting interval [
∑

l alsl −
2m−1
4n

,
∑

l alsl +
2m−1
4n

] where

l ∈ {l | Xk+1,l is a descendant of Xk+2−m,i}.

Then for j = m+1 and any i ∈ [2k+1−m], the variableXk+1−m,i has two descendants, variable

Xk+2−m,2i−1 and variable Xk+2−m,2i. Moreover, we have that − 1
4n

+Xk+2−m,2i−1 +Xk+2−m,2i <

Xk+1−m,i <
1
4n

+ Xk+2−m,2i−1 + Xk+2−m,2i. Then the lower bound of the interval for variable

Xk+1−m,i is− 1
4n
+
∑

l alsl−22m−1
4n

=
∑

l alsl−
2m+1−1

4n
; similarly the upper bound of the interval

is
∑

l alsl +
2m+1−1

4n
, where l ∈ {l | Xk+1,l is a descendant of Xk+1−m,i}. That is, the statement

also holds for j = m+ 1 which finishes our proof.

The above claim shows what the model integration of formula ∆ak is like. We’ll show in the

next claim what the model integration of formula ∆an conjoined with a query l < X1,1 < u is

like.

Claim 14. For each assignments an ∈ {0, 1}n, the model integration of∆an ∧ (l < X1,1 < u) falls

into one of the following cases:

i) If S(an) < L or S(an) > L, then MI(∆an ∧ (l < X1,1 < u)) = 0.

ii) If S(an) = L, then MI(∆an ∧ (l < X1,1 < u)) = ( 1
2n
)2n−1.

Proof. (Claim 14) From previous Claim 13, it is shown that variableX1,1 has its satisfying assign-

ments in the interval [S(an)− 2n−1
4n

, S(an) + 2n−1
4n

] in formula ∆an for each an ∈ {0, 1}n.

If S(an) < L, given that S(an) is a sum of positive integers, then it holds that S(an) + 1
2
≤
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(L−1)+ 2n−1
4n

< L− 1
2
= l and therefore,MI(∆an∧(l < X1,1 < u)) = 0; similarly, if S(an) > L,

then it holds that S(an) − 1
2
> u and therefore, MI(∆an ∧ (l < X1,1 < u)) = 0. If S(an) = L,

then by Claim 13 we have that the satisfying assignment interval is inside the interval [l, u] and

thus it holds that MI(∆an ∧ (l < X1,1 < u)) = MI(∆an) = ( 1
2n
)2n−1.

Claim 15. The following two equations hold:

i) MI(∆) =
∑

an MI(∆an).

ii) MI(∆ ∧ (l < X1,1 < u)) =
∑

an MI(∆an ∧ (l < X1,1 < u)).

Proof. (Claim 15) Observe that for each pair of literals ℓ(i, 0) and ℓ(i, 1), i ∈ [n], literals are mu-

tually exclusive since each si is a positive integer. Then we have that formulas ∆an are mutually

exclusive and meanwhile formula ∆ =
∨

an ∆an . Thus it holds that MI(∆) =
∑

an MI(∆an).

Similarly, we have formulas (∆an ∧ (l < X1,1 < u))’s are mutually exclusive and meanwhile

∆ ∧ (l < X1,1 < u) =
∨

an ∆an ∧ (l < X1,1 < u). Thus the second equation holds.

From the above claims, we can conclude that MI(∆∧ (l < X1,1 < u)) = t( 1
2n
)2n−1 where t is

the number of assignmentsan s.t. S(an) = L. Notice that for eachan ∈ {0, 1}n, there is a one-to-

one correspondence to a subset S ′ ⊆ S by defining an as ai = 1 if and only if si ∈ S ′; and S(an)

equals toL if and only if the sum of elements inS ′ isL. Therefore (2n)2n−1MI(∆∧(l < X1,1 < u))

equals to the number of subset S ′ ⊆ S whose element sum equals to L. This finishes the proof

for the statement that inference inWMI(Ω, log(n), 2) is #P-hard.

Note that our result differs from the one presented in [ZMY20a] for the hardness of the class

2WMI(Ω), containing WMI problems with SMT formulas being conjunctions of clauses com-

prising at most two variables. In fact,WMI(Ω, log(n), 2) is contained in 2WMI(Ω). As such,

we trace the tractablity boundaries of WMI inference with higher precision, as the next corol-

lary states. Its proof follows from Theorems 8 and 12 and from the sufficiency as demonstrated

in [ZMY20a].
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Corollary 3. LetWMI(Ω, log(n), t) be the class of WMI problems whose parametric weight func-

tion family Ω satisfies the TWCs. ThenWMI(Ω, log(n), t) is a tractable WMI class for inference

if-and-only-if treewidth t = 1.

These complexity results set the standard for the solver complexity: every exact WMI solver

that aims to be efficient, needs to operate in the regime of Corollary 3. However, real-world

problems do not always conform to the structural desiderata for primal graphs stated in it. This

implies that efficient approximations might not only be useful in these scenarios, but needed.

In the next section we fill this gap, by introducing our approximate WMI solver that navigates

the tractable islands in WMI problems by performing efficient inference on a relaxed version of

intractable WMI problems.

7.2 ReCoin: Approximate WMI Solver

Our algorithm to approximate WMI inference comprises three phases: i) RElaxing an intractable

WMI model into a simpler one amenable to exact inference by removing dependencies from it;

then ii) introduce certain literals and weights to COmpensate for the dependency structure lost

in this way and iii) optimize them by solving a series of exact INtegration problems. We name it

ReCoIn. With ReCoIn we can navigate a spectrum of approximations — with the original primal

graph G∆ on one end, and a fully disconnected version on the other — by removing more and

more edges. As such, ReCoIn can be viewed as extending the relax-compensate-recover (RCR)

framework [CD06, CD10, CD12] for approximate inference on discrete probabilistic models to

continuous representations and in presence of algebraic constraints.

7.2.1 Relaxation: introducing and then “breaking” equivalence constraints

The aim of the relaxation step is to obtain a new SMT formula∆rel such that its associated primal

graph G∆rel , serves as the simplification of the original G∆ by removing a given set of edges.

We will show that the removal of any edge can be formulated as the removal of an equivalence

edge [CD12]. This process consists of two steps. First, we create an augmented formula ∆aug by
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introducing new variables to∆ and enforcing them to act as copies of certain original variables by

explicitly adding equivalence constraints. Second, we deliver the relaxed G∆rel by removing these

equivalence constraints.

7.2.1.1 Augmentation.

The detailed process of distilling a new augmented model (∆aug,Waug) from (∆,W), given a

subset of edges Ed ⊆ E in G∆ to remove, is listed in Algorithm 9. At its core, there are routines

for copying one variable and adding the corresponding equivalence constraints and compensating

literals. For each edge Xi − Xj ∈ Ed to be removed, one of its variables is arbitrarily selected,

say Xi. Then a variable Xc
i , as a copy of the chosen Xi, is introduced in ∆aug as well as one

equivalence constraint between the two as the literal ℓ̂ : (Xc
i = Xi) with associated weight

function δ(Xi, X
c
i )where δ is the Dirac delta function. Then we properly rename all occurrences

of Xi by Xc
i in the literals appearing in the clauses of ∆aug that also contain Xj and introduce

copied literals for the univariate clauses over Xi only. These steps cause the primal graph G∆aug

to now contain the dependency Xi −Xc
i −Xj but not Xi −Xj .

Note that the augmented WMI model (∆aug,Waug) now contains more variables than the

original one. Specifically, for each variableXi ∈ G∆ wemight have introducedCi different copies

in G∆aug , denoted as X1
i , . . . , X

Ci
i , if we removed Ci edges over Xi. We will denote the original

Xi as X0
i for notation consistency. Even if the dimensionality of the augmented WMI problem

is increased by augmentation, the next propositions are guaranteeing that we are not altering

the partition function and the marginal distributions of Pr∆, and that introducing equivalence

constraints does not alter the induced distribution.

