
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Learning Graph Structures in Task-Oriented Dialogue Systems

Permalink
https://escholarship.org/uc/item/4c22t3xn

Author
Wu, Jie

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4c22t3xn
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Learning Graph Structures in Task-Oriented Dialogue Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Jie Wu

Dissertation Committee:
Professor Ian G. Harris, Chair

Professor Jean-Luc Gaudiot
Professor Chen-Yu (Phillip) Sheu

2021

© 2021 Jie Wu

DEDICATION

To my mom, Kunying Guo, for her endless encouragement and support
To my wife, Jiwei Deng, and my daughter, Olivia, for their love

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Statement . 4
1.3 Thesis Outline . 5

2 Background and Related Work 8
2.1 Task-Oriented Dialogue Systems . 8

2.1.1 Spoken Language Understanding . 9
2.1.2 Dialogue State Tracking . 12
2.1.3 Dialogue Management . 13
2.1.4 Natural Language Generation . 13
2.1.5 End-to-End Dialogue Systems . 14

2.2 Sequence Learning with Recurrent Networks 16
2.2.1 Recurrent Neural Networks . 16
2.2.2 Long Short-Term Memory . 18
2.2.3 Encoder-Decoder Models . 19

2.3 Graph Convolutional Networks . 21
2.3.1 GCNs for Undirected Graphs . 21
2.3.2 Graph Convolution LSTM . 22

3 Spoken Language Understanding with Augmented Memory Networks 23
3.1 Introduction . 24
3.2 Proposed Model . 26

3.2.1 Self-Attentive Encoder . 28
3.2.2 Slot Decoder . 28

iii

3.2.3 Intent Detection Decoder . 31
3.2.4 Memory Access Operation . 33
3.2.5 Joint Training . 35

3.3 Experimental Setup . 36
3.3.1 Datasets . 36
3.3.2 Training Details . 37
3.3.3 Automatic Evaluation Metrics . 37
3.3.4 Baselines . 38

3.4 Experimental Results and Analysis . 39
3.4.1 Experimental Results . 39
3.4.2 Analysis . 40

3.5 Conclusions . 43

4 Graph-to-Sequence Learning Framework 44
4.1 Introduction . 45
4.2 Graph-to-Sequence . 47

4.2.1 Model Overview . 47
4.2.2 Spectral Graph Convolutions . 48
4.2.3 Graph Convolutional LSTM Encoder 49
4.2.4 SLU Decoder . 54
4.2.5 Joint Training . 55

4.3 Experimental Setup . 56
4.3.1 Datasets . 56
4.3.2 Training Details . 56
4.3.3 Baselines . 57

4.4 Experimental Results . 58
4.4.1 Automatic Evaluation Results . 58
4.4.2 Ablation Study . 59
4.4.3 Dialogue Dependency Graph vs N-gram Context Graph 61
4.4.4 Joint Model vs Separate Model . 62

4.5 Conclusions . 63

5 GraphMemDialogue: Learning End-to-End Dialogues 64
5.1 Introduction . 65
5.2 Graph Memory Networks . 68
5.3 Graph Memory Dialogue . 68

5.3.1 Model Overview . 69
5.3.2 Context Graph Encoder . 69
5.3.3 Knowledge Encoder . 72
5.3.4 Response Decoder . 76
5.3.5 Joint Training . 78

5.4 Experimental Setup . 79
5.4.1 Datasets . 79
5.4.2 Training Details . 80
5.4.3 Baselines . 80

iv

5.4.4 Automatic Evaluation Metrics . 81
5.5 Experimental Results . 82

5.5.1 Automatic Evaluation Results . 82
5.5.2 Ablation Study . 84
5.5.3 Comparison with Conventional GCNs 85
5.5.4 Error Analysis . 85

5.6 Conclusion . 86

6 Conclusion and Future Work 87
6.1 Conclusions . 88
6.2 Future Work . 90

6.2.1 Joint pre-training of Language Models and Knowledge Bases 90
6.2.2 Transfer Reinforce Learning of Graph-structured Dialogue Policies . . 91

Bibliography 92

v

LIST OF FIGURES

Page

2.1 The major components of the modularized task-oriented dialogue systems. . 9
2.2 A diagram of a RNN. Compressed version on the left, unfold version on the

right. 17
2.3 The encoder-decoder architecture. 19

3.1 Framework of the proposed model . 27
3.2 Intent detection with gated memory . 32
3.3 SLU performance on different hyper-parameters in key-value memory networks 42
3.4 Key memory attention visualization from the ATIS dataset 43

4.1 Graph-to-Sequence model for joint intent detection and slot filling. 48
4.2 An example of our dialogue utterance graph 50
4.3 SLU performance on various time steps. 61

5.1 Graph Memory Dialogue Architecture. 70

vi

LIST OF TABLES

Page

1.1 Dialogue examples for chit-chat and task-oriented dialogue systems. 2

2.1 An example utterance annotated with its intent and semantic slots (IOB for-
mat). 10

3.1 SLU Performance comparison on ATIS and Snips datasets (%). The improved
results are written in bold. 40

3.2 Feature ablation study on our proposed model on ATIS and Snips datasets (%) 41

4.1 SLU Performance evaluation results on ATIS and Snips datasets (%). 58
4.2 Feature ablation study on our proposed model on ATIS and Snips datasets (%). 60
4.3 Performance comparison of dialogue dependency graph and n-gram context

graph on ATIS (%). 62
4.4 Performance comparison of dialogue dependency graph and n-gram context

graph on Snips (%). 62
4.5 Comparison between our joint model and separate models (%). 62

5.1 A dialogue example with KB information on In-Car Assistant dataset in the
navigation domain. 66

5.2 Performance evaluation results on CamRest, In-Car Assistant, and Multi-
WOZ 2.1 datasets. 82

5.3 Responses generated by GraphMemDialog and some baseline models on In-
Car Assistant dataset. The gold entities in each response are highlighted in
bold. 83

5.4 Ablation results of GraphMemDialog on CamRest, In-Car Assistant, and
Multi-WOZ 2.1 datasets. 84

5.5 Performance comparison of GraphMemDialog with representative GCNs. . . 85
5.6 Categorized error types in our GraphMemDialogue. 86

vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Ian G. Harris for his
guidance, and support throughout my Ph.D. study. He has been encouraging me to explore
this fascinating field, natural language processing, guiding me to overcome various difficulties
in my research and inspiring me to come up with novel ideas. I have learnt from Professor
Harris not only the academic knowledge, but also his working philosophy, being down-to-
earth and hard-working. I still remembered that he arduously reviewed my paper over the
weekend in order to make a hard deadline. Without his patience and encouragement hardly
can I complete this work. I can’t describe enough how thankful I am for his support over
the years.

I own my sincere gratitude to Professor Nader Bagherzadeh, for leading me to the Depart-
ment of Electrical Engineering and Computer Science at the University of California, Irvine.
It has been a wonderful experience to have my Ph.D. study in UC Irvine. I also would like to
acknowledge Professor Jean-Luc Gaudiot and Professor Chen-Yu (Phillip) Sheu for serving
as my doctoral committee members. They take their valuable time to join my Ph.D. exams
and defense for showing their great support and providing their insightful feedback.

I am deeply grateful to my outstanding colleague and collaborators for their insightful con-
tribution and feedback to my research work. I would like to extend my gratitude to Professor
Hongzhi Zhao at the Beijing Jiaotong University for his collaboration in a variety of projects.
I am also thankful to my co-worker Dr. Min Soo Kim for his great help.

My graduate work and this thesis have been supported by Qualcomm, Microsoft and Sales-
force. Their great employee tuition assistance program helps full-time employees like me to
complete my Ph.D. degree and I feel grateful and proud to work for these companies.

viii

VITA

Jie Wu

EDUCATION

Doctor of Philosophy in Computer Engineering 2021
University of California, Irvine Irvine, California

Master of Science in Electrical Engineering 2009
Michigan Technological University Houghton, Michigan

RESEARCH EXPERIENCE

Graduate Research Assistant 2014–2021
University of California, Irvine Irvine, California

PROFESSIONAL EXPERIENCE

Lead Software Engineer 2019–Current
Salesforce Kirkland, Washington

Senior Software Engineer 2016–2019
Microsoft Redmond, Washington

Senior Software Engineer 2012–2016
Qualcomm San Deigo, Californina

ix

PUBLICATIONS

Jie Wu, Ian G. Harris, Hongzhi Zhao. “Spoken Language Understanding for Task-oriented
Dialogue Systems with Augmented Memory Networks.” Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. (NAACL) 2021:797-806.

Jie Wu, Ian G. Harris, Hongzhi Zhao. “GraphMemDialog: Optimizing End-to-End Task-
Oriented Dialog Systems Using Graph Memory Networks.” Submitted to the Association
for the Advancement of Artificial Intelligence (AAAI) 2022.

Jie Wu, Ian G. Harris, Hongzhi Zhao, Guangming Ling. “A Graph-to-Sequence Model for
Joint Intent Detection and Slot Filling in Task-Oriented Dialogue Systems.” Submitted to
Proceedings of ACL 2022.

Guangming Ling, Aiping Xu, Chao Wang and Jie Wu. “REBDT: A regular expression
boundary-based decision tree model for Chinese logistics address segmentation in IoT.” Sub-
mitted to Applied Intelligence.

Hongzhi Zhao, Fang Zhang, Baosheng Wang, Jie Wu and Nader Bagherzadeh. “A memory
access scheduling method for DNN training processor.” Submitted to Microprocessors and
Microsystems: Embedded Hardware Design.

Hongzhi Zhao, Nader Bagherzadeh, Jie Wu. “A general fault-tolerant minimal routing for
mesh architectures.” IEEE Transactions on Computers. 2017, 66(7): 1240-1246.

x

ABSTRACT OF THE DISSERTATION

Learning Graph Structures in Task-Oriented Dialogue Systems

By

Jie Wu

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2021

Professor Ian G. Harris, Chair

Dialogue systems, also known as conversational agents, are intelligent computer systems

which converse with a human via natural language (text, or speech). They generally fall into

two categories based on their applications, that is, chit-chat dialogue systems (chatbots)

and task-oriented dialogue systems. The former is primarily interacting with humans to

provide reasonable responses and entertainment on open domains, whereas the latter aims

to help users complete a dedicated task on one specific domain, for example, inquiring about

weather, reserving restaurants, or booking flights. This thesis focuses primarily on task-

oriented dialogue systems.

The earliest dialogue systems were highly dependent on complicated and hand-crafted rules

and logics, which were costly and unscalable. With the recently unprecedented progress in

natural language processing propelled by deep learning, statistical dialogue systems have

gradually become well used for reducing cost and providing robustness. Traditionally, these

systems were highly modularized in a pipelined manner, including spoken language under-

standing, dialogue state tracking, dialogue management, and response generation. However,

modularized design typically requires expensive human labeling and easily leads to error

propagation due to module dependencies. On the other hand, end-to-end neural-based mod-

els learn the dialogue hidden representation automatically and generate system responses

xi

directly, thereby requiring much less human effort and being more scalable to new domains.

Although recurrent neural network (RNN) based neural models show promising results, they

still suffer from several major drawbacks. First, dominant RNNs are inherently unstable over

long-time sequences as RNNs tend to focus more on short-term memories and forcefully com-

press historical records into one hidden state vector (Weston et al., 2014). Second, RNNs

focus primarily on modeling sequential dependencies, and thus rich graph structure informa-

tion hidden in the dialogue context is completely ignored. Lastly, effectively incorporating

external knowledge into end-to-end task-oriented dialog systems still remains a challenge.

In this thesis, we are dedicated to addressing these limitations of conventional neural mod-

els and propose end-to-end learning frameworks to model long-term dialogue context and

to learn dialogue graph structures. In addressing the weakness of RNNs processing long se-

quences, we propose a novel approach to model long-term slot context and to fully utilize the

semantic correlation between slots and intents. We adopt a key-value memory network to

model slot context dynamically and to track more important slot tags decoded before, which

are then fed into our decoder for slot tagging. Furthermore, gated memory information is

utilized to perform intent detection, mutually improving both tasks through global optimiza-

tion. We empirically show that our key-value memory networks enable effectively tracking

long-term dialogue context and enhance the performance of spoken language understanding

by a large margin.

In addressing modeling the rich graph structures in dialogue utterances, we introduce a new

Graph Convolutional LSTM (GC-LSTM) to learn the semantics contained in the graph-

structured dialogues by incorporating a powerful graph convolutional operator. Our pro-

posed GC-LSTM can not only capture the spatio-temporal semantic features in a dialogue,

but also learn the co-occurrence relationship between intent detection and slot filling. Fur-

thermore, we propose a Graph-to-Sequence learning framework to push the performance of

spoken language understanding to a new start-of-the-art.

xii

In addressing effectively integrating knowledge into dialogue generation systems, we propose

a novel end-to-end learning framework to incorporate an external knowledge base (KB) and

to capture the intrinsic graph semantics of the dialog history. We propose a novel Graph

Memory Network (GMN) based sequence-to-sequence model, GraphMemDialogue, to effec-

tively learn the inherent structural information hidden in dialog history, and to model the

dynamic interaction between dialog history and KBs. We adopt a modified graph atten-

tion network to learn the rich structure representation in the dialog history, whereas the

context-aware representation of KB entities are learnt by our novel GMN. To fully exploit

this dynamic interaction, we design a learnable memory controller coupled with external KB

entity memories to recurrently incorporate dialog history context into KB entities through a

multi-hop reasoning mechanism. Experiments on three public datasets show that our Graph-

MemDialog model achieves state-of-the-art performance and outperforms strong baselines by

a large margin, especially on datatests with more complicated KB information.

xiii

Chapter 1

Introduction

Dialogue systems, also known as conversational agents, are designed to communicate with a

human via natural language. Typically, these dialogue systems range from chit-chatting or

entertaining on topics like a movie star, to completing a specific task for example booking

tickets, or reserving restaurants. Developing an intelligent dialogue system has been one

of the longest running goals in artificial intelligence (AI). Recently, human computer con-

versation has attracted tremendous attention due to its promising commercial value, and

been greatly advanced with the unprecedented progress of big data and AI. For example,

they are widely deployed in personal assistants such as Apple Siri, Amazon Alexa, Microsoft

XiaoIce, Google Assistant etc. On one hand, large amounts of conversational data easily

accessible on the internet enables dialogue systems to learn how to talk like human beings.

This greatly allows us to build data-driven, and open-domain conversation systems. On the

other hand, the astounding breakthroughs in deep learning (DL) and reinforcement learning

(RL) are practically applied to conversational AI in capturing complex patterns. Indeed, a

large body of literatures has emerged to leverage a massive amount of data equipped with

DL techniques to advance dialogue systems.

1

1.1 Motivation

Dialogue systems can be categorized into two classes based on their applications: chit-chat

conversational systems and task-oriented dialogue systems. Chit-chat systems are designed

to establish a general conversation with users. The main characteristics of chit-chat systems

are open-domain and without any clear goal associated. Xiaoice from Microsoft is a typical

example in industry. Task-oriented dialogue systems, on the other hand, aim to complete

a specific task by interacting with users via dialogues, for example, booking restaurants.

Representative task-oriented dialogue systems include Amazon Alexa, Google Home, etc. In

both cases, the system requires to generate coherent responses to be aligned with dialogue

history, and also needs to retrieve external knowledge like knowledge bases etc. Examples of

chit-chat systems and task-oriented dialogue systems are shown in Table 1.1. In this thesis,

we are primarily focusing on task-oriented dialogue systems.

Chit-chat Dialogue Sytems Task-oriented Dialogue Sytems
User Hello, Xiaoice Can I have coffee please?
Bot Hello, your profile pic is interesting. Like I’ve seen it somewhere. What coffee would you like?
User Really? I would like a cup of Mocha.
Bot Is it a comic character? Hot or Iced?
User How do you know? Iced with extra cream.
Bot Guess What size?
User Are you human? Grande.
Bot Well, you will know it after chatting with me more. You are all set.

Table 1.1: Dialogue examples for chit-chat and task-oriented dialogue systems.

Traditionally task-oriented dialog systems have been built modularly in a pipelined manner,

namely designing each essential module individually, including spoken language understand-

ing (SLU) (Chen et al., 2016), dialog state tracking (DST) (Zhong et al., 2018; Wu et al.,

2019a), dialogue management (DM) (Young, 2006; Young et al., 2013a), and natural lan-

guage generation (NLG) (Chen et al., 2019; Huang et al., 2020). SLU module parses user

utterances into predefined semantic slots and intents. Then DST manages the output of

SLU along with the dialogue history and maintains the dialogue states. The DM module

2

subsequently takes dialogue states and produces dialogue actions for the next utterance.

Finally NLG maps the selected action to its surface and generates final system responses.

Although these modularized systems are known to be stable and easy to interpret by combin-

ing domain-specific knowledge, they inherently expose a variety of major drawbacks. First,

designing each component still requires heavily handcrafted rules and labels with domain-

specific expert knowledge, especially in modules for dialogue state tracking and dialogue

policy. For example, dialogue policy requires experts to label dialogue actions and slot infor-

mation. This makes these modules highly difficult to be adapted to new domains. Second,

modularized systems suffers intrinsically from the credit assignment problem (Zhao and Eske-

nazi, 2016), where the end uses’ feedback is hard to be propagated to each upstream module.

The last issue is process interdependence (Chen et al., 2017). The input of a component is

dependent on the output of another one, for example in a pipelined manner. When adapting

one component to a new domain or retraining it with new data, all the other components

need to be adapted accordingly to ensure a global optimization. Slots and features might

change accordingly. This process requires significant human effort.

Alternatively, with the advancement of deep learning techniques, end-to-end neural frame-

works have become dominant to design task-oriented dialogue systems. These end-to-end

neural models learn a distribution vector representation of the dialogue states automatically

and directly map dialogue history to system responses. Generally an encoder-decoder model

is applied to train the whole system in a supervised fashion. Thus end-to-end models make

no assumption on the dialogue state structure and eliminate the dependency on human la-

bels. Such property makes end-to-end neural models easily scalable to new domains and

highly attractive. Furthermore, as recurrent neural networks (RNNs) emerge to represent

the dialogue state using its latent memory and model the sequential dependencies in the

dialogues, RNN-based end-to-end neural models have promptly become prevailing to build

domain-agnostic dialog systems in both academia and industry. However, existing end-to-

3

end methods in task-oriented dialogue systems still suffer from the following drawbacks: 1)

Modeling of long-term slot context in SLU. Though the latent memory of RNNs can

model history information, they are inherently unstable over long time sequences because

the memories are the RNN hidden states. (Weston et al., 2014) observes that RNNs tend to

focus more on short-term memories and forcefully compress historical records into one hidden

state vector. Thus, simple RNNs cannot preserve well long-term slot context of the conversa-

tion, which is crucial to future slot tagging in SLU. 2) Modeling the graph structure in

dialogue utterances. Dominant RNNs focus primarily on modeling sequential dependen-

cies, and thus rich graph structure information hidden in the dialogue context is ignored. 3)

Modeling graph-structured dialogue knowledge. Effectively incorporating external

knowledge into end-to-end task-oriented dialog systems still remains a challenge. It typi-

cally requires incorporating an external knowledge base (KB) and capturing the intrinsic

semantics of the dialog history. Recent research shows promising results by using Sequence-

to-Sequence models, Memory Networks, and even Graph Convolutional Networks. However,

these mainstream approaches fail to effectively model context-aware and graph-structured

dialogue knowledge.

