
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Hardness of Approximation Between P and NP

Permalink
https://escholarship.org/uc/item/5b46k6v9

Author
Rubinstein, Aviad

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5b46k6v9
https://escholarship.org
http://www.cdlib.org/

Hardness of Approximation Between P and NP

by

Aviad Rubinstein

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Christos Papadimitriou, Chair
Professor Ilan Adler

Associate Professor Prasad Raghavendra
Professor Satish Rao

Summer 2017

Hardness of Approximation Between P and NP

Copyright 2017
by

Aviad Rubinstein

1

Abstract

Hardness of Approximation Between P and NP

by

Aviad Rubinstein

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos Papadimitriou, Chair

Nash equilibrium is the central solution concept in Game Theory. Since Nash’s orig-
inal paper in 1951, it has found countless applications in modeling strategic behavior
of traders in markets, (human) drivers and (electronic) routers in congested networks,
nations in nuclear disarmament negotiations, and more. A decade ago, the relevance
of this solution concept was called into question by computer scientists [DGP09;
CDT09], who proved (under appropriate complexity assumptions) that computing a
Nash equilibrium is an intractable problem. And if centralized, specially designed
algorithms cannot find Nash equilibria, why should we expect distributed, selfish
agents to converge to one? The remaining hope was that at least approximate Nash
equilibria can be efficiently computed.

Understanding whether there is an efficient algorithm for approximate Nash equi-
librium has been the central open problem in this field for the past decade. In this
thesis, we provide strong evidence that even finding an approximate Nash equilibrium
is intractable. We prove several intractability theorems for different settings (two-
player games and many-player games) and models (computational complexity, query
complexity, and communication complexity). In particular, our main result is that
under a plausible and natural complexity assumption (“Exponential Time Hypoth-
esis for PPAD”), there is no polynomial-time algorithm for finding an approximate
Nash equilibrium in two-player games.

The problem of approximate Nash equilibrium in a two-player game poses a
unique technical challenge: it is a member of the class PPAD, which captures the
complexity of several fundamental total problems, i.e. problems that always have
a solution; and it also admits a quasipolynomial (≈ nlogn) time algorithm. Either
property alone is believed to place this problem far below NP-hard problems in the
complexity hierarchy; having both simultaneously places it just above P, at what can

2

be called the frontier of intractability. Indeed, the tools we develop in this thesis to
advance on this frontier are useful for proving hardness of approximation of several
other important problems whose complexity lies between P and NP:

Brouwer’s fixed point Given a continuous function f mapping a compact convex
set to itself, Brouwer’s fixed point theorem guarantees that f has a fixed point,
i.e. x such that f(x) = x. Our intractability result holds for the relaxed problem
of finding an approximate fixed point, i.e. x such that f(x) ≈ x.

Market equilibrium Market equilibrium is a vector of prices and allocations where
the supply meets the demand for each good. Our intractability result holds for
the relaxed problem of finding an approximate market equilibrium, where the
supply of each good approximately meets the demand.

CourseMatch (A-CEEI) Approximate Competitive Equilibrium from Equal In-
come (A-CEEI) is the economic principle underlying CourseMatch, a system
for fair allocation of classes to students (currently in use at Wharton, University
of Pennsylvania).

Densest k-subgraph Our intractability result holds for the following relaxation of
the k-Clique problem: given a graph containing a k-clique, the algorithm has
to find a subgraph over k vertices that is “almost a clique”, i.e. most of the
edges are present.

Community detection We consider a well-studied model of communities in social
networks, where each member of the community is friends with a large fraction
of the community, and each non-member is only friends with a small fraction
of the community.

VC dimension and Littlestone dimension The Vapnik-Chervonenkis (VC) di-
mension is a fundamental measure in learning theory that captures the com-
plexity of a binary concept class. Similarly, the Littlestone dimension is a
measure of complexity of online learning.

Signaling in zero-sum games We consider a fundamental problem in signaling,
where an informed signaler reveals private information about the payoffs in a
two-player zero-sum game, with the goal of helping one of the players.

i

ii

Contents

Contents ii

List of Figures v

List of Tables vi

I Overview 1

1 The frontier of intractability 2
1.1 PPAD: Finding a needle you know is in the haystack 4
1.2 Quasi-polynomial time and the birthday paradox 11
1.3 Approximate Nash equilibrium . 16

2 Preliminaries 18
2.1 Nash equilibrium and relaxations . 18
2.2 PPAD and End-of-a-Line . 20
2.3 Exponential Time Hypotheses . 21
2.4 PCP theorems . 21
2.5 Learning Theory . 23
2.6 Information Theory . 24
2.7 Useful lemmata . 26

II Communication Complexity 30

3 Communication Complexity of approximate Nash equilibrium 31
3.1 Proof overview . 37
3.2 Proofs . 41
3.3 An open problem: correlated equilibria in 2-player games 57

iii

4 Brouwer’s fixed point 58
4.1 Brouwer with �∞ . 58
4.2 Euclidean Brouwer . 64

III PPAD 74

5 PPAD-hardness of approximation 75

6 The generalized circuit problem 78
6.1 Proof overview . 80
6.2 From Brouwer to ε-Gcircuit . 82
6.3 Gcrcuit with Fan-out 2 . 98

7 Many-player games 101
7.1 Graphical, polymatrix games . 101
7.2 Succinct games . 107

8 Bayesian Nash equilibrium 111

9 Market Equilibrium 114
9.1 Non-monotone markets: proof of inapproximability 118

10 Course Match 130
10.1 The Course Allocation Problem . 132
10.2 A-CEEI is PPAD-hard . 134
10.3 A-CEEI ∈ PPAD . 140

IV Quasi-polynomial Time 147

11 Birthday repetition 148
11.1 Warm-up: best ε-Nash . 149

12 Densest k-Subgraph 154
12.1 Construction (and completeness) . 158
12.2 Soundness . 159

13 Community detection 177
13.1 Hardness of counting communities . 182
13.2 Hardness of detecting communities . 184

iv

14 VC and Littlestone’s dimensions 188
14.1 Inapproximability of VC Dimension . 192
14.2 Inapproximability of Littlestone’s Dimension 200
14.3 Quasi-polynomial Algorithm for Littlestone’s Dimension 211

15 Signaling 214
15.1 Near-optimal signaling is hard . 216

V Approximate Nash Equilibrium 222

16 2-Player approximate Nash Equilibrium 223
16.1 Technical overview . 225
16.2 End-of-a-Line with local computation 232
16.3 Holographic Proof . 235
16.4 Polymatrix WeakNash . 248
16.5 From polymatrix to bimatrix . 268

Bibliography 273

v

List of Figures

4.1 A facet of the Hirsch et al construction . 63
4.2 Outside the picture . 64
4.3 Geometry near a Brouwer vertex . 71

6.1 Comparison of averaging gadgets . 81

14.1 Reduction from Label Cover to VC Dimension 212
14.2 Reduction from Label Cover to Littlestone’s Dimension 213

vi

List of Tables

9.1 Goods and traders . 124

15.1 Variables in proof of Theorem 15.1.1 . 218

vii

Acknowledgments

I am incredibly lucky to have Christos as my advisor. I cannot compete with the
praise written in dozens of Acknowledgment Sections in the dissertations of previous
students of Christos. I can only attest that it’s all true. Christos, thank you for
giving me beautiful problems to think about, for sprinkling your magic over my
introductions, for the pre-deadline nights, and for showing me around Greece (in
particular, Ikaria). Most importantly, thanks for all the advice!

I also thank my thesis committee, Ilan Adler, Prasad Raghavendra, Satish Rao,
and Christos. Their feedback during my qualifying exam was already tremendously
helpful, and was my starting point for the last two parts of my thesis.

For the past few years it has been a great pleasure to belong to the theory group
at Berkeley. The lunches, retreats, basketball and soccer games, and occasional talks
were an excellent inspiration. In particular, I was extremely fortunate to be part of
the office: Jonah Brown-Cohen, Rishi Gupta, Alex Psomas, Tselil Schramm, Jarett
Schwartz, Ning Tan, Ben Weitz, thanks!

The latest perk of being a theorist at Berkeley is the Simons Institute. Each
semester brings an influx of fascinating new and old visitors and learning oppor-
tunities. Indeed, much of this thesis was first written on the white boards in the
collaboration area. Thanks Dick Karp, Christos, Alistair Sinclair, Luca Trevisan,
program organizers, and the Simons Foundation for spoiling me.

Before coming to Berkeley, I was particularly influenced by long conversations
with Elad Haramaty and my M.Sc. advisor Muli Safra. I don’t believe I would be
doing theory if it weren’t for Muli; I probably would not be in academia at all if it
weren’t for Elad.

I am grateful to Microsoft Research for the MSR PhD Fellowship, as well as
wonderful summer internships, where I had the fortune to learn from Moshe Babaioff,
Siu On Chan, Wei Chen, Jason Hartline, Bobby Kleinberg, Nicole Immorlica, Pinyan
Lu, Brendan Lucier, Yishay Mansour, Noam Nisan, Moshe Tennenholtz, and many
others. I also thank Mark Braverman, Michal Feldman, Noam Nisan, and Yaron
Singer for hosting me for shorter visits during my PhD.

I am also grateful to all my coauthors: Amir Abboud, Ilan Adler, Yakov Babichenko,
Ashwin Badanidiyuru, Eric Balkanski, Mark Braverman, Siu On Chan, Wei Chen,
Michal Feldman, Ophir Friedler, Young Kun Ko, Fu Li, Tian Lin, Adi Livnat,
Yishay Mansour, Pasin Manurangsi, Abe Othman, Christos, Dimitris Papailiopoulos,
George Pierrakos, Alex, Tselil, Lior Seeman, Yaron Singer, Sahil Singla, Moshe Ten-
nenholtz, Greg Valiant, Shai Vardi, Andrew Wan, Matt Weinberg, Omri Weinstein,
and Ryan Williams.

viii

Thanks also to Boaz Barak, Shai Ben-David, Jonah, Karthik C.S., Yang Cai,
Alessandro Chiesa, Paul Christiano, Constantinos Daskalakis, Shaddin Dughmi,
Mika Goos, Rishi, Elad, Noam, Prasad, Tselil, Madhu Sudan, Luca Trevisan, Michael
Viderman, and anonymous reviewers, for commenting on, correcting, and inspiring
much of the content of this thesis.

This has been an amazing journey. I am most grateful for the opportunities I
had to share it with my family and friends.

1

Part I

Overview

2

Chapter 1

The frontier of intractability

The combination of vast amounts of data, unprecedented computing power, and
clever algorithms allows today’s computer systems to drive autonomous cars, beat
the best human players at Chess and Go, and live stream videos of cute cats across
the world. Yet computers can fail miserably at predicting outcomes of social pro-
cesses and interactions, elections being only the most salient example. And this is
hardly surprising, as there are two potent reasons for such unpredictability: One
reason is that human agents are driven by emotions and hormones and billions of
neurons interacting with a complex environment, and as a result their behavior is
extremely hard to model mathematically. The second reason is perhaps a bit surpris-
ing, and certainly closer to the concerns of this thesis: Even very simple and idealized
models of social interaction, in which agents have extremely clear-cut objectives, can
be intractable.

To have any hope of reasoning about human behavior on national and global
scales, we need a mathematically sound theory. Game Theory is the mathematical
discipline that models and analyzes the interaction between agents (e.g. voters) who
have different goals and are affected by each other’s actions. The central solution
concept in game theory is the Nash equilibrium. It has an endless list of applications
in economics, politics, biology, etc. (e.g. [Aum87]).

By Nash’s theorem [Nas51], an equilibrium always exists. Furthermore, once at
a Nash equilibrium, players have no incentive to deviate. The main missing piece in
the puzzle is:

How do players arrive at an equilibrium in the first place?

After many attempts by economists for more than six decades1 (e.g. [Bro51; Rob51;

1In fact, “more than six decades” is an understatement: Irving Fisher’s thesis from 1891 dealt

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 3

LH64; Sha64; Sca67; KL93; HMC03; FY06]), we still don’t have a satisfying expla-
nation.

About ten years ago, the study of this fundamental question found a surprising
answer in computer science: Chen et al [CDT09] and Daskalakis et al [DGP09]
proved that finding a Nash equilibrium is computationally intractable2. And if no
centralized, specialized algorithm can find an equilibrium, it is even less likely that
distributed, selfish agents will naturally converge to one. This casts doubt over the
entire solution concept.

For the past decade, the main remaining hope for Nash equilibrium has been
approximation. The central open question in this field has been:

Is there an efficient algorithm for finding an approximate Nash equilib-
rium?

In this thesis we give a strong negative resolution to this question: our main result
rules out efficient approximation algorithms for finding Nash equilibria3.

Our theorem is the latest development in a long and intriguing technical story.
The first question we computer scientists ask when encountering a new algorithmic
challenge is: is it in P, the class of polynomial time (tractable) problems; or is it
NP-hard, like Satisfiability and the Traveling Salesperson Problem (where the best
known algorithms require exponential time)? Approximate Nash equilibrium falls
into neither category; its complexity lies between P and NP-hard — hence the title
of our thesis. Let us introduce two (completely orthogonal) reasons why we do not
expect it to be NP-hard.

The first obstacle for NP-hardness is the totality of Nash equilibrium. When we
say that Satisfiability or the Traveling Salesperson Person problems are NP-hard,
we formally mean that it is NP-hard to determine whether a given formula has a
satisfying assignment, or whether a given network allows the salesperson to complete
her travels within a certain budget. In contrast, by Nash’s theorem an equilibrium
always exists. Deciding whether an equilibrium exists is is trivial, but we still don’t
know how to find one. This is formally captured by an intermediate complexity class
called PPAD.

The second obstacle for NP-hardness is an algorithm (the worst kind of obstacle
for intractability). The best known algorithms for solving NP-hard or PPAD-hard
problems require exponential (≈ 2n) time, and there is a common belief (formulated

with the closely related question of convergence to market equilibria [BS00].
2Assuming P ≠ PPAD; see the discussion in the next section about this assumption.
3Under a complexity assumption stronger than P ≠ PPAD, that we call the Exponential Time

Hypothesis (ETH) for PPAD, see Section 1.2 for details.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 4

a few years ago as the “Exponential Time Hypothesis” [IPZ01]) that much faster
algorithms do not exist. In contrast, an approximate Nash equilibrium can be found
in quasi-polynomial (≈ nlogn) time. Notice that this again places the complexity of
approximate Nash equilibrium between the polynomial time solvable problems in
P and the exponential time required by NP-hard problems. Therefore, approximate
Nash equilibrium is unlikely to be NP-hard — or even PPAD-hard, since we know of
no quasi-polynomial algorithm for any other PPAD-hard problem.

As illustrated in the last two paragraphs, approximate Nash equilibrium is very
far from our standard notion of intractability, NP-hardness. In some sense, it is one
of the computationally easiest problems which we can still prove to be intractable
— it lies at the frontier of our understanding of intractability. Unsurprisingly, the
techniques we had to master to prove the intractability of approximate Nash equi-
librium are useful for many other problems. In particular, we also prove hardness of
approximation for several other interesting problems that either belong to the class
PPAD or have quasi-polynomial time algorithms.

1.1 PPAD: Finding a needle you know is in the

haystack

Consider a directed graph G. Each edge contributes to the degree of the two vertices
incident on it. Hence the sum of the degrees is twice the number of edges, and in
particular it is even. Now, given an odd-degree vertex v, there must exist another
odd-degree vertex. But can you find one? There is, of course, the trivial algorithm
which simply brute-force enumerates over all the graph vertices.

Now suppose G further has the property4 that every vertex has in- and out-degree
at most 1. Thus, G is a disjoint unions of lines and cycles. If v has an outgoing edge
but no incoming edge, it is the beginning of a line. Now the algorithm for finding
another odd degree node is a bit more clever — follow the path to the end — but
its worst case is still linear in the number of nodes.

In the worst case, both algorithms run in time linear in the number of vertices.
When the graph is given explicitly, e.g. as an adjacency matrix, this is quite efficient
compared to the size of the input. But what if the graph is given as black-box oracles
S and P that return, for each vertex, its successor and predecessor in the graph? The

4This guarantee is actually without loss of generality [Pap94], but this is not so important for
our purposes.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 5

amount of work5 required for finding another odd-degree vertex by the exhaustive
algorithm, or the path-following algorithm, is still linear in the number of vertices,
but now this number is exponential in the natural parameter of the problem, the
length of the input to the oracle, which equals the logarithm of the number of nodes.
In the oracle model, it is not hard to prove that there are no better algorithms.

Let us consider the computational analog of the black-box oracle model: the
oracles S and P are implemented as explicit (“white-box”) circuits, which are given
as the input to the algorithm. This is the End-of-a-Line problem, which is the
starting point for most of our reductions. The computational class PPAD (which
stands for Polynomial Parity Argument in Directed graphs) is the class of search
problems reducible to End-of-a-Line.