Proposition 28. Let ∆ be an SMT formula with primal graph G∆ and per-literal weight functions

W , and let ∆aug andWaug be the output of Algorithm 9 when applied to ∆ and G∆ given a certain

subset of edges in G∆. Then it holds that WMI(∆,W) = WMI(∆aug,Waug). Moreover, for any Xi

in G∆ and univariate literal ℓ over Xi, it holds that Pr∆(ℓ) = Pr∆aug(ℓ).
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Algorithm 9 augmentModel(∆,W ,Ed)
Input: a WMI model with SMT formula ∆ and per-literal weightsW and a set Ed of edges to be

deleted

Output: augmented WMI model (∆aug,Waug) and equivalence constraint set L

1: ∆aug ← copy(∆)

2: Waug ← copy(W)

3: L ← {}

4: for edge Xi −Xj ∈ Ed do

5: Xc
i ← copy(Xi) // Assume to copy Xi

6: ℓ̂← (Xi = Xc
i )

7: L ← L ∪ {ℓ̂}

8: ∆′ ← ∆aug ∧ ℓ̂,

9: wℓ̂ := δ(Xi, X
c
i )

10: Waug ←Waug ∪ {wℓ̂}

11: for clause Γ ∈ ∆i,j do // Rename edges

12: Γ′ ← Γ{Xi : X
c
i }

13: ∆′ ← ∆′{Γ : Γ′}

14: for each literal ℓ ∈ Γ do

15: ℓ′ ← ℓ{Xi : X
c
i }

16: wℓ′ ← copy(wℓ)

17: Waug ←Waug ∪ {wℓ′} \ {wℓ}

18: for clause Γ ∈ ∆i do // Copy and rename bounding-box literals

19: Γ′ ← copy(Γ)

20: ∆′ ← ∆′ ∧ Γ′{Xi : X
c
i }

21: ∆aug ← ∆′

22: return ∆aug,Waug,L
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Algorithm 10 relaxModel(∆aug,Waug,L)
Input: an augmented WMI model (∆aug,Waug), L: equivalence constraints to be relaxed

Output: a relaxed WMI model (∆rel,W rel), and its “remaining-part” model (∆rem,W rem).

1: ∆rem ← >

2: W rem ← {}

3: ∆rel ← copy(∆aug)

4: W rel ← copy(Waug)

5: for each ℓ∗ : (Xi = Xc
i ) ∈ L do

6: for clause Γ ∈ ∆i do

7: ∆rem ← ∆rem ∧ Γ ∧ Γ{Xi : X
c
i }

8: for each literal ℓ ∈ Γ do

9: ℓ′ ← ℓ{Xi : X
c
i }

10: wℓ′ ← copy(wℓ)

11: W rel ←W rel ∪ {wℓ′}

12: W rem ←W rem ∪ {wℓ, wℓ′}

13: ∆rel ← ∆rel{ℓ∗ : >} // disconnect Xi and copy Xc
i

14: W rel ←W rel \ {wℓ∗}

15: ∆rem ← ∆rem ∧ ℓ∗

16: W rem ←W rem ∪ {wℓ∗}

17: return (∆rel,W rel), (∆rem,W rem)

7.2.1.2 Removing equivalence constraints.

Given an augmented model (∆aug,Waug), we remove equivalence constraints introduced at the

augmentation step to obtain the relaxed model (∆rel,W rel). As a result, each original variable

in G∆rel will be detached from its copies, thus ignoring the dependencies encoded by the edges

Ed that were marked to be removed. Algorithm 10 details this procedure. Note that relaxation

“breaks” the augmented formula∆aug into a relaxed part∆rel and a “remaining part”∆rem, which
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contains the equivalence constraints just removed.

7.2.1.3 Which edges to relax?

After relaxing enough constraints, we can obtain a WMI problem amenable to exact inference,

for example, one whose primal graph G∆rel has treewidth one and logarithmic diameter. Running

an exact WMI solver on such a problem would already deliver a cheap way to perform approx-

imate inference. However, the quality of such an approximation can be greatly improved if we

compensate for the relaxed constraints. We will discuss this in the next section.

A question remains: how to select the set of edges Ed to relax? Note that the more edges we re-

move from∆, the easier it is to perform inference on∆rel given fewer dependencies, but the lower

the approximation quality, and the harder to compensate for them all, since it would differ from

the augmented model more, and meanwhile from the original model as Proposition 28 indicates.

For example, removing all edges inG∆ will yield a fully disconnectedG∆rel where performing exact

inference on each component is going to be embarrassingly parallelizable. This would correpond

to perform a loopy version of the MP-WMI algorithm. Analogous to its discrete counterpart,

loopy belief propagation, it would be susceptible to poor converge rates [KF09, CD06]. Therefore

we propose a simple strategy for selecting the edges to be removed, which is to retrieve a span-

ning tree of the original primal graph. In Section 7.3 we demonstrate its practical effectiveness

on a range of inference problems of increasing complexity. Devising and evaluating alternative

relaxing strategies is an interesting topic for future work.

7.2.1.4 Compensation

The aim of the compensation phase is to recover the relaxed equivalence constraints and hence,

make the distribution Pr∆rel better approximate Pr∆aug and thus better approximate Pr∆ as Propo-

sition 28 suggests. In order to do so, we introduce new literals, named compensating literals, to

the variables and their copies in the relaxed formula ∆rel and equip them with parameterized

weights, named compensating weights, and further we optimize them in order to synchronize the

variable marginals among a copied variable and its copies.
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For each variable Xi = X0
i and its Ci copies X1

i , . . . , X
Ci
i in formula ∆rel, we generate K

different univariate literals of the form ℓci,k : (X
(c)
i ≤ σi,k · τi,k) for k = 1, . . . , K and c =

0, 1, . . . , Ci where each σi,k and τi,k are respectively drawn at uniform from {+1,−1} and the

support of Xi as encoded in ∆rel
i . Note that the σi,k, τi,k are shared across all the copies. Each

compensating literal ℓci,k is therefore responsible for a portion of the support of the marginal

distribution of Xc
i , and also for the (unnormalized) marginal density of Xc

i by equipping it with

a parameterized weight wℓci,k
.

To retain tractable inference, the parametric function family chosen for each wℓci,k
should

satisfy the TWCs as discussed in section 7.1. Striving for simplicity, we employ constant weights

of the form wℓci,k
:= exp(θci,k). Therefore, our induced marginal density takes the form of a

piecewise constant approximation. As such, by increasing the number of compensating literals

K one could obtain a finer approximation, however at the price of introducing more parameters

to optimize for. We empirically investigate the effect of increasing K in our experiments in

section 7.3.

7.2.1.5 Iterative integration

Instead of matching marginal density functions we settle for the weaker condition of matching

the marginal probabilities of the newly introduced compensating literals. This in turn can be stated

by the following set of equivalence constraints for each variable Xi:

Pr∆rem

(∧Ci

c=0
ℓck,i
)
= Pr∆rel

(
ℓ0k,i
)
= Pr∆rel

(
ℓ1k,i
)
= · · · = Pr∆rel

(
ℓCi
k,i

)
, for k = 1, · · · , K. (7.1)

where the first term Pr∆rem

(∧Ci

j=0 ℓck,i
)
is the probability of the compensating literals in the re-

maining WMI model (∆rem,W rem) and Pr∆rel

(
ℓck,i
)
are the probabilities of compensating literals

in the relaxed formula ∆rel. Intuitively, for a single equivalence constraint that has been relaxed,

there exists a set of parameters θ for the compensating weights that exactly match the proba-

bilities in Equation 7.1 and hence guarantee exact marginal recovery [CD06]. The next theorem

better formalizes it.
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Algorithm 11 ReCoIn (∆,W , K)
Input: a WMI model (∆,W), K number of compensating literals

Output: (∆rel,W rel): a relaxed and compensated WMI model

1: Ed ← initStrategy(∆,W) // Select edges to remove

2: ∆aug,Waug,L ← augmentModel(∆,W ,Ed)

3: (∆rel,W rel), (∆rem,W rem)← relaxModel(∆aug,Waug,L)

4: ∆rel,W rel ← addingCompensations(∆rel,W rel,L, K)

5: while not converged do

6: for Xi ∈ copiedNodes(∆rel) do

7: for k = 1, . . . , K do

8: rk ←WMI(∆rem,W rem) / WMI(∆rem ∧
∧Ci

c=0 ℓck,i,W rem)− 1

9: for c = 0, 1, . . . , Ci do

10: θ
c,(t+1)
k,i ← log(rkαk,σ(c))− log(1− αk,σ(c))−

∑
c′ ̸=c θ

c,(t)
k,i

11: Return (∆rel,W rel)
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Theorem 16. Suppose that a relaxed model (∆rel,W rel) and a remaining model (∆rem,W rem) are

obtained by relaxing a single equivalence constraint (Xi = Xc
i ) from an augmented model ∆aug,

and that the primal graph of ∆rel is split into two disconnected components by the relaxation. Let

(ℓi,k, ℓ
c
i,k) for k = 1, . . . , K be the K pairs of compensating literals introduced, and θk,i, θ

c
k,i, for

k = 1, . . . , K , be the parameters attached to the compensating weights. Then Equation 7.1 holds

when the compensating weight parameters satisfy the following equalities.