1.2 Thesis Statement

In this dissertation, our major research objective is to model long-term dialogue context

and to effectively incorporate dialogue knowledge information including dialogue history

and external knowledge. The core research idea is to compensate mainstream RNN-based

models’s weakness aforementioned and to effectively learn graph-structured semantics in

task-oriented dialogue systems.

Specifically, we first extend RNNs to memorize longer dialogue context by introducing a key-

value memory networks for the sake of modeling long-term slot context in SLU. What’s more,

4

the semantic interaction between slots and intents is fully explored by utilizing the gated

memory information to perform intent detection, mutually improving both tasks through

global optimization. More importantly, we explore to optimize task-oriented dialogue sys-

tems from a new perspective, namely, modeling graph structures in dialogue systems. We

propose a novel Graph Convolutional LSTM (GC-LSTM) encoder to learn the semantics con-

tained in the graph-structured dialogues by incorporating a powerful graph convolutional op-

erator. Our proposed GC-LSTM can not only capture the spatio-temporal semantic features

in a dialogue, but also learn the co-occurrence relationship between intent detection and slot

filling. Additionally, we propose a new Graph Memory Network (GMN) based sequence-to-

sequence model, GraphMemDialogue, to effectively learn the inherent structural information

hidden in dialog history, and to model the dynamic interaction between dialog history and

KBs. We adopt a modified graph attention network to learn the rich structure representation

in the dialog history, whereas the context-aware representation of KB entities are learnt by

our novel GMN. To fully exploit this dynamic interaction, we design a learnable memory

controller coupled with external KB entity memories to recurrently incorporate dialog his-

tory context into KB entities through a multi-hop reasoning mechanism. In short, we hope

our exploration on learning graph structures in task-oriented dialogue systems could encour-

age brand-new methodologies to be developed and advance dialogue and natural language

processing research to some extent.

1.3 Thesis Outline

In this dissertation, Chapter 3 is based on our paper titled “Spoken Language Understanding

for Task-oriented Dialogue Systems with Augmented Memory Networks.” Chapter 4 is based

on our paper titled “A Graph-to-Sequence Model for Joint Intent Detection and Slot Filling

in Task-Oriented Dialogue Systems.” Chapter 5 is based on our paper “GraphMemDialog:

5

Optimizing End-to-End Task-Oriented Dialog Systems Using Graph Memory Networks.”

The rest of the thesis is organized as follows:

• Chapter 2: Background and Related Work. This chapter gives an overview

of related research areas on task-oriented dialogue systems, sequence learning with

recurrent networks, and graph convolutional networks.

• Chapter 3: Spoken Language Understanding with Augmented Memory

Networks. This chapter presents a key-value memory network learning framework

to effectively model long-term slot context in SLU. We further model the semantic

interaction between slots and intents by utilizing the gated memory information to

perform intent detection, mutually improving both tasks through global optimization.

• Chapter 4: Graph-to-Sequence Learning Framework. This chapter introduces

a novel Graph-to-Sequence learning framework to model both temporal dependencies

and structural information in a dialogue conversation. We introduce a new GC-LSTM

encoder to learn the semantics contained in the graph-structured dialogues by incor-

porating a powerful graph convolutional operator. Our proposed GC-LSTM not only

captures the spatio-temporal semantic features in a dialogue, but also learns the co-

occurrence relationship between intent detection and slot filling.

• Chapter 5: GraphMemDialogue: End-to-End Dialogue Modeling. This chap-

ter presents a novel GraphMemDialogue to effectively learn the inherent structural

information hidden in dialog history, and to model the dynamic interaction between

dialog history and KBs. We adopt a modified graph attention network to learn the

rich structure representation in the dialog history, whereas the context-aware repre-

sentation of KB entities are learnt by our novel GMN. To fully exploit this dynamic

interaction, we design a learnable memory controller coupled with external KB entity

memories to recurrently incorporate dialog history context into KB entities through a

6

multi-hop reasoning mechanism.

• Chapter 6: Conclusion and Future Work. This chapter concludes our main

contributions and discusses possible future research directions.

7

Chapter 2

Background and Related Work

This chapter presents an overview of statistical spoken dialogue systems and their core

components that pave the foundation for this dissertation. We first go over the background

of existing models for building dialog systems and previous state-of-the-art approaches. Then

we summarize fundamental deep learning techniques that this dissertation builds on.

2.1 Task-Oriented Dialogue Systems

Conventionally task-oriented dialogue systems were modularized as shown in Figure 2.1. The

automatic speech recognition (ASR) module transcribes the user’s speech input into natural

language text format. The speech transcripts are then passed to the spoken language un-

derstanding (SLU) to decoding semantic frames, which typically involve performing domain

identification, intent detection, and slot filling. The decoded information is then fed into

the dialogue state tracking (DST) to maintain the current dialogue’s states. The DST out-

put is passed to the dialogue management (DM) module to generate the dialogue action by

querying an external KB. Subsequently, natural language generation (NLG) generates the

8

natural language response based on the previously produced dialogue action. Finally, the

text to speech (TTS) module transforms the generated text into speech and sends it back to

the users. In this thesis, we focus primarily on SLU and end-to-end NLG in task-oriented

dialogue systems. Next we review each component in detail.

Figure 2.1: The major components of the modularized task-oriented dialogue systems.

2.1.1 Spoken Language Understanding

SLU is a key yet challenging component to parse users’ utterances into semantic frames in

order to capture a conversation’s core meaning. It typically includes intention detection and

slot filling. The former is to determine the user’s intention, whereas the latter is to map

each word in a utterance into predefined slot types. For example in Table 2.1, given an

utterance ”Flights from Charlotte to Miami”, SLU is supposed to determine users’ intention

as Flight and to map each word in this utterance into predefined semantic slot types such

as “B-fromloc” and “B-toloc”.

9

Sentence Flights from Charlotte to Miami
Intent Flight
Slots O O B-fromloc O B-toloc

Table 2.1: An example utterance annotated with its intent and semantic slots (IOB format).

Intent Detection

Intent detection is formulated as an utterance classification problem and different classifi-

cation methods. Support vector machines (SVM) and RNNs (Haffner et al., 2003; Sarikaya

et al., 2011), have been proposed to solve it. Given a sequence of words w = (w1, w2, ..., wn),

the goal of intent detection is to output an expected intent label oI from a pre-defined set

of intent classes for this whole sequence.

Slot Filling

Slot filling is treated as a sequence labeling task that maps the input utterance w into a

predefined slot sequence oS = (oS1 , o
S
2 ..., o

S
n). Traditionally, hidden markov models (HMM)

and conditional random fields (CRF) (Lee et al., 1992; Ye-Yi Wang et al., 2005; Raymond

and Riccardi, 2007) were used to solve the slot filling problem. Later RNN based methods

had become popular. For example, Yao et al. (2013) and Mesnil et al. (2015) employed

RNNs for sequence labeling in order to perform slot filling.

Joint Intent Detection and Slot Filling

Early studies modeled intent detection and slot filling separately in a pipelined manner, and

were insufficient to take full advantage of all supervised signal, as they intrinsically shared

semantic knowledge. What’s more, in the pipelined architecture, errors made in upper stream

modules may propagate and be amplified in downstream components, which, however, could

possibly be eased in joint models (Zhang and Wang, 2016). Thus recently, jointly modeling

10

intent detection and slot filling has attracted significant attention, and achieved promising

results with the aid of RNNs (Liu and Lane, 2016; Goo et al., 2018; Li et al., 2018; Qin et al.,

2019). The input of joint SLU is a sequence of words, whereas the output is a sequence of

predefined slot types. A specific intent label is also assigned for the whole sentence.

Zhang and Wang (2016) first proposed joint work using RNNs for learning the correlation

between intents and slots. Hakkani-Tür et al. (2016) adopted a RNN for slot filling and

the last hidden state of the RNN was used to predict the utterance intent. Liu and Lane

(2016) introduced an attention-based RNN encoder decoder model to jointly perform intent

detection and slot filling. An attention weighted sum of all encoded hidden states was used

to predict the utterance intent. All those models outperform the pipeline models via mutual

enhancement between intent detection and slot filling.

Most recently, some work modeled the intent information for slot filling explicitly in the

joint model. Goo et al. (2018) and Li et al. (2018) proposed the gate mechanism to explore

incorporating the intent information for slot filling. However, as the sequence becomes longer,

it is risky to simply rely on the gate function to sequentially summarize and compress all slots

and context information in a single vector (Cheng et al., 2016). Wang et al. (2018) proposed

the bi-model to consider the cross-impact between the intent and slots and achieve state-of-

the-art results. Zhang et al. (2019) proposed a hierarchical capsule neural network to model

the hierarchical relationship among words, slots, and intents in an utterance. Niu et al.

(2019) introduced a SF-ID network to establish the interrelated mechanism for slot filling

and intent detection tasks. However, these RNN-based models suffer from being weak at

capturing long-range dependencies. Then Wu et al. (2021) explicitly modeled the long-term

slot context knowledge via a key-value memory network beneficial to both slot filling and

intent detection. Unfortunately all these models did not take the rich structure information

in dialogues into consideration. Subsequently, Zhang et al. (2020) attempted to address the

limitation of sequential models by utilizing S-LSTM with a context-gated mechanism to learn

11

the local context in dialogue utterances, and achieved promising improvement compared with

sequential RNN models.

Later in this thesis, we will discuss how we jointly model intent detection and slot filling to

improve the overall performance from two different perspectives, that is, modeling long-term

slot context and graph-structured semantics in the conversations.

2.1.2 Dialogue State Tracking

DST is a core component to ensure robustness in task-oriented dialogue systems and aims

to estimate the user’s goal at each dialogue turn. It also manages the input of each turn

along with the dialogue history and outputs the current dialogue state. The dialogue state is

usually represented in terms of a list of goal slots and the probability distribution of candidate

values for each slot. Traditionally, DST was tackled with hand-crafted rules to select the

most likely results (Goddeau et al., 1996). However, such systems are excessively dependent

on human effort and suffer constantly from being weak at modeling uncertainties in ASR and

SLU (Henderson, 2015). Thus, learning-based DSTs have been proposed to address these

limitations. Henderson et al. (2013) presented a discriminative approach for tracking the

state of a dialog which takes advantage of deep learning. It used a sliding window to output

a sequence of probability distributions over an arbitrary number of possible values. Mrkšić

et al. (2017) proposed a neural belief tracker model to reason over pre-trained word vectors,

learning to compose them into distributed representations of user utterances and dialogue

context, and matched the performance of state-of-the-art models relying on hand-crafted

semantic lexicons.

12

2.1.3 Dialogue Management

DM learns the next action based on current dialogue states. A dialogue action usually

consists of a speech action (e.g. request, inform) and slot-value pairs. Typically, a rule-

based agent was introduced to warm-start the system (Yan et al., 2017). Then supervised

learning was used on the actions generated by the rules. On the other hand, the dialogue

policy can be trained end-to-end with reinforcement learning. Cuayáhuitl et al. (2015)

applied deep reinforcement learning on strategic conversation that simultaneously learned

the feature representation and dialogue policy.

2.1.4 Natural Language Generation

NLG maps the selected dialogue action to its surface and generates a response. Conventional

approaches typically map input semantic symbols into intermediary representations of ut-

terances such as tree-like or template structures, and then convert them into final response

through surface realization (Walker et al., 2002). However, it is very costly to maintain

templates and rules, thus leading to challenges in adapting to new domains. Furthermore,

the quality of these NLG systems is limited by that of hand-crafted templates and rules.

Recently, neural-based approaches have attracted significant attention in NLG. Wen et al.

(2015b) presented a statistical language generator based on a semantically controlled Long

Short-term Memory (LSTM) structure. The LSTM generator can learn from unaligned data

by jointly optimising sentence planning and surface realisation using a simple cross entropy

training criterion, and language variation can be easily achieved by sampling from output

candidates. Wen et al. (2015a) employed a forward RNN generator, a CNN reranker, and

backward RNN reranker to jointly generate utterances conditioned by the required dialogue

act. Zhou et al. (2016) proposed a Context-Aware LSTM model to incorporate the question

information, semantic slot values, and dialogue act type to generate correct answers. An at-

13

tention mechanism was used to attends the key information in questions conditioned on the

current decoding state of the decoder. Also encoding dialogue act type embedding further

enabled the model to generate variant answers in response to different act types.

2.1.5 End-to-End Dialogue Systems

Modularized dialogue systems have been shown to be stable and provide the flexibility that

allows each module to be designed independently. However, designing each component still

requires heavily handcrafted rules and labels with domain-specific expert knowledge. This

makes these modules highly difficult to be adapted to new domains. Furthermore, modu-

larized dialogues lead to more complex design and improvement on individual modules does

not translate into the whole system improvement. Finally, when adapting one component to

a new domain or retraining it with new data, all the other components need to be adapted

accordingly to ensure a global optimization. Slots and features might change accordingly.

This process requires significant human effort.

In addressing these issues, fully data-driven end-to-end models are promising to build domain-

agnostic dialogue systems based on recurrent neural networks (Zhao et al., 2017; Lei et al.,

2018). Especially, end-to-end task-oriented dialogue systems (Serban et al., 2016; Wen et al.,

2017) with sequence-to-sequence (seq-to-seq) models have attracted significant attention due

to great flexibility and good quality. The core idea of a seq-to-seq model is to leverage an

encoder to directly map the dialog history and KB to a vector representation, which is then

fed into a decoder to generate a response word by word. Furthermore, Memory networks

(MemNN) (Sukhbaatar et al., 2015) were employed to effectively incorporating dialog history

context and knowledge bases (Madotto et al., 2018; Wu et al., 2019b). Multi-hop mechanisms

further enabled MemNN to perform knowledge reasoning to select most relevant entities for

generating a dialog response. Eric and Manning (2017a) proposed to use key-value memory

14

networks to integrate a knowledge base by using a key memory to represent the subject and

relation and a value memory to learn the object. Although memory network based models

show promising results, MemNN suffers inherently from being weak at representing temporal

dependencies between memories, which affects the conversational semantics due to ignoring

the utterance order. On the other hand, pointer memories with copy mechanism proposed

by Madotto et al. (2018) can effectively integrate the KB into dialog responses. Wu et al.

(2019b) incorporated global pointer mechanism and achieved improved performance. Unfor-

tunately, none of previous work has considered the rich structural information inherently in

dialog history and the KB defined by entity-entity relations.

Subsequently, Graph Convolutional Networks (GCNs) have emerged as state-of-the-art meth-

ods for modeling knowledge graphs where entities are treated as nodes and their relations

are edges. Specifically, Banerjee and Khapra (2019) proposed to use GCNs to model the

word dependency associated with utterances, and entity relations in a knowledge base. Yang

et al. (2020) proposed a new recurrent cell architecture to learn the dependency graph of

the dialog history. Although those methods have modeled the structural information of the

dialog history and KBs, they have ignored the strong correlation between them. Using dialog

history as context should have a large impact on KB entity representations. He et al. (2020)

was dedicated to modeling the association between the dialog history and KBs by using

Flow operation (Huang et al., 2019) and Relational Graph Convolutional Networks (RGCN)

(Schlichtkrull et al., 2017) to learn the KB entity representation. However, this work does

not explicitly model the interaction between dialogue context and KBs, a key to make KB

representation fully context-aware.

In our thesis, we propose a novel graph memory network (GMN) framework in learning

context-aware KB entity graph representation. None of existing GCNs is leveraged to achieve

this goal and we empirically show that our GMN outperforms some prevailing GCNs in

modeling graphical KBs.

15

2.2 Sequence Learning with Recurrent Networks

Language is an inherently temporal phenomenon (Jurafsky and Martin, 2020). Recently,

with the increasing popularity of neural models, there has been growing interests in learning

this temporal nature via deep learning architectures. Recurrent neural networks offer a new

way to represent the prior context, enabling the model’s decision to depend on information

from long distance words in the past.

2.2.1 Recurrent Neural Networks

A recurrent neural network as shown in Figure 2.2 is any network that contains a cycle

within its network connections, meaning that the value of some unit is directly, or indirectly

dependent on its own earlier outputs as an input (Jurafsky and Martin, 2020). This allows

it to exhibit temporal dynamic behavior. Derived from feed-forward neural networks, RNNs

can use their internal state (memory) to process variable length sequences of inputs. This

makes them applicable to tasks such as unsegmented, connected handwriting recognition or

speech recognition. Recurrent neural networks are theoretically Turing complete and can run

arbitrary programs to process arbitrary sequences of inputs (Hyötyniemi, 1996). A widely

used RNN architecture is referred as Elman Networks (Elman, 1990), or simple recurrent

networks. The Elman RNN feeds the hidden layer output at time t − 1 back to the same

hidden layer at time t via recurrent connections. Thus, information stored in the hidden

layer can be viewed as a summary of input sequence up till the current time. A non-linear

and differentiable activation function is applied to the weighted sum of the input vector and

previous hidden state. The hidden state at time t can thus be formulated as:

h(t) = σ (Ux(t) +Wh(t− 1)) (2.1)

16

where σ is an activation function. As feed-forward networks, a training set, a loss function,

and back-propagation are used to adjust the weights in the recurrent networks. Specifically,

network parameters are optimized based on loss functions derived using maximum likelihood,

and updated using back-propagation through time method considering influence of past

states through recurrent connections. Error from the output layer is back-propagated to the

hidden layers through the recurrent connections backwards in time. The weight matrices are

updated after each training sample.

Figure 2.2: A diagram of a RNN. Compressed version on the left, unfold version on the right.

In practice, it is quite difficult to train RNNs on long sequences due to vanishing/exploding

gradients problems. The vanishing and exploding gradient phenomena are often encoun-

tered in the context of RNNs. The reason why they happen is that it is difficult to capture

long term dependencies because of multiplicative gradient that can be exponentially de-

creasing/increasing with respect to the number of layers. To address these issues, more com-

plex network architectures have been proposed, such as, Long Short-Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho et al., 2014b).

Both are variances of original RNNs to track long-term dependencies while mitigating the

vanishing/exploding gradients problems. A GRU has a reset gate and an update gate. The

reset gate is used from the model to decide how much of the past information to forget,

whereas the update gate helps the model to determine how much of the past information

(from previous time steps) needs to be passed along to the future. On the other hand, The

17

LSTM has three gates, namely, input gate, forget gate, and output gate, thus having more

parameters than GRUs. In this thesis, we use both LSTM and GRUs for different scenarios.

But since LSTM can be seen as a generalization of GRU, we only go over LSTM in detail

for simplicity.

2.2.2 Long Short-Term Memory

LSTM models replace the recurrent model that uses sigmoid or hyperbolic tangent activation

function with the memory block. The memory block may contain one or more memory cells.

A common LSTM unit is composed of a cell, an input gate, an forget gate and a output

gate. The cell remembers summarized information of previous observations, whereas three

gates regulate the flow of information into and out of the cell. Specifically, the input gate

it regulates how much of the new cell state to keep, the forget gate ft regulates how much

of the existing memory to forget, and the output gate ot regulates how much of the cell

state should be exposed to the next layers of the network. Mathematically, A LSTM can be

formulated as follows:

ft = σ(Wfht−1 + Ufxt + bf)

it = σ(Wiht−1 + Uixt + bi)

C̃t = tanh(Wcht−1 + Ucxt + bC)

Ct = ft � Ct−1 + it � C̃t

ot = σ(Woht−1 + Uoxt + bo)

ht = ot � tanh(Ct)

(2.2)

where σ is the sigmoid function, and � denotes Hadamard product.

These controlling gates in memory block learn to forget information that is no longer needed

and to remember information required for future decisions. This mechanism effectively avoids

gradient exploding and vanishing problems.