Definition 1.1.1 (End-of-a-Line [DGP09]). Given two circuits S and P , with m

input bits and m output bits each, such that P (0m) = 0m ≠ S (0m), find an input
x ∈ {0,1}m such that P (S (x)) ≠ x or S (P (x)) ≠ x ≠ 0m.

How hard is End-of-a-Line? We believe that it is likely to be very hard, al-
most as hard as the black-box variant. This belief is backed by relativized separations
[Mor03] and cryptographic hardness [BPR15; GPS16; HY17], as well as zero algo-
rithmic progress, even on special cases, since it was first introduced in [Pap94]. More
importantly, we are embarrassingly bad at gaining insight to a circuit functionality
by looking at its structure (with some notable exceptions in cryptography [Bar04])
— hence it seems reasonable to conjecture that the white-box variant is easier than
the black-box problem.

Even more embarrassing is our inability to prove computational intractability.
Essentially all “proofs” of computational intractability (including the ones in this
thesis) are conditional; i.e. we assume that some problem is hard (e.g. End-of-a-
Line or Satisfiability), and reduce it to a new problem we want to “prove” is hard.
The intractability of the new problem only holds conditioned on the intractability of
the original hard problem. Without first resolving whether P = NP, we cannot prove
that End-of-a-Line is indeed hard. Furthermore, even merely proving that End-
of-a-Line is NP-hard would already imply unlikely consequences like NP = coNP

[MP91]. The ultimate reason we believe that End-of-a-Line is intractable is that
we have no idea how to prove it.

Once we believe that End-of-a-Line is indeed intractable, any problem that is
PPAD-complete, i.e. “at least as hard as End-of-a-Line” is also intractable. The
celebrated works of [DGP09; CDT09] prove that finding an exact Nash equilibrium

5Here work is measured by the number of oracle calls rather than running time; indeed this
model will be the starting point of our reductions for query and communication complexity.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 6

is PPAD-complete. In Section 1.3 we describe some variants of approximate Nash
equilibrium that are also PPAD-complete.

We conclude this section with a few problems (other than variants of Nash equi-
librium) that we show are also PPAD-hard:

• Finding an approximate fixed point of an implicit function; Brouwer’s fixed
point theorem, which guarantees the existence of a fixed point, lays the math-
ematical foundation for the rest of our PPAD-complete problems.

• Finding an approximate market equilibrium, which is the conceptual founda-
tion of neoclassical economics.

• Finding an Approximate Competitive Equilibrium from Equal Incomes (A-
CEEI), which is an algorithmic problem of practical interest due to its use for
allocating classes to students (CourseMatch).

1.1.1 Brouwer’s fixed point

Brouwer’s fixed point theorem, together with its generalizations (in particular, Kaku-
tani’s fixed point theorem), is the basis for many of the equilibrium concepts in game
theory and economics. It states that any continuous function f from a compact con-
vex set (in particular, the n-dimensional hypercube) to itself has a fixed point, i.e.
a point x∗ such that f (x∗) = x∗. Just like in the case of a Nash equilibrium and the
odd-degree vertex, the existence does not come with an algorithm for finding the fixed
point. Brouwer eventually became so unsatisfied with the non-constructive nature
of his proof that he founded intuitionism, a formalism of mathematics mandating
constructive proofs [Iem16].

Before we discuss the computational tractability of finding a fixed point, there
are two subtle but important technicalities that we have to clear. The first is that
finding an exact fixed point may be “obviously” intractable when all the fixed points
are irrational. Fortunately there is a natural notion6 of approximate fixed point: find
x such that f (x) ≈ x. The second issue is that we want a finite description of the
input to our algorithm. Naively, one can define the value of the function on a grid,
but then the set is no longer convex and a fixed point might not exist at all (see
e.g. [RW16]). It turns out that a better way to define the input is as an arithmetic
circuit: this gives a local and easy-to-verify guarantee that the function is indeed
continuous.

6There is also a stricter notion that requires x to be close to an x∗ for which f (x∗) = x∗ exactly.
See e.g. [EY10].

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 7

Admittedly, there is something dissatisfying about proving computational hard-
ness of “circuit problems”: we are going to prove that this problem is PPAD-hard,
i.e. no easier than End-of-a-Line — but the reason we believe in the first place
that End-of-a-Line is intractable is that we don’t know how to gain insight to the
functionality of the circuit from staring at its structure. Nevertheless, we begin with
the complexity of Brouwer’s fixed point because: this is a fundamental question; it
is the starting point of many of our reductions; and, as we discuss later, even the
black-box hardness in this case is highly non-trivial.

We know of two algorithms for computing approximate Brouwer fixed point:
there is Scarf’s algorithm [Sca67], but its running time may be exponential in the
description of the function; the same holds for brute-force search.

On the complexity side, [DGP09] proved that even in three dimensions, finding
an exponentially-close approximation (x such that ∥f (x) − x∥∞ ≤ 2−n, where n is
the size of the input) is PPAD-complete; [CD09] proved the same problem continues
to be hard even with only two dimensions. Notice that with a constant number of
dimensions, any weaker approximation desideratum becomes trivial for brute-force
search. [CDT09] showed that in n dimensions, polynomial approximations are also
PPAD-complete. We will later prove that even constant approximation are PPAD-
complete, i.e. there exists some absolute constant ε > 0 such that it’s hard to find
an x for which ∥f (x) − x∥∞ ≤ ε; this is already a significant improvement over the
existing state of the art.

We can prove an even stronger form of inapproximability for finding a Brouwer
fixed point: so far, we characterized the approximate fixed point with �∞-norm,
which means that f (x) and x must be close in every coordinates. Our main result
in this regard (Theorem 4.2.1) is that even if we only require that f (x) and x are
close in most of the coordinates, finding such x and f (x) remains PPAD-complete.

1.1.2 Market equilibrium

Supply and demand is central to our modern understanding of economics: when
demand exceeds supply, raising the price makes it less attractive to consumers and
more attractive to producers, thereby reducing demand and increasing supply. Vice
versa if the supply exceeds the demand. This simple idea marks the birth of neo-
classical economics [Jev66; Men71; Wal74], and continues to inspire us today when
we reason about free market economy. Since the consumption and production of one
good depends on other goods, we are interested in a market equilibrium: a vector of
prices where the supply and demand of every good matches.

The supply and demand argument has many weak spots, one of which is Giffen
goods [Mar95]: Consider a poor 19th century English family consuming a 10,000

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 8

calories a day from meat and bread. They prefer to eat meat, but the bread is
cheaper - so they spend their daily income on 6 loafs of bread and 4 pounds of meat
(each provides 1,000 calories). What happens the price of bread increases? They
have less free money to spend on the luxury good (meat), which increases their
demand for bread. The existence of Giffen goods in practice has been contentiously
debated for over a century [Edg09; Sti47], with evidence ranging from econometric
analasys of historical market data to experiments in lab rats [BKK91].

Despite counter-intuitive issues like Giffen goods, Arrow and Debreu proved that,
under quite general conditions, a market equilibrium always exists [DA54]. In par-
ticular, in the Arrow-Debreu model, agents sell the goods they own and use the
revenue to buy other goods they want; this is in contrast to Fisher markets where
agents with a monetary budget purchase from a centralized sellers. Market equilibria
in both models exist, but can we find them? As in the case of Nash equilibrium, this
question is of particular importance because if a centralized, omniscient algorithm
cannot compute an equilibrium, it is hard to expect a distributed market with selfish
agents to converge to one. In the words of Kamal Jain [Jai04; Nis09b]:

“If your laptop cannot find it, neither can the market.”

In the same paper, Jain also gave an algorithm for computing Arrow-Debreu’s equi-
librium when consumers utilities are linear. Since then, there has been a long se-
quence of algorithms for computing or approximating market equilibria (e.g. [Jai04;
CMV05; GK06; Dev+08; CF08; JV10; BDX11; Gar+15]) for certain models and
utility functions, as well as intractability results in other settings [DD08; Che+09;
VY11; Gar+17]. In particular, Chen, Paparas, and Yannakakis [CPY13] consider
a setting of markets which exhibit non-monotonicity: when the price of one prod-
uct increases, its demand increases. Giffen goods described above are one example
of non-monotone markets; [CPY13] construct examples in Arrow-Debreu markets
when the increased price of a product increases the revenue of the seller, who now
has more available money and demands more of the same good. Chen, Paparas,
and Yannakakis [CPY13] show that for essentially any class of utility function that
exhibits some non-monotonicity, computing the Arrow-Debreu market equilibrium
is PPAD-hard.

We extend the PPAD-hardness proof of [CPY13] and show that even approxi-
mate market equilibrium is PPAD-hard (Theorem 9.0.4). We note that although our
inapproximability factor is stronger than that showed by Chen et al, the results are
incomparable as ours only holds for the stronger notion of “tight” approximate equi-
librium, by which we mean the more standard definition which bounds the two-sided
error of the market equilibrium. Chen et al, in contrast, prove that even if we al-
low arbitrary excess supply, finding a (1/n)-approximate equilibrium is PPAD-hard.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 9

Furthermore, for the interesting case of CES utilities with parameter ρ < 0, they
show that there exist markets where every (1/2)-tight equilibrium requires prices
that are doubly-exponentially large (and thus require an exponential-size represen-
tation). Indeed, for a general non-monotone family of utility functions, the problem
of computing a (tight or not) approximate equilibrium may not belong to PPAD.
Nevertheless, the important family of additively separable, concave piecewise-linear
utilities is known to satisfy the non-monotone condition [CPY13], and yet the com-
putation of (exact) market equilibrium is in PPAD [VY11]. Therefore, we obtain as a
corollary that computing an ε-tight approximate equilibrium for Arrow-Debreu mar-
ket with additively separable, concave piecewise-linear utilities is PPAD-complete.

1.1.3 A-CEEI (CourseMatch)

University courses have limited capacity, and some are more popular than others.
This creates an interesting allocation problem. Imagine that each student has ordered
all the possible schedules—bundles of courses—from most desirable to least desirable,
and the capacities of the classes are known. What is the best way to allocate seats in
courses to students? There are several desiderata for a course allocation mechanism:

Fairness In what sense is the mechanism “fair”?

Efficiency Are seats in courses allocated to the students who want them the most?

Feasibility Are any courses oversubscribed?

Truthfulness Are students motivated to honestly report their preferences to the
mechanism?

Computational efficiency Can the allocation be computed from the data in poly-
nomial time?

Competitive Equilibrium from Equal Incomes (CEEI) [Fol67; Var74; TV85] is a ven-
erable mechanism with many attractive properties: In CEEI all agents are allocated
the same amount of “funny money”, next they declare their preferences, and then
a price equilibrium is found that clears the market. The market clearing guarantees
Pareto efficiency and feasibility. The mechanism has a strong, albeit technical, ex
post fairness guarantee that emerges from the notion that agents who miss out on a
valuable, competitive item will have extra funny money to spend on other items at
equilibrium. Truthfulness is problematic—as usual with market mechanisms—but
potential incentives for any individual agent to deviate are mitigated by the large
number of agents. However, CEEI only works when the resources to be allocated are

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 10

divisible and the utilities are relatively benign. This restriction has both benefits and
drawbacks. It ensures computational feasibility, because CEEI can be computed in
polynomial time with a linear or convex program, depending on the utilities involved
[Var74; Dev+08; Gho+11]; on the other hand, it is easy to construct examples in
which a CEEI does not exist when preferences are complex or the resources being
allocated are not divisible. Indeed, both issues arise in practice in a variety of alloca-
tion problems, including shifts to workers, landing slots to airplanes, and the setting
that we focus on here, courses to students [Var74; Bud11].

It was shown in [Bud11] that an approximation to a CEEI solution, called A-
CEEI, exists even when the resources are indivisible and agent preferences are arbi-
trarily complex, as required by the course allocation problems one sees in practice.
The approximate solution guaranteed to exist is approximately fair (in that the stu-
dents are given almost the same budget), and approximately Pareto efficient and
feasible (in that all courses are filled close to capacity, with the possible exception
of courses with more capacity than popularity). This result seems to be wonderful
news for the course allocation problem. However, there is a catch: Budish’s proof is
non-constructive as it relies on Kakutani’s fixed-point theorem.

A heuristic search algorithm for solving A-CEEI was introduced in [OSB10].
The algorithm resembles a traditional t\ˆatonnement process, in which the prices
of courses that are oversubscribed are increased and the prices of courses that are
undersubscribed are decreased. A modified version of this algorithm that guarantees
courses are not oversubscribed is currently used by the Wharton School (University of
Pennsylvania) to assign their MBA students to courses [Bud+14]. While it has been
documented that the heuristic algorithm often produces much tighter approximations
than the theoretical bound, on some instances it fails to find even the guaranteed
approximation [Bud11, Section 9].

Thus A-CEEI is a problem where practical interest motivates theoretical inquiry.
We have a theorem that guarantees the existence of an approximate equilibrium—the
issue is finding it. Can the heuristic algorithms currently used to assign Wharton
MBAs to their courses be replaced by a fast and rigorous algorithm for finding an
approximate CEEI? In this thesis, we answer this question on the negative (Theo-
rem 10.1.5), showing that computing an A-CEEI is PPAD-complete.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 11

1.2 Quasi-polynomial time and the birthday

paradox

The following bilinear optimization meta-problem captures a wide range of appli-
cations, from areas like statistics (Sparse PCA), graph theory (Clique), and game
theory (Nash equilibrium):

max
(x,y)∈X

x⊺Ay. (1.1)

For all the applications we consider, once we fix some y∗, finding the best feasible x

that maximizes x⊺Ay∗ is a tractable problem. (Similarly, if we were given a good x∗,
finding a matching y is easy.) But optimizing x and y simultaneously is NP-hard.
What about approximations?

Caratheodory’s theorem states that a point v in the convex hull of n points
in Rd can be written as a convex combination of d + 1 points. In general, d + 1
points are necessary, but this number can be reduced drastically if we are willing
to settle for approximation. In particular, Barman7 [Bar15] proves an approximate
Caratheodory’s theorem that requires only r = O (p/ε2) points to express a point v̂
such that ∥v̂ − v∥p < ε, assuming the n points belong to a unit �p-ball. In particular,
v̂ can be written as an average over a multi-set of r out of the n points.

Viewing the columns of A as n vectors in Rn, Barman observes that (after proper
normalization), the point v = Ay∗ is in their convex hull. If only want to approxi-
mately solve the bilinear optimization (1.1), we drastically reduce the dimension of
the problem by enumerating over all choices of v̂, and for each v̂ solving the op-
timization problem Av̂. It turns out that in order to guarantee a good additive
approximation of (1.1), we need to set p ≈ logn. The dominant term in the running
time of this meta-algorithm is the enumeration over all choices of v̂ (all multi-sets

of the columns of A), which takes approximately nr = n
O(logn

ε2
), i.e. quasi-polynomial

time.
The above meta-algorithm provides evidence that the approximate variant of all

those problems is much easier than solving them exactly: in particular we believe that
NP-hard (respectively, PPAD-hard) problems like 3-SAT (resp. End-of-a-Line)
require approximately 2n time. This belief is formulated by the Exponential Time
Hypothesis, or ETH [IPZ01] (resp. ETH for PPAD [BPR16]). The reasons we believe
in ETH are similar to the ones outlined in the previous section for our belief that

7Both the approximate Caratheodory’s theorem and the resulting algorithm have been discov-
ered been described by many researchers (e.g. [LMM03; Aro+12]); however, the presentation in
[Bar15] is our favorite.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 12

End-of-a-Line is intractable: on one hand, we have a combination of unconditional
lower bounds in analogous models and little or no progress on algorithms; on the
other hand, we are “forced” to believe it because we have no idea how to prove it (in
particular, ETH implies the much weaker P ≠ NP).

However, quasi-polynomial time is still both unrealistic to implement in practice,
and does not meet our gold standard of polynomial time in theory. The main question
we address in this section is:

Can the quasi-polynomial time be improved to polynomial time?

For Sparse PCA this is indeed possible [Alo+13; Ast+15; CPR16]. But for several
other problems we can prove that, assuming ETH, quasi-polynomial time is actually
necessary:

• Finding a k-subgraph which is almost a clique; this is one of the most funda-
mental approximation problems in theoretical computer science.

• Finding and counting stable communities in a friendship graph; this problem
received a lot of attention in recent years with the emergence online social
networks.

• Finding an approximately optimal signaling scheme; this resolves a recent open
question by Dughmi .

• Computing the VC and Littlestone’s dimensions of a binary concept class, two
of the most fundamental quantities in learning theory.

A common approach to all our proofs is the birthday repetition framework due to
Aaronson, Impagliazzo, and Moshkovitz [AIM14]: construct a reduction from 3-SAT
to any of the above problems, with reduction sizeN ≈ 2

√
n. Then, assuming ETH, one

needs approximately N logN ≈ 2n time to solve the problem on the larger instance. A
key step in the reduction is to consider subsets of

√
n variables; then by the birthday

paradox any two subsets are likely to share at least one variable (hence the name
“birthday repetition”).