θk,i = log rkαk,c

1− αk,c

− θck,i, θck,i = log rkαk

1− αk

− θk,i for k = 1, . . . , K

where

rk =
WMI(∆rem

∧
¬ℓk,i

∧
¬ℓck,i,W rem)

WMI(∆rem
∧

ℓk,i
∧

ℓck,i,W rem)
, αk = Pr∆rel(ℓi,k), αk,c = Pr∆rel(ℓci,k), for k = 1, . . . , K.

Theorem 16 suggests an iterative optimization scheme to find the fixed point solutions for

all the compensating parameters introduced to compensate multiple relaxed equivalence con-

straints. Specifically, starting from a random initialization of the parameters of the compensating

weights,1 at each iteration t+ 1, we can update each parameter θc,(t+1)
k,i as

θ
c,(t+1)
k,i ← log(rkαk,π(c))− log(1− αk,π(c))−

∑
c′ ̸=c

θ
c′,(t)
k,i , (7.2)

where π is a permutation over the copies and each αk,π(c) is computed as the probability of

ℓ
π(c)
k,i according to the relaxed model.

Therefore, at each iteration t, we need to solve 2K integration problems for computing the rk

terms andCi·K integrations for Pr∆rel(ℓ
π(c)
k,i ) for each pair of variable and its copies. While in prin-

ciple we could use any exact WMI solver to solve these problems, we adopt MP-WMI [ZMY20a]

because it is the fastest solver yet for tree-shaped and bounded diameter problems, and evenmore

importantly, it allows to amortize inference across queries. That is, we can compute all the Ci ·K

literal probabilities in a single message-passing step with it.

1Following [CD10], we initialize all parameters to 1.
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Figure 7.3: Average integrated absolute errors (left) and times in seconds (right) for 5 problems

of increasing size (n, x-axis) for ReCoIn and competitors. Number of compensating literals (2-4)

or samples used are in parentheses. Mean values per problem size are connected by a line.

From this perspective, our algorithm ReCoIn generates a sequence of induced distributions

Pr(1)
∆rel , . . . , Pr

(2)

∆rel ,Pr
(t)

∆rel , that should converge to a fixed-point distribution. In practice to check for

convergence, one can monitor the quality of the literal probability approximations and stop when

a threshold ϵ is met before a certain number of iterations are done. We choose the threshold to be

the maximum L-∞ norm of compensation literal probability differences. To ease convergence,

we apply dampening, that is, we smooth each parameter update at iteration t + 1 by a factor

λ > 0: θc,(t+1)
k,i ← (1 − λ) · θc,(t+1)

k,i + λ · θc,(t+1)
k,i . This completes the steps in our ReCoIn solver.

Algorithm 11 recaps them.

7.3 Empirical Evaluation

We aim to answer the following questions: (Q1) how fast and scalable is ReCoIn?, (Q2) how ac-

curate are its approximations?, (Q3) what is the effect of increasing the number of compensating

literals K?

We generate WMI problems whose primal graphs are random Watts-Strogatz graphs [WS98]

with increasing size n = 1, . . . , 11, with two additional neighbor connections and probability of

rewiring 0.5, to which we attach randomly generated clauses of length 2 and piecewise constant

densities. For each setting we generate 5 independent problems.
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We run ReCoIn for up to 20 iterations, employing a dampening coefficient λ = 0.5 in two

settings that differ by the number of compensating literals K = 2, 4. We compare it against the

fastest sampling scheme available, the rejection sampler (REJ) implemented in [KMZ19] and the

hybrid solver XSDD(Sampling) [ZKD19] employing sophisticated knowledge-compilation [DM02]

techniques [KMS18] to guide sampling. For both REJ and XSDDwe employ 100 thousand samples

per query.

To compare the quality of approximations for a problem, we compute for a modelM the

mean integral absolute error (IAE) as 1
|X |
∑|X |

i=1

∑B
j=1 |PrG(Xi ∈ bj) − PrM(Xi ∈ bj)| where we

partition the support for each marginal i = 1, . . . , n intoB equal-widths bins bj for j = 1, . . . , B

and compare the probability PrM according to model M against the ground truth PrG, which

we compute using PA [MPS17]. We employ PA as it is so far the most reliable general-purpose

exact WMI solver [ZMY20a]. Note that as such REJ and XSDD are bounded to solve |X | · B

independent WMI problems, while ReCoIn can naturally amortize |X | · B queries after a single

run of optimization (cf. Section 7.2.1.5). We impose a timeout of 1 hour.

Figure 7.3 reports the IAEs and running times (in seconds) for all problems, settings and com-

petitors. Concerning Q1 and Q2, ReCoIn is the best performer overall. The naive sampling

strategy in REJ, while being the fastest as expected, cannot exploit the structure in the problem

and clearly suffers from the curse of dimensionality. Conversely, XSDD can deliver accurate ap-

proximations thanks to compiling the problem structure, but on highly loopy graphs compilation

cannot scale beyond n = 5. On the other hand, ReCoIn gracefully scales to larger problem sizes

andmultiple queries, and delivers very low IAE scores that are close to the best by XSDD on small

problem sizes. Note that while ReCoIn can solve much larger problems within our timeout, we

could not retrieve a ground truth for them with PA in reasonable time (more than 24 hours per

problem).

Concerning Q3, more compensating literals (K = 4) are achieving marginally lower IAEs

at the expense of linearly increasing running times. Exploring the time-accuracy trade-off by

increasing K or employing different relaxation strategies is an interesting avenue to investigate
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in the future. All in all, this empirical evidence candidates ReCoIn as one of the best general-

purpose approximate WMI solvers in the current landscape of WMI solvers.

7.4 Discussion

In this chapter, we advance the WMI framework by tracing the theoretical requirements for

tractable WMI inference with the highest precision so far. We introduced ReCoIn as the first

solver that by exploiting our tractability insights can reliably scale approximate inference on

general WMI problems. We believe these two contributions can help strengthen our theoretical

understanding on the challenges and guarantees around approximate hybrid probabilistic infer-

ence and at the same time propel the construction of more efficient and scalable WMI solvers.
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CHAPTER 8

WMI for Uncertainty Quantification

This chapter shows an application of WMI in quantifying uncertainty. Uncertainty estimation

is crucial for decision making. Deep learning models, including those in safety-critical domains,

tend to estimate uncertainty poorly. To overcome this issue, Bayesian deep learning obtains

a posterior distribution over the model parameters hoping to improve predictions and provide

reliable uncertainty estimates. Among Bayesian inference procedures with neural networks,

Bayesian model averaging (BMA) is particularly compelling [Was00, FBL18, MIG19]. However,

computing BMAs is distinctly challenging since it involves marginalizing over posterior parame-

ters, which possess some unusual topological properties such as mode-connectivity [IVH21]. We

show that even with simple low-dimensional approximate parameter posteriors as uniform dis-

tributions, doing BMA requires integrating over highly non-convex andmulti-modal distributions

with discontinuities arising from non-linear activations (cf. Figure 8.1a). Accurately approximat-

ing the BMA can achieve significant performance gains [IVH21]. Existing methods mainly focus

on general-purpose MCMC, which can fail to converge, or provides inaccurate few-sample pre-

dictions [KEH22], because running longer sampling chains is computationally expensive, and

variational approaches that typically use a mean-field approximation that ignores correlations

induced by activations [JLB22].

In this work, we are interested in developing collapsed samplers, also known as cutset or

Rao-Blackwellised samplers for BMA. A collapsed sampler improves over classical particle-based

methods by limiting sampling to a subset of variables and further pairing each sample with a

closed-form representation of a conditional distribution over the rest whose marginalization is
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often tractable. Collapsed samplers are effective at variance reduction in graphical models [KF09],

however no collapsed samplers are known for Bayesian deep learning. We believe that this is due

to the lack of a closed-form marginalization technique congruous with the non-linearity in deep

neural networks. Our aim is to overcome this issue and improve BMA estimation by incorporat-

ing exact marginalization over (close approximate) conditional distributions into the inference

scheme. Nevertheless, scalability and efficiency are guaranteed by the sampling part of our pro-

posed algorithm.