18

2.2.3 Encoder-Decoder Models

Encoder-decoder networks, or seq-to-seq networks are a special class of Recurrent Neural

Network architectures used to solve complex language problems like Machine Translation,

Question Answering, Chatbots, and Text Summarization. In natural language processing,

encoder-decoder networks remain a powerful conditional generative model (Cho et al., 2014a;

Serban et al., 2017). An encoder-decoder network as shown in Figure 2.3 maps a fixed-length

input to a fixed-length output where the length of the input and output may differ. It models

the target word sequence Y conditioned on given input word sequence X, that is, P (Y |X).

Generally, an encoder-decoder network consists of three major components:

Figure 2.3: The encoder-decoder architecture.

• Encoder. An encoder accepts an input sequence {x1...xn} and generates a sequence of

contextualized representations {hE1 ...hEn }. Words in vocabulary are usually represented

by word embeddings, which are either randomly initialized and learned during training,

or pre-trained such as ELMo (Peters et al., 2018), GloVe (Pennington et al., 2014),

etc. Formally, the input sequence is encoded by recursively applying:

hEi = RNNE(φemb(xi), h
E
i−1) (2.3)

19

where hE0 = 0.

• Context Vector. A context vector c is a function of hEi , conveying the essence of

the input of the decoder. One simple way is to treat the last hidden state hEn as the

representation of the input sequence, that is:

c = hEn (2.4)

• Decoder. A decoder takes the context vector c as input and generates decoding

hidden state hDi . Finally the decoder predicts the target sequence words one-by-one

conditioned on all previously generated tokens as follows:

hDj = RNND(φemb(yj−1), h
D
j−1) (2.5)

oj = Softmax(Whdecj + b) (2.6)

where oj is the output probability of every word in the vocabulary at each decoding

step j, yj−1 is the previous emitted word, and W and b are trainable parameters. In

order to make the model to predict the first word and to end the prediction, special

tokens SOS (start-to-sentence) and EOS (end-of-sentence) tokens are padded at the

beginning and the end of the target sequence. The SOS token is important for the

decoder. Because the decoder progresses by taking the tokens it emits as inputs along

with the embedding and hidden state, it needs some kind of tokens to start with before

it has emitted anything. SOS token fits this scenario.

20

2.3 Graph Convolutional Networks

Graph convolutional networks (GCNs) generalize convolutional neural networks to graphs

and are an effective framework for learning the representation of graph structured data.

There are two types of GCNs: spatial GCNs and spectral GCNs. In spatial GCNs, a

convolution operation is applied to compute a new feature vector for each node using its

neighborhood information. For example, Simonovsky and Komodakis (2017) formulated

a convolution-like operation on graph signals performed in the spatial domain and applied

graph convolutions to point cloud classification. On the other hand, spectral GCNs transform

graph signals on graph spectral domains and then apply spectral filtering on graph signals.

Defferrard et al. (2016) proposed a spectral formulation for the convolutional operator on

graph with fast localized convolutions. Kipf and Welling (2017) introduced Spectral GCNs

for semi-supervised classification on graph-structured data.

2.3.1 GCNs for Undirected Graphs

In this section, we describe GCNs (Kipf and Welling, 2017) for undirected graphs. GCNs

compute representations for the nodes of the graph by aggregating information from their

neighborhood nodes. We can stack l layers of GCNs to account for neighbors that are l-hops

away from the current node. Let G = (V , E ,A) be an undirected graph, where V is the set of

nodes (|V| = n), E is the set of edges, and A ∈ Rn×n is an adjacent matrix. Let X ∈ Rn×m

be the input feature matrix with n nodes and each node is represented by a m-dimensional

feature vector. The hidden representation H(l+1) ∈ Rn×d with d-dimension at (l+1)-th layer

is defined as follows:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(2.7)

21

Here, Ã = A + IN is the adjacency matrix of the undirected graph G with added self-

connections. IN is the identity matrix, and D̃ii =
∑

j Ãij. W
(l) is a trainable weight matrix

in l-th layer, and σ is an activation function. H(0) is set to X .

2.3.2 Graph Convolution LSTM

In order to incorporate temporal features, Seo et al. (2016) firstly proposed a graph convo-

lutional LSTM to capture the spatial-temporal features of graph structures. This was an

extension of GCNs to have the recurrent architecture. Cui et al. (2019) introduced a Traffic

Graph Convolutional LSTM to learn the interactions between roadways in the traffic net-

works. Si et al. (2019) further improved graph convolutional LSTM network by introducing

attention to effectively extract discriminative spatial and temporal features in Skeleton-Based

Action Recognition.

However, none of these Graph Convolutional LSTM models dialogue graphs in single turn

conversational systems. In this thesis, inspired by Seo et al. (2016) and Zhang et al. (2020),

we propose a novel GC-LSTM to effectively learn the spatial and temporal representation on

dialogue utterances by combing graph convolution with S-LSTM (Zhang et al., 2018), not the

conventional LSTM. To the best of our knowledge, our work is the first one that introduces

a Graph-to-Seq learning framework with Graph Convolution for joint intent detection and

slot filling in task-oriented dialogue systems.

22

Chapter 3

Spoken Language Understanding with

Augmented Memory Networks

In addressing the weakness of RNNs processing long sequences, in this chapter, we propose

a RNN model with augmented memory networks to track long-term slot context. We first

present the architecture of our neural network based model in detail. Then we discuss system

learning, system evaluation and performance results.

Spoken language understanding, usually including intent detection and slot filling, is a core

component to build a spoken dialog system. Recent research shows promising results by

jointly learning of those two tasks based on the fact that slot filling and intent detection are

sharing semantic knowledge. Furthermore, the attention mechanism boosts joint learning to

achieve state-of-the-art results. However, current joint learning models ignore the following

important facts: 1. Long-term slot context is not traced effectively, which is crucial for

future slot filling. 2. Slot tagging and intent detection could be mutually rewarding, but

bi-directional interaction between slot filling and intent detection remains seldom explored.

In this chapter, we propose a novel approach to model long-term slot context and to fully

23

utilize the semantic correlation between slots and intents. We adopt a key-value memory

network to model slot context dynamically and to track more important slot tags decoded

before, which are then fed into our decoder for slot tagging. Furthermore, gated memory

information is utilized to perform intent detection, mutually improving both tasks through

global optimization. Experiments on benchmark ATIS and Snips datasets show that our

model achieves state-of-the-art performance and outperforms other methods, especially for

the slot filling task.

3.1 Introduction

Task-oriented dialogue systems have attracted significant attention, which have been greatly

advanced by deep learning techniques. SLU, including intention detection and slot filling (Tur

and Mori, 2011), is a key yet challenging problem to parse users’ utterances into semantic

frames in order to capture a conversation’s core meaning. Traditionally, intention detection is

treated as a classification problem, whereas slot filling is usually defined as sequence labeling

problem, where In-Out-Begin (IOB) format is applied for representing slot tags. Given an

utterance, SLU determines users’ intention and maps it into predefined semantic slots. The

input is a sequence of words, and the output is a sequence of predefined slot IDs. A specific

intent is assigned for the whole sentence.

In the traditional pipeline approach, intent detection and slot filling are implemented sepa-

rately. However, separate modeling of those two tasks is insufficient to take full advantage

of all supervised signals, as they share semantic knowledge. For example, if the intent of

an utterance is ”find a flight”, it is more likely to contain slots ”departure city” and ”ar-

rival city” rather than ”restaurant name”. Another drawback of the pipeline method is

that errors made in upper stream modules may propagate and be amplified in downstream

components, which however could possibly be eased in joint model (Zhang and Wang, 2016).

24

Recently, joint model for intent detection and slot filling has been proposed and achieved

promising results (Liu and Lane, 2016; Goo et al., 2018; Li et al., 2018). Though achieving

promising performance, their models suffer from two major issues: 1) Modeling of slot

context. Though the latent memory of RNNs can model history information, they are

inherently unstable over long time sequences because the memories are the RNN hidden

states. (Weston et al., 2014) observes that RNNs tend to focus more on short-term memories

and forcefully compress historical records into one hidden state vector. Thus, simple RNNs

cannot preserve long-term slot context of the conversation, which is crucial to future slot

tagging. 2) Bi-directional interaction between slot filling and intent detection. The

majority of joint modeling work has studied how to utilize intent information to improve slot

filling performance. However, the beneficial impact of slot information on intent detection

is mostly ignored. In fact, slots and intents are closely correlative, thus mutually reinforcing

each other.

In this chapter, we propose a new framework to jointly model intent detection and slot

filling in order to achieve a deeper level of semantic modeling. Specifically, our model is

distinguished from previous work primarily in two ways.

• Model slot context dynamically with Key-Value Memory Networks (KV-

MNs). The majority of existing work use RNNs to track slot values mentioned in

previous utterances. However, RNNs tend to focus more on short-term memories. We

propose to use a memory network to model slot context information as external knowl-

edge which is acting a global information to guide slot tagging. Instead of relying on

the compressed vector in RNN, KV-MNs store different historical slot tag informa-

tion separately in different memory slots, which enriches the representation capacity

compared with RNNs. Furthermore, slot values mentioned in the utterance are dy-

namically tracked, which is beneficial for subsequent slot tagging at each timestamp.

Lastly, slot-level attention can model more accurately the contribution of each word in

25

an utterance to slot tagging.

• Model the mutual interaction between intent detection and slot filling. The

fact that intent detection and slot filling are semantically related is well-observed and

how to use intent information to boost slot filling is widely explored. However, slot

filling is beneficial to intent detection as well, and these benefits are yet to be explored.

We propose a gating mechanism between intents and slots based on KV-MNs in order

to model the interaction between intent detection and slot filling.

In the following, we demonstrate how memory networks can be used to model long-term slot

context knowledge and the interaction between intent detection and slot filling in single turn

conversational systems.

3.2 Proposed Model

Memory networks show promising results on learning long-range dependency, but they are

insensitive to represent temporal dependencies between memories (Wu et al., 2018). RNNs

tend to be opposite. Thus, it makes sense for us to combine those networks together to

model long-term slot context information. In this section, we present a specific key-value

dynamic memory module to collect and remember slot clues in the dialog context. Then

context memory is used to enhance the Encoder-Decoder based model to perform slot filling

and intent detection.

As illustrated in Figure 3.1, our proposed model is composed of an Encoder-Decoder, and a

Key-Value Memory Module including KEY-MEMORY, VALUE-MEMORY, a memory read

unit, and a memory write unit. Given a single-turn dialog, the Encoder transforms a word

in user utterances into a dense vector by using a shared self-attentive encoder. Then the

memory network encodes long-term slot context information by incorporating historical slot

26

Figure 3.1: Framework of the proposed model

tags through memory attention and WRITE operations of the memory network. The slot

decoder integrates short-term hidden state of self-attention encoder and the long-term slot

context generated by attentively reading the VALUE-MEMORY to generate slot tagging

at each timestamp. Later, intent decoder performs token level intent detection, which is

seen as a coarse-grained intent detection result. Finally, a fine-grained intent detection is

produced by gating memory modules. Both intent detection and slot filling are optimized

simultaneously via a joint learning scheme.

27

3.2.1 Self-Attentive Encoder

Given an input utterance X = (x1, x2, . . . , xT) of T words, where each word is initially

represented by a vector of dimension d, the BiLSTM (Hochreiter and Schmidhuber, 1997)

is applied to learn representations of each word by reading the input utterance forward and

backward to produce context sensitive hidden states H = (h1, h2, . . . , hT):

ht = BiLSTM(xt, ht−1) (3.1)

Then, we use self-attention mechanism to capture the contextual information for each token.

We adopt the method proposed by (Vaswani et al., 2017a), where we first map the matrix of

input vectors X ∈ RT×d to queries (Q), keys (K̃) and values (Ṽ) matrices by using different

linear projections and the self-attention output C ∈ RT×d1 is:

C = softmax

(
QK̃

>

√
d2

)
Ṽ (3.2)

where d1 and d2 represents self-attention dimension and keys’dimension. We concatenate

the output of self-attention and BiLSTM as the final encoding representation as shown in

Qin et al. (2019):

E = H⊕C (3.3)

where E = (e1, . . . , eT) ∈ RT×(d+d1) and ⊕ is a concatenation operation.

3.2.2 Slot Decoder

Our slot deocder consists of two components: 1) the key-value memory-augmented attention

model which generates slot context representation of users’ utterance, and 2) the unidirec-

tional LSTM decoder, which predicts the next slot tag step by step.

28

Dynamic Key Value Memory Network

To overcome the shortcomings of RNNs in capturing semantic clues over the long-term, we

design a memory network that can preserve fine-grained semantic information of long-term

slot context. We adopt a key-value memory network, which memorizes information by using

a large array of external memory slots. The external memories enrich the representation

capability compared with hidden vectors of RNNs and enable the KV-MNs to capture long-

term data characteristics (Liu and Perez, 2017). We incorporate the knowledge contained in

the historical slot tags into the memory slots. The KV-MNs decompose slot semantics in an

utterance into different slot categories and thus preserves more fine-grained information. In

KV-MNs, a memory slot is represented by a key vector and an associated value vector.

• KEY-MEMORY: The KEY-MEMORY K ∈ Rdk×n learns latent correlation between

utterance words and slot tags, where n is the number of memory slots and dk is the

dimension of each slot. Each column vector, that is, i-th key vector ki ∈ Rdk is set to

the i-th column of the KEY-MEMORY K, which is shared by all conversation turns

and fixed during the processing of word sequences.

• VALUE-MEMORY: Both the KEY-MEMORY and VALUE-MEMORY have the

same number of memory slots. Each value memory vector stores the value of slot tag

mentioned in the utterance. We form a value memory matrix Vt ∈ Rdv×n by combining

all n value slots. Different from KEY-MEMORY K, VALUE-MEMORY Vt is word-

specific and is continuously updated according to the input word sequence. During the

conversation, the value of a new slot tag may be added into the VALUE-MEMORY,

and an old value can be erased. In this way, we can adequately capture the slot context

information on each mentioned slot. Two types of operations, READ and WRITE,

are designed to manipulate the value memories.

29

Memory-augmented Decoder

As shown in Figure 3.1, the decoder uses the aligned BiLSTM hidden state ht as a query

to address the KEY-MEMORY looking for an attention vector at, and attentively reads the

VALUE-MEMORY to generate slot context representation ct.

First, we use ht to address the KEY-MEMORY to find an accurate attention vector at.

at = Address (ht,K) (3.4)

at is subsequently used as the guidance for reading the VALUE-MEMORY Vt−1 to get the

slot context representation ct.

ct = Read(at,Vt−1) (3.5)

ct works together with the aligned encoder hidden state et to generate the new decoder state

at the decoding step t,

hSt = LSTM
(
hSt−1, y

S
t−1, et ⊕ ct

)
(3.6)

where hSt−1 is the previous slot decoder state and ySt−1 is the previous emitted slot lable

distribution. After that, we use the slot decoder hidden state hSt to update Vt:

Vt = Write
(
hSt ,Vt−1

)
(3.7)

Finally, the decoder state hSt is utilized for slot filling:

ySt = softmax
(
WS

hh
S
t

)
(3.8)

oSt = argmax
(
ySt
)

(3.9)

where WS
h are trainable parameters and oSt is the slot label of the word at timestamp t in

30

the utterance.

3.2.3 Intent Detection Decoder

Different than most existing work where intent information is used to do slot filling, our

framework is directly leveraging the explicit slot context information to help intent detec-

tion. Furthermore, a gated mechanism is used in order to effectively incorporate slot memory

information into intent detection. By performing gated intent detection, there are two ad-

vantages:

1. Sharing slot context information with intent detection improves intent detection per-

formance since those two tasks are related. Furthermore, a gating mechanism which

combines the intent detection information and slot context retrieved from key-value

memory, regulates the degree of enhancement of intent detection to prevent information

overload.

2. Through shared key-value memory, the interaction between intent detection and slot

filling can be effectively modeled and executed. Plus, by jointly training those two

tasks, not only can intent detection performance be improved by slot context knowl-

edge, but also slot filling is enhanced by minimizing intent detection objective function.

In other words, by learning optimal parameters of shared key-value memory, slot filling

and intent detection interact in a more effective and deeper way.

Intent Detection Decoder

For intent detection, we use another uni-directional LSTM as the intent detection network.

At each decode step t, the decoder state hIt is generated by the previous decoder state hIt−1,

31

the previous emitted intent label distribution yIt−1 and the aligned encoder hidden et.

hIt = LSTM
(
hIt−1, y

I
t−1, et

)
(3.10)

Then the intent decoder state hIt together with the slot context ct is utilized for final intent

detection.

Gated Memory

We propose a gated mechanism to integrate slot context with intent detection. The gate

regulates the degree of slot context information to feed into the intent detection task and

prevent information from overloading. As shown in Figure 3.2, the gate G is a trainable

fully connected network with sigmoid activation.

Figure 3.2: Intent detection with gated memory

h′
I
t = gt · hIt + (1− gt) · ct (3.11)

32

where gt = sigmoid
(
Wt[h

I
t

⊕
ct] + bt

)
. Then, the output of gated decoder state h′It is utilized

for intent detection:

yIt = softmax
(
W I
hh
′I
t

)
(3.12)

oIt = argmax(yIt) (3.13)

where yIt is the intent output distribution of the t-th token in the utterance, oIt represents

the intent lable of t-th token and W I
h are trainable parameters of the model.

The final utterance result oI is generated by voting from all token intent results as illustrated

in Qin et al. (2019).

3.2.4 Memory Access Operation

In this section, we detail how to access key-value memory at the decoding time step t.

KEY-MEMORY Address: K ∈ Rdk×n denotes the KEY-MEMORY at decoding time

step t. The addressed attention vector is given by

at = Address (ht,K) (3.14)

where at ∈ Rn specifies the normalized weights assigned to the slots in K, with j-th slot

being kj. The attention weights at,j are calculated based on the correlation between ht and

kj:

at,j =
exp(et,j)∑n
i=1 exp(et,i)

(3.15)

where et,j = k>j (Waht + ba)

33

VALUE-MEMORY Read: Vt ∈ Rdv×n denotes the VALUE-MEMORY at decoding

time step t. The output of reading the value memory Vt is given by

ct =
n∑
j=1

at,jvt,j (3.16)

VALUE-MEMORY Write: Similar to the attentive writing operation of neural turing

machines (Graves et al., 2014), we define two types of operation for updating the VALUE-

MEMORY: FORGET and ADD.

FORGET determines the content to be removed from memory slots. More specifically, the

vector Ft ∈ Rdv specifies the values to be forgotten or removed on each dimension in memory

slots, which is then assigned to each memory slot through normalized weights at. We use

the slot decoder hidden state hSt to update Vt−1. Formally, the memory after FORGET

operation is given by

ṽt,i = vt−1,i(1− at,i · Ft), i = 1, 2, . . . , n (3.17)

where

• Ft = σ(WF , h
S
t) is parameterized with WF ∈ Rdv×dh , and δ stands for the Sigmoid

activation function, and Ft ∈ Rdv ;

• at ∈ Rn specifies the normalized weights assigned to the key memory slots in K, and

at,i represents the weight associated with the i-th memory slot.

ADD decides how much current information should be written to the memory as the added

content:

vt,i = ṽt,i + at,i ·At, i = 1, 2, . . . , n (3.18)

where At = σ(WA, h
S
t) is parameterized with WA ∈ Rdv×dh and At ∈ Rdv . By learning

the parameters of FORGET and ADD layers, our model can automatically determine which

34

signal to weaken or strengthen based on input utterance words.