1.2.1 Densest k-Subgraph

k-Clique is one of the most fundamental problems in computer science: given a
graph, decide whether it has a fully connected induced subgraph on k vertices. Since
it was proven NP-complete by Karp [Kar72], extensive research has investigated the
complexity of its relaxations.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 13

We consider two natural relaxations of k-Clique which have received significant
attention from both algorithmic and complexity communities: The first one is to
relax the “k” requirement, i.e. looking for a smaller subgraph: Given an n-vertex
graph G containing a clique of size k, find a clique of size at least δk for some
parameter 0 < δ < 1.

The second natural relaxation is to relax the “Clique” requirement, replacing it
with the more modest goal of finding a subgraph that is almost a clique: Given an
n-vertex graph G containing a clique of size k, find an induced subgraphs of G of
size k with (edge) density at least 1 − ε, for some parameter 0 < ε < 1.

The first relaxation has been a motivating example throughout a long line of
research that laid the foundations for NP-hardness of approximation [Fei+96; AS98;
Aro+98; H̊as99; Kho01; Zuc07]. In particular, we now know that it is NP-hard to
distinguish between a graph that has a clique of size k, and a graph whose largest
induced clique is of size at most k′ = δk, where δ = 1/n1−ε [Zuc07]. Until our work,
the computational complexity of the second relaxation remained largely open. There
are a couple of (very different) quasi-polynomial algorithms that guarantee finding a
(1−ε)-dense k-subgraph in every graph containing a k-clique: the meta-algorithm by
Barman, which we outlined above, and an older algorithm due to Feige and Seltser
[FS97], but nothing non-trivial was known about hardness of approximation.

In this thesis we prove that, assuming ETH, even if one makes both relaxations
the problem remains intractable. In particular, even if the graph contains a clique
of size k, it takes quasi-polynomial time to find an (1 − ε)-dense δk-subgraph, for
constant ε > 0 and δ = o(1).

1.2.2 Community Detection

Identifying communities is a central graph-theoretic problem with important appli-
cations to sociology and marketing (when applied to social networks), biology and
bioinformatics (when applied to protein interaction networks), and more (see e.g.
Fortunato’s classic survey [For10]). Defining what exactly is a community remains
an interesting problem on its own (see Arora et al [Aro+12] and Borgs et al [Bor+16]
for excellent treatment from a theoretical perspective). Ultimately, there is no sin-
gle “right” definition, and the precise meaning of community should be different for
social networks and protein interaction networks.

In this thesis we focus on the algorithmic questions arising from one of the simplest
and most canonical definitions, which has been considered by several theoretical
computer scientists [Mis+08; Aro+12; Bal+13; Bra+17].

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 14

Definition 1.2.1 ((α,β)-Community). Given an undirected graph G = (V,E) an
(α,β)-community is a subset S ⊆ V that satisfies:

Strong ties inside the community For every v ∈ S, ∣{v} × S∣ ∩E ≥ α ⋅ ∣S∣; and

Weak ties to nodes outside the community For every u ∉ S, ∣{u} × S∣ ∩ E ≤
β ⋅ ∣S∣.

This problem has considered by several researchers before: Mishra, Schreiber,
Stanton, and Tarjan [Mis+08] gave a polynomial-time algorithm for finding (α,β)-
communities that contain a vertex with very few neighbors outside the community.
Balcan et al [Bal+13] give a polynomial-time algorithm for enumerating (α,β)-
communities in the special case where the degree of every node is Ω (n). Arora, Ge,
Sachdeva, and Schoenebeck [Aro+12] consider several semi-random models where
the edges inside the community are generated at random, according to the expected
degree model. For the general case, the latter paper by Arora et al gave a simple
quasi-polynomial (nO(logn)) time for detecting (α,β)-communities whenever α − β

is at least some positive constant. (Their algorithm is essentially identical to the
meta-algorithm for bilinear optimization that we outlined above.)

We show that, for every constants α > β ∈ (0,1], community detection requires
quasi-polynomial time (assuming ETH). For example, when α = 1 and β = 0.01, this
means that we can hide a clique C, such that every single vertex not in C is connected
to at most 1% of C. Our main result is actually a much stronger inapproximability:
even in the presence of a (1, o (1))-community, finding any (β + o (1) , β)-community
is hard.

Unlike all quasi-polynomial approximation schemes mentioned above, Arora et
al’s algorithm has the unique property that it can also exactly count all the (α,β)-
communities. Our second result is that counting even the number of (1, o (1))-
communities requires quasi-polynomial time. A nice feature of this result is that we
can base it on the much weaker #ETH assumption, which asserts that counting the
satisfying assignment for a 3SAT instance requires time 2Ω(n). (Note, for example,
that #ETH is likely to be true even if P = NP.)

1.2.3 VC and Littlestone’s dimensions

A common and essential assumption in learning theory is that the concepts we want
to learn come from a nice, simple concept class, or (in the agnostic case) they can
at least be approximated by a concept from a simple class. When the concept class
is sufficiently simple, there is hope for good (i.e. sample-efficient and low-error)
learning algorithms.

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 15

There are many different ways to measure the simplicity of a concept class. The
most influential measure of simplicity is the VC Dimension [VC71], which captures
learning in the PAC model. We also consider Littlestone’s Dimension [Lit87], which
corresponds to minimizing mistakes in online learning (see Section 2.5 for definitions).
When either dimension is small, there are algorithms that exploit the simplicity of
the class, to obtain good learning guarantees.

In this thesis we consider the algorithmic challenge of computing either dimen-
sion. In particular, we study the most optimistic setting, where the entire universe
and concept class are given as explicit input (a binary matrix whose (x, c)-th entry
is 1 iff element x belongs to concept c) In this model, both dimensions can be com-
puted in quasi-polynomial time. Interestingly, the algorithm does not go through
the bilinear optimization problem; instead, it exploits the fact that for concept class
C, both dimensions are bounded by log ∣C∣. Two decades ago, it was shown that
quasi-polynomial time is indeed necessary for both dimensions [PY96; FL98]. The
computational intractability of computing the (VC, Littlestone’s) dimension of a
concept class suggests that even in cases where a simple structure exists, it may be
inaccessible to computationally bounded algorithms.

In this thesis we extend the results of [PY86; FL98] to show that the VC and
Littlestone’s Dimensions cannot even be approximately computed in polynomial time.

1.2.4 Signaling

Many classical questions in economics involve extracting information from strategic
agents. Lately, there has been growing interest within algorithmic game theory in
signaling: the study of how to reveal information to strategic agents (see e.g. [MS12;
DIR13; Eme+14; Dug14; Che+15b] and references therein). Signaling has been stud-
ied in many interesting economic and game theoretic settings. Among them, Zero-
Sum Signaling proposed by Dughmi [Dug14] stands out as a canonical problem
that cleanly captures the computational nature of signaling. In particular, focusing
on zero-sum games clears away issues of equilibrium selection and computational
tractability of finding an equilibrium.

Definition (Zero-Sum Signaling [Dug14]). Alice and Bob play a Bayesian zero-
sum game where the payoff matrix M is drawn from a publicly known prior. The
signaler Sam privately observes the state of nature (i.e. the payoff matrix), and
then publicly broadcasts a signal ϕ (M) to both Alice and Bob. Alice and Bob
Bayesian-update their priors according to ϕ (M)’s and play the Nash equilibrium of
the expected game; but they receive payoffs according to the true M . Sam’s goal is

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 16

to design an efficient signaling scheme ϕ (a function from payoff matrices to strings)
that maximizes Alice’s expected payoff.

Dughmi’s [Dug14] main result proves that assuming the hardness of the Planted
Clique problem, there is no additive FPTAS for Zero-Sum Signaling. The main
open question left by [Dug14] is whether there exists an additive PTAS. Here we
answer this question in the negative: we prove that assuming the Exponential Time
Hypothesis (ETH) [IPZ01], obtaining an additive-ε-approximation (for some constant
ε > 0) requires quasi-polynomial time (nΩ̃(lgn)). This result is tight thanks to a recent

quasi-polynomial (n
lgn

poly(ε)) time algorithm by Cheng et al. [Che+15b]. Another im-
portant advantage of our result is that it replaces the hardness of Planted Clique
with a more believable worst-case hardness assumption (see e.g. the discussion in
[BKW15]).

1.3 Approximate Nash equilibrium

The main result in this thesis rules out the PTAS (polynomial time approximation
schemes) for two-player Nash equilibrium. Consider a game between two players,
each choosing between a large number (n) of actions. The input to the algorithm
are two n×n matrices with entries in [0,1]. The goal is to find, for every constant ε,
an ε-approximate Nash equilibrium; i.e. a mixed strategy for each player, such that
either player can gain at most ε by deviating to a different strategy.

This has been the central open question in equilibrium computation for the past
decade. There were good reasons to be hopeful: there was a quasi-polynomial
time [LMM03], a series of improved approximation ratios [KPS09; DMP09; DMP07;
BBM10; TS08] and several approximation schemes for special cases [KT07; DP09;
Alo+13; Bar15]. Our main result settles this question on the negative:

Theorem 1.3.1 (Main Theorem). There exists a constant ε > 0 such that, assuming
ETH for PPAD, finding an ε-Approximate Nash Equilibrium in a two-player n × n

game requires time T (n) = nlog1−o(1) n.

We supplement Theorem 1.3.1 with a series of other hardness of approximation
results for Nash equilibrium in related settings, further establishing the point that
even approximate Nash equilibria are intractable. First, we consider different sources
of complexity. Our main result shows intractability of approximate Nash equilibrium
when the complexity of the game arises from each player choosing among many ac-
tions. In Theorems 5.0.2 and 5.0.4, we prove in games where each player only has

CHAPTER 1. THE FRONTIER OF INTRACTABILITY 17

two actions, the complexity can arise form a large number of players; finding an ap-
proximate Nash equilibrium in n-player, binary action games is PPAD-hard (settling
another open question from Daskalakis’s thesis [Das08]). Alternatively, even if there
are only two player and the number of actions is constant, a different source of com-
plexity can be the players uncertainty; finding an approximate Bayesian Nash equi-
librium in such incomplete information games is also PPAD-hard (Corollary 8.0.3).

We also prove intractability in different models: query complexity, communica-
tion complexity, and uncoupled dynamics (settling a long list of open questions from
[HM10; Nis09a; Fea+13; Bab12; HN13; Bab16; CCT17; RW16]). The main advan-
tage of these results is that they are unconditional, i.e. they do not rely on complexity
assumptions such as ETH for PPAD, or P ≠ NP. In particular, in the setting where
each player knows her own utility function, even computationally-unbounded players
have to communicate almost their entire private information in order to reach even
an approximate equilibrium.

18

Chapter 2

Preliminaries

2.0.1 Notation

We use 0n (respectively 1n) to denote the length-n vectors whose value is 0 (1) in
every coordinate. For vectors x,y ∈ Rn, we let

∥x − y∥2 ≜
√
Ei∈[n] (xi − yi)2

denote the normalized 2-norm. Unless specified otherwise, when we say that x and
y are Δ-close (or Δ-far), we mean Δ-close in normalized 2-norm. Similarly, for a
binary string π ∈ {0,1}n, we denote

∣π∣ ≜ Ei∈[n] [πi] .

We use den(S) ∈ [0,1] to denote the density of subgraph S,

den(S) ∶=
∣(S × S) ∩E∣

∣S × S∣ .

2.1 Nash equilibrium and relaxations

A mixed strategy of player i is a distribution xi over i’s set of actions, Ai. We say
that a vector of mixed strategies x ∈ ×jΔAj is a Nash equilibrium if every strategy
ai in the support of every xi is a best response to the actions of the mixed strategies
of the rest of the players, x−i. Formally, for every ai ∈ supp (xi)

Ea−i∼x−i [ui (ai, a−i)] =max
a′∈Ai

Ea−i∼x−i [ui (a′, a−i)] .

CHAPTER 2. PRELIMINARIES 19

Equivalently, x is a Nash equilibrium if each mixed strategy xi is a best response to
x−i:

Ea∼x [ui (a)] = max
x′
i
∈ΔAi

Ea∼(x′
i
;x−i) [ui (a)] .

Each of those equivalent definitions can be generalized to include approximation
in a different way.

Definition 2.1.1 (ε-Approximate Nash Equilibrium). We say that x is an ε-Approximate
Nash Equilibrium (ε-ANE) if each xi is an ε-best response to x−i:

Ea∼x [ui (a)] ≥ max
x
′
i
∈ΔAi

Ea∼(x′
i
;x−i) [ui (a)] − ε.

On the other hand, we generalize the first definition of Nash equilibrium in the
following stricter definition:

Definition 2.1.2 (ε-Well-Supported Nash Equilibrium). x is a ε-Well-Supported
Nash Equilibrium (ε-WSNE) if every ai in the support of xi is an ε-best response to
x−i: for every ai ∈ supp (xi)

Ea−i∼x−i [ui (ai, a−i)] ≥max
a
′∈Ai

Ea−i∼x−i [ui (a
′
, a−i)] − ε.

WeakNash

We can further relax the (already more lenient) notion of ε-ANE by requiring that
the ε-best response condition only hold for most of the players (rather than all of
them).

Definition 2.1.3 ((ε, δ)-WeakNash [BPR16]). We say that x is an (ε, δ)-WeakNash
if for a (1 − δ)-fraction of i’s, xi is an ε-best mixed response to x−i:

Pr
i
[Ea∼x [ui (a)] ≥ max

x
′
i
∈ΔAi

Ea∼(x′
i
;x−i) [ui (a)] − ε] ≥ 1 − δ.

Definition 2.1.4 ((ε, δ)-Well-Supported WeakNash). x is a (ε, δ)-Well-Supported
WeakNash if for a (1 − δ)-fraction of i’s, every ai in the support of xi is an ε-best
response to x−i:

Pr
i
[∀ai ∈ supp (xi) Ea−i∼x−i [ui (ai, a−i)] ≥max

a
′∈Ai

Ea−i∼x−i [ui (a
′
, a−i)] − ε] ≥ 1 − δ.

CHAPTER 2. PRELIMINARIES 20

2.2 PPAD and End-of-a-Line

The End-of-a-Line of problem considers an implicitly-represented, exponential
size, directed graph whose vertices have in- and out-degree at most 1 (this is without
loss of generality). The special vertex 0n has in-degree 0, and the goal is to find
another odd-degree vertex. The graph is a union of lines and cycles, so in particular
the line starting at 0n ends with another odd-degree vertex.

The graph is implicitly defined with functions S,P that, for each vertex, give its
Successor (out-going neighbor) and Predecessor (incoming neighbor). In the compu-
tational variant of End-of-a-Line, S,P are given as explicit circuits, whereas in the
query complexity variant they are given as oracles. There is also a communication
complexity variant, whose definition is more involved and is deferred to Section 3.1.

In the formal definition of the computational variant we have to also consider the
case that S,P are inconsistent, i.e. for some u ≠ v we have S(u) = v, but P (v) ≠ u;
we also allow the algorithm to succeed by finding such an inconsistency. (In the
oracle model we can explicitly require that there are no inconsistencies.)

Definition 2.2.1 (End-of-a-Line). The input to the problem is functions S,P ∶
{0,1}n → {0,1}n, such that S(0n) = 0n ≠ P (0n). The output is another odd degree
vertex 0n ≠ v ∈ {0,1}n such that P (S(v)) ≠ S(P (v)).

The computational complexity class PPAD is defined as the class of all total search
problems reducible to End-of-a-Line.

Membership End-of-a-Line

The following variant of End-of-a-Line is equivalent and more convenient for some
of our reductions. In particular, the problem is restricted to a subset of the vertices.
The restricted vertex-set is defined implicitly via a membership function T ∶ {0,1}n →
{0,1}. Abusing notation, let T also denote the restricted set of vertices whose T -
value is 1. We think of S and P as only applying to vertices in T , and connecting
them to other vertices in T . Formally, we also allow the algorithm to return any
violations.

Definition 2.2.2 (Membership End-of-a-Line). The input to the problem is
functions S,P ∶ {0,1}n → {0,1}n and T ∶ {0,1}n → {0,1}, such that S(0n) = 0n ≠
P (0n) and T (0n), T (S(0n)) = 1. The output is another odd degree vertex 0n ≠ v ∈
{0,1}n such that T (v) = 1 and v satisfies at least one of the following:

End-of-a-line P (S(v)) ≠ S(P (v)); or

CHAPTER 2. PRELIMINARIES 21

Boundary condition T (S(v)) = 0 or T (P (v)) = 0.

Lemma 2.2.3. End-of-a-Line is equivalent to Membership End-of-a-Line.