Marginalization is made possible by our observation that BMA reduces to weighted volume

computation. Certain classes of such problems can be solved exactly by so-called weighted model

integration (WMI) solvers [BPB15]. By closely approximating BMA with WMI, these solvers can

provide accurate approximations to marginalization in BMA (cf. Figure 8.1b). With this obser-

vation, we propose CibeR, a collapsed sampler that uses WMI for computing conditional dis-

tributions. In the few-sample setting, CibeR delivers more accurate uncertainty estimates than

the gold-standard Hamiltonian Monte Carlo (HMC) method (cf. Figure 8.2). We further evalu-

ate the effectiveness of CibeR on regression and classification benchmarks and show significant

improvements over other Bayesian deep learning approaches in terms of both uncertainty esti-

mation and accuracy.

8.1 Bayesian Model Averaging as Weighted Volume Computation

In Bayesian Neural Networks (BNN), given a neural network fw parameterized by weights w,

instead of doing inference with deterministic w that optimize objectives such as cross-entropy

or mean squared error, Bayesian learning infers a posterior p(w | D) over parameters w after

observing data D. During inference, this posterior distribution is then marginalized to produce

final predictions. This process is called BayesianModel Averaging (BMA). It can be seen as learning

an ensemble of an infinite number of neural nets and aggregating their results. Formally, given

input x, the posterior predictive distribution and the expected prediction for a regression task are

p(y | x) =
∫

p(y | x,w) p(w | D) dw, and Ep(y|x)[y] =

∫
y p(y | x) dy. (8.1)
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(a) p(y | x,w) being Gaussian. See Example 10.
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(b) p(y | x,w) being triangular. See Section 8.2.

Figure 8.1: The integral surface of (a) the expected prediction in BMA, and (b) our proposed ap-

proximation. Both are highly non-convex and multi-modal. The z-axis is the weighted prediction

y p(y | x,w) p(w | D). Integration of (a) does not admit a closed-form solution, yet integration

of (b) is a close approximation that can be solved exactly and efficiently by WMI solvers.

For classification, the (most likely) prediction is the class argmaxy p(y | x). BMA is intuitively at-

tractive because it can be risky to base inference on a single neural network model. Themarginal-

ization in BMA gets around this issue by averaging over models according to a Bayesian posterior.

BMA requires approximations to compute posterior predictive distributions and expected pre-

dictions, as the integrals in Equation 8.1 are intractable in general. Deriving efficient and accu-

rate approximations remains an active research topic [IVH21]. We approach this problem by

observing that the marginalization in BMA with ReLU neural networks can be cast as weighted

volume computation (WVC). Later we show that it can be generalized to any neural network

when combined with sampling. In WVC, various tools exist for solving certain WVC problem

classes [BBD14, KMZ19, ZMY20b]. This section reveals the connection between BMA and WVC.

It opens up a new perspective for developing BMA approximations by leveraging WVC tools.

Definition 14 (WVC). A weighted volume computation (WVC) problem is defined by a pair (�, ϕ)

where a region � is a conjunction of arithmetic constraints and weight ϕ : �→ R is an integrable

function assigning weights to elements in �. The task ofWVC is to compute the integral
∫� ϕ(x) dx.
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Figure 8.2: Uncertainty estimates for regression. The red line is the ground truth. The dark blue

line shows the predictive mean. The shaded region is the 90% confidence interval of the predictive

distribution. For the same number of samples, (b) CibeR is closer than (a) small-sample HMC to

(c) a highly accurate but slow HMC with a large number of samples.

8.1.1 A Warm-Up Example

Consider a simple yet relevant setting where the predictive distribution p(y | x,w) is a Dirac

delta distribution with zero mass everywhere except at fw(x), such that
∫
y p(y | x,w) dy =

fw(x).

Example 9. Assume a model fw(x) = ReLU(w · x) with a uniform posterior over the parameter:

p(w | D) = 1
6
with w ∈ [−3, 3]. Let the input be x = 1. For parameter w ∈ [−3, 0], the model

fw always predicts 0, and otherwise (i.e., w ∈ (0, 3]), it predicts w. Thus, the expected prediction

(Equation 8.1) is Ep(y|x)[y] =
∫�⊥

0 · 1
6
dw +

∫�⊤
w · 1

6
dw. That is, a summation of two WVC

problems (�⊥, 0) and (�⊤, w/6) with �⊥ = (−3 ≤ w ≤ 0) and �⊤ = (0 ≤ w ≤ 3). The BMA

integral decomposes into WVC problems with different weights due to the ReLU activation.

These WVC problems have easy closed-form solutions. This is no longer the case in the fol-

lowing.

Example 10. Assume a model fw(x) and posterior distribution p(w | D) as in Example 9. Let the

predictive distribution p(y | x,w) be a Gaussian distribution pN (y; fw(x), 1) with mean fw(x)

and variance 1. Given input x = 1, the expected prediction (Equation 8.1) is

Ep(y|x=1)[y] =

∫
�⊥

y · pN (y | 0, 1) · 1
6
dy dw +

∫
�⊤

y · pN (y | w, 1) · 1
6
dy dw.
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It is a summation of two WVC problems with �⊥ = (−3 ≤ w ≤ 0) ∧ (y ∈ R) and �⊤ = (0 ≤

w ≤ 3) ∧ (y ∈ R), whose joint integral surface is shown in Figure 8.1a.

These WVC problems do not admit closed-form solutions since they involve truncated Gaus-

sian distributions. Moreover, Figure 8.1a shows that computing BMA, even in such a low-dimensional

parameter space, requires integration over non-convex and multi-modal functions.

8.1.2 General Reduction of BMA to WVC

Let model fw be a ReLU neural net. Denote the set of inputs to its ReLU activations by R =

{ri}Ri=1, where each ri is a linear combination of weights. For a given input x, the parameter

space is partitioned by whether each ReLU activation outputs zero or not. This gives the WVC

reduction

p(y | x) =
∑

B∈{0,1}R

∫
�B

p(y | x,w) p(w | D) dw,

where B is a binary vector. The region �B is defined as ∧Ri=1ℓi where arithmetic constraint ℓi
is ri ≥ 0 if Bi = 1 and ri ≤ 0 otherwise. The expected prediction Ep(y|x)[y] is analogous but

includes an additional factor and variable of integration y in each WVC problem.

This general reduction, however, is undesirable since it amounts to a brute-force enumeration

that implies a complexity exponential in the number of ReLU activations. Moreover, not all WVC

problems resulting from this reduction are amenable to existing solvers. We will therefore appeal

to a framework calledweightedmodel integration (WMI) that allows for a compact representation

of these WVC problems, and a characterization of their tractability for WMI solvers [KMZ19].

This inspires us to approximate BMA by first reducing it to WVC problems and further closely

approximating those with tractable WMI problems.

8.2 Approximating BMA by WMI

WMI is a modeling and inference framework that supports integration in the presence of logical

and arithmetic constraints [BPB15, BBP15b]. Various WMI solvers have been proposed in recent
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years [KMZ19], ranging from general-purpose ones to others that assume some problem struc-

tures to gain scalability. However, even with the reduction from BMA to WVC from the previous

section, WMI solvers are not directly applicable. Existing solvers have two main limitations:

(i) feasible regions need to be defined by Boolean combinations of linear arithmetic constraints,

and (ii) weight functions need to be polynomials. In this section, we show that these issues can

be bypassed using a motivating example of how to form a close approximation to BMA using

WMI.

InWMI, the feasible region is defined by satisfiabilitymodulo theories (SMT) constraints [BMR10]:

an SMT formula is a (typically quantifier-free) expression containing both propositional and the-

ory literals connected with logical connectives; the theory literals are often restricted to linear

real arithmetic, where literals are of the form (cTX ≤ b) with variable X and constants cT and b.

Example 11. The ReLU model fw(x) of Example 9 can be encoded as an SMT formula (see box).

∆ReLU =


W · x > 0⇒ Z = W · x

W · x ≤ 0⇒ Z = 0

The curly bracket denotes logical conjunction, the symbol⇒ is a logical implication, variable W

is the weight, and variable Z denotes the model output.