3.2.5 Joint Training

The loss function for intent detection is L1, and that for slot filling is L2, which are defined

as cross entropy:

L1 , −
m∑
j=1

nI∑
i=1

ŷI,ij log
(
yI,ij

)
(3.19)

and

L2 , −
m∑
j=1

nS∑
i=1

ŷS,ij log
(
yS,ij

)
(3.20)

where ŷI,ij and ŷS,ij are the gold intent label and gold slot label respectively, m is the number

of words in a word sequence, and nI and nS are the number of intent label types and the

number of slot tag types, respectively.

Finally the joint objective is formulated as weighted-sum of these two loss functions using

hyper-parameters α and β:

Lθ = αL1 + βL2 (3.21)

Through joint training, the key-value memory shared by those two tasks can learn the

shared representations and interactions between them, thus further promoting each other’s

performance and easing the error propagation compared with pipeline models.

35

3.3 Experimental Setup

3.3.1 Datasets

To evaluate our proposed model, we conduct experiments on two widely used benchmark

datasets: ATIS (Airline Travel Information System) and Snips. Both datesets used in our

experiements follow the same format and partition as in Goo et al. (2018).

ATIS. This dataset (Hemphill et al., 1990) contains audio recordings of people making

flight reservations. The training set has 4,478 utterances and the test set contains 893

utterances. We use another 500 utterances for the development set. There are 120 slot

labels and 21 intent types in the training sets.

Snips. To justify the generalization of our proposed mode, we also execute our experiment

on another NLU dataset collected by Snips (Coucke et al., 2018) 1. This data is collected

from the Snips personal voice assistant, where the number of samples for each intent is ap-

proximately the same. The training set contains 13,804 utterances and the test set contains

700 utterances. We use another 700 utterances as the development set. There are 72 slot

labels and 7 intent types. Compared to single-domain ATIS dataset, Snips is more compli-

cated mainly due to its large vocabulary, and to the diversity of intents and slots (Goo et al.,

2018). For example, GetWeather and BookRestaurant in Snips are from different topics,

resulting in a larger vocabulary. On the other hand, intents in ATIS are all about flight

information with similar vocabularies.

1https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines

36

https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines

3.3.2 Training Details

We implement our model in Pytorch, which is trained on NVIDIA GeForce GTX 1080 Ti.

In our experiments, we set the dimension of word embedding to 256 for ATIS and 200 for

Snips dataset. L2 regularization used in our model is 1 × 10−6 and dropout ratio is set to

0.4 for reducing overfit. The number of memory columns is set to 20 for both datasets, and

the dimensions of memory column vectors are set to 64 for ATIS, and to 200 for Snips. The

optimizer is Adam (Kingma and Ba, 2014). During our experiments, we select the model

which works the best on the development set, and then evaluate it on the test set.

3.3.3 Automatic Evaluation Metrics

In order to have fair comparison with others’ work, we adopt three most popular evaluation

metrics in SLU studies (Liu and Lane, 2016; Goo et al., 2018; Li et al., 2018; Niu et al.,

2019).

• Intent Accuracy. This is the classification accuracy. Some utterance in the ATIS

dataset has more than one intent labels. Following(Goo et al., 2018), we require all

of these intents have to be correctly predicted in order to be counted as a correct

classification.

• F1 Score. We assess slot filling performance by using the F1 score. It is defined as

the harmonic average of the precision and recall. Precision measures the percentage of

the items that system detected that are in fact positive. Precision is defined as:

Precision =
true positives

true positives + false positives
(3.22)

Recall measure the percentage of items actually present in the input that were correctly

37

identified by the system. Recall is defined as:

Recall =
true positives

true positives + false negatives
(3.23)

Hence, F1 is defined as:

F1 =
2× precision× recall

precision + recall
(3.24)

• Sentence (Sent.) Accuracy. A sentence prediction is counted as correct unless all

of its slot labels and intent are accurately predicted. This metric takes both slot filling

and intent detection into consideration.

3.3.4 Baselines

We compare our model with the following baselines:

• Joint Seq. (Hakkani-Tür et al., 2016). This model proposed a RNN-LSTM architecture

to jointly model domain detection, intent detection, and slot filling on multi-domains.

• Attention BiRNN (Liu and Lane, 2016). An attention-based neural network model for

joint intent detection and slot filling was proposed to learn the relationship between

slots and intents.

• Sloted-Gated (Goo et al., 2018). A gate mechanism was introduced to explore incor-

porating the intent information for slot filling in a joint model.

• CAPSULE-NLU (Zhang et al., 2019). This model proposed a capsule-based neural net-

work model which accomplishes slot filling and intent detection via a dynamic routing-

by-agreement schema. A rerouting schema was proposed to further synergize the slot

filling performance using the inferred intent representation.

38

• SF-ID Network (Niu et al., 2019). This model introduced a SF-ID network to establish

the interrelated mechanism for slot filling and intent detection tasks.

• Stack-Propagation (Qin et al., 2019). This model adopted a joint model with Stack-

Propagation which could directly use the intent information as input for slot filling. In

addition, the token-level intent detection was performed to further alleviate the error

propagation.

When doing the comparison, we adopt the reported results from those papers directly.

3.4 Experimental Results and Analysis

3.4.1 Experimental Results

Table 3.1 shows the experiment results of the proposed model on ATIS and Snips datasets.

From the table, we can see that our model outperforms all the baselines in all three aspects:

slot filling (F1), intent detection (Acc) and setence accurancy (Acc), demonstrating that

explicitly modeling slot context and strong relationships between slots and intent can benefit

SLU effectively from the key-value memory. In the ATIS dataset, compared with the best

prior joint work Stack-Propagation (Qin et al., 2019), we achieve F1 score as 96.13 which

is even slightly better than Stack-propagation’s F1 score (96.10) with BERT model. This

signifies that our key-value memory can not only capture long-term slot context, but also

model correlation between slot filling and intent detection, which can be further optimized

by joint training. What’s more, in the Snips dataset, our model achieves good results in both

slot filling and overall sentence. Specifically, slot filling was improved by almost 1.0%, and

sentence accuracy by 1.4%. Generally, ATIS dataset is a simpler SLU task than Snips, and

so the room to be improved is relatively small. On the other hand, Snips is more complex so

39

that it needs more complicated model to capture long-term context and share the knowledge

across different topics.

Model
ATIS Dataset Snips Dataset

Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)
Joint Seq.(Hakkani-Tür et al., 2016) 94.30 92.60 80.70 87.30 96.90 73.20
Attention BiRNN(Liu and Lane, 2016) 94.20 91.10 78.90 87.80 96.70 74.10
Sloted-Gated(Goo et al., 2018) 95.42 95.41 83.73 89.27 96.86 76.43
CAPSULE-NLU(Zhang et al., 2019) 95.20 95.0 83.40 91.80 97.30 80.90
SF-ID Network(Niu et al., 2019) 95.58 96.58 86.00 90.46 97.0 78.37
Stack-Propagation(Qin et al., 2019) 95.90 96.90 86.50 94.20 98.0 86.90

Our model 96.13 97.20 87.12 95.13 98.14 88.14

Table 3.1: SLU Performance comparison on ATIS and Snips datasets (%). The improved
results are written in bold.

3.4.2 Analysis

From Section 3.4.1, we can see good improvements on both datasets, but we want to know

how each component impacts SLU performance.

Ablation Study

In this section, we explore how each component contributes to our full model. Specifically,

we ablate three important scenarios and conduct them in this experiment. Note that all the

variants are based on joint learning.

• Without key-value memory and gating architecture for integrating slot context infor-

mation with intent detection. This is the model similar to Qin et al. (2019).

• Only with key-value memory, but without sharing slot context information with intent

detection.

• With key-value memory and sharing, but without gating architecture, where only key-

value memory is applied to model slot context and that information is directly fed into

intent detection.

40

Model
ATIS Dataset Snips Dataset

Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)
Without K-V memory and sharing 95.72 96.64 85.78 94.08 97.42 86.42
With K-V memory without sharing with intent 95.95 96.66 86.56 94.46 98.09 87.0
With K-V memory and sharing without gate 96.08 96.86 87.0 94.76 98.0 87.28

Full Model 96.13 97.20 87.12 95.13 98.14 88.14

Table 3.2: Feature ablation study on our proposed model on ATIS and Snips datasets (%)

Table 3.2 shows the joint learning performance of our model on ATIS and Snips datasets

by removing one component at one time. First, if we remove key-value memory and gating

architecture, the performance drops dramatically compared with our proposed model. This

is expected as it does not have any of our improvements. Then we only consider key-value

memory to model slot context. From Table 3.2, we can see that key-value memory does

improve performance in a large scale. The result can be interpreted as indicating that key-

value memory learns long-term slot context representation effectively, which does compensate

the weakness of RNN. In the following, we apply key-value memory and also share it with

intent detection without gating. It is noticeable that SLU performance is enhanced further.

Sharing slot context information with intent detection not only improves intent accuracy,

but also improves slot filling through joint optimization. Finally, when we add the gating

mechanism, the performance improves further. We attribute this to the gating mechanism

that regulates the degree of slot context information to feed into intent detection task and

prevent information from overloading.

We also study how the number of memory slots and the dimension of memory slots impacts

SLU performance. Figure 3.3 shows the performance change with different hyper-parameters.

We found that the optimal size of memory slots for ATIS and Snips dataset is 20, whereas

the optimal dimension of memory slots is 64 for ATIS and 200 for Snips respectively.

41

Figure 3.3: SLU performance on different hyper-parameters in key-value memory networks

Memory Attention

Analyzing the attention weights has been frequently used to show the memory read-out, since

it is an intuitive way to understand the model dynamics. Figure 3.4 shows the attention

vector for each decoded slot, where each row represents attention vector at. Our model has

a sharp distribution over the memory, which implies that it is able to select the most related

memory slots from the value memory. For example, when decoding ”san”, our model selects

memory slot 1, 7, 8,15 from the value memory to read context information, where memory

slot 7 and 15 are representing word ”from” and memory slot 1 representing word ”flight”. In

other words, words ”flight” and ”from” contribute more than other previous words in order

to decode ”san” to B-fromloc.city name.

42

Figure 3.4: Key memory attention visualization from the ATIS dataset

3.5 Conclusions

In this chapter, we propose a joint model to perform spoken language understanding with

an augmented key-value memory to model slot context in order to capture long-term slot

information. In addition, we adopt a gating mechanism to incorporate slot context infor-

mation for intent classification to improve intent detection performance. Reciprocally, joint

optimization promotes slot filling performance further by memory sharing between those two

tasks. Experiments on two public datasets show the effectiveness of our proposed model and

achieve state-of-the-art results.

43

Chapter 4

Graph-to-Sequence Learning

Framework

In this chapter, in addressing modeling the rich graph structures in dialogue utterances, we

propose a novel Graph-to-Sequence learning framework to learn the semantics contained in

the graph-structured dialogues.

Although RNN-based neural models show promising results by jointly learning of these two

tasks, dominant RNNs are primarily focusing on modeling sequential dependencies. Rich

graph structure information hidden in the dialogue context is seldomly explored. In this

chapter, we propose a novel Graph-to-Sequence model to tackle the spoken language under-

standing problem by modeling both temporal dependencies and structural information in a

conversation. We introduce a new Graph Convolutional LSTM (GC-LSTM) encoder to learn

the semantics contained in the dialogue dependency graph by incorporating a powerful graph

convolutional operator. Our proposed GC-LSTM can not only capture the spatio-temporal

semantic features in a dialogue, but also learn the co-occurrence relationship between intent

detection and slot filling. Furthermore, a LSTM decoder is utilized to perform final decoding

44

of both slot filling and intent detection, which mutually improves both tasks through global

optimization. Experiments on benchmark ATIS and Snips datasets show that our model

achieves state-of-the-art performance and outperforms existing models.

4.1 Introduction

Although jointly modeling intent detection and slot filling has attracted significant attention,

and achieved promising results with recurrent neural networks (RNNs) (Liu and Lane, 2016;

Goo et al., 2018; Li et al., 2018). However, these RNN-based models are primarily focusing on

modeling sequential dependencies, and inherently unstable over long-time sequences as RNNs

tend to focus more on short-term memories (Weston et al., 2014). Indeed, this weakness of

sequential RNN-based models leads to a large portion of slot filling errors (Tur et al., 2010).

Ignoring the graph structure information flowing along the conversations puts a bottleneck

on state-of-the-art approaches. Subsequently, Zhang et al. (2020) attempted to address the

limitation of sequential models by utilizing S-LSTM to learn the graph structure in dialogue

utterances, and achieved promising improvement compared with sequential RNNs. Never-

theless, this model still suffers from three major issues: 1) Modeling dialogue graphs.

Although the n-gram context graph used in S-LSTM has to some extent captured the influ-

ence of neighboring words within a specific window, closely-related words, such as ”parents”,

”children” and ”siblings” in a dialogue graph can be outside this window and unfortunately

neglected. These words should have substantial impact on slot tag decoding. Furthermore,

unrelated words within the n-gram window are acting as noise, leading to more slot filling

errors. 2) Learning spatial structures in dialogues. S-LSTM is incapable of capturing

spatial structures in a conversational context, and we observe that this property plays a vital

role in modeling a fully graph-structured dialogue. 3) Jointly decoding intent detection

and slot filling in a stand-alone decoder. Zhang et al. (2020) utilized a S-LSTM to

45

both encode dialogue states and decode final intents and slot tags. This puts too much

burden on the S-LSTM and deteriorates SLU performance. In fact, sequence-to-sequence

framework shows great advantages in sequence labeling, which we can leverage to free us

from this dilemma.

In this chapter, we propose a novel Graph-to-Sequence (Graph-to-Seq) framework to perform

joint intent detection and slot filling in task-oriented dialogue systems. The proposed model

learns spatio-temporal semantic features hidden in dialogues by modeling dialogue structure

as a dependency graph, and by employing a Graph Convolutional LSTM (GC-LSTM). Graph

Convolutional operation further enables a deeper level of semantic modeling of the dialogue

context. A separate SLU decoder is also used to jointly decode slot tags and intents in a

globally optimal way.

In short, our contributions are threefold:

• To the best of our knowledge, our work is the first one that introduce spectral graph

convolution to model the graph structures in SLU.

• We propose a novel GC-LSTM to effectively learn graph-structured representations

in dialogues. We model a dialogue graph as an enhanced dependency tree by adding

forward and backward edges between words in order to capture both sequential and

structural information in dialogues.

• We introduce a novel Graph-to-Seq framework to perform joint SLU. A stand-alone

RNN decoder is greatly beneficial to improve SLU performance by relieving encoders

from decoding burden, and by enabling the interaction between intent detection and

slot filling.

46

4.2 Graph-to-Sequence

Given a sequence of words w = (w1, w2, ..., wn) in an utterance and an associated dialogue

dependency relation graph G = (V , E), intent detection can be defined as a classification task

that outputs an expected intent label oI , where V and E denote the set of word nodes and

relations in G, and n is the utterance length. Slot filling can be seen as a sequence labeling

task that maps the input utterance w into a predefined slot sequence oS = (oS1 , o
S
2 ..., o

S
n).

4.2.1 Model Overview

We propose a novel Graph-to-Seq framework to combine the merits of S-LSTM and GCNs

to effectively learn the spatio-temporal representation of the dialogue context. Our proposed

model is composed of two major components: a GC-LSTM encoder, and a SLU decoder,

as shown in Figure 4.1. The GC-LSTM encoder learns fixed-length vectors to represent the

dialogue context structurally. Not only can it model spatial graph structure information,

but also it learns the semantic correlation between slots and intents. Message passing in

our graph convolutional operation improves on capturing the long-range dependencies. We

further add a context gate to improve our model’s ability to utilize local context information.

In our decoder, a dedicated LSTM is employed to integrate hidden states of the GC-LSTM

for generating slot tagging and final intents. Our decoder first decodes slot tags and then

outputs an expected intent. We intentionally choose this mechanism to improve intent

accuracy since the slot information is beneficial to intent detection. Both intent detection

and slot filling are optimized simultaneously via joint learning. In the following sections we

detail each component thoroughly.

47

Figure 4.1: Graph-to-Sequence model for joint intent detection and slot filling.

4.2.2 Spectral Graph Convolutions

Graph convolutional neural networks are an effective framework for learning the representa-

tion of graph structured data. As it is difficult to express a meaningful translation operator

in the vertex domain, Defferrard et al. (2016) proposed a spectral formulation for the con-

volutional operator on graph ∗G. Based on this definition, a spectral convolution on graphs

is defined as the multiplication of a graph signal x ∈ RN (a scalar for every node) with

a non-parametric kernel filter gθ = diag(θ) parameterized by θ ∈ RN in Fourier domain,

where N is the number of vertices, as follows:

gθ ∗G x = UgθU
Tx (4.1)

where U ∈ RN×N is the matrix of eigenvectors of the normalized graph Laplacian L =

IN − D−
1
2AD−

1
2 = UΛUT with a diagonal matrix of its eigenvalues Λ and UTx being the

graph Fourier transform of x. gθ can be thought as a function of eigenvalues of L, i.e. gθ(Λ).

However, evaluating Equation (4.1) is computationally expensive as the multiplication with

U is O(N2). Calculating the eigendecomposition of L might be prohibitively expensive for

large graphs. Thus, Defferrard et al. (2016) parameterized gθ as a truncated expansion, up

to (K − 1)th order of Chebyshev polynomials Tk such that:

48

gθ(Λ) ≈
K−1∑
k=0

θkTk(Λ̃) (4.2)

where the parameter θ ∈ RK is the vector of Chebyshev coefficients and Tk(Λ̃) is the Cheby-

shev polynomial of order k evaluated at Λ̃ = 2Λ/λmax − IN . λmax denotes the largest

eigenvalue of L. The graph filtering operation can then be written as

gθ ∗G x ≈
K−1∑
k=0

θkTk(L̃)x (4.3)

where L̃ = 2L/λmax − IN . Equation (4.3) can be evaluated by using the stable recurrent

relation Tk(x) = 2xTk−1(x)− Tk−2(x) with T0 = 1 and T1 = x in O(K|E|) operations, where

E is the number of edges. As pointed out by Defferrard et al. (2016), when the filtering

operation Equation (4.3) is an order K polynomial of the Laplacian, it is K-localized and

depends only on nodes that are maximum K hops away from the central node, that is, the

K-neighborhood.

4.2.3 Graph Convolutional LSTM Encoder

Based on the graph convolutional operation defined in Equation (4.3), we propose a GC-

LSTM encoder to encode graph structures in dialogue utterances. Utterance words are

first transformed to word embeddings e = (e1, e2, ..., en) by using the pretrained ELMo

embeddings (Peters et al., 2018). They are then fed into the GC-LSTM at each time step.

After T steps, our GC-LSTM generates word-level hidden states for decoding slot labels,

and sentence-level hidden states for predicting intents.

49

Dialogue Graph

We model word relationships by using dependency trees, as dependency links are close to the

semantic relationships for the next stage of interpretation. In order to enable learning various

relationships of words such as dependency relations, we first use the off-the-shelf parsing tool

called Spacy1 to extract dependency relation graph G among words in dialog utterances as

shown in Figure 4.2. To further support bi-directional information flow, we explicitly add

reverse edges and sequential relations (i.e., Next and Prev) as well. Enhanced dependency

graphs allow information flow between dependent words and head words bidirectionally,

enabling the learning process to capture the rich semantic representation between them.