Proof. Given an instance ofEnd-of-a-Line, we can construct an equivalent instance
of Membership End-of-a-Line by setting T ≡ 1. In the other direction, we can
add self-loops to every vertex v such that T (v) = 0 (i.e. P (v) = S(v) = v); this
guarantees that v is never a solution to the new End-of-a-Line instance.

We will be interested with restricted (but equally hard) variants of Membership
End-of-a-Line. For example, in Section 16.2 we define Local End-of-a-Line
where, among other restrictions, T,S,P are AC0 circuits. In particular, in Chapter 3,
we will consider a variant where each vertex is a-priori restricted to have at most two
potential incoming/outgoing neighbors, and the functions S,P merely specify which
neighbor is chosen. We then abuse notation and let S,P output just a single bit.

2.3 Exponential Time Hypotheses

Our quasi-polynomial hardness results are conditional on the following hypotheses.
We begin with the “plain” ETH:

Hypothesis 1 (Exponential Time Hypothesis (ETH) [IPZ01]). 3SAT takes time 2Ω(n).

Since a Nash equilibrium always exists, we are unlikely to have a reduction (even
of subexponential size) from 3SAT to Nash equilibrium. Instead, we need to assume
the following analogue of ETH for the total class PPAD:

Hypothesis 2 (ETH for PPAD [BPR16]). Solving EndOfALine requires time 2Ω̃(n).1

In Section 13.1 we will prove a quasi-polynomial lower bound on the running
time for counting the number of communities in a social network. This result is also
conditional, but requires the following much weaker #ETH assumption:

Hypothesis 3 (#ETH [Del+14]). Given a 3SAT formula, counting the number of
satisfying assignments takes time 2Ω(n).

2.4 PCP theorems

2.4.1 2CSP and the PCP Theorem

In the 2CSP problem, we are given a graphG = (V,E) on ∣V ∣ = n vertices, where each
of the edges (u, v) ∈ E is associated with some constraint function ψu,v ∶ Σ×Σ→ {0,1}

1As usual, n is the size of the description of the instance, i.e. the size of the circuits S and P .

CHAPTER 2. PRELIMINARIES 22

which specifies a set of legal “colorings” of u and v, from some finite alphabet Σ (2 in
the term “2CSP ” stands for the “arity” of each constraint, which always involves two
variables). Let us denote by ψ the entire 2CSP instance, and define by OPT(ψ) the
maximum fraction of satisfied constraints in the associated graph G, over all possible
assignments (colorings) of V .

The starting point of some of our reductions is the following version of the PCP
theorem, which asserts that it is NP-hard to distinguish a 2CSP instance whose
value is 1, and one whose value is 1 − η, where η is some small constant:

Theorem 2.4.1 (PCP Theorem [Din07]). Given a 3SAT instance ϕ of size n,
there is a polynomial time reduction that produces a 2CSP instance ψ, with size
∣ψ∣ = n ⋅ polylogn variables and constraints, and constant alphabet size such that

• (Completeness) If OPT(ϕ) = 1 then OPT(ψ) = 1.

• (Soundness) If OPT(ϕ) < 1 then OPT(ψ) < 1 − η, for some constant η = Ω(1)

• (Graph) The constraint graph is d-regular, for some constant d, and bipartite.

See e.g. the full version of [Bra+17] or [AIM14] for derivations of this formulation
of the PCP theorem.

Notice that since the size of the reduction is near linear, ETH implies that solving
the above problem requires near exponential time.

Corollary 2.4.2. Let ψ be as in Theorem 2.4.1. Then assuming ETH, distinguishing
between OPT(ψ) = 1 and OPT(ψ) < 1 − η requires time 2Ω̃(∣ψ∣).

Label Cover

Definition 2.4.3 (Label Cover). Label Cover is a maximization problem,
and a special case of 2CSP. The input is a bipartite graph G = (A,B,E), alphabets
ΣA,ΣB, and a projection πe ∶ ΣA → ΣB for every e ∈ E.

The output is a labeling ϕA ∶ A → ΣA, ϕB ∶ B → ΣB. Given a labeling, we say
that a constraint (or edge) (a, b) ∈ E is satisfied if π(a,b) (ϕA (a)) = ϕB (b). The value
of a labeling is the fraction of e ∈ E that are satisfied by the labeling. The value of
the instance is the maximum fraction of constraints satisfied by any assignment.

We often encounter an assignment that only labels a subset of A∪B but leaves the
rest unlabeled. We refer to such assignment as a partial assignment to an instance;
more specifically, for any V ⊆ A ∪B, a V -partial assignment (or partial assignment
on V) is a function φ ∶ V → Σ. For notational convenience, we sometimes write ΣV

to denote the set of all functions from V to Σ.

CHAPTER 2. PRELIMINARIES 23

Theorem 2.4.4 (Moshkovitz-Raz PCP [MR10, Theorem 11]). For every n and every
ε > 0 (in particular, ε may be a function of n), solving 3SAT on inputs of size n

can be reduced to distinguishing between the case that a (dA, dB)-bi-regular instance
of Label Cover, with parameters ∣A∣ + ∣B∣ = n1+o(1) ⋅ poly (1/ε), ∣ΣA∣ = 2poly(1/ε), and
dA, dB, ∣ΣB ∣ = poly (1/ε), is completely satisfiable, versus the case that it has value at
most ε.

Counting the number of satisfying assignments is even harder. The following
hardness is well-known, and we sketch its proof only for completeness:

Fact 2.4.5. There is a linear-time reduction from #3SAT to counting the number of
satisfying assignments of a Label Cover instance.

Proof. Construct a vertex in A for each variable and a vertex in B for each clause. Set
ΣA ≜ {0,1} and let ΣB ≜ {0,1}3 ∖ (000) (i.e. ΣB is the set of satisfying assignments
for a 3SAT clause, after applying negations). Now if variable x appears in clause
C, add a constraint that the assignments to x and C are consistent (taking into
account the sign of x in C). Notice that any assignment to A: (i) corresponds to
a unique assignment to the 3SAT formula; and (ii) if the 3SAT formula is satisfied,
this assignment uniquely defines a satisfying assignment to B. Therefore there is a
one-to-one correspondence between satisfying assignments to the 3SAT formula and
to the instance of Label Cover.

2.5 Learning Theory

For a universe (or ground set) U , a concept C is simply a subset of U and a concept
class C is a collection of concepts. For convenience, we sometimes relax the definition
and allow the concepts to not be subsets of U ; all definitions here extend naturally
to this case.

The VC and Littlestone’s Dimensions can be defined as follows.

Definition 2.5.1 (VC Dimension [VC71]). A subset S ⊆ U is said to be shattered by
a concept class C if, for every T ⊆ S, there exists a concept C ∈ C such that T = S∩C.

The VC Dimension VC-dim(C,U) of a concept class C with respect to the universe
U is the largest d such that there exists a subset S ⊆ U of size d that is shattered by
C.

Definition 2.5.2 (Mistake Tree and Littlestone’s Dimension [Lit87]). A depth-d
instance-labeled tree of U is a full binary tree of depth d such that every internal

CHAPTER 2. PRELIMINARIES 24

node of the tree is assigned an element of U . For convenience, we will identify each
node in the tree canonically by a binary string s of length at most d.

A depth-d mistake tree (aka shattered tree [BPS09]) for a universe U and a
concept class C is a depth-d instance-labeled tree of U such that, if we let vs ∈ U
denote the element assigned to the vertex s for every s ∈ {0,1}<d, then, for every leaf
� ∈ {0,1}d, there exists a concept C ∈ C that agrees with the path from root to it,
i.e., that, for every i < d, v�≤i ∈ C iff �i+1 = 1 where �≤i denote the prefix of � of length
i.

The Littlestone’s Dimension L-dim(C,U) of a concept class C with respect to the
universe U is defined as the maximum d such that there exists a depth-d mistake
tree for U ,C.

An equivalent formulation of Littlestone’s Dimension is through mistakes made
in online learning, as stated below. This interpretation will be useful in the proof of
Theorem 14.2.1.

Definition 2.5.3 (Mistake Bound). An online algorithm A is an algorithm that,
at time step i, is given an element xi ∈ U and the algorithm outputs a prediction
pi ∈ {0,1} whether x is in the class. After the prediction, the algorithm is told the
correct answer hi ∈ {0,1}. For a sequence (x1, h1), . . . , (xn, hn), prediction mistake of
A is defined as the number of incorect predictions, i.e., ∑i∈n�[pi ≠ hi]. The mistake
bound of A for a concept class C is defined as the maximum prediction mistake of
A over all the sequences (x1, h1), . . . , (xn, hn) which corresponds to a concept C ∈ C
(i.e. hi = �[xi ∈ C] for all i ∈ [n]).

Theorem 2.5.4 ([Lit87]). For any universe U and any concept class C, L-dim(C,U)
is equal to the minimum mistake bound of C,U over all online algorithms.

The following facts are well-know and follow easily from the above definitions.

Fact 2.5.5. For any universe U and concept class C, we have

VC-dim(C,U) ≤ L-dim(C,U) ≤ log ∣C∣.
Fact 2.5.6. For any two universes U1,U2 and any concept class C,

L-dim(C,U1 ∪ U2) ≤ L-dim(C,U1) + L-dim(C,U2).

2.6 Information Theory

In this section, we introduce information-theoretic quantities used in this paper.
For a more thorough introduction, the reader should refer to [CT12]. Unless stated
otherwise, all log’s in this paper are base-2.

CHAPTER 2. PRELIMINARIES 25

Definition 2.6.1. Let μ be a probability distribution on sample space Ω. The
Shannon entropy (or just entropy) of μ, denoted by H(μ), is defined as H(μ) ∶=
∑ω∈Ω μ(ω) log 1

μ(ω) .

Definition 2.6.2 (Binary Entropy Function). For p ∈ [0,1], the binary entropy
function is defined as follows (with a slight abuse of notation) H(p) ∶= −p log p− (1−
p) log(1 − p).

Fact 2.6.3 (Concavity of Binary Entropy). Let μ be a distribution on [0,1], and let
p ∼ μ. Then H(Eμ [p]) ≥ Eμ [H(p)].
For a random variable A we shall write H(A) to denote the entropy of the induced
distribution on the support of A. We use the same abuse of notation for other
information-theoretic quantities appearing later in this section.

Definition 2.6.4. The Conditional entropy of a random variable A conditioned on
B is defined as

H(A∣B) = Eb(H(A∣B = b)).

Fact 2.6.5 (Chain Rule).

H(AB) =H(A) +H(B∣A).

Fact 2.6.6 (Conditioning Decreases Entropy). H(A∣B) ≥H(A∣BC).
Another measure we will use (briefly) in our proof is that of Mutual Information,

which informally captures the correlation between two random variables.

Definition 2.6.7 (Conditional Mutual Information). The mutual information be-
tween two random variable A and B, denoted by I(A;B) is defined as

I(A;B) ∶=H(A) −H(A∣B) =H(B) −H(B∣A).

The conditional mutual information betweenA andB given C, denoted by I(A;B∣C),
is defined as

I(A;B∣C) ∶=H(A∣C) −H(A∣BC) =H(B∣C) −H(B∣AC).

The following is a well-known fact on mutual information.

Fact 2.6.8 (Data processing inequality). Suppose we have the following Markov
Chain:

X → Y → Z

where X Z ∣Y . Then I(X;Y) ≥ I(X;Z) or equivalently, H(X ∣Y) ≤H(X ∣Z).

CHAPTER 2. PRELIMINARIES 26

Mutual Information is related to the following distance measure.

Definition 2.6.9 (Kullback-Leiber Divergence). Given two probability distributions
μ1 and μ2 on the same sample space Ω such that (∀ω ∈ Ω)(μ2(ω) = 0⇒ μ1(ω) = 0),
theKullback-Leibler Divergence between is defined as (also known as relative entropy)

DKL (μ1∥μ2) = ∑
ω∈Ω

μ1(ω) log
μ1(ω)
μ2(ω)

.

The connection between the mutual information and the Kullback-Leibler divergence
is provided by the following fact.

Fact 2.6.10. For random variables A,B, and C we have

I(A;B∣C) = Eb,c [DKL (Abc∥Ac)] .

2.7 Useful lemmata

2.7.1 Concentration

Lemma 2.7.1 (Chernoff Bound). Let X1, . . . ,Xn be i.i.d. random variables taking
value from {0,1} and let p be the probability that Xi = 1, then, for any δ > 0, we have

Pr [
n

∑
i=1

Xi ≥ (1 + δ)np] ≤
⎧⎪⎪⎨⎪⎪⎩

2−δ
2np/3 if δ < 1,

2−δnp/3 otherwise.

2.7.2 Pseudorandomness

Theorem 2.7.2 (k-wise independence Chernoff bound [SSS95, Theorem 5.I]). Let
x1 . . . xn ∈ [0,1] be k-wise independent random variables, and let μ ≜ E [∑n

i=1 xi] and
δ ≤ 1. Then

Pr [∣
n

∑
i=1

xi − μ∣ > δμ] ≤ e−Ω(min{k,δ2μ}).

2.7.3 λ-biased sets

Definition 2.7.3 (λ-biased sets). Let G be a finite field, and t > 0 an integer. A
multiset S ⊆ Gt is λ-biased if for every nontrivial character χ of Gt,

∣Ey∼S [χ (y)]∣ ≤ λ.

CHAPTER 2. PRELIMINARIES 27

Lemma 2.7.4 ([AMN98, Theorem 3.2]). A randomly chosen multiset S ⊆ Gt of
cardinality Θ (t log ∣G∣ /λ2) is λ-biased with high probability.

For many applications, an explicit construction is necessary. In our case, however,
we can enumerate over all sets S of sufficient cardinality in quasi-polynomial time2.
The following Sampling Lemma due to Ben-Sasson et al. [Ben+03] allows us to
estimate the average of any function over Gt using only one line and (1 + o (1)) log2 ∣Gt∣
randomness:

Lemma 2.7.5 (Sampling Lemma: [Ben+03, Lemma 4.3]). Let B ∶ Gt → [0,1]. Then,
for any ε > 0,

Pr
x∈Gt,
y∈S

[∣Eβ∈G [B (x + βy)] − Ez∈Gt [B (z)]∣ > ε] ≤ (1

∣G∣ + λ) Ez∈Gt [B (z)]
ε2

.

2.7.4 Partitions

Given a 2CSP formula, we provide a few techniques to deterministically partition n

variables to approximately
√
n subsets of approximately

√
n variables each, so that

number of constraints between every pair of partitions is approximately as expected.

Greedy partition

Lemma 2.7.6. Let G = (V,E) be a d-regular graph and n ≜ ∣V ∣. We can partition
V into n/k disjoint subsets {S1, . . . , Sn/k} of size at most 2k such that:

∀i, j ∣(Si × Sj) ∩E∣ ≤ 8d2k2/n (2.1)

Proof. We assign vertices to subsets iteratively, and show by induction that we can
always maintain (2.1) and the bound on the subset size. Since the average set size
is less than k, we have by Markov’s inequality that at each step less than half of the
subsets are full. The next vertex we want to assign, v, has neighbors in at most d

subsets. By our induction hypothesis, each Si is of size at most 2k, so on average
over j ∈ [n/k], it has less than 4dk2/n neighbors in each Sj. Applying Markov’s

2Note that we need an ε-biased set for a large field G = F2� . Such constructions are not as
common in the literature which mostly focuses on the field F2. To the best of our knowledge,
existing explicit constructions for larger fields require much larger cardinality. Nevertheless, for
our modest pseudorandomness desiderata, we could actually use the explicit construction from
[Alo+92]. For ease of presentation, we prefer to brute-force derandomize the construction from
[AMN98].

CHAPTER 2. PRELIMINARIES 28

inequality again, Si has at least 8d2k2/n neighbors in less than a (1/2d)-fraction of
subsets Sj. In total, we ruled out less than half of the subsets for being full, and less
than half of the subsets for having too many neighbors with subsets that contain
neighbors of v. Therefore there always exists some subset Si to which we can add v

while maintaining the induction hypothesis.

Derandomized partition

We use Chernoff bound with Θ (logn)-wise independent variables to deterministi-
cally partition variables into subsets of cardinality ≈

√
n. Our (somewhat naive)

deterministic algorithm for finding a good partition takes quasi-polynomial time
(nO(logn)), which is negligible with respect to the sub-exponential size (N = 2Õ(

√
n))

of our reduction3.