The encoding of ReLU neural networks into SMT formulas is explored in existing work to

enable verification of the behavior of neural networks and provide formal guarantees [KBD17,

HKW17, SFM20]. We propose to use this encoding to define the feasible region ofWMI problems.

Let x |= ∆ denote the satisfaction of an SMT formula ∆ by an assignment x, and Jx |= ∆K be its

corresponding indicator function. We formally introduce WMI next.

Definition 15. (WMI) LetX be a set of continuous random variables. A weighted model integration

problem is a pairM = (∆,Φ), where ∆ is an SMT formula over X and Φ is a set of per-literal
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weights defined as Φ = {ϕℓ}ℓ∈L, where L is a set of SMT literals and each ϕℓ is a function defined

over variables in literal ℓ. The task of weighted model integration is to compute

WMI(∆,Φ) =

∫
x|=∆

∏
ℓ∈L

ϕℓ(x)
Jx|=ℓK dx.

That is, the task is to integrate over the weighted assignments of X that satisfy the SMT

formula ∆.1

An approximation to the BMA of Example 10 can be achieved with WMI using the following

four steps:

Step 1. Encoding model fw(x). This has been shown as the SMT formula ∆ReLU in Exam-

ple 11.

Step 2. Encoding posterior distribution p(w | D). Theuniform distribution p(w | D) = 1
6

with w ∈ [−3, 3] can be encoded as a WMI problem pair (∆pos,Φpos) as follows:

∆pos = −3 ≤ W ≤ 3 Φpos =

{
ϕℓ(W ) =

1

6
with ℓ = true

}
Step 3. Approximate encoding of predictive distribution p(y | w, x). Recall that p(y |

w, x) = pN (y; fw(x), 1) is Gaussian, which cannot be handled by existing WMI solvers. To

approximate it with polynomial densities, we simply use a triangular distribution encoded as a

WMI problem pair:

∆pred =


Y ≤ Z + α

Y ≥ Z − α

Φpred =


ϕℓ1(Y, Z) =

1−Y+Z
α

with ℓ1 = Y ≥ Z

ϕℓ2(Y, Z) =
1+Y−Z

α
with ℓ2 = Y < Z


In this encoding, α is a constant that defines the shape of the triangular distribution. It is ob-

tained by minimizing the L2 distance between a standard normal distribution and the symmetric

triangular distribution. We visualize this approximation in Figure 8.3.

1In this chapter, since we only work with WMI problems over continuous variables, we ignore the discrete ones
in the definition for succinctness.

143



3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

p(
x)

Gaussian
Triangular

Figure 8.3: Approximating the Gaussian distribution with a triangluar distribution.

Step 4. Approximating BMA by calling WMI solvers. With the above encodings, the

predictive posterior p(y | x) (Equation 8.1) can be computed using two calls to a WMI solver. For

example, the uncertainty of a prediction y = 1 for input x = 1 is

p(y = 1 | x = 1) = WMI(∆ ∧ (Y = 1),Φ) / WMI(∆,Φ) = 0.164 / 1,

where∆ = ∆ReLU∧∆pos∧∆pred andΦ = Φpos∪Φpred. Similarly, the expected predictionEp(y|x=1)[y]

(Equation 8.1) can be computed using two calls to a WMI solver:

Ep(y|x=1)[y] = WMI(∆,Φ∗) / WMI(∆,Φ) = 0.752 / 1,

where Φ∗ = Φ ∪ {ϕℓ(Y ) = Y with ℓ = true}. The above formulations also work for unnor-

malized distributions since theWMI in the denominator serves to compute the partition function.

We visualize the integral surface of the resulting approximate BMA problem in Figure 8.1b.

It is very close to the integral surface of the original BMA problem in Figure 8.1a. However,

it can be exactly integrated using existing WMI solvers while the original one does not admit

such solutions. Next, we show how this process can be generalized to a scalable and accurate

approximation of BMA.

8.3 CibeR: Collapsed Inference for Bayesian Deep Learning via WMI

Given a BNN with a large number of weights, naively approximating it by WMI problems can

lead to computational issues, since it involves doing integration over polytopes in arbitrarily high
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dimensions and this is known to be #P-hard [Val79, DDK12, ZMY20b]. Further, weights involved

with non-ReLU activation might not be amenable to the WMI encoding. To tackle these issues,

we propose to use collapsed samples to combine the strengths from two worlds: the scalability

and flexibility from sampling and the accuracy from WMI solvers.

Definition 16. (Collapsed BMA) Let (Ws,Wc) be a partition of parametersW . A collapsed sample

is a tuple (ws, q), wherews is an assignment to the sampled parametersWs and q is a representation

of the conditional posterior p(Wc | ws,D) over the collapsed parameter set Wc. Given collapsed

samples S , collapsed BMA estimates the predictive posterior and expected prediction as

p(y | x) ≈ 1

|S|
∑

(ws,q)∈S

[∫
p(y | x,w) q(wc) dwc

]
, and

Ep(y|x)[y] ≈
1

|S|
∑

(ws,q)∈S

[∫
y p(y | x,w) q(wc) dwc dy

]
.

(8.2)

The size of the collapsed setWc determines the trade-off between scalability and accuracy. The

more parameters in the collapsed set, the more accurate the approximation to BMA is. The fewer

parameters inWc, the more efficient the computations of the integrals are since the integration

is performed in a lower-dimensional space. Later in our experiments, we choose a subset of

weights at the last or second-to-last hidden layer of the neural networks to be the collapsed set.

This choice is known to be effective in capturing uncertainty as shown in [KHH20, SRS15].

To develop an algorithm to compute collapsed BMA,we are facedwith twomain design choice

questions: (Q1) how to sample ws from the posterior? (Q2) what should be the representation

of the conditional posterior q such that the integrals in Equation 8.2 can be computed exactly?

Next, we provide our answers to these two questions that together give our proposed algorithm

CibeR.

8.3.1 Approximation to Posteriors

For (Q1), we follow [MIG19] and sample from the stochastic gradient descent (SGD) trajectory

after convergence and use the information contained in SGD trajectories to efficiently approxi-
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mate the posterior distribution over the parameters of the neural network, leveraging the inter-

pretation of SGD as approximate Bayesian inference [MHB17, CLT20]. Given a set of parameter

samples W from the SGD trajectory, the sample set is defined as Ws = {ws | w ∈ W}. For

each assignment ws, an approximation q(Wc) to the conditional posterior p(Wc | ws,D) is nec-

essary since the posteriors induced by SGD trajectories are implicit. Next, we discuss the choice

of approximation to the conditional posterior that is amenable to WMI.

8.3.2 Encoding into WMI Problems

As shown in Section 8.2, if a BNN can be encoded as a WMI problem, the posterior predictive dis-

tribution and the expected prediction, which involve marginalization over the parameter space,

can be computed exactly using WMI solvers. This inspires us to use the WMI framework as the

closed-form representation for the conditional posteriors of parameters. The main challenge is

how to approximate the integrand in Equation 8.2 using an SMT formula and a polynomial weight

function in order to obtain a WMI problem amenable to existing solvers.

For the conditional posterior approximation q(Wc), we choose it to be a uniform distribution

that can be encoded into a WMI problem asMpos = (∆pos,Φpos) with the SMT formula being

∆pos = ∧i∈c (li ≤ Wi ≤ ui) and weights being Φpos = {ϕℓ(Wc) = 1 | ℓ = true}, where li

and ui are domain lower and upper bounds for the uniform distribution respectively. While

seemingly over-simplistic, this choice of approximation to the conditional posterior is sufficient to

robustly deliver surprisingly strong empirical performance as shown in Section 8.4. The intuition

is that uniform distributions are better than a few samples. We further illustrate this point by

comparing the predictive distributions of CibeR and HMC in a few-sample setting. Figure 8.2

shows that even with the same 10 samples drawn from the posterior distribution, since CibeR

further approximates the 10 sampleswith a uniform distribution, it yields a predictive distribution

closer to the ground truth than HMC, indicating that using a uniform distribution instead of a

few samples forms a better approximation.