Figure 4.2: An example of our dialogue utterance graph

Graph Convolutional LSTM

We introduce a new GC-LSTM by extending S-LSTM (Zhang et al., 2018) to include a

powerful graph convolutional operator in order to better learn graph-structured semantics in

a dialogue. GC-LSTM views the whole sentence as a single graph G, consisting of word-level

nodes hi and a sentence-level node g. At each time step t, the graph state is represented as:

H t = (ht1, h
t
2, ..., h

t
n, gt).

1https://spacy.io/

50

https://spacy.io/

Like S-LSTM, GC-LSTM uses a recurrent state transition process to model information

between sub states, which enriches state representations incrementally. Unlike S-LSTM,

GC-LSTM updates its word hidden states using the graph convolution operation in order

to capture spatial features of the semantics. The graph state transition from H t−1 to H t

consists of word-level node state change from ht−1 to ht, and sentence-level state transition

from gt−1 to gt. We set initial state h0i = g0 = h0 in H0, where h0 is a parameter. The

hidden state hti is a function of word embedding ei, its neighboring node hidden state ht−1j ,

and sentence-level state gt−1, where j ∈ N (i) and N (i) is the neighbor nodes of word node

i. This updating function is formulated as follows:

ît = δ(Wi ∗G ht−1 + Uie
t + Vig

t−1 + bi)

f̂ t = δ(Wf ∗G ht−1 + Ufe
t + Vfg

t−1 + bf)

ŝt = δ(Ws ∗G ht−1 + Use
t + Vsg

t−1 + bs)

ot = δ(Wo ∗G ht−1 + Uoe
t + Vog

t−1 + bo)

ut = δ(Wu ∗G ht−1 + Uue
t + Vug

t−1 + bu)

it, f t, st = softmax(̂it, f̂ t, ŝt)

ct = f t � ct−1 + st � ct−1g + it � ut

ht = ot � tanh(ct)

(4.4)

where Wx, Ux, Vx and bx are model parameters (x ∈ {i, f, s, o, u}), δ is the sigmoid function,

and � denotes Hadamard product.

Different than S-LSTM, GC-LSTM only contains three gates: an input gate it, a forget gate

f t, and an output gate ot. But similar to S-LSTM, GC-LSTM also has one sentence gate

st controlling information from sentence cell ct−1g . These control gates are normalized by a

softmax function and then serve as probability weights to regulate new cell states ct and

hidden states ht.

51

Following Zhang et al. (2018), the sentence-level node gt is updated based on all word-level

nodes:

h̄ = avg(ht−11 , ht−12 , ..., ht−1n)

f̃ tg = δ(Wgg
t−1 + Ugh̄+ bg)

f̃ ti = δ(Wfg
t−1 + Ufh

t−1
i + bf̃)

õtg = δ(Wogg
t−1 + Uogh̄+ bog)

f ′
t
1, ..., f

′t
n, f

′t
g = softmax(f̃ t1, ..., f̃

t
n, f̃

t
g)

ctg = f ′
t
g � ct−1g +

n∑
i=1

f ′
t
i � ct−1i

gt = otg � tanh(ctg)

(4.5)

where Wx, Ux and bx are model parameters (x ∈ {g, f, og}). f ′t1, ..., f
′t
n and f ′tg are gates

controlling information from ct−11 , ..., ct−1n and ct−1g , whereas otg is an output gate regulating

the recurrent cell ctg to gt.

At each time step, word-level nodes capture an increasingly larger scope of the dialogue

graph, building up knowledge incrementally. The sentence-level node gathers information

from all the word-level nodes to refine the whole utterance representation. Slot nodes and

the intent node are interacting with each other via Equations (4.4) and (4.5), which learns

the correlation between intent detection and slot filling. Unlike an LSTM which uses only

one state to represent the utterances sequentially, our GC-LSTM uses multiple states (i.e. n

word-level states and 1 sentence-level state) to learn deeper context information incremen-

tally with the aid of our graph convolutional operation. In this way, our GC-LSTM can

capture long-range dependencies. Finally, after T time steps, word-level hidden states hT

and the sentence-level hidden state gT are used for predicting slot labels and an expected

intent.

52

Gated Context

In order to make our encoder fully context-aware, we introduce a context gate to capture the

contextual information for each token as Zhang et al. (2020) did. The context gate includes a

convolution unit and a self-attention unit. The convolution unit is supposed to capture local

context information, such as the internal correlation of phrase structure. Following Zhang

et al. (2020), we have multiple convolutional filters with variable sizes to capture different

local context, i.e., creating three different representations as conv1, conv2, conv3. Finally,

convolved slot hidden states are obtained below:

zi = [conv1i ||conv2i ||conv3i]Wz

convi = ReLU
(
Wc[h

T
i− k

2

, ..., hT
i− k

2

] + bc

) (4.6)

where Wz is the model parameter, || is a concatenation operation, and convi is a 1-d convo-

lution unit with Wc and bc being model parameters, and k being the filter size.

Furthermore, we use a multi-head self-attention mechanism (Vaswani et al., 2017b) to capture

diverse global contextual information. The self attention unit then takes input the output

of the convolution unit to generate gated context hidden state z̃:

z̃ = MultiHeadAttn(z, z, z) (4.7)

where MultiHeadAttn is defined in Vaswani et al. (2017b).

53

Encoder Output

The final output of our GC-LSTM encoder with context gating is:

UT = (uT1 , ...u
T
n+1) = [h̃T1 , ..., h̃

T
n ||gT]

h̃Ti = hTi � δ(z̃i)
(4.8)

4.2.4 SLU Decoder

Different than most existing joint models where intent detection and slot filling are decoded

separately, our framework decodes them in a shared LSTM. We directly leverage the explicit

slot decoding context information to help intent detection. By performing a joint SLU

decoding in a stand-alone LSTM, there are two advantages:

1. The architecture for example in Zhang et al. (2020) puts too much burden on one

Graph LSTM encoder as it is playing a dual role in both encoding and decoding. We

observe that separating decoding from encoding can potentially free an encoder from

this dilemma, thus beneficial to overall performance improvement. Indeed dominant

seq-to-seq models are primarily relying on an independent autoregressive decoder to

generate slot tokens one by one conditioned on all previously generated tokens.

2. Sharing slot decoding context with intent detection improves intent detection per-

formance since those two tasks are related. This can be further substantiated by our

experiment results. Through shared decoding states, the interaction between intent de-

tection and slot filling can be effectively modeled and executed. In addition, by jointly

training those two tasks, not only can intent detection performance be improved by

slot context knowledge, but also slot filling is enhanced by minimizing intent detection

objective function.

54

We use one unidirectional LSTM as a SLU decoder. At the decoding step i ∈ [1, n+ 1], the

decoder state hDi can be formalized as:

hDi = LSTM(hDi−1, y
D
i−1, ui) (4.9)

where hD0 = tanh(WD
0 un), hDi−1 is the previous decoder state, yDi−1 is the previous emitted

slot label distribution, and WD
0 is the model parameter.

Finally, the slot filling is given by:

ySi = softmax(W S
h h

D
i) i ∈ [1, n] (4.10)

oSi = argmax(ySi) (4.11)

The intent detection is defined as follows:

yI = softmax(W I
hh

D
n+1) (4.12)

oI = argmax(yI) (4.13)

4.2.5 Joint Training

The loss function for intent detection is L1, and that for slot filling is L2, which are defined

as cross entropy:

L1 , −
nI∑
i=1

ŷI,i log
(
yI,i
)

(4.14)

55

and

L2 , −
n∑
j=1

nS∑
i=1

ŷS,ij log
(
yS,ij

)
(4.15)

where ŷI,i and ŷS,ij are the gold intent label and gold slot label respectively, and nI and nS

are the number of intent label types and the number of slot tag types, respectively.

Finally the joint objective is formulated as follows by using hyper-parameters α:

Lθ = αL1 + L2 (4.16)

4.3 Experimental Setup

4.3.1 Datasets

To evaluate our proposed model, we conduct experiments on two widely used benchmark

datasets: ATIS (Airline Travel Information System) and Snips as illustrated in Section 3.3.1.

4.3.2 Training Details

We implement our model in Pytorch, and trained it on NVIDIA GeForce RTX 2080 Ti. In

our experiments, we set the dimension of GC-LSTM hidden state to 200, and that of ELMo

embedding to 1024. During training, ELMo parameters are not updated in order to reduce

training time. The decoder hidden state dimension is set to 124 for Snips, and to 90 for

ATIS. Dropout ratio is set to 0.5 to preventing overfitting, and the batch size is set to 32.

The model is trained end-to-end using Adam optimizer (Kingma and Ba, 2014) to minimize

the cross-entropy loss, with learning rate = 1e−3, β1 = 0.9, β2 = 0.98, and ε = 1e−9. Finally

our graph convolution operation is approximated by 1st-order Chebyshev polynomials.

56

4.3.3 Baselines

We adopt the three most popular evaluation metrics in SLU studies: slot filling using F1

score, intent prediction using accuracy, and sentence-level semantic frame parsing using whole

frame accuracy. We compare our model with the following baselines:

Baselines models are from some typical works such as Joint Seq. (Hakkani-Tür et al., 2016),

Attention BiRNN (Liu and Lane, 2016), Sloted-Gated (Goo et al., 2018), CAPSULE-NLU

(Zhang et al., 2019), SF-ID Network (Niu et al., 2019), Key-value Memory (Wu et al., 2021),

Unsupervised Transfer + ELMo (Siddhant et al., 2019) and Graph-LSTM (Zhang et al.,

2020).

• Joint Seq. (Hakkani-Tür et al., 2016). This model proposed a RNN-LSTM architecture

to jointly model domain detection, intent detection, and slot filling on multi-domains.

• Attention BiRNN (Liu and Lane, 2016). An attention-based neural network model for

joint intent detection and slot filling was proposed to learn the relationship between

slots and intents.

• Sloted-Gated (Goo et al., 2018). A gate mechanism was introduced to explore incor-

porating the intent information for slot filling in a joint model.

• CAPSULE-NLU (Zhang et al., 2019). This model proposed a capsule-based neural net-

work model which accomplishes slot filling and intent detection via a dynamic routing-

by-agreement schema. A rerouting schema was proposed to further synergize the slot

filling performance using the inferred intent representation.

• SF-ID Network (Niu et al., 2019). This model introduced a SF-ID network to establish

the interrelated mechanism for slot filling and intent detection tasks.

• Key-value Memory (Wu et al., 2021). This model explicitly modeled the long-term

57

slot context via a key-value memory network beneficial to both slot filling and intent

detection.

• Unsupervised Transfer + ELMo (Siddhant et al., 2019). This model used Language

Model (ELMo) Embeddings to take advantage of unlabeled data by learning contextu-

alized word representations to efficiently transfer the knowledge from these unlabeled

utterances to improve model performance on Spoken Language Understanding (SLU)

tasks.

• Graph-LSTM (Zhang et al., 2020). This model attempted to address the limitation of

sequential models by utilizing S-LSTM with a context-gated mechanism to learn the

local context in dialogue utterances.

When doing the comparison, we adopt the reported results from those papers directly.

4.4 Experimental Results

4.4.1 Automatic Evaluation Results

Model
ATIS Dataset Snips Dataset

Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)
Joint Seq.(Hakkani-Tür et al., 2016) 94.30 92.60 80.70 87.30 96.90 73.20
Attention BiRNN(Liu and Lane, 2016) 94.20 91.10 78.90 87.80 96.70 74.10
Sloted-Gated(Goo et al., 2018) 95.42 95.41 83.73 89.27 96.86 76.43
CAPSULE-NLU(?) 95.20 95.0 83.40 91.80 97.30 80.90
SF-ID Network(Niu et al., 2019) 95.58 96.58 86.00 90.46 97.0 78.37
Key-value Memory(Wu et al., 2021) 96.13 97.20 87.12 95.13 98.14 88.14
Unsupervised Transfer + ELMo(Siddhant et al., 2019) 95.62 97.42 87.35 93.90 99.29 85.43
Graph-LSTM(Zhang et al., 2020) 95.91 97.20 87.57 95.30 98.29 89.71

Graph-to-Seq 96.37 97.88 88.69 95.89 98.43 90.57

Table 4.1: SLU Performance evaluation results on ATIS and Snips datasets (%).

Table 4.1 shows the experimental results of our proposed model on ATIS and Snips datasets.

On the single domain ATIS dataset, our model substantially outperforms all the baselines by

a noticeable margin in all three aspects: slot filling (F1), intent detection (Acc) and sentence

58

accuracy (Acc), demonstrating that explicitly modeling graph-structured dialogue context

and the correlation between slots and intents can benefit SLU effectively via GC-LSTM.

Compared with the prior joint work Graph-LSTM (Zhang et al., 2020), we achieve F1 score

as 96.37% and intent Acc 97.88%, a significant improvement over 95.91% and 97.2%. This

performance promotion signifies that our GC-LSTM can effectively model graph-structured

dialogue context, and that our Graph-to-Seq framework captures long-term dependencies

and models the correlation between slot filling and intent detection.

On the Snips dataset, our model also achieves good results in almost all cases especially on

slot filling, which indicates our model has a better generalization capability than baseline

models. Specifically, for slot filling, we achieve a F1 score of 95.89%, a salient enhancement

compared with 95.3% (Zhang et al., 2020), and our sentence accuracy reaches at 90.57%.

The gain further demonstrates the effectiveness of our proposed Graph-to-Seq framework.

Although the intent Acc. of Unsupervised Transfer + ELMo model is slightly higher than

ours, this is at the cost of slot filling performance.

Generally, the ATIS dataset is a simpler SLU task than Snips, so the room to be improved

is relatively small. However, we still obtain noticeable improvement and set a new state-of-

the-art result. On the other hand, Snips dataset is more complex crossing multiple domains.

Thus, it is not surprising that most of baseline models are doing poorly especially on slot

filling. Surprisingly, our model achieves a great performance jump especially on slot filling.

Again we attribute this to our Graph-to-seq framework and GC-LSTM.

4.4.2 Ablation Study

In this section, we explore how each component contributes to our full model by conducting

three important scenarios: (1) With only GC-LSTM. In this case, we directly compare the

performance between GC-LSTM and S-LSTM (Zhang et al., 2020) to verify the effectiveness

59

Model
ATIS Dataset Snips Dataset

Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)
Graph-LSTM baseline (Zhang et al., 2020) 95.91 97.20 87.57 95.30 98.29 89.71
With only GC-LSTM 96.21 97.01 87.68 95.40 98.43 89.71
With GC-LSTM and LSTM Decoder no decoding intent 96.30 96.75 87.23 95.68 98.0 89.57

Our full model: Graph-to-Seq 96.37 97.88 88.69 95.89 98.43 90.57

Table 4.2: Feature ablation study on our proposed model on ATIS and Snips datasets (%).

of our GC-LSTM. (2) With GC-LSTM and LSTM decoder but without decoding

intent. This is to verify the effectiveness of a LSTM decoder. (3) With full Graph-to-Seq

framework.

Table 4.2 shows the SLU performance variance on these scenarios. First, we only consider

GC-LSTM to model spatio-temporal features of dialogue utterances by replacing S-LSTM in

Zhang et al. (2020). From Table 4.2, we can see that GC-LSTM does improve performance

in almost all the cases especially on slot filling and shows its superiority over S-LSTM. The

result can be interpreted as that GC-LSTM demonstrates great capability to model spatial

and temporal dependencies among the dialogue context globally, whereas S-LSTM is more

focused on the local context. We then apply a stand-alone LSTM decoder to perform slot

decoding. It is noticeable that slot filling is enhanced further, though intent detection de-

teriorates. It is explainable that using an autonomous autoregressive decoder to generate

slot tags token by token not only reduces decoding errors by conditioning on all previously

generated tokens, but also alleviates the encoder’s burden. However, this model unintention-

ally puts too much weight on slot filling with the sacrificing of intent detection performance,

thus leading to this unbalanced result. Finally, when we jointly perform decoding of slot

filling and intent detection, the performance further improves. We attribute this to the fact

that sharing slot decoding context not only improves intent detection accuracy, but is also

beneficial to slot filling by minimizing intent detection objective function via joint training.

To sum up, in a joint SLU model leaning too much on one task potentially worsens the other.

Nevertheless, it is salient that our model achieves a trade-off to balance those two tasks.

Furthermore, we also study how the parameter time step in GC-LSTM impacts SLU per-

60

Figure 4.3: SLU performance on various time steps.

formance. Figure 4.3 shows the performance change with different time steps. It is easily

observed that as the time steps go up, the sentence-level accuracy increases as well until

reaching its peak. This is due to the message passing mechanism trying to enable word-level

nodes to involve information spanning the whole dialogue graph. We find that the optimal

time step for ATIS and snips datasets is 6 and 7, respectively.

4.4.3 Dialogue Dependency Graph vs N-gram Context Graph

We argue that modeling dialogue structural information by using our enhanced dependency

graph is superior to the use of the n-gram context graphs. In order to verify this, we design

some experiments to only replace our dialogue dependency graph with n-graph context graph

with window size 1, 2 and 3. From Tables 4.3 and 4.4, it is noticeable that our dependency

graph constantly outperforms the n-gram context graph with variable window sizes in all

cases. We attribute this to the fact that modeling dialogue structural dependencies by our

enhanced dependency graph captures spatial features globally, whereas the n-gram context

graph is more focusing on limited local context. Anything outside the n-gram window has

no impact on the decision being made.

61

Model
ATIS Dataset

Slot(F1) Intent(Acc) Sent.(Acc)
N-gram graph with window 1 96.12 97.09 87.46
N-gram graph with window 2 96.27 96.64 87.57
N-gram graph with window 3 96.28 96.42 87.35
Our dependency graph 96.37 97.88 88.69

Table 4.3: Performance comparison of dialogue dependency graph and n-gram context graph
on ATIS (%).

Model
Snips Dataset

Slot(F1) Intent(Acc) Sent.(Acc)
N-gram graph with window 1 95.77 98.00 90.29
N-gram graph with window 2 95.61 97.71 89.71
N-gram graph with window 3 95.25 98.0 88.71
Our dependency graph 95.89 98.43 90.57

Table 4.4: Performance comparison of dialogue dependency graph and n-gram context graph
on Snips (%).

4.4.4 Joint Model vs Separate Model

One of our main contributions is explicitly modeling the correlation and interaction of slots

and intents by our GC-LSTM and joint decoding. Theoretically, this explicit interaction

between them eventually promotes each other by achieving a trade-off. To verify this con-

clusion, we compare the SLU performance between the joint model and separate models.

The former is our proposed model, whereas the latter is solely focusing on one task, thus

without any interaction between intent detection and slot filling. It is easily observed from

Table 4.5 that the joint model generally performs much better than two separate models.

This further buttresses our claim.

Model
ATIS Dataset Snips Dataset

Slot(F1) Intent(Acc) Slot(F1) Intent(Acc)
Slot filling model 96.05 - 95.38 -
Intent detection model - 97.20 - 98.0
Joint model 96.37 97.88 95.89 98.43

Table 4.5: Comparison between our joint model and separate models (%).

62

4.5 Conclusions

In this chapter, we propose a joint model to perform spoken language understanding with

an augmented key-value memory to model slot context in order to capture long-term slot

information. In addition, we adopt a gating mechanism to incorporate slot context infor-

mation for intent classification to improve intent detection performance. Reciprocally, joint

optimization promotes slot filling performance further by memory sharing between those two

tasks. Experiments on two public datasets show the effectiveness of our proposed model.