Lemma 2.7.7. Let G = (A,B,E) be a bipartite (dA, dB)-bi-regular graph, and let
nA ≜ ∣A∣, nB ≜ ∣B∣; set also n ≜ nB + nA and ρ ≜

√
n logn. Let T1, . . . , TnB/ρ be an

arbitrary partition of B into disjoint subsets of size ρ. There is a quasi-polynomial
deterministic algorithm (alternatively, linear-time randomized algorithm) that finds
a partition of A into S1, . . . , SnA/ρ, such that:

∀i ∣ ∣Si∣ − ρ∣ < ρ/2, (2.2)

and

∀i, j
44444444444
∣(Si × Tj) ∩E∣ − dAρ2

nB

44444444444
< dAρ2

2nB

. (2.3)

Proof. Suppose that we place each a ∈ A into a uniformly random Si. By Chernoff
bound and union bound, (2.2) and (2.3) hold with high probability. Now, by Chernoff
Bound for k-wise independent variables (Theorem 2.7.2), it suffices to partition A

using a Θ (logn)-wise independent distribution. Such distribution can be generated
with a sample space of nO(logn) (e.g. [ABI86]). Therefore, we can enumerate over all
possibilities in quasi-polynomial time. By the probabilistic argument, we will find at
least one partition that satisfies (2.2) and (2.3).

2.7.5 How to catch a far-from-uniform distribution

The following lemma due to [DP09] implies that

3Do not confuse this with the quasi-polynomial lower bound (N Õ(logN)) we obtain for the
running time of the community detection problem.

CHAPTER 2. PRELIMINARIES 29

Lemma 2.7.8 (Lemma 3 in the full version of [DP09]). Let {ai}ni=1 be real numbers
satisfying the following properties for some θ > 0: (1) a1 ≥ a2 ≥ ⋅ ⋅ ⋅ ≥ an; (2) ∑ai = 0;

(3) ∑n/2
i=1 ai ≤ θ. Then ∑n

i=1 ∣ai∣ ≤ 4θ.

2.7.6 Simulation theorem

Let D ∶ {0,1}N → {0,1} be a decision problem. We consider the following query
complexity models (called also decision tree). Each query is an index k ∈ [N] and
the answer is the k-th bit of the input. The randomized query complexity of D,
denoted by BPPdt

δ (D) where δ is the allowed probability of error.
We also consider the following communication complexity models. Here, for every

k ∈ [N] Alice holds a vector αk ∈ {0,1}M and Bob holds an index βk ∈ [M], for some
M = poly(N). Their goal is to compute D for the input (α1(β1), . . . , αN(βN)). The
standard bounded error two-party probabilistic communication complexity of the
simulated problem D, denoted by BPPcc

δ (Sim-D).
To “lift” from query complexity hardness to communication complexity, we use

the following recent simulation theorem for BPP, due to Goos et al [GPW17], and
independently due to Anshu et al [Ans+17].

Theorem 2.7.9 (BPP Simulation Theorem, [GPW17; Ans+17, Theorem 2]). There
exists M = poly(N) such that for any constants 0 < δ < 1/2,

BPPcc
δ (Sim-D) = Ω (BPPdt

δ (D)(logN)) .

30

Part II

Communication Complexity

31

Chapter 3

Communication Complexity of
approximate Nash equilibrium

The main motivation for studying the complexity of approximate Nash equilibrium
is the insight about the relevance of Nash equilibrium as a predictive solution con-
cept: if specialized algorithms cannot compute an (approximate) equilibrium, it is
unreasonable to expect selfish agents to “naturally” converge to one. (See also discus-
sions in the introduction, as well as [DGP09; Nis09b; HM10].) Although extremely
useful and the main focus of this thesis, lower bounds on computational complex-
ity suffer from obvious an caveat: we actually don’t know how to really prove any
computational lower bounds: All our computational lower bounds inherently rely
on complexity assumptions (such as NP ≠ P or PPAD ≠ P); even though these as-
sumptions are widely accepted by computer scientists, they make these theorems
less accessible to game theorists and economists. For example, it is not clear how
they relate to the uncoupled dynamics model studied by game theorists [HMC03;
HMC06; Bab12].

In this part of the thesis, we prove unconditional lower bounds on the communica-
tion complexity of approximate Nash equilibrium. In the communication complexity
model, each player knows her own utility function, and we restrict the amount of
information exchanged between players in order to agree on an approximate Nash
equilibrium. The players in this model are unreasonably powerful beings with un-
limited computational power. In this sense, obtaining lower bounds even in this
setting is more convincing than our computational complexity results. Furthermore,
our lower bounds on communication complexity are translate immediately to the
uncoupled dynamics model mentioned above (see also Subsection 3.0.1). The trade-
off is that the computational complexity lower bounds we can prove are stronger.
Take two-player games with N actions, for example. The main result in this thesis

CHAPTER 3. COMMUNICATION COMPLEXITY 32

is that no polynomial time algorithm can find an approximate equilibrium. In the
communication complexity model, per contra, it is trivial for both players to send
their entire N ×N utility matrix; hence the most we can hope for is a polynomial
lower bound.

Indeed, our communication complexity results do not directly fit into the title
of “between P and NP” theme of this thesis. However we chose to include them
because they provide further evidence that real players may not converge to a Nash
equilibrium. More importantly, en route to obtaining our communication complexity
lower bounds, we develop a construction of a hard-to-find Brouwer fixed point. This
construction will be useful in Chapters 6. TBD

Our results

We study both two-player games with a large number (N) of actions, and two-action
games with a large number (n) of players. The trivial solution of communicating ev-
ery player’s entire utility function in normal form requires O(N2) and O(n2n) com-
munication, respectively1. For constant approximation, no non-trivial lower bounds
were previously known for the general model, and even for the restricted case of
randomized query complexity (see Section 3.0.3), both settings were stated as open
questions in [Fea+13] and [HN13; Bab16; CCT17], respectively. For n-player Hart
and Mansour gave an exp(n) lower bound on the communication complexity of ex-
act Nash equilibrium in n-player games is also exp(n) [HM10]2, and even for an
approximate parameter of 1/poly(n) the problem was open [Nis09a].

For two-player games, we prove a polynomial lower bound on the communication
complexity:

Theorem 3.0.1. There exists a constant ε > 0 such that the randomized communica-
tion complexity (BPPcc) of ε-Nash equilibrium in two-player N ×N games is at least
N ε.

For n-player games, we consider a two-party communication problem where the
set of players [n] is divided into two disjoint subsets [n] = nA ⊍ nB. Alice holds the
utilities of the players in nA, and Bob holds the utilities of the players in nB. In
particular, this communication problem is easier than the n-parties communication
problem where each player holds his own utility function. Furthermore, our negative

1Since we care about ε-approximate equilibrium for constant ε, it suffices to represent the utility
with constant precision

2The unique Nash equilibrium in the game considered by [HM10] requires probabilities that are
doubly-exponentially small. Hence their lower bound is exponential in the number of players, but
only polynomial in the size of the description of the equilibrium; see [Nis09a].

CHAPTER 3. COMMUNICATION COMPLEXITY 33

result holds for the notion of weak approximate Nash equilibrium [BPR16], which in
particular implies the same negative result for the standard notion of approximate
Nash equilibrium (see also Definition 2.1.3).

Theorem 3.0.2. There exists a constant ε > 0 such that the randomized communi-
cation complexity (BPPcc) of (ε, ε)-weak approximate Nash equilibrium in n-player
binary-action games is at least 2εn.

3.0.1 Uncoupled dynamics

An underling assumption of the Nash equilibrium solution is that players predict cor-
rectly the (mixed) action of their opponents (or alternatively predict correctly their
expected payoff at each action). One justification for this problematic assumption,
which appears in the seminal work of John Nash [Nas51], is that in some scenarios
players may learn the behavior of their opponents in cases where the game is played
repeatedly. This idea led to an extensive study of learning dynamics and their con-
vergence to Nash equilibrium, see e.g. [You04; HMC13; KL93]. One natural, and
general, class of adaptive dynamics is that of uncoupled dynamics [HMC03; HMC06]
where it is assumed that players do not know the utilities of their opponents (but
observe their past behavior). The question on the existence of uncoupled dynam-
ics that lead to Nash equilibrium is quite well understood [FY06; HMC06; GL07;
Bab12]. Several uncoupled dynamics that converge to approximate Nash equilibrium
(or pure Nash equilibrium [You09]) are known. All these dynamics are based on an
exhaustive search principle, where at the moment a player realizes she is acting sub-
optimally she updates her action to a random one (rather than to an optimal one or a
better one). One criticism of these dynamics is that convergence to equilibrium may
take an unreasonably long time in large games where the exhaustive search is done
over a large space. This led to the study of the rate of convergence of uncoupled dy-
namics. As pointed out by [CS04] for every solution concept (in particular equilibria
solutions), the (randomized) communication complexity of a solution is identical (up
to a logarithmic factor) to the rate of convergence by any (randomized) uncoupled
dynamics to the solution. This observation initiated the communication complexity
study in games. As was mentioned above, the communication complexity, and thus
also the rate of convergence of uncoupled dynamics, was known only for exact or pure
Nash equilibrium. The question on the rate of convergence of uncoupled dynamics to
approximate Nash equilibrium was an open question. Given the fact that all known
positive results introduce dynamics that converge to approximate Nash equilibrium,
this question is central. Our results for communication complexity resolve this open
question, yielding the following negative results for uncoupled dynamics:

CHAPTER 3. COMMUNICATION COMPLEXITY 34

Corollary 3.0.3 (Uncoupled Dynamics). There exists a constant ε > 0 such that any
uncoupled dynamics requires:

2-player at least poly(N) rounds to converge to an ε-Nash equilibrium in two-player
N ×N games.

n-player at least 2Ω(n) rounds to converge to an ε-Nash equilibrium (or even (ε, ε)-
weak approximate Nash equilibrium) in n-player binary-action games.

3.0.2 Techniques

Proving communication complexity lower bounds for Nash equilibrium is notori-
ously challenging for two reasons. The first reason, as is common in hardness of
Nash equilibrium in other models, is totality: there always exists at least one (exact)
equilibrium, and the proof of existence induces a non-trivial (yet inefficient) algo-
rithm for finding it. In order to construct hard instances we must carefully hide the
equilibrium (we can’t just remove it), and make sure that the above algorithm is
indeed inefficient for our instances.

Another reason for the communication complexity of approximate equilibrium
being an open question for a long time is the fact that there exist efficient non-
deterministic communication protocols (polylog(N) for two-player, poly(n) for n-
player): verification of equilibrium (exact or approximate) requires only constant
communication, and small-representation approximate equilibria always exist (e.g.
by [LMM03]). Therefore, the communication complexity lower bounds for approxi-
mate equilibria, as we prove in the present paper, show an exponential gap between
the non-deterministic and randomized (or even deterministic) communication com-
plexity of a total search problem. We are certainly not the first to show such sep-
arations, see e.g. [RW90; KRW95; RM99]3. But such separations are still not very
common in communication complexity, and for a good reason: for decision problems,
they are impossible! The deterministic communication complexity is upper-bounded
by the product of the non-deterministic and co-non-deterministic communication
complexities [AUY83].

The first ingredient in our proof is a construction of a special continuous function
f ∶ [0,1]n → [0,1]n whose approximate fixed points are hard to find. The construction
is is inspired by that of Hirsch, Papadimitriou, and Vavasis [HPV89], and the main
new ingredient is the use of error correcting codes to replace the �∞ inapproximability

3It is interesting to remark that our result is arguably the first example of a natural problem
which exhibits such a gap: To the best of our knowledge, approximate Nash equilibrium is the first
problem that is not defined in order to exhibit a gap, but rather happens to have one.

CHAPTER 3. COMMUNICATION COMPLEXITY 35

with �2 inapproximability. The construction appears in Chapter 4. The second
ingredient in our proof is the simulation theorems for randomized communication
complexity due to [Ans+17; GPW17].

The main steps in our proofs are as follows. First, we prove a randomized query
complexity hardness result for the problem of finding the end of a line in a particu-
lar constant-degree graph. Then we use a simulation theorem of [Ans+17; GPW17]
to “lift” this query complexity hardness result to randomized communication com-
plexity hardness. We use the construction in Chapter 4 to embed this line as a
continuous Lipschitz function f ∶ [0,1]n → [0,1]n. Finally, we build on ideas from
[MT05; Shm12; Bab16] to construct a two-player (respectively n-player) “imitation
game” that simulates both the short communication protocol for the computation
of f , as well as a fixed-point verification. In particular, every (approximate) Nash
equilibrium of the game corresponds to an approximate fixed-point of f , which in
turn corresponds to an end of a line.

Since in this chapter we are proving unconditional intractability results, we have
the privilege of reasoning about an explicit distribution of hard instances. In particu-
lar, it suffices to begin with the End-of-the-Line special case of the End-of-a-Line
problem, where the graph consists of just one line — and we want to find the end of
that line. This hardly changes the proof, but it makes the notation a little simpler.
For example, it suffices to prove that a decision problem (find the most significant
bit of the end of the line) is hard. Furthermore, our hardness now holds for the
interesting case where the game has a unique Nash equilibrium.

3.0.3 Additional related literature

Pure Nash equilibrium The communication complexity of pure Nash equilibrium
has been studied before: in two-player N × N games it is poly(N) [CS04], and in
n-player games it is exp(n) [HM10].

Approximation Protocols For two-player N ×N games and ε ≈ 0.382, [Czu+15]
show that polylog(N) communication is sufficient for computing an ε-approximate
Nash equilibrium (improving over a protocol for ε ≈ 0.438 due to [GP14]).

Query complexity There are several interesting results on the more restricted
model of query complexity of approximate Nash equilibria, where the algorithm is
assumed to have black-box access to the normal form representation of the utility
function. Note that our communication complexity lower bounds immediately extend
to this model as well.

CHAPTER 3. COMMUNICATION COMPLEXITY 36

Hart and Nisan [HN13] prove that any deterministic algorithm needs to query
at least an exponential number of queries to compute any ε-Well Supported Nash
Equilibrium - and even for any ε-correlated equilibrium. Babichenko [Bab16] showed
that any randomized algorithm requires an exponential number of queries to find
an ε-Well Supported Nash Equilibrium. Chen et al [CCT17] extended Babichenko’s
result to an almost-exponential (2Ω(n/ logn)) lower bound on the query complexity of
ε-Approximate Nash Equilibrium. Note that our lower bound here is both bigger
(saving the logn factor), holds for the more general notion of weak approximate
Nash equilibrium, and in the more general model of communication complexity.

Goldberg and Roth [GR16] give a polynomial upper bound on the query com-
plexity of ε-WSNE for any family of games that have any concise representation.
This result is to be contrasted with (a) Babichenko’s query complexity lower bound,
which uses a larger family of games, and (b) our lower bounds on the computational
complexity of succinctly-represented games (Theorem 5.0.2).

A much older yet very interesting and closely related result is that of Hirsch, Pa-
padimitriou, and Vavasis [HPV89]. [HPV89] show that any deterministic algorithm
for computing a Brouwer fixed point in the oracle model must make an exponential
-in the dimension n and the approximation ε- number of queries for values of the
function. Our construction here builds upon and improves over [HPV89] by working
with the �2-norm instead of �∞-norm.

Correlated equilibrium For the related notion of correlated equilibrium, in n-
player games with a constant number of actions, it is known that even exact corre-
lated equilibrium can be computed using only poly(n)-communication, see [HM10;
PR08; JLB15]. Interestingly, for exact correlated equilibria, there is an exponen-
tial gap between the above communication protocol and the query complexity lower
bound of [HN13; BB15]. [GR16] characterize the query complexity of approximate
coarse correlated equilibrium in games with many players. Further discussion on
correlated equilibria appears in Section 3.3.

Communication complexity of finding fixed points For the related problem
of finding a fixed point, [RW16] study the communication complexity of approximate
fixed point of the decomposition. Namely, Alice holds a Lipschitz function f ∶ A→ B

Bob holds a Lipschitz function g ∶ B → A, where A and B are compact convex
sets, and their goal is to compute a fixed point of the decomposition g ○ f . [RW16]
prove that the following version of this problem is communicationally hard: find an
approximate fixed point of g ○ f on a grid of A, when it is promised that such an
approximate fixed point on the grid exists (the problem is not total).

CHAPTER 3. COMMUNICATION COMPLEXITY 37

Complexity of equilibrium and Price of Anarchy As discussed earlier, the
main motivation for studying the (communication) complexity of Nash equilibrium
is understanding its relevance as a predictive solution concept. This is a good place
to mention a recent work of Roughgarden [Rou14], which highlights another impor-
tant motivation for studying the complexity of Nash equilibrium: understanding the
quality of equilibria. The Price of Anarchy (POA) of a game is the ratio between
the social welfare (sum of players’ utilities) in an optimum strategy profile, and the
social welfare in the worst Nash equilibrium of that game. Roughgarden [Rou14]
provides the following widely applicable recipe for lower bounds on PoA: if a Nash
equilibrium can be found efficiently (in particular, via the non-deterministic proto-
col due to [LMM03]), but approximating the optimal social welfare requires a higher
communication complexity (even for non-deterministic protocols, e.g. by reduction
from set disjointness), then clearly not all Nash equilibria yield high social welfare.

3.1 Proof overview

The formal proofs appear in Section 3.2. Below we present the main ideas of the
proof. As mentioned in the Introduction, the proof consists of four main steps. Below
we present the ideas of each step.