For the choice of predictive distribution p(y | x,w), we propose to use piecewise polynomial
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densities. Common predictive distributions can be approximated by polynomials up to arbitrary

precision in theory by the Stone–Weierstrass theorem [De 59]. For regression, the de facto choice

is Gaussian andwe propose to use triangular distribution as the approximation, i.e., p(y | x,w) =

1
r
− 1

r2
|y − fw(x)|, with domain |y − fw(x)| ≤ r, and r := α

√
σ2(x) where the constant α

parameterizes the triangular distribution as described in Section 8.2. Here, σ2(x) is the variance

estimate, which can be a function of input x depending on whether the BNN is homoscedastic

or heteroscedastic. Then p(y | x,w) can be encoded into WMI as:

∆pred =


Y − fw(x) ≤ r

Y − fw(x) ≥ −r
Φpred =


ϕℓ1(Y,Wc) =

1
r
− Y−fw(x)

r2
with ℓ1 = (Y > fw(x))

ϕℓ2(Y,Wc) =
1
r
− fw(x)−Y

r2
with ℓ2 = (fw(x) > Y )


Similar piecewise polynomial approximations are adopted for classification tasks when the pre-

dictive distributions are induced by softmax functions.

8.3.3 Exact Integration in Collapsed BMA

By encoding the collapsed BMA into WMI problems, we are ready to answer (Q2), i.e., how to

perform exact computation of the integrals shown in Equation 8.2.

Proposition 29. Let the SMT formula ∆ = ∆ReLU ∧ ∆pos ∧ ∆pred, and the set of weights Φ =

Φpos∪Φpred as defined in Section 8.3.2. Let the set of weightsΦ∗ = Φ∪{ϕℓ(Y ) = Y with ℓ = true}.

The integrals in collapsed BMA (Equation 8.2) can be computed by WMI solvers as∫
p(y | x,w) q(wc) dwc = WMI(∆ ∧ (Y = y),Φ) / WMI(∆,Φ), and∫

y p(y | x,w) q(wc) dwc dy = WMI(∆,Φ∗) / WMI(∆,Φ).

With both questions (Q1) and (Q2) answered, we summarize our proposed algorithm CibeR

in Algorithm 12. To quantitatively analyze how close the approximation delivered by CibeR is to

the ground-truth BMA, we consider the following experiments with closed-form BMA.

Regression. We consider a Bayesian linear regression setting where exact sampling from

the posterior distribution is available. Both the likelihood and the weight posterior are Gaussian
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Algorithm 12 CIBER
Input: input x, sampled weightsW , neural network model fw, prediction ground truth y∗

Ouput: predictions and likelihoods

1: Choose a partition (Ws,Wc) for network parameters

2: Derive approximate posterior q(wc) from sampled weights {wc | w ∈ W} // cf. Sec-

tion 8.3.2

3: Encode posterior q(wc) into WMI problemMpos = (∆pos,Φpos) // cf. Section 8.3.2

4: Y ← ∅, P ← ∅ // Initialization

5: for sample ws in {ws | w ∈ W} do

6: Encode neural network model fReLU parameterized by (ws,Wc) into an SMT formula∆fw

7: Encode predictive p(Y | x,ws,Wc) into a WMI problemMpred = (∆pred,Φpred)

8: SMT formula ∆← ∆ReLU ∧∆pos ∧∆pred

9: Weights Φ← Φpos ∪ Φpred

10: Weights Φ∗ ← Φ ∪ {ϕℓ(Y ) = Y with ℓ = true}

11: Add prediction y = WMI(∆,Φ∗)/WMI(∆,Φ) to prediction set Y // cf. Section 8.3.3

12: Add likelihood p = WMI(∆ ∧ (Y = y∗),Φ)/WMI(∆,Φ) to set P // cf. Section 8.3.3

13: return y = Mean(Y), p(y∗ | x) = Mean(P)

such that the ground-truth posterior predictive distribution is Gaussian as well. With samples

drawn from the weight posterior, CibeR approximates the samples with a uniform distribution

as posterior p(w|D) and further approximates the likelihood with a triangular distribution such

that the integral p(y|x,D) =
∫
p(y|x,w)p(w|D) dw can be computed exactly by WMI.

Wefirst evaluate the posterior predictive distribution estimated byCibeR andMonte Carlo (MC)

method, using the same five samples drawn from the weight posterior. Results averaged over 10

trials are shown in Figure 8.4 where the estimations by CibeR are much closer to the ground truth

posterior predictive distribution than those by the MC method. Further, the averaged KL diver-

gence between the ground truth and CibeR is 0.069 while the one for MC estimations is 0.130,
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Figure 8.5: KL divergence in Bayesian linear regression. The x-axis shows the number of samples

the MC method uses for estimations, ranging from 50 to 150. The blue curve shows the MC

method, and the green dashed curve shows CibeR using 50 samples.

again indicating that CibeR yields a better BMA approximation in the few-sample setting.

We further explore the question of how many samples the MC method needs to match the

performance of CibeR. The performances of both approaches are evaluated using KL divergence

between the ground-truth posterior distribution and the estimated one, averaged over 10 trials.

The result is shown in Figure 8.5 where the dashed green line shows the performance of CibeR

with 50 samples and the blue curve shows the performance of MC with an increasing number

of samples. As expected, the MC method yields lower KL divergence as the number of samples

increases; however, it takes more than 100 samples to match CibeR, indicating its low sample
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efficiency and that developing efficient and effective inference algorithms such as CibeR for es-

timating BMA is a meaningful question.

Classification. For analyzing classification performance, [KEH22] propose to compute the

integral I =
∫
σ(f∗)pN (f∗) df∗ with σ being the sigmoid function and f∗ = f(x∗;w) that

amounts to the posterior predictive distribution. We consider a simple case with f(x;w) = w ·x

such that the ground-truth integral can be obtained. With a randomly chosenx, the ground-truth

integral is I = 0.823. The integral estimated by CibeR is IC = 0.826 while the MC estimate is

IMC = 0.732. That is, CibeR gives an estimate with a much lower error than the MC estimation

error, indicating that CibeR is able to deliver high-quality approximations in classification tasks.

Related Work

Bayesian Deep Learning. Bayesian inference over deep neural networks [Mac92] is proposed

to fix the issue that deep learning models give poor uncertainty estimations and suffer from

overconfidence [NYC15, HAB19, MTP23, MTS21]. Some methods use samples from SGD trajec-

tories to approximate the implicit true posteriors similar to us: [IMK20] (SI) proposes to per-

form Bayesian inference in a subspace of the parameter space spanned by a few vectors de-

rived from principal component analysis (PCA+ESS(SI)) or variational inference (PCA+VI(SI));

SWAG [MIG19] proposes to approximate the full parameter space using an approximate Gaus-

sian posterior whose mean and covariance are from a partial SGD trajectory with a modified

learning rate scheduler.

Some other approaches using approximate posteriors include MC Dropout (MCD) [GG15,

GG16] which is one of the Bayesian dropout methods and recently, one of its modifications called

Variational Structured Dropout (VSD) [NNN21] using variational inference is proposed. Other

state-of-the-art approximate BNN inference methods including deterministic variational infer-

ence (DVI) [WNM19], deep Gaussian processes (DGP) [BHH16] with Gaussian process layers

and variational inference (VI) [KW13]. Closely related to DGP is the deep kernel process [AYO21]

that writes DGPs as deep Wishart processes.
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WMI Solvers. WMI generalizes weighted model counting (WMC) [SBK05], a state-of-the-

art inference approach in many discrete probabilistic models, from discrete to mixed discrete-

continuous domains [BPB15, BBP15b]. Recent research onWMI includes its tractability [ZMY20b,

ZMY21a, ACD20] and the advancements inWMI solver development. Existing exactWMI solvers

for arbitrarily structured problems include DPLL-based search with numerical [BPB15, MPS17,

MPS19] or symbolic integration [SOG16] and compilation-based algorithms [KMS18, ZDD19,

DHD20] that use extended algebraic decision diagrams (XADDs) [SDD12] as a compilation tar-

get which is a powerful tool for inference on mixed domains [SA12, ZSF12]. Some exact WMI

solvers aiming to improve efficiency for a certain class of models are proposed such as SMI [ZB19]

and MP-WMI [ZMY20a] which are greatly scalable for WMI problems that satisfy certain struc-

tural constraints. Approximate solvers are also proposed including sampling-based ones [Zui20]

and relaxation-based ones [ZMY20b, ZMY20c]. Recent WMI efforts converge in the pywmi li-

brary [KMZ19]. The SMT formulas considered in this work can be seen as distributional con-

straints on continuous domains. There is also plenty of work in neuro-symbolic AI explor-

ing the integration of discrete constraints into neural networks models including the architec-

tures [ATC22a, AZN23c] and the loss [XZF18, AWC22, ALT22].