63

Chapter 5

GraphMemDialogue: Learning

End-to-End Dialogues

In this chapter, in addressing effectively integrating knowledge into dialogue generation sys-

tems, we propose a novel end-to-end learning framework to incorporate an external knowledge

base (KB) and to capture the intrinsic semantics of the dialog history.

Effectively integrating knowledge into end-to-end task-oriented dialog systems remains a

challenge. It typically requires to incorporate an external knowledge base (KB) and capture

the intrinsic semantics of the dialog history. Recent research shows promising results by using

Sequence-to-Sequence models, Memory Networks, and even Graph Convolutional Networks.

However, current state-of-the-art models are less effective in integrating the dialog history

and KB into task-oriented dialog systems in the following ways: 1. The KB representation

is not fully context-aware. The dynamic interaction between the dialog history and KB is

seldom explored, which unfortunately are modeled separately. 2. Both the sequential and

structural information in the dialog history can contribute to capturing the dialog semantics,

but they are not studied concurrently. In this chapter, we propose a novel Graph Memory

64

Network (GMN) based Seq2Seq model, GraphMemDialog, to effectively learn the inherent

structural information hidden in dialog history, and to model the dynamic interaction be-

tween dialog history and KBs. We adopt a modified graph attention network to learn the

rich structure representation in the dialog history, whereas the context-aware representation

of KB entities are learnt by our novel GMN. To fully exploit this dynamic interaction, we

design a learnable memory controller coupled with external KB entity memories to recur-

rently incorporate dialog history context into KB entities through a multi-hop reasoning

mechanism. Experiments on three public datasets show that our GraphMemDialog model

achieves state-of-the-art performance and outperforms strong baselines by a large margin,

especially on datatests with more complicated KB information.

We first give an overview of learning end-to-end task-oriented dialogue systems. Then we

present the architecture of our neural network based model in detail. Lastly, we discuss

system learning, system evaluation and performance results.

5.1 Introduction

Task-oriented dialogue systems (TDSs), in contrast with chichat, aim at helping users com-

plete a specific task with natural language, for example, inquiring about weather, reserving

restaurants, and booking flights. In one specific domain, TDS takes dialog utterances and

the knowledge base (KB) as input and produces responses by understanding dialog history,

retrieving the most related KB entities, and generating readable sentences. Table 5.1 shows

a multi-turn dialogue between a driver and an agent. The upper part is the KB information

the dialogue needs to query, including point-of-interests (POIs), address, types, traffic infor-

mation, and distances. In order to complete a navigation task, the dialogue system needs

to query the KB and select the most relevant KB entities, such as “valero”, “4 miles”, and

“200 alester ave”. Thus, effectively learning the representation of KB information and rea-

65

soning over it is very critical for TDSs. Traditionally, these dialog systems have been built

as a pipeline, with modules including spoken language understanding (SLU), dialog state

tracking, action selection and language generation Young et al. (2013b). However, pipelined

dialog systems usually suffer from the credit assignment problem Yang et al. (2020) and

easily lead to error propagation. Furthermore, they are not flexible enough to be adapted to

new domains.

Distance Traffic info Poi type Address Poi
3 miles heavy traffic friend’s house 580 van ness ave tom’s house
2 miles moderate traffic coffee or tea place 394 van ness ave coupa
2 miles no traffic hospital 611 ames ave palo alto medical foundation
5 miles no traffic hospital 214 el camino real stanford express care
1 mile heavy traffic coffee or tea place 792 bedoin street starbucks
2 miles no traffic chinese restaurant 842 arrowhead way panda express
4 miles heavy traffic gas station 200 alester ave valero

Role Turn Utterance
Driver 1 I need gas.
System 1 valero is 4 miles away.
Driver 2 what is the address?
System 2 valero is at 200 alester ave.

Table 5.1: A dialogue example with KB information on In-Car Assistant dataset in the
navigation domain.

Recently, in order to address these issues, end-to-end TDSs Serban et al. (2016); Wen et al.

(2017) with sequence-to-sequence model (Seq2Seq) have attracted attention due to great

flexibility and good quality. The core idea of a Seq2Seq model is to leverage an encoder

to directly map the dialog history and KB to a vector representation, which is then fed

into a decoder to generate a response word by word. Later, memory networks (MemNN)

are used to effectively incorporate KB information into the Seq2seq model Madotto et al.

(2018); Zhong et al. (2018). Despite achieving promising results, these models are inherently

weak at representing temporal dependencies between memories, thus ignoring the association

between KB entities. Subsequently, Banerjee and Khapra (2019) first proposed to use Graph

Convolutional Networks (GCNs) to capture the rich structural information hidden in the

dialog history and the KB, and achieves big improvement compared with Seq2Seq models

with attention. Yang et al. (2020) employed a new recurrent cell architecture to allow

66

representation learning on graphs. However, these models still suffer from two major issues:

1) Learning of context-aware KB representation. Although GCNs show promising

results at capturing graph structure information inherent in the KB, current state-of-the-

art models still fail to fuse meaningful dialog context semantics to the KB representation.

Actually, our study shows that making it fully context-aware can significantly reduce the

response errors especially on datasets with more complicated KB information. 2) Modeling

sequential and structural dialog context concurrently. Both type of information

can be jointly rewarding to response generation by capturing distinct aspects of semantic

information. Unfortunately, they have never been combined to promote performance in

parallel for TDSs.

In this chapter, we propose a novel Graph Memory Network (GMN) based end-to-end task-

oriented dialog model, GraphMemDialog. The proposed model learns fully context-aware

KB representations integrated with both KB graph structure information and the dialog

history semantics. Multi-hop reasoning further enables a deeper level of semantic modeling

of KB entities. A multi-head graph attention network (GAT) is used to learn the intrinsic

structural information in the dialog history, together with traditional RNNs, to jointly guide

the response decoder to reduce response generation errors.

Our contributions are summarized as follows:

• We propose a novel GMN based end-to-end model to effectively incorporate external

knowledge bases into TDSs by enabling fully context-aware KB entity representations.

We design a learnable memory controller coupled with external KB entity memories to

recurrently incorporate the dialog history context into KB entities through a multi-hop

reasoning mechanism.

• We introduce a multi-head GAT to learn the intrinsic structural information in the

dialog history to jointly guide the response decoder with the cooperation of traditional

67

RNNs.

• Experiments on three benchmark datasets (i.e., CamRest, In-Car Assistant, MultiWOZ

2.1) demonstrate that our GraphMemDialog outperforms the state-of-the-art models

especially on In-Car Assistant and MultiWOZ 2.1 datasets with more complicated KB

information.

5.2 Graph Memory Networks

Graph Memory Networks (GMNs) extend an end-to-end memory networks (Sukhbaatar

et al., 2015) to have a structured dynamic memory organized as a graph of memory cells.

Pham et al. (2018) proposed this new structure to perform molecular activity prediction. Lu

et al. (2020) employed GMN framework to accomplish one-shot and zero-shot video object

segmentation tasks. Khasahmadi et al. (2020) introduced a new memory layer for graph

nerual networks which can learn hierarchical graph representations.

However, none of these GMNs work is to model the knowledge base in task-oriented dialog

systems. Inspired by Pham et al. (2018) and Lu et al. (2020), we propose a novel GMN

framework to effectively learn context-aware KB representations. To the best of our knowl-

edge, our work is the first one that uses GMNs to incorporate the context-aware knowledge

graph structure into an end-to-end model for task-oriented dialog systems.

5.3 Graph Memory Dialogue

Given a dialog between a user (U) and a system (S), the t-turned dialog utterance is repre-

sented as (U1, S1), (U2, S2), ..., (Ut, St). Dialogs are associated with knowledge triples in the

format of (subject, relation, object) denoted as (h, r, t). The structural information of KB

68

triples (h, r, t) is modeled as a knowledge graph Gk = (V , E) with h, t ∈ V and r ∈ E , where

V and E denote the set of all entities and relations in Gk, respectively. At the ith dialog turn,

our system input is dialog history (U1, S1, ..., Ui−1, Si−1, Ui) and the associated knowledge

graph Gk. The system output is to the generation of the next system response Si word by

word.

5.3.1 Model Overview

We propose a novel GMN framework to combine the merits of MemNNs and GCNs to

effectively learn context-aware KB representations. Our proposed model is composed of

three major components: a context graph encoder, a knowledge encoder based on GMN

with multi-hopping reasoning, and a response decoder, as illustrated in Figure 5.1. The

Context Graph Encoder learns a fixed-length vector to represent the dialog history both

sequentially and structurally. We propose a graph encoder to encode the dialog history

structural information, which is the dependency parsing graph of the sentences in the dialog

history Gd. Next the Knowledge Encoder encodes context-aware KB entity information by

incorporating graph structure information and the dialog context semantics through our

GMN and its multi-hop reasoning mechanism. Finally the Response Decoder generates the

system response token-by-token, either by querying the knowledge graph, or by generating

tokens from vocabularies under the constraint of the dialog and KB context. In the following

sections we detail each component thoroughly.

5.3.2 Context Graph Encoder

Given that the dialog history has L utterances with each one containing Ti words, our context

graph encoder encodes dialog context both sequentially and structurally via a hierarchical

attention network (Yang et al., 2016) and a modified GAT Veličković et al. (2018). This

69

Figure 5.1: Graph Memory Dialogue Architecture.

approach is different than previous work in which dialog history is encoded either sequen-

tially or structurally. We observe that the combination of those two inputs is beneficial to

effectively capture the semantic context, especially for multi-turn dialog systems.

Hierarchical Attention Encoder We employ a hierarchical attention network to sequen-

tially encode the dialog history. A bidirectional RNN is applied to learn representations of

each word wit with t ∈ [1, Ti] in the ith utterance by reading the input utterance forward and

backward to produce context sensitive hidden states.We use BiGRU (Chung et al., 2014) to

encode the dialog context into hidden states:

Hi = hi1, ...hiTi = BiGRU(φemb(wit), hi(t−1)) (5.1)

where φemb(wit) is the embedding of the word wit.

Then, we use self-attention mechanism to capture the contextual information for each token

in order to get an interpretable utterance semantic representation as below:

uit = tanh(Wwhit + bw) (5.2)

70

ait =
exp(u>ituw)∑
t exp(u>ituw)

(5.3)

ŝi =
∑
t

aithit (5.4)

where Ww, bw, uw are trainable parameters of the model.

Finally, we use a GRU to encode the utterance vector ŝi:

hCi = GRU(ŝi), i ∈ [1, L] (5.5)

Graph Encoder In order to enable learning various relationships of words such as depen-

dency relations, we first use the off-the-shelf parsing tool called Spacy1 to extract dependency

relation graph Gd among words in dialog history. To model word nodes and relations jointly,

we employ a modified variant of graph attention network (GAT) (Veličković et al., 2018),

which is enhanced to model multi-relational edges. In this way, modified GAT learns atten-

tion not only from the neighboring nodes, but also from edge features. This is important

because dialog data contains rich edge information.

We first apply another BiGRU to process all the concatenated words in dialog history to get

their contextual representation, which are then fed in our modified GAT:

hGt = BiGRU(φemb(wt), h
G
t−1) (5.6)

In the l-th layer of the modified GAT, the attention score between two neighboring words is

obtained as follows:

αij =
exp

(
σ
(
W [Wah

G
i
(l)‖Wah

G
j
(l)‖Weh

E
i→j

(l)
]
))

∑
k∈Ni

exp
(
σ
(
W [WahGi

(l)‖WahGk
(l)‖WehEi→k

(l)
]
)) (5.7)

1https://spacy.io/

71

https://spacy.io/

where hEi→j
(l)

denotes the representation of the edge connecting word node i to its neighboring

word node j. Wa and We are trainable word node and edge weights, whereas W is a single-

layer feed-forward network parameter that computes the attention score. σ is the LeakyReLU

activate function. Word hidden states are obtained by multi-head attention mechanism via

averaging:

h̃Gt = σ

(
1

N

N∑
n=1

∑
j∈Ni

αnijWnh
G
j

)
(5.8)

where N is the number of heads, and Wn is the corresponding input linear transformation’s

weight matrix.

Finally we apply the same procedure on h̃Gt as shown in eqs. (5.2) to (5.4) to obtain our final

integrated graph context information:

o = self-attention
(
h̃Gt

)
(5.9)

Contrary to BiGRU only capturing sequential associations between words, dependency re-

lationship is supposed to learn the mutual interaction between head words and dependent

words. Those two types of relationship should complement each other.

5.3.3 Knowledge Encoder

The knowledge encoder obtains a context-aware representation of each entity in the knowl-

edge graph. We propose a novel graph memory network framework by extending a graph

with multi-hop reasoning to model knowledge entities, through which entity dependencies

can be well modeled and fused with dialog history context.

72

Context Alignment In order to make our knowledge entity context-aware, we first align

the embedding of entity ej, j ∈ [1, E] with that of word wit in the ith utterance as shown in

He et al. (2020), where E is the number of entities in the KB:

f ialign(ej) =
∑
t

αjitφ
emb(wit) (5.10)

αjit =
exp

(
u>jitue

)∑
t exp

(
u>jitue

) (5.11)

ujit = tanh
(
We[φ

emb(ej)‖φemb(wit)] + be
)

(5.12)

where We, be, and ue are trainable parameters of the model and ‖ denotes the concatenation.

Then we pass the entity sequence to a GRU as follows for entity ej:

fji = GRU
(
[φemb(ej)‖f ialign(ej)]

)
, i ∈ [1, L] (5.13)

After the above processing, each entity has L representations corresponding to L utterances,

so F = {fji} ∈ RL×E×de , where de is the entity embedding dimension.

Furthermore, to have a deeper integration of the dialog history, we perform another level of

knowledge entity alignment with our sequential encoder BiGRU hidden state hit as shown

in Equation (5.1), because it captures the temporal dependency between words.

hAji = GRU ([fji‖falign(fji, hit)]) , j ∈ [1, E] (5.14)

We take the entity representations under the Lth utterance from the output of the second

alignment process as our initial context-aligned entity representations, namely:

EA = {hA1L, ...HA
EL} ∈ RE×de (5.15)

73

Graph Memory Network Our GMN is composed of an external graph memory and

learnable controllers for memory reading and writing. The memory graph structure with

multi-hop mechanism enables strong reasoning ability on knowledge entities. The controllers

interact with memories using read and write operations to carry long-term context informa-

tion and to encode new knowledge via slow updates of the weights. Through iterations,

our GMN learns a general strategy to represent knowledge entities under a specific dialog

context, making them quite context-aware.

We incorporate the semantics contained in the historical context into the KB entity memory

slots. The memory is organized as a fully connected graph Gk = (V , E), where node mi ∈ V

denotes ith memory cell, which learns to represent entity ei, and edge ēij = (mi,mj) ∈ E

indicates the relation between entity ei and ej. The graph memory cells are initialized by the

knowledge entity embedding {e1, ..., eE}. Subsequently these memory cells are augmented

to capture the dialog history via controller writing.

Graph Memory Reading In order to effectively integrate context history into knowledge

entities, we take context alignment output EA as our initial state hM0 to our GMN. A

learnable read controller at each iteration step k ∈ 1, ..., K interacts with graph memory

by reading the content. mk is a sum of all memory cells, weighted by the probability wki .

Formally Lu et al. (2020):

bki =
hMk−1 ·mk−1

i

‖hMk−1‖‖m
k−1
i ‖

(5.16)

wki =
exp(bki)∑
j exp(bkj)

(5.17)

mk =
∑
i

wkim
k−1
i (5.18)

74

Once reading memory content, the read controller updates its state as follows:

h̃Mk = W h
r h

M
k−1 + Uh

rm
k

akr = σ(W a
r h

M
k−1 + Ua

rm
k)

hMk = akr h̃
M
k + (1− akr)hMk−1

(5.19)

where W h
r , Uh

r , W a
r , Ua

r are trainable parameters of the model. The udpate gate akr controls

how much previous hidden state hMk−1 to be kept. In this way, the hidden state of the

controller encodes both the KB entity memory and dialog history representations, hence

context-aware.

Graph Memory Updating After we obtain a new query hMk , we need to update the

graph memory with the new query input. At each step k, each memory cell is augmented

by a learnable write controller, which is a function of previous memory state mk−1
i , current

query state hMk , and the states from all of its neighboring cells, namely:

mk
i = f

(
mk−1
i , hMk ,

(
mk−1
j

)
j∈N (i)

)
(5.20)

where Ni is the neighbors of the node mi. Following Pham et al. (2018), we calculate the

summarized information cki from neighboring entities as follows:

cki =
∑
j∈N (i)

pki,j
[
mk−1
j ‖ēki,j

]
(5.21)

where ēki,j is the relation feature vector between entities and pki,j is the weight of mj, which

indicates how important the node mj towards mi. p
k
i,j can be learned, similarly to memory

cell probabilities in the attentive reading as in Equations (5.16) and (5.17).

After aggregating the information from neighbors, the memory write controller updates the

75

state of mi as:

m̃k
i = Wm

u h
M
k + Um

u m
k−1
i + V m

u c
k
i

aku = σ(W a
uh

M
k + Ua

um
k−1
i + V a

u c
k
i)

mk
i = akum̃

k
i + (1− aku)mk−1

(5.22)

The graph memory updating allows each memory cell to embed both the neighbor informa-

tion and the dialog context information into its representation, making it fully context-aware.

Moreover, by iteratively reasoning over the graph structure, each memory cell encodes the

new query information and yields progressively improved representations. Those salient

properties make our GMN overcome the shortness of traditional memory networks and also

dwarf popular GCNs because of GMN’s multi-hop reasoning.

Final GMN Outputs After K steps of iteration, we concatenate the output of context

aligned KB entities and the final memory state mK as our final knowledge entity represen-

tations:

EK =
[
EA‖mK

]
(5.23)

Also the first hidden state of hMK , that is r = hMK [0], is considered as our knowledge encoder

hidden state to carry over KB context to the response decoder.

5.3.4 Response Decoder

The response decoder is conditioned on dialog sequential and structural context represen-

tation, and context-aware entity representation. Followed by Wu et al. (2019b), we use a

sketch GRU to generate a sketch response that excludes slot values but includes sketch tags,

which are all possible slot types starting with a special token, for instance, @distance. The

sketch GRU learns to generate a dynamic dialogue action template. For example, instead

76

of generating “Stanford shopping center is 2 miles away at 773 alger dr”, it produces “@poi

is @distance away at @address”. At each decoding timestep, if a sketch tag is generated,

we select an appropriate entity as the output word by querying entity representation. Oth-

erwise, the output word is the word generated by the sketch GRU. For example, if “@poi”

tag is generated, the words “Stanford shopping center” is selected from our KB entities to

replace this tag as part of our final response.

The initial hidden state of the decoder hD0 consists of context graph encoder hidden and

knowledge encoder hidden output, which further constrains the decoding process under the

current dialog context.

hD0 = σ
(
Wd

[
hCL‖o‖r

])
(5.24)

where Wd is the trainable parameter. At each decoding time step t, the GRU takes the

previously generated st−1 and the previous hidden state hDt−1 as the input and generates a

new hidden state hDt as follows:

hDt = GRU
(
φemb(st−1), h

D
t−1
)

(5.25)

In order to handle long-term dependency, we again use an attention mechanism to dynami-

cally determine the importance of each word in the dialog history and each entity in the KB.

At each time step t, the decoder generates an attentive entity vector based on context-aware

entity representation EK as follows:

αti =
exp

(
hDt
>

Wke
K
i

)
∑

j exp
(
hDt
>

WkeKj

) (5.26)

cKt =
E∑
i=1

αtie
K
i (5.27)

77

Similarly, we generate an attentive word vector cHt based on HL specified in Equation (5.1).