Query Complexity of End-of-the-Line

Our proof starts with the following query complexity hardness result (Lemma 3.2.2):
There exists a constant degree graph G = (V,E) with 2Θ(n) vertices, such that finding
the end of a line in G requires 2Ω(n) queries. In fact, we prove the hardness result for
directed graph G where each vertex has outgoing and incoming degree 2. Therefore,
the successor and predecessor of each vertex are binary variables. In particular, for
each v ∈ V , the information about its role in the line can be represented using only
three bits, which we denote I(v) ≜ (T (v), P (v), S(v)) ∈ {0,1}3:

(a) Whether the line goes trough v, which is denoted by T (v),

(b) Who is the successor of v (if v in on the line), which is denoted by S(v),

(c) Who is the predecessor of v (if v in on the line), which is denoted by P (v).

Lemma (Query End-of-a-Line; informal). Finding an end of a line with high
probability, requires 2Ω(n) queries to I.

CHAPTER 3. COMMUNICATION COMPLEXITY 38

From Query complexity to Communication Complexity

We use a recent simulation theorem to “lift” our randomized query complexity lower
bound to a randomized communication complexity bound.

The simulated communicationally hard problem has the following form. For
each v ∈ V , Alice holds a triplet of vectors αT,v, αS,v, αP,v ∈ {0,1}M where M =
2O(n), and Bob holds a reasonably small input which is just a triplet of indexes
βT,v, βS,v, βP,v ∈ [M]. T (v) is given by the decomposition T (v) = αT,v(βT,v) (similarly
for the successor and predecessor). The simulation theorem of [GPW17; Ans+17]
now implies:

Corollary (CC(Simulation End-of-a-Line); informal). Finding an end of a line
requires 2Ω(n) bits of communication.

Embedding as a continuous function

Our next step is to reduce the problem of finding an end of a line to that of finding
a Brouwer fixed point. Here, we use the construction from Chapter 4

We embed the vertices of the discrete graph G in the continuous space [−1,2]Θ(n).
Specifically, we embed each vertex v of G into a point xv in [−1,2]Θ(n) and each edge
(v,w) in G into a (continuous) path in [−1,2]Θ(n) that connects the corresponding
points xv and xw. In particular, we construct a continuous, Lipschitz function f ∶
[−1,2]Θ(n) → [−1,2]Θ(n) such that:

1. The computation of f can be done using local information about I. Namely,
for points that are close to xv it is sufficient to know I(v) to compute f . For
points that are close to a path that corresponds to the edge (v,w) but far from
the points xv,xw it is sufficient to know whether (v,w) is an edge in the line
(in particular, knowing either I(u) or I(v) suffices). For points that are far
from all paths (v,w), f does not depend on I at all (thus can be computed
without any communication).

2. Any (normalized) ∥⋅∥2-approximate fixed point of f can be mapped (efficiently)
back to an end of some line in I.

Property 1 induces the following efficient communication protocol for computing
f(x): Bob finds v such that x is close to xv, and sends βT,v, βS,v, βT,v; Alice replies

with I(v) = (αT,v(βT,v), αT,v(βT,v), αT,v(βT,v)), and they each use I(v) to locally

compute f(x). (Similarly, if x is close to the path corresponding to edge (v,w), they
use a similar protocol to compute I(v) and I(w).)

By Property 2, we have:

CHAPTER 3. COMMUNICATION COMPLEXITY 39

Corollary (CC(Brouwer); informal). Finding a (normalized) ∥⋅∥2-approximate
fixed point of f requires 2Ω(n) bits of communication.

Two-player game

Naively thinking, we would like to design a game where Alice chooses a point
x ∈ [−1,2]Θ(n) (on the ε-grid) and Bob chooses a point y ∈ [−1,2]Θ(n) (on the ε-
grid). Alice’s utility will be given by −∥x − y∥22, and Bob’s utility will be given

by4 −∥y − f(x)∥22. Then, by applying similar arguments to those in [MT05; Shm12;
Bab16; Rub16] we can deduce that every approximate Nash equilibrium corresponds
to an approximate fixed point, and thus also to an end of a line.

However, the above idea is obviously incorrect because Bob’s utility depends on
f , whereas in the communication problem his utility should depend on the βs only.
Our key idea is to use the fact that f can be computed locally to design a somewhat
similar game where similar phenomena to those in the “naive” game will occur in
approximate equilibria.

Bob doesn’t know f , but to compute f(x) he should only know the local infor-
mation about the vertex (or vertices) that correspond to x. We incentivize Alice
and Bob to combine their private information about the corresponding vertex (or
vertices) by the following utilities structure.

• Alice’s first component of utility is given by −∥x − y∥22. As in the “naive” game,
in any approximate Nash equilibrium Alice will play points in the ε-cube of the
ε-grid that contains E[y] with probability close to one.

• Bob tries to guess the vertex v (or the vertices v,w) that correspond to the
point x. Since x (almost always) belongs to the same ε-cube, in any (approx-
imate) Nash equilibrium, his guess should be correct (with high probability).
In addition, Bob should announce the β indexes βT , βS and βP of v (of v and
w). Again, we incentivize him to do so by defining that he should “guess”
also these β indexes, and in an (approximate) equilibrium his guess should be
correct (w.h.p).

• We want Alice to announce I(v) (similarly for w in case of two vertices).
Thus, we ask her to guess the decomposition αvB(βB) where vB and βB are
the announced v and β by Bob. In (approximate) equilibrium, since Bob
announces the correct v and β (w.h.p), this incentivizes her to announce the
correct I(v) (w.h.p).

4Note that here it is crucial that we use the normalized ∥⋅∥2 to obtain payoffs bounded in [−9,0];
using the non-normalized ∥⋅∥2 we get payoffs in [−√n,0].

CHAPTER 3. COMMUNICATION COMPLEXITY 40

• Now Bob uses the local information of I(v) (and I(w)) to compute f . Namely,

his last utility component is defined by −∥y − fIA(v),IA(w)(x)∥
2

2
where fIA(v),IA(w)

is Bob’s “estimation” of f under the relevant local information announced by
Alice. In (approximate) equilibrium Alice announces the correct local informa-
tion (w.h.p), thus Bob computes f correctly (w.h.p).

Summarizing, the (approximate) equilibrium analysis of the presented game is
similar to the analysis of the naive game, because in (approximate) equilibrium f is
computed correctly (w.h.p). But unlike the naive game, here Alice’s utility depends
only on the αs and Bob’s utility only on the βs.

n-player game: ε-WSNE

The n-player game reduction is based on the same ideas as the two-player reduction.
For clarity, we present first the idea of a reduction that proves the following weaker
result:

There exists a constant ε > 0 such that the communication complexity of ε-well
supported approximate Nash equilibrium in n-player games with constant number

of actions for each player is at least 2cn for some constant c.

After that, we explain how we can strengthen this result in two aspects: first
to improve the constant-number-of-action to binary-action, second to improve the
ε-well supported Nash equilibrium to (ε, ε)-weak approximate equilibrium.

The idea is to replace a single player- Alice- who chooses x in the ε-grid of
[−1,2]Θ(n) by a population of Θ(n) players {pxi

}i∈Θ(n); each player pxi
in the popu-

lation is responsible for the ith coordinate of x. The payoff of player pxi
is given by

−∣xi−yi∣2. This incentivizes player pxi
to play either a single, or two adjacent actions,

in the ε-grid of the segment [−1,2] (in every WSNE). By looking at the action profile
of all pxi

players we get the same phenomenon as in the two-player case: every point
x in the support of Alice’s players belongs to the same ε-cube of the ε-grid.

Now, we replace the guess of v ∈ {0,1}Θ(n), that is done by Bob, by population of
size Θ(n) where again each player is responsible to a single coordinate of v. Again
in a WSNE all players will guess correctly.

Similarly for the guess of β: we think of β ∈ [M]3 as an element of {0,1}3 logM
and we construct a population of 3 logM players, each controls a single bit.

Similarly for Alice’s guesses of IA(v) and IA(v): we construct 6 players, each
chooses a bit.

Finally, we again replace the choice of y ∈ [−1,2]Θ(n) by a population of Θ(n)
players pyi . Each is responsible to a single coordinate. The payoff of player pyi is

CHAPTER 3. COMMUNICATION COMPLEXITY 41

given by −∣yi − [fIA(v),IA(w)(x)]i∣2. The analysis of this game is very similar to the
two-player game analysis.

n-player game: (ε, ε)-Weak ANE and binary actions

In the above reduction, the x-type (and y-type players) have 3/ε actions each. To
construct a binary action game we use the technique of [Bab16]. We replace each
such player by a population of 3/ε players, each is located at a point in the ε-grid of
the segment [−1,2]. Player that is located at j ∈ [−1,2] (on the ε-grid) has to choose
between the two points j or j + ε. In a WSNE all players are located from the left of
yi will choose j + ε, and all players are located from the right of yi will choose j.

More tricky, is to generalize this reduction to weak approximate equilibria. Recall
that in weak approximate equilibria, a constant fraction of players may play an
arbitrary suboptimal action. Here we take into account both,

1. Players that are not ε-best replying, and

2. Players that are ε-best replying, but put small positive weight on the inferior
action (among the two) and the realization of their mixed action turned out to
be the inferior action.

In order to be immune from these, irrational, small constant fraction of players, we
use error correcting codes5. Let Eβ:{0,1}3 logM → {0,1}Θ(3 logM) be a good binary
error correcting code. Instead of having a population of size 3 logM which tries to
guess β, we replace it by a population of size Θ(3 logM) where each player tries to
guess his bit in the encoding of β. Now even if a small constant fraction of players
will act irrationally, the decoding of the action profile of the β-type players will turn
out to be β. We use the same idea for all types of populations (x-type, y-type, v-type
and I-type). This idea completes the reduction for weak approximate equilibria.

3.2 Proofs

In Section 3.2.1 we prove a randomized query lower bound for the end-of-the-line
problem. In Section 3.2.2 we show how the lower bounds of Sections 3.2.1 can be
“lifted” to get a hard problem in the randomized communication complexity models.
In Sections 3.2.3, 3.2.4, and 3.2.5 we reduce the communicationally hard end-of-any-
line problem to the approximate Nash equilibrium problem.

5In fact, we use error correcting codes even earlier, in [Rub16]’s modification construction of
hard Brouwer function.

CHAPTER 3. COMMUNICATION COMPLEXITY 42

3.2.1 A randomized query complexity lower bound

Let G be a directed graph with the vertices V = {0,1}n×{0,1}n×[n+1]. Each vertex
(v1, v2, k), where v1, v2 ∈ {0,1}n and k ∈ [n], has two outgoing edges to the vertices
(v1, vk+12 (0), k + 1) and (v1, vk12 (1), k + 1), where vj(0) = (v1, . . . , vj−1,0, vj+1, . . . , vn).
We call (v1, vk+12 (0), k+1) the 0-successor of v, and (v1, vk+12 (1), k+1) the 1-successor
of v. Each vertex v = (v1, v2, n+1) has a single outgoing edge to the vertex (v2, v1,0).
Note that the incoming degree of each vertex v = (v1, v2, k) ∈ V is at most two.
For k = 1 there is a single incoming edge from (v2, v1, n + 1). For k > 1 there
are two incoming edges from (v1, vk2(0), k − 1) and from (v1, vk2(1), k − 1). We call
(v1, vk2(0), k − 1) the 0-predecessor of v, and (v1, vk2(1), k − 1) the 1-predecessor of v.

We define the Query End-of-the-Line to be the problem of finding the end
of a line in G that starts at the point 02n+1. More formally, we represent a line in G

by a triple I(v) ≜ (T (v), S(v), P (v)) where T (v) ∈ {0,1} indicates whether the line
goes through v, S(v) ∈ {0,1} indicates who is the successor of v, and P (v) ∈ {0,1}
indicates who is the predecessor of v (here we use the fact that each vertex has
outgoing and incoming degree of at most two). Throughout the paper, we slightly
abuse notation and use S(v)/P (v) to refer both to the bits, and to the corresponding
vertices (i.e. the S(v)/P (v)-successor/predecessor of v). The end of the line is the
vertex v∗ such that T (v∗) = 1 but T (S(v∗)) = 0.

Definition 3.2.1 (Query End-of-the-Line). Input: A line I = (T,S,P) over
the graph G that starts at the point 02n+1.
Output: The first bit ([v∗]1) of the end of the line vertex.
Queries: Each query is a vertex v ∈ V . The answer is the triplet of bits I(v) =
(T (v), S(v), P (v)) ∈ {0,1}3.

Lemma 3.2.2 (Randomized query complexity). For every constant δ < 1
2
, BPPdt

δ (Query End-of-the-Lin
Ω(2n).

Proof. By Yao’s Minmax Theorem it is sufficient to introduce a distribution over
paths such every deterministic query algorithm requires Ω(2n) queries to determine
the first bit of the end of line vertex with probability of at least 1 − δ. We choose a
permutation π over {0,1}n∖{0n} uniformly at random, and set π(0) ≜ 0n. π induces
a line of length Θ (2n ⋅ n) over G, starting at 02n+1, ending at (π(2n−1), π(2n−1),0),
and where two consecutive vertices v = π(i) and w = π(i + 1) are mapped to the
following line of n + 1 edges:

(v, v,0) → ⋅ ⋅ ⋅ → (v, (w[1,k], v[k+1,n]), k) →
→ ⋅ ⋅ ⋅ → (v,w,n) → (w,w,0).

CHAPTER 3. COMMUNICATION COMPLEXITY 43

Here (w[1,k], v[k+1,n]) denotes the vector with first k coordinates as in w and the last
n − k coordinates as in v.

The information of a single query of Query End-of-the-Line (for the above
class of lines) can be extracted from π(i − 1), π(i) and π(i + 1). Therefore Query
End-of-the-Line is at least as hard as the problem of finding the first bit of the last
element in a random permutation, where each query returns the previous, the current,
and the next vertices. Conditioning on the answers to k queries π(q1−1), π(q1), π(q1+
1), . . . , π(qk−1), π(qk), π(qk+1), the last element of the permutation is still uniformly
random across all vertices that are not π(q1), . . . , π(qk), π(q1−1), . . . , π(qk−1), π(q1+
1), . . . , π(qk + 1). This proves that the latter problem requires Ω(2n) queries.

3.2.2 Communicationally hard, discrete end-of-any-line
problem

In order to use a simulation theorem (Theorem 2.7.9) for randomized communication
complexity), we define the following simulation variant of Query End-of-the-
Line:

Definition 3.2.3 (Simulation End-of-the-Line). We let N = 2n ⋅ 2n ⋅ (n + 1) ⋅ 3.
Input: For each v ∈ {0,1}n×{0,1}n×[n+1], Alice receives three vectors αT

v , α
S
v , α

P
v ∈

{0,1}M , and Bob receives three indices βT
v , β

S
v , β

P
v ∈ [M].

We define

T (v) = αT
v (βT

v), S(v) = αS
v (βS

v), and P (v) = αP
v (βP

v). (3.1)

We simulate the problem Query End-of-the-Line, therefore we restrict atten-
tion to inputs such that (T,S,P) that are defined in (3.1) meet all the requirements
of Query End-of-the-Line.

Output: The first bit ([v∗]1) of a non-trivial end or start of a line (v∗, v∗,0) ≠
02n+1.

Applying the randomized Simulation Theorem (Theorem 2.7.9) to the query com-
plexity lower bound (Lemma 3.2.2) gives a lower bound on the randomized communi-
cation complexity of a discrete end of line problem Simulation End-of-the-Line.

Corollary 3.2.4. BPPcc
0.3 (Simulation End-of-the-Line) = Ω (2n).

CHAPTER 3. COMMUNICATION COMPLEXITY 44

3.2.3 Embedding a line as a local Lipschitz function

We embed I as a Euclidean-norm hard continuous function a-la Section 4.2. Be-
low, we recall some of the properties of the construction that will be useful for our
reduction.

It will be more convenient to think of G as a graph over {0,1}2n+log(n+1).
Let m = Θ(2n + log(n + 1)) = Θ (n) and let E∶ {0,1}2n+log(n+1) → {0,1}m denote

the encoding function of a good binary error correcting code. We embed the discrete
graph G into the continuous cube [−1,2]4m.

The vertex v is embedded to the point (E(v),E(v),0m,0m) ∈ [−1,2]4m, which is
called the embedded vertex.

For two vertices v,w ∈ V such that (v,w) is an edge in the graph G, we define
five vertices:

x1(v,w) ≜ (E(v),E(v),0m,0m)
x2(v,w) ≜ (E(v),E(v),1m,0m)
x3(v,w) ≜ (E(v),E(w),1m,0m)
x4(v,w) ≜ (E(v),E(w),0m,0m)
x5(v,w) ≜ (E(w),E(w),0m,0m) .