8.4 Empirical Evaluation

We conduct experimental evaluations of our proposed approach CibeR 1 on regression and classi-

fication benchmarks and compare its performance on uncertainty estimation as well as prediction

accuracy with a wide range of baseline methods.

8.4.1 Regression on Small and Large UCI Datasets

We experiment on 5 small UCI datasets: boston, concrete, yacht, naval and energy. We follow

the setup of [IMK20] and use a fully connected network with a single hidden layer and 50 units

with ReLU activations. We further experiment on 6 large UCI datasets: elevators, keggdirected,

1Code and experiments are available at https://github.com/UCLA-StarAI/CIBER.
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Table 8.1: Average test log likelihood for the small UCI regression task.

Boston ConcRete Yacht Naval EneRgy

CibeR (second) -2.471 ± 0.140 -2.975 ± 0.102 -0.678 ± 0.301 7.276 ± 0.532 -0.716 ± 0.211

CibeR (last) -2.471 ± 0.140 -2.959 ± 0.109 -0.687 ± 0.301 7.482 ± 0.188 -0.716 ± 0.211

SWAG -2.761 ± 0.132 -3.013 ± 0.086 -0.404 ± 0.418 6.708 ± 0.105 -1.679 ± 1.488

PCA+ESS (SI) -2.719 ± 0.132 -3.007 ± 0.086 -0.225 ± 0.400 6.541 ± 0.095 -1.563 ± 1.243

PCA+VI (SI) -2.716 ± 0.133 -2.994 ± 0.095 -0.396 ± 0.419 6.708 ± 0.105 -1.715 ± 1.588

SGD -2.752 ± 0.132 -3.178 ± 0.198 -0.418 ± 0.426 6.567 ± 0.185 -1.736 ± 1.613

DVI -2.410 ± 0.020 -3.060 ± 0.010 -0.470 ± 0.030 6.290 ± 0.040 -1.010 ± 0.060

DGP -2.330 ± 0.060 -3.130 ± 0.030 -1.390 ± 0.140 3.600 ± 0.330 -1.320 ± 0.030

VI -2.430 ± 0.030 -3.040 ± 0.020 -1.680 ± 0.040 5.870 ± 0.290 -2.380 ± 0.020

MCD -2.400 ± 0.040 -2.970 ± 0.020 -1.380 ± 0.010 4.760 ± 0.010 -1.720 ± 0.010

VSD -2.350 ± 0.050 -2.970 ± 0.020 -1.140 ± 0.020 4.830 ± 0.010 -1.060 ± 0.010
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Table 8.2: Average test RMSE for the small UCI regression task.

Boston ConcRete Yacht Naval EneRgy

CibeR (second) 3.488 ± 1.123 4.880 ± 0.506 0.828 ± 0.241 0.000 ± 0.000 0.447 ± 0.081

CibeR (last) 3.478 ± 1.128 4.854 ± 0.503 0.752 ± 0.294 0.000 ± 0.000 0.447 ± 0.081

SWAG 3.517 ± 0.981 5.233 ± 0.417 0.973 ± 0.375 0.001 ± 0.000 1.594 ± 0.273

PCA+ESS (SI) 3.453 ± 0.953 5.194 ± 0.448 0.972 ± 0.375 0.001 ± 0.000 1.598 ± 0.274

PCA+VI (SI) 3.457 ± 0.951 5.142 ± 0.418 0.973 ± 0.375 0.001 ± 0.000 1.587 ± 0.272

SGD 3.504 ± 0.975 5.194 ± 0.446 0.973 ± 0.374 0.001 ± 0.000 1.602 ± 0.275

MCD 2.830 ± 0.170 4.930 ± 0.140 0.720 ± 0.050 0.000 ± 0.000 1.080 ± 0.030

VSD 2.640 ± 0.170 4.720 ± 0.110 0.690 ± 0.060 0.000 ± 0.000 0.470 ± 0.010

keggundirected, pol, protein and skillcraft. We use a feedforward network with five hidden layers

of sizes [1000, 1000, 500, 50, 2] and ReLU activations on all datasets except skillcraft. For skillcraft,

a smaller architecture is adoptedwith four hidden layers of size [1000, 500, 50, 2]. All models have

two outputs for the prediction and the heteroscedastic variance respectively.

We run CibeR with two different ways of choosing the collapsed parameter set: CibeR (last)

chooses all the weights at the last layer to be the collapsed set; CibeR (second) chooses three

out of all the weights at the second-to-last layer to be the collapsed set. The heuristic we use for

choosing the weights is to look into the sampled weights from SGD trajectories to see which ones

have the greatest variance. The intuition is that a greater variance indicates that the weight is

prone to have greater uncertainty and thus one might want to perform a more accurate inference

over it.

Baselines. We compare CibeR to the state-of-the-art approximate BNN inference methods.

We separate these methods into two categories: those sampling from SGD trajectories as approx-

imate posteriors, which includes SWAG [MIG19], PCA+ESS (SI) and PCA+VI (SI) [IMK20], vs.
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Table 8.3: Average test log likelihood for the large UCI regression task.

ElevatoRs KeggD KeggU PRotein SKillcRaft Pol

CibeR (second) -0.378 ± 0.026 1.245 ± 0.090 1.125 ± 0.269 -0.720 ± 0.036 -1.003 ± 0.035 2.555 ± 0.115

CibeR (last) -0.371 ± 0.023 1.178 ± 0.088 0.964 ± 0.231 -0.720 ± 0.036 -1.001 ± 0.032 2.506 ± 0.150

SWAG -0.374 ± 0.021 1.080 ± 0.035 0.749 ± 0.029 -0.700 ± 0.051 -1.180 ± 0.033 1.533 ± 1.084

PCA+ESS (SI) -0.351 ± 0.030 1.074 ± 0.034 0.752 ± 0.025 -0.734 ± 0.063 -1.181 ± 0.033 -0.185 ± 2.779

PCA+VI (SI) -0.325 ± 0.019 1.085 ± 0.031 0.757 ± 0.028 -0.712 ± 0.057 -1.179 ± 0.033 1.764 ± 0.271

SGD -0.538 ± 0.108 1.012 ± 0.154 0.602 ± 0.224 -0.854 ± 0.085 -1.162 ± 0.032 1.073 ± 0.858

ORthVGP -0.448 1.022 0.701 -0.914 — 0.159

NL -0.698 ± 0.039 0.935 ± 0.265 0.670 ± 0.038 -0.884 ± 0.025 -1.002 ± 0.050 -2.840 ± 0.226

those who do not, which includes the SGD baseline, deterministic variational inference baseline

(DVI) [WNM19], Deep Gaussian Processes (DGP) [BHH16], variational inference (VI) [KW13],

MC Dropout (MCD) [GG15, GG16], and variational structured dropout (VSD) [NNN21]. These

methods achieved state-of-the-art performance on the small UCI datasets. We also compare to

baselines Bayesian final layers (NL) [RTS18], deep kernel learning (DKL) [WHS16], orthogonally

decoupled variational GPs (OrthVGP) [SCB18] and Fastfood approximate kernels (FF) [YWS15],

which have achieved state-of-the-art performance on the large UCI datasets.

Results. We present the test log likelihoods for small UCI datasets in Table 8.1 and those

for large UCI datasets in Table 8.3. In both tables, the first block summarizes SGD-trajectory

sampling-based approaches and the second summarizes the rest. Underlined results are the best

among all and bold results are the best among SGD-trajectory sampling-based approaches. From

the results, our CibeR has substantially better performance than all others on three out of the

five small UCI datasets four out of six large UCI datasets, with comparable performance on the

rest, demonstrating that CibeR provides accurate uncertainty estimation. We also present the test

rooted-mean-squared error results, where CibeR outperforms all other SGD-trajectory sampling-

based baselines on four out of five small UCI datasets and four out of six large UCI datasets; it
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Table 8.4: Average test RMSE for the large UCI regression task.