Finally, the decoder generates two distributions, that is, a vocabulary distribution P vocab
t ,

and a knowledge entity distribution P kb
t to either select a vocabulary word or an entity word

from the KB:

P vocab
t = Softmax

(
Wv

[
hDt ‖cKt ‖cHt

])
(5.28)

P kb
t = Softmax

(
EK>Wkb

[
hDt ‖cKt ‖cHt

])
(5.29)

where Wv and Wkb are trainable parameters.

5.3.5 Joint Training

Following Wu et al. (2019b), we replace the slot values in the response S with sketch tags

based on the provided entity table to create a sketch response Ss = (ss1, ..., s
s
m). We use the

standard negative log-likelihood loss to train the sketch GRU as:

L1 =
m∑
t=1

−log(P vocab
t (sst)) (5.30)

Similarly, we have another loss for our KB entities which eventually replace all the sketch

tags to form a final response:

L2 =
m∑
t=1

−log(P kb
t (set)) (5.31)

where {set} represents the entity sequence. For the case when st is not an entity token, we

train P kb
t to produce a special token.

Finally the joint objective is formulated as the weighted-sum of these two loss functions

using hyper-parameters α and β:

Lθ = αL1 + βL2 (5.32)

78

5.4 Experimental Setup

5.4.1 Datasets

To evaluate our proposed model, we conduct experiments on three widely used benchmark

datasets: CamRest (Wen et al., 2016), In-Car Assistant (Eric and Manning, 2017b), and

Multi-WOZ 2.1 (Qin et al., 2020).

CamRest This dataset contains dialogs in restaurant reservation domain, involving 676

multi-turn dialogs and having 5 turns on average per dialog Wen et al. (2016). It also

has an average of 22.5 KB triples for every dialog. We divide this dataset into train-

ing/validaton/test sets with 406/135/135 dialogs, respectively, as Raghu et al. (2019) did.

In-Car Assistant It consists of 3,031 multi-turn dialogs in three distinct domains: weather

(Wea.), navigation (Nav.), and schedule (Sch.) This dataset has an average of 2.6 turns.

However the KB information is more compalicated than CamRest with an average of 62.3

triples for every dialog. Following Madotto et al. (2018), we divide the In-Car Assistant

dataset into training/validaton/test sets with 2425/302/304 dialogs, respectively.

Multi-WOZ 2.1 By extending the Multi-WOZ (Budzianowski et al., 2018) to equip the

corresponding KB to every dialog, this corpus is quite applicable for end-to-end response

generation. This dateset contains three distinct domains: attraction (Att.), hotel (Hot.)

and restaurant (Res.), with an average of 5.6 turns and 54.4 KB triples per dialog. Fol-

lowing how Qin et al. (2020) processed data, we deal with 1,839/117/141 dialogs for train-

ing/validation/test.

79

5.4.2 Training Details

We implement our model in Pytorch, which is trained on NVIDIA GeForce RTX 2080 Ti.

In our experiments, we set all the embedding dimension and hidden units to 200 and batch

size to 8. The model is trained end-to-end using Adam optimizer Kingma and Ba (2014) and

learning rate annealing starts from 1e−3 to 5 × 1e−5. Embeddings are randomly initialized

and updated during training. For all the datesets, dropout ratio is set to 0.5, the number of

our GAT’s attention heads is set to 6, and the number of hops for GMN is set to be 2.

5.4.3 Baselines

We compare our proposed GraphMemDialog model with several representative works:

• Seq2Seq+Attn (Luong et al., 2015). This model adopted seq-to-seq with attention

mechanism to improve neural machine translation.

• Mem2Seq (Madotto et al., 2018). Mem2Seq employed a memory network with multi-

hop attention for attending over dialog history and KB triples.

• GLMP Wu et al. (2019b). A global memory encoder and a local memory decoder were

proposed to share external knowledge. The encoder encoded dialogue history, modified

global contextual representation, and generated a global memory pointer. The decoder

generated responses by filtering the external knowledge via the global memory pointer.

• DDMN Wang et al. (2020). DDMN proposed two core components: dialog mem-

ory manager and KB memory manager. The dialog memory manager dynamically

expanded the dialog memory turn by turn and kept track of dialog history with an up-

dating mechanism, whereas the KB memory manager shared the structural KB triples

throughout the whole conversation, and dynamically extracted KB information with a

80

memory pointer at each turn.

• FG2Seq He et al. (2020). FG2Seq encoded knowledge by considering inherent struc-

tural information of the knowledge graph and latent semantic information from dialog

history.

• MCL Qin et al. (2021). This paper proposed a Meta Cooperative Learning frame-

work for task-oriented dialog systems, consisting of an auxiliary KB reasoning task

for learning meta KB knowledge, an auxiliary dialogue reasoning task for learning

dialogue patterns, and a TDS task (primary task) that aims at not only retrieving

accurate entities from KB but also generating natural responses.

When doing the comparison, we adopt reported results from those papers directly.

5.4.4 Automatic Evaluation Metrics

In order to have fair comparison with others’ work, we adopt two most popular evaluation

metrics in dialogue studies Zhong et al. (2018); Madotto et al. (2018); Qin et al. (2021).

1. Bilingual Evaluation Understudy (BLEU) Papineni et al. (2002). BLEU has been

widely employed in evaluating sequence generation including machine translation, text

summarization, and dialog systems. BLEU computes the n-gram overlap between the

produced responses and gold ones.

2. F1 Score (Entity F1). The entity F1 score is generally used to measure the system’s

capability of generating relevant entities to accomplish certain tasks by retrieving accu-

rate entities from the provided KB. The entity F1 score is computed by micro-averaging

the precision and recall over KB entities of the generated responses Qin et al. (2021).

81

Model
CamRest In-Car Assistant Multi-WOZ 2.1

BLEU Ent.F1 BLEU Ent.F1 Sch.F1 Wea.F1 Nav.F1 BLEU Ent.F1 Res.F1 Att.F1 Hot.F1
Seq2Seq+Attn 7.7 21.4 9.3 19.9 23.4 25.6 10.8 4.5 11.6 11.9 10.8 11.1
Mem2Seq 13.5 33.6 12.6 33.4 49.3 32.8 20.0 6.6 21.6 22.4 22.0 21.0
GLMP 16.7 50.6 14.8 60.0 69.6 62.6 53.0 6.9 32.4 38.4 24.4 28.1
DDMN 19.3 58.9 17.7 55.6 65.0 58.7 47.2 12.4 31.4 30.6 32.9 30.6
MCL 20.1 59.2 17.2 60.9 70.6 62.6 59.0 13.6 32.6 34.4 30.2 29.8
Fg2Seq 20.2 62.1 16.8 61.1 73.3 57.4 56.1 13.5 36.0 40.4 41.7 30.9

GraphMemDialog 22.3 64.4 18.8 64.5 75.9 62.3 56.3 14.9 40.2 42.8 48.8 36.4

Table 5.2: Performance evaluation results on CamRest, In-Car Assistant, and Multi-WOZ
2.1 datasets.

5.5 Experimental Results

5.5.1 Automatic Evaluation Results

Table 5.2 shows the experiment results of the proposed model on CamRest, In-Car Assistant,

and Multi-WOZ 2.1 datasets. From the table, we can see that our model substantially

outperforms all the baselines by a noticeable margin on both BLEU score and entity F1,

demonstrating that our context-aware graph memory network can benefit dialog response

generation more effectively. On single domain CamRest dataset, compared with the best

prior work Fg2Seq He et al. (2020), we achieve performance improvement by 10% on BLEU,

and almost 4% on entity F1, respectively. The performance jump on BLEU score signifies

that our decoder’s generation error has been greatly reduced, whereas the gain on entity

F1 indicates that our model can retrieve entities from the external knowledge data more

accurately than those baselines. This demonstrates that our GraphMemDialog model can

not only improve the dialog history context modeling by capturing the graph structure in

dialogs via graph attention networks, but also effectively model the interaction between the

dialog history and KB entities, making them fully context-aware.

On both In-Car assistant and Multi-WOZ 2.1 datasets, our GraphMemDialog also outper-

forms all the other baselines by a large margin both in BLEU score and entity F1, which

indicates our model has a better generalization capability than baseline models. Our model

outperforms Fg2Seq by 12% on BLEU score and 5.6% on entity F1 on In-Car Assistant,

82

and by 10% on BLEU score and 12% on entity F1 on Multi-WOZ 2.1. The gain on entity

F1 further demonstrates our GMN’s great reasoning capability under different dialog his-

tory context, especially considering In-Car assistant and Multi-WOZ 2.1 have much more

complicated KB information. Even though Fg2seq and MCL have already made a great ad-

vancement in performance, our GraphMemDialog still outperforms them by a large margin.

Table 5.3 reports some responses generated by GraphMemDialog and some baseline models.

Compared with GLMP and FG2Seq, GraphMemDialog is more effective at carrying over

dialog context to next turns and generating context-aware responses. For example, in the

second turn, since the query is very short, GLMP and Fg2Seq tends to generate unrelated

responses. GraphMemDialog shows strong capability to extract key entities, whereas GLMP

fails to fill slot tag @weather attribute it has produced. We attribute those merits mainly

to our GMN’s contributions.

Knowledge Base

today is monday
downtown chicago monday hail
downtown chicago monday low 50f
downtown chicago monday high 70f

Role Turn Utterance
User 1 give me weather forecast for today.

System (Gold) 1 what city do you want the weather forecast for?
GLMP 1 what city do you want the weather for?
Fg2Seq 1 what city would you like to hear the forecast for?

GraphMemDialog 1 what city are you interested in?
User 2 downtown chicago, please.

System (Gold) 2 today in downtown chicago there should be hail
with a high of 70f.

GLMP 2 it will be downtown chicago in today monday.
Fg2Seq 2 what would you like to know about today?

GraphMemDialog 2 today in downtown chicago it will be hail today,
and hail with a low of 50f and a high of 70f.

Table 5.3: Responses generated by GraphMemDialog and some baseline models on In-Car
Assistant dataset. The gold entities in each response are highlighted in bold.

83

5.5.2 Ablation Study

Model
CamRest In-Car Assistant Multi-WOZ 2.1

BLEU Ent.F1 BLEU Ent.F1 BLEU Ent.F1
GraphMemDialog 22.3 64.4 18.8 64.5 14.9 40.2
w/o GMN 20.8 56.2 16.7 52.0 14.1 31.2
w/o GAT 21.2 62.4 18.8 63.6 14.2 39.0
w/o Both 20.2 54.8 16.4 50.6 12.9 30.8

Table 5.4: Ablation results of GraphMemDialog on CamRest, In-Car Assistant, and Multi-
WOZ 2.1 datasets.

In this section, we explore how each component contributes to our full model. We conduct

some ablation tests by removing GMN (w/o GMN), and modified GAT (w/o GAT). Ta-

ble 5.4 shows the performance change. Firstly, if we only remove GMN, which means no KB

structural information and no iterative interaction between dialog hisotry and KB involved,

the performance degrades dramatically, especially on entity F1. This further demonstrates

that our GMN makes a major contribution to our performance improvement. This is due

to the fact that GMN not only learns graph structure inherent in KB, but also models the

interaction between the dialog history and KB effectively as fully context-aware, enhancing

the possibility to retrieve the most relevant entities from the KB. Next, if we only remove

modified GAT, it is noticeable that the performance is degraded, but not significantly. Also

we can observe that GAT is more helpful improving BLEU score than lifting entity F1.

We attribute this to the fact that GAT is mainly for capturing structural information in

the dialog history which helps reduce decoder generation errors. Finally, if we remove both

modules, it is not surprising that the performance drops dramatically. This verifies that our

GraphMemDialog model makes great contribution to model context-aware external knowl-

edge base, and capturing the structural information in dialog history.

84

5.5.3 Comparison with Conventional GCNs

Our proposed GMN shows improvement on modeling context-aware KB. Due to its multi-

hop reasoning, we expect it to be superior to conventional GCNs. In order to verify this,

we design some experiments to replace our GMN with two widely-used GCNs: Relational

Graph Convolutional Network (RGCN) Schlichtkrull et al. (2017), and Composition-based

Multi-relational Graph Convolutional Network (COMPGCN) Vashishth et al. (2020). To be

fair, we carefully choose GCNs which can encode relations as well, since our GMN does that.

From Table 5.5, it is noticeable that our GMN outperforms COMPGCN and RGCN on both

BLEU score and entity F1 on all three datasets in almost all cases. We attribute this to our

GMN’s multi-hop reasoning capability that effectively fuses dialog history context into KB

entity representation, making it fully context-aware.

Model
CamRest In-Car Assistant Multi-WOZ 2.1

BLEU Ent.F1 BLEU Ent.F1 BLEU Ent.F1
GraphMemDialog 22.3 64.4 18.8 64.5 14.9 40.2
COMPGCN 21.1 60.7 18.0 61.8 13.7 40.3
RGCN 21.3 60.3 18.1 63.4 14.1 36.3

Table 5.5: Performance comparison of GraphMemDialog with representative GCNs.

5.5.4 Error Analysis

To inspire future improvements, we inspect the generated responses manually. We empiri-

cally categorize our generation errors into three classes as shown in Table 5.6.

We find that a majority of generation errors fall into type1 and type2. This may be at-

tributed to the training of sketch GRU in the decoder to generate skewed response templates.

On the other hand, type3 is very limited, which further proves that our GMN shows great

reasoning capability to select the most relevant KB entities mostly.

85

Error Type Response

Error Type1: Omit entities
Gold System Response: you have two meeting scheduled , one at 4pm in conference

room 102 to discuss the company picnic , and one at 6pm in
100 conference room to go over the quarterly report.

Generated Response: you have two meeting scheduled one on monday at 4pm
to discuss the company picnic.

Error Type2: Duplicate KB entities
Gold System Response: in downtown chicago it will be humid on monday , snow

on tuesday , dry on wednesday , frost on thursday , drizzle on
friday , clear skies on saturday and sunday.

Generated Response: in downtown chicago , it will be humid on monday ,
snow on tuesday , dry on wednesday , dry on thursday ,
drizzle on friday , clear skies on saturday, clear skies on saturday
clear skies on saturday , clear skies on saturday , clear skies on sunday.

Error Type3: Wrong slot filling
Gold System Response: it is not hailing in manhattan , the forecast says it

it is dry today.
Generated Response: it is not dry in manhattan right now.

Table 5.6: Categorized error types in our GraphMemDialogue.

5.6 Conclusion

In this chapter, we present a Graph Memory Network based end-to-end model for task-

oriented dialog systems. GraphMemDialog models context-aware KB entities, and learns

graph structure information hidden in dialog history and KBs. To fully fuse dialog context

information into the KB, we design a learnable memory controller coupled with an external

KB entity memory to recurrently incorporate the dialog history context into KB entities via

a multi-hop reasoning mechanism. A modified GAT is employed to effectively capture graph

structure information inherent in dialog history. Experiments on three public datasets show

the effectiveness of our proposed model and achieve state-of-the-art results.

86

Chapter 6

Conclusion and Future Work

In this dissertation, we focus primarily on optimizing task-oriented dialogue systems with

deep learning models. We firstly gave an overview of mainstream methodologies on solving

some core research problems in task-oriented dialogue systems, such as spoken language un-

derstanding, end-to-end dialogue generation, etc. We have identified three major limitations

of start-of-the-art neural models:

• RNN-based nerual models are inherently unstable over long time sequences because the

memories are the RNN hidden states, and tend to focus more on short-term memories

and forcefully compress historical records into one hidden state vector.

• Dominant RNNs focus primarily on modeling sequential dependencies, and thus rich

graph structure information hidden in the dialogue context is ignored.

• Effectively incorporating external knowledge into end-to-end task-oriented dialogue

systems still remains a challenge. Current state-of-the-art approaches fail to effectively

model context-aware and graph-structured dialogue knowledge.

To effectively address these limitations, we explored new ways to model long-term dialogue

87

context and to learn graph-structured representations of the dialogue history and the external

knowledge bases, achieving state-of-the-art performance in spoken language understanding

and end-to-end dialogue generation. In this chapter, we conclude our thesis and discuss

future directions to continue task-oriented dialogue research.

6.1 Conclusions

In Chapter 3, we showed how we leveraged key-value memory networks to track long-term

slot context in order to compensate the weakness of RNNs to model long word sequences. We

first pointed out that current joint learning models ignored two important facts: 1. Long-

term slot context was not traced effectively, which is crucial for future slot filling. 2. Slot

tagging and intent detection could be mutually rewarding, but bi-directional interaction

between slot filling and intent detection remained seldom explored. Then we proposed a

novel approach to model long-term slot context and to fully utilize the semantic correlation

between slots and intents. We adopted a key-value memory network to model slot context

dynamically and to track more important slot tags decoded before, which are then fed into

our decoder for slot tagging. Furthermore, gated memory information was utilized to perform

intent detection, mutually improving both tasks through global optimization. Experiments

on benchmark ATIS and Snips datasets showed that our model outperforms mainstream

methods, especially for the slot filling task.

In Chapter 4, we described our graph-to-sequence learning framework to model the graph-

structured features in the dialogue utterances, and to jointly decode intent detection and slot

filling. Although RNN-based neural models showed promising results by jointly learning of

these two tasks, dominant RNNs were primarily focusing on modeling sequential dependen-

cies. Rich graph structure information hidden in the dialogue context was seldomly explored.

We proposed a novel Graph-to-Sequence model to tackle the spoken language understanding

88

problem by modeling both temporal dependencies and structural information in a conversa-

tion. We introduced a new Graph Convolutional LSTM (GC-LSTM) encoder to learn the

semantics contained in the dialogue dependency graph by incorporating a powerful graph

convolutional operator. Our proposed GC-LSTM not only captured the spatio-temporal se-

mantic features in a dialogue, but also learned the co-occurrence relationship between intent

detection and slot filling. Furthermore, a LSTM decoder was utilized to perform final de-

coding of both slot filling and intent detection, which mutually improves both tasks through

global optimization.

In Chapter 5, we introduced an end-to-end generative model on dialogue response gen-

erations. Firstly, we identified that current state-of-the-art models were less effective in

integrating the dialog history and KB into task-oriented dialog systems in the following

ways: 1. The KB representation was not fully context-aware. The dynamic interaction

between the dialog history and KB was seldom explored, which unfortunately were modeled

separately. 2. Both the sequential and structural information in the dialog history could

contribute to capturing the dialog semantics, but they were not studied concurrently. We

proposed a novel Graph Memory Network (GMN) based Seq2Seq model, GraphMemDia-

logue, to effectively learn the inherent structural information hidden in dialog history, and

to model the dynamic interaction between dialog history and KBs. We adopted a modi-

fied graph attention network to learn the rich structure representation in the dialog history,

whereas the context-aware representation of KB entities were learnt by our novel GMN. To

fully exploit this dynamic interaction, we designed a learnable memory controller coupled

with external KB entity memories to recurrently incorporate dialog history context into KB

entities through a multi-hop reasoning mechanism. Experiments on three public datasets

showed that our GraphMemDialog model achieves state-of-the-art performance and outper-

forms strong baselines by a large margin, especially on datatests with more complicated KB

information.

89

6.2 Future Work

With these improvements, we created a task-oriented learning framework to learn the long-

term dialogue context and the graph-structured representations of the dialogue history and

the external knowledge base. There are still unexplored areas and methodologies that are

promising in task-oriented dialogue systems. These are different paths that may be taken to

expand the work of this dissertation.