Note that x1(v,w) is the embedded vertex v, x5(v,w) is the embedded vertex w.
The line that connects the points xi(v,w) and xi+1(v,w) is called a Brouwer line

segment. The union of these four Brouwer line segments is called the embedded edge
(v,w). It is not hard to check that non-consecutive Brouwer line segments are Ω(1)-
far one from the other, and in particular it implies that non-consecutive embedded
edges are sufficiently far one from the other.

The following Proposition shows that the End-of-the-Line problem can be re-
duced to the problem of finding an approximate fixed point of a continuous Lipschitz
function, when the function is “local” in the following sense: every edge in G is em-
bedded as a path in the continuous hypercube (as described above). For points close
to the embedding of an edge, f depends only on the “local behaviour” of the lines I
at the endpoints of this edge; for all other points, f is independent of the lines I.

Proposition 3.2.5 (Theorem 4.2.1 and Fact 4.2.2). There exist constants δ, h >
0 such that given a line I = (T,S,P) over G there exists a function f = f(I) =
∶ [−1,2]4m → [−1,2]4m with the following properties:

1. ∥f(x) − x∥2 > δ for every x that is not h-close to the embedded edge of the end
of the line (i.e., the embedding of the edge (P (v∗), v∗).

CHAPTER 3. COMMUNICATION COMPLEXITY 45

2. f is O(1)-Lipschitz in ∥⋅∥2 norm.

3. f is local in the sense that it can be defined as an interpolation between a
few (in fact, 64) functions, {fI1,I2 ∶ [−1,2]4m → [−1,2]4m}Ii∈{0,1}3, that do not
depend on the lines I and such that:

a) If the first m-tuple of coordinates of x is 6h-close to the encoded vertex
E(v), but the second m-tuple of coordinates of x is 6h-far from any en-
coded vertex E(w) then fI(v),I2(x) = f(x) for every I2 ∈ {0,1}3.

b) If the second m-tuple of coordinates of x is 6h-close to the encoded vertex
E(w), but the first m-tuple of coordinates of x is 6h-far from any encoded
vertex E(v) then fI1,I(w)(x) = f(x) for every I1 ∈ {0,1}3.

c) If the first m-tuple of coordinates of x is 6h-close to the encoded vertex
E(v), and the second m-tuple of coordinates of x is 6h-close to the encoded
vertex E(w) then f(I(v),I(w)(x) = f(x).

d) If none of the above conditions are satisfied, then fI1,I2(x) = f(x) for every
I1, I2 ∈ {0,1}3.

3.2.4 Two-Player game

Theorem (Theorem 3.0.1, restated). There exists a constant ε > 0 such that the
communication complexity of ε-Nash equilibrium in two-player N × N games is at
least N ε.

We construct a two-player game between Alice and Bob of size NA ×NB for

NA ≜ (3/ε)4m ⋅ 23 = 2Θ(n)

NB ≜ (3/ε)4m ⋅ (22n+log(n+1))2 ⋅M3 = 2Θ(n).

such that Alice’s utility depends on {αT
v , α

S
v , α

P
v }v only, Bob’s utility depends on

{βT
v , β

S
v , β

P
v }v only, and all ε4-approximate Nash equilibria of the game correspond

to a δ-fixed point of f from Proposition 3.2.5. By property 1 in Proposition 3.2.5,
any fixed point of f corresponds to a non-trivial end or start of a line in I.

3.2.4.1 The game

In this subsection we construct our reduction from Simulation End-of-the-Line
to the problem of finding an ε-WSNE.

CHAPTER 3. COMMUNICATION COMPLEXITY 46

Strategies

Recall that δ is the desired approximation parameter for Brouwer fixed point in
the construction of Proposition 3.2.5. We let ε be a sufficiently small constant; in
particular, ε = O(δ) (this will be important later for Inequality (3.10)).

Each of Alice’s actions corresponds to an ordered tuple (x, IAv , IAw), where:

• x ∈ [−1,2]4m, where the interval [−1,2] is discretized into {−1,−1 + ε, . . . ,2 − ε,2};

• IAv ≜ (tAv , sAv , pAv) ∈ {0,1}3 and IAw ≜ (tAw, sAw, pAw) ∈ {0,1}3.

Each of Bob’s actions corresponds to an ordered tuple (y, vB, wB, βB
v , β

B
w), where:

• y ∈ [−1,2]4m, where the interval [−1,2] is discretized into {−1,−1 + ε, . . . ,2 − ε,2};

• vB, wB ∈ {0,1}2n+log(n+1) are vertices in the graph G.

• βB
v = (βB,T

v , β
B,S
v , β

B,P
v) ∈ [M]3 and βB

w = (βB,T
w , β

B,S
w , β

B,P
w) ∈ [M]3 are triples

of indexes.

Utilities

Alice’s and Bob’s utilities decompose as

UA ≜ UA
Imitation +UA

GuessV +UA
GuessW.

UB ≜ UB
Brouwer +UB

GuessV +UB
GuessW.

The first component of Alice’s utility depends only on the first components of her
and Bob’s strategies; it is given by:

UA
imitation (x;y) ≜ −∥x − y∥22 .

Given the first component x ∈ [−1,2]4m of Alice’s strategy, we define two decoding
functions Dv,Dw ∶ [−1,2]4m → {0,1}n as follows. Let Rv (x) ∈ {0,1}m be the round-
ing of the first m-tuple of coordinates of x to {0,1}m; let Dv(x) = E−1(Rv(x)) ∈
{0,1}2n+log(n+1), where E−1 denote the decoding of the error correcting code from

Section 3.2.3. We define Dw (x) ∈ {0,1}2n+log(n+1) analogously with respect to the
second m-tuple of coordinates of x. The second components of Bob’s utility is now
given by UB

GuessV = 1 iff he guesses correctly the vertex Dv(x), and the correspond-
ing β operation on this vertex. Namely, UB

GuessV(vB, βB
v ;x) = 1 if vB = Dv(x) and

βB
v = (βT

Dv(x), β
S
Dv(x), β

P
Dv(x)), and UB

GuessV(vB, βB
v ;x) = 0 otherwise. Similarly we

define Bob’s third component UB
GuessW with respect to Dw(x).

CHAPTER 3. COMMUNICATION COMPLEXITY 47

Note that Bob knows the indexes βT
v , β

S
v , β

P
v (for every v), thus to achieve UB

Guess =
1 Bob needs to guess correctly only the vertices Dv(x),Dw(x) and announce the
corresponding triplet of β indexes.

Going back to Alice, the second component of her utility is given by UA
GuessV = 1 iff

she guesses correctly the triplet I(vB) = (T (vB), S(vB), P (vB)) when the calculation
of T,S,P is done by the decomposition of α(βB). Namely, UA

GuessV(IAv ; vB, βB) = 1

if IAv = (αT
vB
(βB,T

v), αS
vB
(βB,S

v), αP
vB
(βB,P

v)), and UA
GuessV(IAv ; vB, βB) = 0 otherwise.

Similarly we define Alice’s third component UB
GuessW.

Finally, the first component of Bob’s utility is given by:

UB
Brouwer(y;x, eA) ≜ −∥fIAv ,IAw

(x) − y∥2
2
.

where the function fI1,I2 is defined in Proposition 3.2.5.

3.2.4.2 Analysis of game

In this subsection, we prove the reduction from Simulation End-of-the-Line to
finding an ε4-ANE. The proof proceeds via a sequence of lemmas that establish the
structure of any ε4-ANE.

Lemma 3.2.6. In every ε4-ANE (A;B), it holds that ∥x − Ey∼B[y]∥22 = O (ε2) with
probability of at least 1 − ε2 (where the probability is taken over A).

Proof. We denote Ei (B) = Ey∼B [yi], E (B) = (E1 (B) , . . . ,En (B)) is the vector of
expectations, and Var (B) = (Vary∼B [y1] , . . . ,Vary∼B [yn]) is the vector of variances.
For every x we can rewrite

UA
imitation (x,B) = −Ey∼B ∥x − y∥22

= − 1

4m
∑

i∈[4m]
Ey∼B [(xi − yi)2]

= − 1

4m
∑

i∈[4m]
[(xi − yi(B))2 +Vary∼B [yi]]

= −∥x − E (B)∥22 − ∥Var (B)∥
2

2 .

(3.2)

Since the variance of the yi’s, as well as UA
GuessV and UA

GuessW, do not depend on x,
Alice’s best response to B is

x∗ = ([E1 (B)]ε , . . . , [En (B)]ε)

CHAPTER 3. COMMUNICATION COMPLEXITY 48

where [⋅]ε denotes the rounding to the closest ε integer multiplication. x∗ yields a
payoff of at least

UA
imitation (x∗,B) ≥ −

ε2

4
− ∥Var (B)∥22 .

Note that in every ε4-ANE Alice assigns a probability of at most 1 − ε2 to actions
that are ε2-far from optimal. By Equation (3.2) this implies that the probability of

Alice to choose a vector x that satisfies ∥x − E (B)∥22 ≥ ε2 + ε2

4
is at most ε2.

Lemma 3.2.7. In every ε4-ANE (A;B), if the first m-tuple of coordinates of Ey∼B [y]
is 6h-close to the binary encoding E(v) of a vertex v, then

vB = v, and βB
v = (βT

v , β
S
v , β

P
v) (3.3)

with probability of at least 1 −O(ε4) (where the probability is taken over B).

Proof. By Lemma 3.2.6 and the triangle inequality, with probability of at least 1−ε2,
the firstm-tuple of x isO (h)-close to E(v). Rounding toRv (x) ∈ {0,1}m can at most
double the distance to E(v) in each coordinate. Therefore, the Hamming distance
of Rv (x) and E(v) is O (h). Hence Rv (x) is correctly decoded as Dv (x) = v, with
probability of at least 1 − ε2.

Since vB, βB
v do not affect UB

Brouwer+UB
GuessW, Bob’s utility from guessing vB = v,

and βB
v = (βT

v , β
S
v , β

P
v) is at least 1 − ε2. Whereas his utility from guessing any other

guess is at most ε2. Therefore, Bob assigns probability at least 1 − ε4/(1 − 2ε2) to
actions that satisfy (3.3).

A similar lemma holds for the second m-tuple of x and the vertex w:

Lemma 3.2.8. In every ε4-ANE (A;B), if the second m-tuple of coordinates of
Ey∼B [y] is 6h-close to the binary encoding E(W) of a vertex w, then

wB = w, and βB
w = (βT

w , β
S
w, β

P
w)

with probability of at least 1 −O(ε4) (where the probability is taken over B).

Since Alice receives the correct vB and βB, we also have:

Lemma 3.2.9. In every ε4-ANE (A;B), if the first m-tuple of coordinates of Ey∼B [y]
is 6h-close to the binary encoding E(v) of a vertex v, then

IAv = (αT
v (βT

v), αS
v (βS

v), αP
v (βP

v))

with probability 1 −O(ε4) (where the probability is taken over A and B).

CHAPTER 3. COMMUNICATION COMPLEXITY 49

Proof. Follows immediately from Lemma 3.2.7 and the fact that IAv does not affect
UA
Imitation +UA

GuessW.

A similar lemma holds for the second m-tuple of x and the vertex w:

Lemma 3.2.10. In every ε4-ANE (A;B), if the second m-tuple of coordinates of
Ey∼B [y] is 6h-close to the binary encoding E(W) of a vertex w, then

IAw = (αT
w(βT

w), αS
w(βS

w), αP
w(βP

w))

with probability 1 −O(ε4) (where the probability is taken over A and B).

Lemma 3.2.11. In every ε4-ANE (A;B), fIAv ,IAw
(x) = f (x) with probability 1−O(ε2).

Proof. Follows immediately from Lemmas 3.2.9 and 3.2.10 and the “locality” condi-
tion in Proposition 3.2.5.

The following corollary completes the analysis of the 2-player game.

Corollary 3.2.12. In every ε4-ANE (A;B), ∥Ex′∼A[x′] − f(Ex′∼A[x′])∥2 < δ.

Proof. We recall that in Lemma 3.2.6 we have proved that

∥x − Ey∼B[y]∥22 = O(ε2) (3.4)

with probability 1 −O(ε2). This also implies that x is, with high probability, close
to its expectation:

∥x − Ex′∼A[x′]∥22 ≤ (∥x − Ey∼B[y]∥2 + ∥Ex′∼A[x′] − Ey∼B[y]∥2)
2

≤ 2 ∥x − Ey∼B[y]∥22 + 2 ∥Ex′∼A[x′] − Ey∼B[y]∥22
≤ 2 ∥x − Ey∼B[y]∥22 + 2Ex′∼A [∥x′ − Ey∼B[y]∥22]
= O(ε2), (3.5)

with probability 1 −O(ε2). Where the first inequality follows form the Triangle
ineqaultiy, the second follows from the Arithmetic-Mean Geometric-Mean inequality
AM-GM ineqaulty, the third follows from convexity of ∥⋅∥22, and the last follows from
Lemma 3.2.6.

Using that f is O(1)-Lipschitz together with Equation (3.5), we get that

∥f(x) − f(Ex′∼A[x′])∥22 = O(ε2) (3.6)

CHAPTER 3. COMMUNICATION COMPLEXITY 50

with probability 1 −O(ε2).
By Lemma 3.2.11 we know that fIAv ,IAw

(x) = f(x) with probability 1−O(ε2), which
implies that

∥Ex′∼A[fIAv ,IAw
(x′)] − Ex′∼A[f(x′)]∥

2

2
= O(ε2). (3.7)

Using similar arguments to those of Lemma 3.2.6 we can show that

∥y − Ex′∼A[fIAv ,IAw
(x′)]∥2

2
= O(ε2) (3.8)

with probability 1 −O(ε2). As in the derivation of Equation (3.5), this implies:

∥y − Ey′∼B[y′]∥22 = O(ε2) (3.9)

with probability 1 −O(ε2).
With probability 1 − O(ε2) Inequalities (3.5),(3.4),(3.9),(3.8),(3.7),(3.6) hold si-

multaneously. In such a case, by the triangle inequality and by applying the inequal-
ities in the exact above order, we have

∥Ex′∼A[x′] − f(Ex′∼A[x′])∥22 = O(ε2) < δ2. (3.10)

Proof of Theorem 3.0.1. Any communication protocol that solves the ε4-Nash equi-
librium problem in games of size N ×N for N = 2Θ(n) induces a communication pro-
tocol for the problem Simulation End-of-the-Line: Alice constructs her utility
in the above presented game using her private information of the αs, Bob constructs
his utility using the βs. They implement the communication protocol to find an
ε4-Nash equilibrium, and then both of them know Ex∼A[x] which is a δ-approximate
fixed point of f (by Corollary 3.2.12). Using Dv they decode the vertex v∗ and they
know the first coordinate of v∗.

Using Corollary 3.2.4 we deduce that the communication complexity of ε4-Nash
equilibrium in games of size 2Θ(n) × 2Θ(n) is at least 2Ω(n).

3.2.5 n-player game

Theorem (Theorem 3.0.2, restated). There exists a constant ε > 0 such that the
communication complexity of (ε, ε)-weak approximate Nash equilibrium in n-player
binary-action games is at least 2εn.

CHAPTER 3. COMMUNICATION COMPLEXITY 51

The proof follows similar lines to those in the proof of Theorem 3.0.1. Rather
than two players whose actions correspond to Θ(n)-long vectors, we have a player for
each bit of (an encoding of) those vectors. We construct a game with 8m′-players for
m′ = Θ(n) such that Alice holds the utility function of (the first) 3m′ players, Bob
holds the utilities of (the last) 5m′ players, Alice’s players utilities depend only on the
αs, Bob’s utilities depend only on the βs, and every (ε5/82, ε5/82)-weak approximate
Nash equilibrium corresponds to a δ-fixed point of the function f from Proposition
3.2.5.

Players and Actions

In section 3.2.4 we have used error correcting code to encode vertices that are deduced
from x and y. Here, since we consider weak approximate equilibria, we should add
additional encodings for IAv , I

A
v , v

B, wB, βB
v and βB

w . Since we want to use the same
number of players for each of the above objects, it will be convenient to encode them
in the same space {0,1}m′ . We let the following be encoding functions of binary error
correcting codes with constant (relative) distance:

• EI ∶ {0,1}3 → {0,1}m′ .

• Eu ∶ {0,1}2n+log(n+1) → {0,1}m′ .

• Eβ ∶ {0,1}3 logM → {0,1}m′ (note that 3 logM = Θ(n)).

Let E and m denote encoding function and block length of the error correcting code
from Section 3.2.3, i.e.:

• E ∶ {0,1}2n+log(n+1) → {0,1}m.

For vectors x,y ∈ [−1,2]4m, we use (3
ε
−1) bits to encode each continuous coordi-

nate (up to precision ε) in unary encoding. We choose m′ such that m′ = 4(3
ε
− 1)m,

so the encoding of each of x,y also takes m′ bits. (For Eβ, we must also have
m′ > 3 logM .) Here and henceforth, ε is a sufficiently small constant, satisfying
ε = Θ(δ).