ElevatoRs KeggD KeggU PRotein SKillcRaft Pol

CibeR (second) 0.088 ± 0.002 0.142 ± 0.074 0.115 ± 0.007 0.438 ± 0.009 0.251 ± 0.010 2.212 ± 0.230

CibeR (last) 0.088 ± 0.002 0.142 ± 0.072 0.118 ± 0.012 0.438 ± 0.009 0.251 ± 0.010 2.199 ± 0.182

SWAG 0.088 ± 0.001 0.129 ± 0.029 0.160 ± 0.043 0.415 ± 0.018 0.293 ± 0.015 3.110 ± 0.070

PCA+ESS (SI) 0.089 ± 0.002 0.129 ± 0.028 0.160 ± 0.043 0.425 ± 0.017 0.293 ± 0.015 3.755 ± 6.107

PCA+VI (SI) 0.088 ± 0.001 0.128 ± 0.028 0.160 ± 0.043 0.418 ± 0.021 0.293 ± 0.015 2.499 ± 0.684

SGD 0.103 ± 0.035 0.132 ± 0.017 0.186 ± 0.034 0.436 ± 0.011 0.288 ± 0.014 3.900 ± 6.003

NL 0.101 ± 0.002 0.134 ± 0.036 0.120 ± 0.003 0.447 ± 0.012 0.253 ± 0.011 4.380 ± 0.853

DKL 0.084 ± 0.020 0.100 ± 0.010 0.110 ± 0.000 0.460 ± 0.010 0.250 ± 0.000 6.617

ORthVGP 0.095 0.120 0.117 0.461 — 4.300 ± 0.200

FF 0.089 ± 0.002 0.120 ± 0.000 0.120 ± 0.000 0.470 ± 0.010 0.250 ± 0.020 —

outperforms all baselines on two small UCI datasets and one large UCI datasets and has compa-

rable performance on the rest. This further illustrates that exact marginalization over conditional

approximate posteriors enabled by WMI solvers achieves accurate estimation of the true BMA

and boosts predictive performance.

8.4.2 Image Classification

CIFAR datasets. We experiment with two image datasets: CIFAR-10 and CIFAR-100 [KH09b]

and evaluate the test performance using three metrics: 1) negative log likelihood (NLL) that re-

flects the quality of both uncertainty estimation and prediction accuracy, 2) classification accu-

racy (ACC), and 3) expected calibration errors (ECE) [NCH15] that show the difference between

predictive confidence and accuracy and should be close to zero for a well-calibrated approach.

We run CibeR by choosing the collapsed parameter set to be 10weights and 100weights at the

last layer of the neural network models for CIFAR-10 and CIFAR-100 respectively. The weights

are chosen using the same heuristic as the one for regression tasks, i.e., to choose the weights
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Table 8.5: Average test performance for image classification tasks on CIFAR-10 and CIFAR-100.

MetRic NLL ACC ECE

Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

CIBER 0.1927 ± 0.0029 0.9193 ± 0.0027 93.64 ± 0.09 74.71 ± 0.18 0.0130 ± 0.0011 0.0168 ± 0.0025

SWAG 0.2503 ± 0.0081 1.2785 ± 0.0031 93.59 ± 0.14 73.85 ± 0.25 0.0391 ± 0.0020 0.1535 ± 0.0015

SGD 0.3285 ± 0.0139 1.7308 ± 0.0137 93.17 ± 0.14 73.15 ± 0.11 0.0483 ± 0.0022 0.1870 ± 0.0014

SWA 0.2621 ± 0.0104 1.2780 ± 0.0051 93.61 ± 0.11 74.30 ± 0.22 0.0408 ± 0.0019 0.1514 ± 0.0032

SGLD 0.2001 ± 0.0059 0.9699 ± 0.0057 93.55 ± 0.15 74.02 ± 0.30 0.0082 ± 0.0012 0.0424 ± 0.0029

KFAC 0.2252 ± 0.0032 1.1915 ± 0.0199 92.65 ± 0.20 72.38 ± 0.23 0.0094 ± 0.0005 0.0778 ± 0.0054

Table 8.6: Average test performance for image transfer learning tasks.

MetRic NLL ACC ECE

Model VGG-16 PReResNet-164 VGG-16 PReResNet-164 VGG-16 PReResNet-164

CIBER 0.9869 ± 0.0102 0.9684 ± 0.0075 72.56 ± 0.23 75.70 ± 0.17 0.0925 ± 0.0028 0.0704 ± 0.0031

SWAG 1.3425 ± 0.0015 1.3842 ± 0.0122 72.30 ± 0.11 76.30 ± 0.06 0.1988 ± 0.0028 0.1668 ± 0.0006

SGD 1.6528 ± 0.0390 1.4790 ± 0.0000 72.42 ± 0.07 75.56 ± 0.00 0.2149 ± 0.0027 0.1758 ± 0.0000

SWA 1.3993 ± 0.0502 1.3552 ± 0.0000 71.92 ± 0.01 76.02 ± 0.00 0.2082 ± 0.0056 0.1739 ± 0.0000

whose samples from the SGD trajectories have large variances. We compare CibeR with strong

baselines including SWAG [MIG19] reproduced by their open-source implementation, standard

SGD, SWA [IPG18], SGLD [WT11] and KFAC [RBB18].

Transfer fromCIFAR-10 to STL-10. We further consider a transfer learning task using the

model trained on CIFAR-10 to be evaluated on dataset STL-10 [CNL11]. STL-10 shares nine out

of ten classes with the CIFAR-10 dataset but has a different image distribution. It is a common

benchmark in transfer learning to adapt models trained on CIFAR-10 to STL-10.

Results. We present the test classification performance on dataset CIFAR-10 and CIFAR-100
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in Table 8.5 and that of transfer learning in Table 8.6. The neural network models used in the

classification task are VGG-16 networks and the models used in the transfer learning task are

VGG-16 and PreResNet-164. With the same number of samples as SWAG, CibeR outperforms

SWAG and other baselines in most evaluations and delivers comparable performance otherwise,

demonstrating the effectiveness of using collapsed samples in improving uncertainty estimation

as well as classification performance.

8.5 Discussion

We reveal the connection between BMA, a way to perform Bayesian deep learning and WVC,

which inspires us to approximate BMA using the framework of WMI. To further make this ap-

proximation scalable and flexible, we combine it with collapsed samples which gives our algo-

rithm CibeR. CibeR compares favorably to Bayesian deep learning baselines on regression and

classification tasks. A future direction would be to explore what other layers can be expressed as

SMT formulas and thus amenable to SMT encoding. Also, the current WMI solvers are limited to

polynomial weights, and thus the reduction to WMI problems is applicable to piecewise polyno-

mial weights. This limitation might be alleviated in the future by the development of new WMI

solvers that allow various weight function families.
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CHAPTER 9

Conclusion

Nowadays people have realized that there is a limit to what AI models can do without symbolic

representations. Neurosymbolic AI is considered as the third wave of AI development, following

the earlier waves dominated by symbolic AI and deep learning, and is a promising way to build

next-generation AI models. This thesis summarize my research on tackling the fundamental

challenges in neurosymbolic learning and reasoning to advance the field. These approaches are

applied to build AI models that behave as intended to achieve trustworthiness.

For neurosymbolic learning, a key insight in our work is that constraint probability lies at

the center of the differentiable learning under constraints–not only enabling the development of

gradient estimators achieving lower bias and variances compared to state-of-the-art estimators

but also aiding in deriving probabilistically sound training objectives. Our estimator is effective in

latent space regularization for deep generative models and explainability for learning to explain

tasks. It leads to direct follow-up work extending it to learning graph structure in a task-adaptive

way for graph neural networks, the de facto standard models for geometry-heavy applications.

Further, these techniques are extended to derive a unified framework for count-based weakly-

supervised learning tasks.

At the core of scaling neurosymbolic models lies the development of efficient reasoning algo-

rithms for highly expressive models. For the reasoning part, we focus on probabilistic reasoning

over arithmetic constraints that arise in scenarios such as stochastic neural networks with piece-

wise linear activation functions. We use the the expressive WMI framework that allows such

reasoning, enabling the modeling of structured, complex, and noisy data. Still, its expressiveness
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comes at a cost: building reasoning algorithms forWMI problems is highly challenging. I develop

a series of techniques to perform both exact and approximate inference, and further scale to large

problems. The development of WMI solvers remains an open challenge and it will benefit tons of

applications given its expressiveness in representing domain knowledge.

In summary, neurosymbolic AI plays a pivotal role in advancing the trustworthiness of AI

by ensuring transparency, consistency, and reliability in decision-making processes, making it a

critical research field for the sustainable development of AI technologies.
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