6.2.1 Joint pre-training of Language Models and Knowledge Bases

Data scarcity is a long-standing and crucial challenge that hinders the rapid iteration of

task-oriented dialogue systems across multiple domains. Unfortunately, current approaches

to build task-oriented dialogue systems still require a substantial amount of labelling and

therefore are labor-intensive. On the other hand, large-scale pre-trained language models

such as BERT (Devlin et al., 2019) and GPT (Budzianowski and Vulic, 2019) have achieved

great success on a variety of NLP tasks, proving the effectiveness of pre-trained models.

Gu et al. (2020) proposed a tailored pre-trained model for task-oriented dialog generation

to solve data scarcity problem. However, seldom work has explored to jointly pre-train

language understanding models and knowledge bases. As indicated in Chapter 5, effectively

integrating KB into task-oriented dialogue systems is very critical to dialogue generations

and understanding of KBs requires related dialogue contexts. Thus it is promising to co-

train language models and knowledge bases to generate knowledge-aware language models

especially for task-oriented dialogue systems. Again, our graph memory networks proposed

in Chapter 5 can be utilized to model the interaction between dialogue history and knowledge

bases. Together with BERT or GPT language model framework, a knowledge-aware pre-

trained language model can be potentially built, thereby improving the task-oriented dialogue

system performance. This remains one of our primary research directions in the near future.

90

6.2.2 Transfer Reinforce Learning of Graph-structured Dialogue

Policies

In this thesis, our learning-based task-oriented dialogue systems focus primarily on one

single domain, and no crossing domains is involved in a conversation. However, in real

dialogues, people might jump from one topic to another and cover many different tasks in

the same dialogue. Designing of task-oriented conversations capable of handling complex

tasks trained to multiple domains is quite an onerous task. Lack of high quality, domain

specific conversational data required to train dialogue policies is one of the biggest challenges

for the success of any dialogue system. Transfer learning can be employed to boost faster

and better learning of a task-oriented dialogue system, and also reduce the dependence on

huge amount of dialogue data for a variety of domains. How to transfer the knowledge from

one domain to anther is very significant and promising in term of designing a realistic task-

oriented dialogue system. Furthermore, reinforce learning shows great success in learning

strategies for managing multi-domain, multi-intent system in an unified manner. Effectively

learning of graph-structured dialogue policies based on transfer reinforce learning framework

is another major research direction in the future.

In short, modeling graph-structured dialogue systems is more generic than main-stream

sequential modeling by RNNs, and has not been fully explored yet. We believe extending

current learning frameworks to grasp graph structures in task-oriented dialogue systems is

beneficial to, but not limited to a variety of research areas, such as pre-trained language

models, dialogue policy learning, etc.

91

Bibliography

Banerjee, S. and Khapra, M. M. (2019). Graph convolutional network with sequential atten-
tion for goal-oriented dialogue systems. Transactions of the Association for Computational
Linguistics, 7:485–500.

Budzianowski, P. and Vulic, I. (2019). Hello, it’s gpt-2 - how can i help you? towards the
use of pretrained language models for task-oriented dialogue systems. In EMNLP.

Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva, I., Ultes, S., Ramadan, O., and
Gašić, M. (2018). Multiwoz–a large-scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. arXiv preprint arXiv:1810.00278.

Chen, H., Liu, X., Yin, D., and Tang, J. (2017). A survey on dialogue systems: Recent
advances and new frontiers. Acm Sigkdd Explorations Newsletter, 19(2):25–35.

Chen, W., Chen, J., Qin, P., Yan, X., and Wang, W. Y. (2019). Semantically conditioned
dialog response generation via hierarchical disentangled self-attention. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 3696–
3709, Florence, Italy. Association for Computational Linguistics.

Chen, Y.-N. V., Hakkani-Tür, D., Tur, G., Gao, J., and Deng, L. (2016). End-to-end
memory networks with knowledge carryover for multi-turn spoken language understanding.
In Proceedings of The 17th Annual Meeting of the International Speech Communication
Association (INTERSPEECH 2016). ISCA.

Cheng, J., Dong, L., and Lapata, M. (2016). Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014a). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio, Y.
(2014b). Learning phrase representations using rnn encoder-decoder for statistical machine
translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP
2014).

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling.

92

Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gissel-
brecht, T., Caltagirone, F., Lavril, T., et al. (2018). Snips voice platform: an embed-
ded spoken language understanding system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Cuayáhuitl, H., Keizer, S., and Lemon, O. (2015). Strategic dialogue management via deep
reinforcement learning. arXiv preprint arXiv:1511.08099.

Cui, Z., Henrickson, K., Ke, R., Pu, Z., and Wang, Y. (2019). Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning
and forecasting.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29:3844–3852.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training of deep
bidirectional transformers for language understanding. In Burstein, J., Doran, C., and
Solorio, T., editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Eric, M. and Manning, C. D. (2017a). Key-value retrieval networks for task-oriented dialogue.

Eric, M. and Manning, C. D. (2017b). Key-value retrieval networks for task-oriented dialogue.
arXiv preprint arXiv:1705.05414.

Goddeau, D., Meng, H., Polifroni, J., Seneff, S., and Busayapongchai, S. (1996). A form-
based dialogue manager for spoken language applications. In Proceeding of Fourth Inter-
national Conference on Spoken Language Processing. ICSLP ’96, volume 2, pages 701–704
vol.2.

Goo, C.-W., Gao, G., Hsu, Y.-K., Huo, C.-L., Chen, T.-C., Hsu, K.-W., and Chen, Y.-N.
(2018). Slot-gated modeling for joint slot filling and intent prediction. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 753–757,
New Orleans, Louisiana. Association for Computational Linguistics.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401.

Gu, J., Wu, Q., Wu, C., Shi, W., and Yu, Z. (2020). A tailored pre-training model for
task-oriented dialog generation. arXiv preprint arXiv:2004.13835.

93

Haffner, P., Tur, G., and Wright, J. H. (2003). Optimizing svms for complex call classifica-
tion. In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing,
2003. Proceedings. (ICASSP ’03)., volume 1, pages I–I.

Hakkani-Tür, D., Tur, G., Celikyilmaz, A., Chen, Y.-N. V., Gao, J., Deng, L., and Wang,
Y.-Y. (2016). Multi-domain joint semantic frame parsing using bi-directional rnn-lstm.
In Proceedings of The 17th Annual Meeting of the International Speech Communication
Association (INTERSPEECH 2016). ISCA.

He, Z., He, Y., Wu, Q., and Chen, J. (2020). Fg2seq: Effectively encoding knowledge for
end-to-end task-oriented dialog. In ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 8029–8033.

Hemphill, C. T., Godfrey, J. J., and Doddington, G. R. (1990). The ATIS spoken language
systems pilot corpus. In Speech and Natural Language: Proceedings of a Workshop Held
at Hidden Valley, Pennsylvania, June 24-27,1990.

Henderson, M. (2015). Machine learning for dialog state tracking: A review.

Henderson, M., Thomson, B., and Young, S. (2013). Deep neural network approach for the
dialog state tracking challenge. In Proceedings of the SIGDIAL 2013 Conference, pages
467–471.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Huang, H.-Y., Choi, E., and tau Yih, W. (2019). Flowqa: Grasping flow in history for
conversational machine comprehension.

Huang, X., Qi, J., Sun, Y., and Zhang, R. (2020). Mala: Cross-domain dialogue genera-
tion with action learning. Proceedings of the AAAI Conference on Artificial Intelligence,
34(05):7977–7984.

Hyötyniemi, H. (1996). Turing machines are recurrent neural networks. Proceedings of step,
96.

Jurafsky, D. and Martin, J. H. (2020). Speech and language processing: an introduction to
natural language processing, computational linguistics, and speech recognition. Prentice-
Hall, Upper Saddle River, NJ.

Khasahmadi, A. H., Hassani, K., Moradi, P., Lee, L., and Morris, Q. (2020). Memory-based
graph networks.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR).

94

Lee, C., Pieraccini, R., Tzoukermann, E., Gauvain, J., Levin, E., Wilpon, J., and Gorelov,
Z. (1992). A speech understanding system based on statistical representation of semantics.
In Acoustics, Speech, and Signal Processing, IEEE International Conference on, volume 1,
pages 193–196, Los Alamitos, CA, USA. IEEE Computer Society.

Lei, W., Jin, X., Kan, M.-Y., Ren, Z., He, X., and Yin, D. (2018). Sequicity: Simplifying task-
oriented dialogue systems with single sequence-to-sequence architectures. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1437–1447, Melbourne, Australia. Association for Computational
Linguistics.

Li, C., Li, L., and Qi, J. (2018). A self-attentive model with gate mechanism for spoken
language understanding. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 3824–3833, Brussels, Belgium. Association for Com-
putational Linguistics.

Liu, B. and Lane, I. (2016). Attention-based recurrent neural network models for joint intent
detection and slot filling. arXiv preprint arXiv:1609.01454.

Liu, F. and Perez, J. (2017). Gated end-to-end memory networks. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 1–10.

Lu, X., Wang, W., Danelljan, M., Zhou, T., Shen, J., and Van Gool, L. (2020). Video object
segmentation with episodic graph memory networks. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16,
pages 661–679. Springer.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation.

Madotto, A., Wu, C.-S., and Fung, P. (2018). Mem2seq: Effectively incorporating knowledge
bases into end-to-end task-oriented dialog systems.

Mesnil, G., Dauphin, Y., Yao, K., Bengio, Y., Deng, L., Hakkani-Tur, D., He, X., Heck,
L., Tur, G., Yu, D., et al. (2015). Using recurrent neural networks for slot filling in spo-
ken language understanding. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 23(3):530–539.

Mrkšić, N., Ó Séaghdha, D., Wen, T.-H., Thomson, B., and Young, S. (2017). Neural belief
tracker: Data-driven dialogue state tracking. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1777–1788,
Vancouver, Canada. Association for Computational Linguistics.

Niu, P., Chen, Z., Song, M., et al. (2019). A novel bi-directional interrelated model for joint
intent detection and slot filling. arXiv preprint arXiv:1907.00390.

95

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018). Deep contextualized word representations. In Proc. of NAACL.

Pham, T., Tran, T., and Venkatesh, S. (2018). Graph memory networks for molecular activity
prediction. In 2018 24th International Conference on Pattern Recognition (ICPR), pages
639–644. IEEE.

Qin, B., Yang, M., Bing, L., Jiang, Q., Li, C., and Xu, R. (2021). Exploring auxiliary rea-
soning tasks for task-oriented dialog systems with meta cooperative learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(15):13701–13708.

Qin, L., Che, W., Li, Y., Wen, H., and Liu, T. (2019). A stack-propagation framework
with token-level intent detection for spoken language understanding. arXiv preprint
arXiv:1909.02188.

Qin, L., Xu, X., Che, W., Zhang, Y., and Liu, T. (2020). Dynamic fusion network for
multi-domain end-to-end task-oriented dialog. arXiv preprint arXiv:2004.11019.

Raghu, D., Gupta, N., and Mausam (2019). Disentangling language and knowledge in task-
oriented dialogs.

Raymond, C. and Riccardi, G. (2007). Generative and discriminative algorithms for spo-
ken language understanding. In Eighth Annual Conference of the International Speech
Communication Association.

Sarikaya, R., Hinton, G. E., and Ramabhadran, B. (2011). Deep belief nets for natural
language call-routing. In 2011 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5680–5683.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and Welling, M. (2017).
Modeling relational data with graph convolutional networks.

Seo, Y., Defferrard, M., Vandergheynst, P., and Bresson, X. (2016). Structured sequence
modeling with graph convolutional recurrent networks.

Serban, I., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and Bengio, Y.
(2017). A hierarchical latent variable encoder-decoder model for generating dialogues. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31.

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2016). Building end-
to-end dialogue systems using generative hierarchical neural network models.

96

Si, C., Chen, W., Wang, W., Wang, L., and Tan, T. (2019). An attention enhanced graph
convolutional lstm network for skeleton-based action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1227–1236.

Siddhant, A., Goyal, A., and Metallinou, A. (2019). Unsupervised transfer learning for spo-
ken language understanding in intelligent agents. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pages 4959–4966.

Simonovsky, M. and Komodakis, N. (2017). Dynamic edge-conditioned filters in convolu-
tional neural networks on graphs. In CVPR.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). End-to-end memory networks.

Tur, G., Hakkani-Tür, D., and Heck, L. (2010). What is left to be understood in atis? In
2010 IEEE Spoken Language Technology Workshop, pages 19–24.

Tur, G. and Mori, R. D. (2011). Spoken language understanding: Systems for extracting
semantic information from speech. John Wiley & Sons.

Vashishth, S., Sanyal, S., Nitin, V., and Talukdar, P. (2020). Composition-based multi-
relational graph convolutional networks.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017a). Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017b). Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph attention networks.

Walker, M. A., Rambow, O., and Rogati, M. (2002). Training a sentence planner for spoken
dialogue using boosting. Comput. Speech Lang., 16:409–433.

Wang, J., Liu, J., Bi, W., Liu, X., He, K., Xu, R., and Yang, M. (2020). Dual dynamic mem-
ory network for end-to-end multi-turn task-oriented dialog systems. In Proceedings of the
28th International Conference on Computational Linguistics, pages 4100–4110, Barcelona,
Spain (Online). International Committee on Computational Linguistics.

Wang, Y., Shen, Y., and Jin, H. (2018). A bi-model based rnn semantic frame parsing model
for intent detection and slot filling. arXiv preprint arXiv:1812.10235.

Wen, T.-H., Gašić, M., Kim, D., Mrkšić, N., Su, P.-H., Vandyke, D., and Young, S. (2015a).
Stochastic language generation in dialogue using recurrent neural networks with convolu-
tional sentence reranking. In Proceedings of the 16th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 275–284, Prague, Czech Republic. Association
for Computational Linguistics.

97

Wen, T.-H., Gašić, M., Mrkšić, N., Su, P.-H., Vandyke, D., and Young, S. (2015b). Seman-
tically conditioned LSTM-based natural language generation for spoken dialogue systems.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1711–1721, Lisbon, Portugal. Association for Computational Linguistics.

Wen, T.-H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L. M., Su, P.-H., Ultes,
S., and Young, S. (2016). A network-based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Wen, T.-H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L. M., Su, P.-H., Ultes,
S., and Young, S. (2017). A network-based end-to-end trainable task-oriented dialogue
system.

Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. arXiv preprint
arXiv:1410.3916.

Wu, C.-S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., and Fung, P. (2019a).
Transferable multi-domain state generator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
808–819, Florence, Italy. Association for Computational Linguistics.

Wu, C.-S., Madotto, A., Winata, G. I., and Fung, P. (2018). End-to-end dynamic query
memory network for entity-value independent task-oriented dialog. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6154–6158.
IEEE.

Wu, C.-S., Socher, R., and Xiong, C. (2019b). Global-to-local memory pointer networks for
task-oriented dialogue.

Wu, J., Harris, I., and Zhao, H. (2021). Spoken language understanding for task-oriented
dialogue systems with augmented memory networks. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 797–806, Online. Association for Computational Linguistics.

Yan, Z., Duan, N., Chen, P., Zhou, M., Zhou, J., and Li, Z. (2017). Building task-oriented
dialogue systems for online shopping. In Thirty-First AAAI Conference on Artificial
Intelligence.

Yang, S., Zhang, R., and Erfani, S. (2020). Graphdialog: Integrating graph knowledge into
end-to-end task-oriented dialogue systems.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016). Hierarchical attention
networks for document classification. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1480–1489, San Diego, California. Association for Computational Lin-
guistics.

Yao, K., Zweig, G., Hwang, M.-Y., Shi, Y., and Yu, D. (2013). Recurrent neural networks
for language understanding. In Interspeech, pages 2524–2528.

98

Ye-Yi Wang, Li Deng, and Acero, A. (2005). Spoken language understanding. IEEE Signal
Processing Magazine, 22(5):16–31.

Young, S. (2006). Using pomdps for dialog management. In 2006 IEEE Spoken Language
Technology Workshop, pages 8–13. IEEE.

Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013a). Pomdp-based statistical
spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179.

Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013b). Pomdp-based statistical
spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179.

Zhang, C., Li, Y., Du, N., Fan, W., and Yu, P. S. (2019). Joint slot filling and intent
detection via capsule neural networks.

Zhang, L., Ma, D., Zhang, X., Yan, X., and Wang, H. (2020). Graph lstm with context-gated
mechanism for spoken language understanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9539–9546.

Zhang, X. and Wang, H. (2016). A joint model of intent determination and slot filling for
spoken language understanding. In IJCAI, volume 16, pages 2993–2999.

Zhang, Y., Liu, Q., and Song, L. (2018). Sentence-state LSTM for text representation. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 317–327, Melbourne, Australia. Association for Compu-
tational Linguistics.

Zhao, T. and Eskenazi, M. (2016). Towards end-to-end learning for dialog state tracking
and management using deep reinforcement learning. In Proceedings of the 17th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pages 1–10, Los Angeles.
Association for Computational Linguistics.

Zhao, T., Lu, A., Lee, K., and Eskenazi, M. (2017). Generative encoder-decoder models for
task-oriented spoken dialog systems with chatting capability. In Proceedings of the 18th
Annual SIGdial Meeting on Discourse and Dialogue, pages 27–36, Saarbrücken, Germany.
Association for Computational Linguistics.

Zhong, V., Xiong, C., and Socher, R. (2018). Global-locally self-attentive encoder for di-
alogue state tracking. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1458–1467, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Zhou, H., Huang, M., and Zhu, X. (2016). Context-aware natural language generation
for spoken dialogue systems. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pages 2032–2041.

99

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Thesis Statement
	Thesis Outline

	Background and Related Work
	Task-Oriented Dialogue Systems
	Spoken Language Understanding
	Dialogue State Tracking
	Dialogue Management
	Natural Language Generation
	End-to-End Dialogue Systems

	Sequence Learning with Recurrent Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Encoder-Decoder Models

	Graph Convolutional Networks
	GCNs for Undirected Graphs
	Graph Convolution LSTM

	Spoken Language Understanding with Augmented Memory Networks
	Introduction
	Proposed Model
	Self-Attentive Encoder
	Slot Decoder
	Intent Detection Decoder
	Memory Access Operation
	Joint Training

	Experimental Setup
	Datasets
	Training Details
	Automatic Evaluation Metrics
	Baselines

	Experimental Results and Analysis
	Experimental Results
	Analysis

	Conclusions

	Graph-to-Sequence Learning Framework
	Introduction
	Graph-to-Sequence
	Model Overview
	Spectral Graph Convolutions
	Graph Convolutional LSTM Encoder
	SLU Decoder
	Joint Training

	Experimental Setup
	Datasets
	Training Details
	Baselines

	Experimental Results
	Automatic Evaluation Results
	Ablation Study
	Dialogue Dependency Graph vs N-gram Context Graph
	Joint Model vs Separate Model

	Conclusions

	GraphMemDialogue: Learning End-to-End Dialogues
	Introduction
	Graph Memory Networks
	Graph Memory Dialogue
	Model Overview
	Context Graph Encoder
	Knowledge Encoder
	Response Decoder
	Joint Training

	Experimental Setup
	Datasets
	Training Details
	Baselines
	Automatic Evaluation Metrics

	Experimental Results
	Automatic Evaluation Results
	Ablation Study
	Comparison with Conventional GCNs
	Error Analysis

	Conclusion

	Conclusion and Future Work
	Conclusions
	Future Work
	Joint pre-training of Language Models and Knowledge Bases
	Transfer Reinforce Learning of Graph-structured Dialogue Policies

	Bibliography