Instead of having a single player, Alice, with actions (x, IAv , IAw) ∈ {−1,−1 +
ε, . . . ,2 − ε,2}m × {0,1}3 × {0,1}3 we replace her by 3m′ players with binary actions.
We have three types of Alice players:

• x-type players. Player xi
j chooses one of the actions aij ∈ {j, j + ε} for every

i ∈ [4m] and j ∈ {−1,−1 + ε, . . . ,2 − 2ε,2 − ε}. Note that the total number of
x-type players is 4m(3

ε
− 1) =m′.

CHAPTER 3. COMMUNICATION COMPLEXITY 52

• Iv-type and Iw-type players. Player Ivi chooses a bit 0 or 1 for every i ∈ [m′].
Similarly for Iw-type players.

In the communication problem, we assume that Alice knows the utilities of all the
above players.

Instead of having a single player, Bob, with actions (y, vB, wB, βB
v , β

B
w) ∈ {−1,−1+

ε, . . . ,2 − ε,2}m × {0,1}2n+log(n+1) × {0,1}2n+log(n+1) × [M]3 × [M]3 we replace him by
5m′ players with binary actions. We have five types of players:

• y-type players. Player yi
j chooses one of the actions bij ∈ {j, j + ε} for every

i ∈ [4m] and j ∈ {−1,−1 + ε, . . . ,2 − 2ε,2 − ε}.

• v-type players. Player vi chooses a bit 0 or 1 for every i ∈ [m′]. Similarly for
w-type players.

• βv-type players. Player βv
i chooses a bit 0 or 1 for every i ∈ [m′]. Similarly for

βw-type players.

In the communication problem, we assume that Bob knows the utilities of all the
above players.

Utilities

Before getting to the description of the utilities we define the notions of realized
number and realized point by a set of players. For every i ∈ [m], for simplicity of
notations we add a dummy player xi

2 who has a single action ai2 = 2. Given an action
profile ai = (ai−1, ai−1+ε, . . . , ai2) of the players {xi

j}j, the realized number r(ai) ∈ [−1,2]
is defined to be the minimal j such that aij = j. Note that r(ai) is well defined
because the last player xi

2 plays 2. Given an action profile a = (aij)i,j of all x-type
players we denote by r(a) = (r(ai))i ∈ [−1,2]m the realized point. Similarly we define
the realized point of y-type players.

The utilities are defined similarly to the two-player case with the following dif-
ferences:

1. x-type/ y-type players’ utilities are defined with respect to the realized points of
the opponents. In addition, player that is responsible to the i-th coordinate of
the point pays the distance from the i-th coordinate of the opponent’s point/the
ith coordinate of the f operation of the opponent’s point.

2. For all other types, the i-th player chooses the value of the i-th bit in the
(alleged) codeword in {0,1}m′ .

CHAPTER 3. COMMUNICATION COMPLEXITY 53

Formally the payoffs are defined as follows:

• For x-type players, Uxi
j (aij; bi) ≜ −∣aij − r(bi)∣2, where we recall that player xi

j

is allowed to choose only ai,j = j or ai,j = j + ε, and bi is the profile of action
played by players {yi

j}j.

• For a v-type player vi, we define U vi (vi;a) = 1 iff he announces the bit [Eu(Dv(r(a)))]i
(where the decoding function Dv is defined in Section 3.2.4.1). Otherwise,
U vi (vi;a) = 0. Namely, the i-th player tries to guess the i-th coordinate of
the encoded vector Eu(v) ∈ {0,1}m′ , were v is computed using the decoding
operation Dv on the realized point r(a) ∈ [−1,2]4m. Similarly we define the
utility of a w-type player.

• For a βv-type player βv
i , we define Uβv

i (βv
i ;a) = 1 iff he announces the bit

[Eβ(βS
Dv(r(a)))]i. Namely, the i-th player tries to guess the i-th coordinate of

the encoded vector Eβ(βS
v), were v, as in the previous bullet, is computed using

decoding. Similarly we define the utilities of βw-type players.

• For a Iv-type player Ivi , we define U Ivi (Ivi , βv) = 1 iff she announces the bit
[Eu (αT

v ([β]1), αS
v ([β]2), αP

v ([β]3))]i where v is the decoded vertex announced

by v-type players and β is the decoded vector of indexes announced by βv-type
players. Similarly we define the utilities of Iw-type players.

• For y-type players, Uyi
j
= −∣bij−fIv ,Iw(r(a))∣2, where Iv and Iw are the decoding

of the vertices announced by Iv-type and Iw-type players. We recall that the
function fIv ,Iw is defined in Proposition 3.2.5.

3.2.5.1 Analysis of game

We analyse (ε, ε)-weak approximate equilibria for ε = ε5/82. The analysis of the game
follows the same sequence of Lemmas as the analysis in the two-player case (Section
3.2.4.2). The analogue of Lemma 3.2.6 is the following.

Lemma 3.2.13. In every (ε, ε)-weak approximate equilibrium (A,B), the realized
point by the x-type players r(a) satisfies

∥r(a) − Eb∼B[r(b)]∥22 ≤ ε2 (3.11)

with high probability6 (the probability is over the mixed strategy of the x-type players).

6 Here and throughout this section, we use “with high probability” to mean with probability
approaching 1 as n grows (in fact, with an exponential dependence); in particular, the probability
is approaching 1 faster than any polynomial in ε.

CHAPTER 3. COMMUNICATION COMPLEXITY 54

Proof. We say that player xi
j’s action j is wrong if Ebi∼B[r(bi)] ≥ j + ε; similarly,

we say that action j + ε is wrong Ebi∼B[r(bi)] ≤ j. Note that if for some coordinate
i, no player xi

j plays a wrong action, then the realized number ri(ai) is ε-close to
Ebi∼B[r(bi)]. We show that indeed in an (ε, ε)-weak approximate equilibrium we will
have many such coordinates i.

Recall that player xi
j’s utility when she plays j is given by

u(j) ≜ Ebi∼B [Uxi
j (j; bi)]

= Ebi∼B[−∣j − r(bi)∣2]
= −∣j − Ebi∼B[r(bi)]∣2 −Varbi∼B[r(bi)].

Similarly, when she plays j + ε her utility is given by

u(j + ε) ≜ Ebi∼B [Uxi
j (j + ε; bi)]

= Ebi∼B[−∣j + ε − r(bi)∣2]
= −∣j + ε − Ebi∼B[r(bi)]∣2 −Varbi∼B[r(bi)].

When j is wrong (i.e. Ebi∼B[r(bi)] ≥ j + ε) the difference in the utilities u(j + ε)−u(j)
is given by

u(j + ε) − u(j) = −(Ebi∼B[r(bi)] − j − ε)2 + (Ebi∼B[r(bi)] − j)2

= (2Ebi∼B[r(bi)] − 2j − ε)ε ≥ ε2

For j + ε is wrong (Ebi∼B[r(bi)] ≤ j) the difference in the utilities u(j) − u(j + ε) is
given by

u(j) − u(j + ε) = −(j − Ebi∼B[r(bi)])2 + (j + ε − Ebi∼B[r(bi)])2

= (2j − 2Ebi∼B[r(bi)] + ε)ε ≥ ε2

Therefore, player xi
j can always increase her payoff by at least ε2 by deviating from

a wrong action. Note that if player xi
j is ε-best replying, she assigns a probability

of at most ε/ε2 to a wrong action. In addition, the fraction of x-type players that
are not ε-best replying is at most 8ε (because we have 8 types of players of equal
cardinality). Therefore, in the expected fraction of x-type players playing a wrong
is at most 8ε + 2ε/ε2 < 2.5ε/ε2. Therefore, with high probability over x-type players
mixed strategies, at most a 3ε/ε2-fraction play a wrong action (e.g. by Chernoff
bound). Therefore the fraction of coordinates i ∈ [4m] where at least one player xi

j

CHAPTER 3. COMMUNICATION COMPLEXITY 55

plays a wrong action is at most 9ε/ε3 (because we have 3/ε players in each coordinate).
So in (1−9ε/ε3) fraction of coordinates we have ∣ri(ai)−Ebi∼B[r(bi)]∣ ≤ ε, which implies

∥r(a) − Eb∼B[r(b)]∥22 =
1

4m
∑
i

∣r(ai) − Eb∼B[r(bi)]∣2

≤ (1 − 9ε

ε3
)ε2 + 9ε

ε3
32 < 82ε

ε3
= ε2

The analogue of Lemma 3.2.7 is the following.

Lemma 3.2.14. In every (ε, ε)-weak approximate equilibrium (A,B), if the first m-
tuple of coordinates of Eb∼B[r(b)] is 6h-close to the binary encoding E (v) of a vertex
v, then

1. The decoding of the action profile of the v-type players is v with probability
1 − o(ε).

2. The decoding of the action profile of the βv-type players is (βT
v , β

S
v , β

P
v) with

probability 1 − o(ε).

Proof. Whenever (3.11) holds, Dv(r(a)) = v. In particular, for each i ∈ [m′],
[Eu(Dv(r(a)))]i = [Eu(v)]i with high probability. Therefore, by playing the ac-
tion [Eu(v)]i player vi has expected utility of 1− o(1) whereas by playing the action
1 − [Eu(v)]i his expected utility is o(1).

Every player that is ε-best replying, assigns probability of at least 1−O(ε) to the
correct bit. In addition, we have at most 8ε fraction of v-type players who are not
ε-best replying (because we have 8 types of players of equal cardinality). Therefore
the expected fraction of v-type players who play the wrong bit is O(ε). By Chernoff
bound, it also holds that with high probability at most an O(ε)-fraction of v-type
players play the wrong bit. Whenever this is the case, v is indeed decoded correctly.

Similarly we prove the second claim in the lemma for βv-type players.

In a similar way we can show that analogues of Lemmas 3.2.8, 3.2.9, 3.2.10, and
3.2.11 hold for the n-player game. In particular,

Lemma 3.2.15. In every (ε, ε)-weak approximate equilibrium (A,B), fIAv ,IAw
(x) =

f (x) with high probability.

Now we get to the analogue of the last Corollary 3.2.12.

CHAPTER 3. COMMUNICATION COMPLEXITY 56

Corollary 3.2.16. In every (ε, ε)-weak approximate equilibrium (A,B), the expec-
tation of the realized point Ea∼A[r(a)] is a δ-approximate equilibrium of f ; i.e.,

∥Ea∼A[r(a)] − f(Ea∼A[r(a)])∥2 ≤ δ.

Proof. The proof is similar to the proof of Corollary 3.2.12. We recall that in Lemma
3.2.13 we have proved that

∥r(a) − Eb∼B[r(b)]∥22 ≤ ε2 (3.12)

with high probability. This, in particular, implies that r(a) is, with high probability,
close to its expectation:

∥r(a) − Ea′∼A[r(a′)]∥22 (3.13)

≤ 2 ∥r(a) − Eb∼B[r(b)]∥22 + 2 ∥Ea∼A[r(a)] − Eb∼B[r(b)]∥22
≤ 2 ∥r(a) − Eb∼B[r(b)]∥22 + 2Ea′∼A [∥r(a′) − Eb∼B[r(b)]∥22]
= O(ε2), (3.14)

with high probability. Where the first inequality follows from Triangle inequality,
second follows from convexity, and the last is Lemma 3.2.13.

Using the O(1)-Lipschitzness of f we deduce that

∥f(r(a)) − f(Ea′∼A[r(a′)])∥22 = O(ε2) (3.15)

with high probability.
Using similar arguments to those of Lemma 3.2.13 we can show that

∥r(b) − Ea′∼A[fIv ,Iw(r(a′))]∥
2

2
= O(ε2) (3.16)

with high probability, where we recall that Iv, Iw denote the decoded line information
of the action profile played by the Iv, Iw-types players. By an analogous argument
to (3.13),

∥r(b) − Eb′∼B[r(b′)]∥22 = O(ε2) (3.17)

with high probability.
By Lemma 3.2.15,

∥Ea′∼A[fIv ,Iw(r(a′))] − Ea′∼A[f(r(a′))]∥
2

2
= O(ε2). (3.18)

By Equations (3.13),(3.12),(3.17),(3.16),(3.18),(3.15) (applied exactly in this or-
der) and the triangle inequality we get

∥Ea∼A[r(a′)] − f(Ea∼A[r(a′)])∥22 = O(ε2) < δ2. (3.19)

CHAPTER 3. COMMUNICATION COMPLEXITY 57

Proof of Theorem 3.0.2. Any communication protocol that solves the (ε5/82, ε5/82)-
weak approximate Nash equilibrium problem in Θ(n)-player games with binary ac-
tions induces a communication protocol for the problem Simulation End-of-the-
Line: Alice constructs the utilities of her players using her private information of
the αs, Bob constructs his utility using the βs. They implement the communication
protocol to find an (ε5/82, ε5/82)-weak approximate Nash equilibrium, and then both
of them know Ea∼A[r(a)] which is a δ-approximate fixed point of f (by Corollary
3.2.16). Finally, they round and decode the approximate fixed point to reocever the
end of the line.

Using Corollary 3.2.4 we deduce that the communication complexity of (ε5/82, ε5/82)-
weak approximate Nash equilibrium problem in Θ(n)-player games with binary ac-
tions is at least 2Ω(n).

3.3 An open problem: correlated equilibria in

2-player games

As mentioned in Section 3.0.3, it is known that for n-player, O(1)-action games, even
exact correlated equilibrium can be found with poly(n) deterministic communication
complexity (see [HM10; PR08; JLB15]).

In two-player N ×N games, for approximate correlated equilibrium with constant
value of approximation, to the best of our knowledge, no non-trivial results are
known (neither positive nor negative). Does a polylog(N) communication protocol
for approximate correlated equilibrium exist? Is there a poly(N) communication
lower bound? For small values of approximation, recently [GS17] have shown that
1/N -correlated equilibrium requires poly(N) communication.

58

Chapter 4

Brouwer’s fixed point

Brouwer’s fixed point theorem guarantees that any continuous functions f ∶ [0,1]n →
[0,1]n has a fixed point, i.e. a point x ∈ [0,1]n such that f(x) = x. In this section we
construct continuous functions f ∶ [0,1]n → [0,1]n where even finding an approximate
fixed point (i.e. x such that x ≈ f(x)) is hard.

In particular, we reduce the End-of-a-Line problem to the problem of finding an
approximate fixed point. Our reductions require only local, computationally efficient,
black-box access to the End-of-a-Line instance. Thus they immediately apply both
to the computational setting (defined in Section 2.2) and the query-complexity model
(which is the focus of Chapter 3).

We present two reductions. We begin with an easier construction, where we think
of the error x−f(x) in terms of �∞-norm; it is a good starting point for introducing the
main ideas, and the special structure of the construction is also useful for the results
in Chapter 6. We then add error correcting codes to obtain a stronger construction
for �2-norm.

4.1 Brouwer with �∞

Below we state and prove the hardness of finding an approximate fixed point in
�∞-norm. For the results in Chapter 6 we require a stronger characterization of the
construction, which we omit from the theorem statement for simplicity (see Fact 4.1.3
for details).

Theorem 4.1.1 (�∞ Brouwer). There exists a constant ε > 0 such that the follow-
ing holds. Given (local, black-box access to) an instance of End-of-a-Line, we can

construct a computationally-efficient, continuous function f ∶ [0,1]O(n) → [0,1]O(n),
such that:

CHAPTER 4. BROUWER’S FIXED POINT 59

• f is O (1)-Lipschitz in �∞-norm; and

• given x for which ∥f (x) − x∥∞ < ε, we can efficiently reconstruct a solution to
the End-of-a-Line instance.

Proof. In the first step (Subsection 4.1.2), we embed the End-of-a-Line problem
(over {0,1}n) as a collection H of vertex-disjoint paths over the (2n + 1)-dimensional
hypercube graph. Given H, our second step (Subsection 4.1.3) is to construct a
continuous mapping f ∶ [0,1]2n+2 → [0,1]2n+2 whose fixed points correspond to ends
of paths in H. This step generalizes a construction of Hirsch et al [HPV89] for
embedding a single path.

4.1.1 Preliminaries: �∞-norm Geometry

Throughout this section, we work with the �∞-norm. This has some implications
that may contradict our geometric intuition. For example: in a �∞-norm world, a
circle is a square.

�∞-norm interpolation Given coordinates x, y ≥ 0, we define the �∞-norm angle1

that point (x, y) forms with the X-axis (in the XY -plane) as

θ∞ (x, y) = y

x + y

The �∞-norm angle is useful for interpolation. Given the values of f ∶ [0,1]n →
[0,1]n on two neighboring facets of the hypercube, we can extend f to all points of
the hypercube by angular interpolation: interpolate according to the �∞-norm angle
θ∞ (xi, xj) where xi and xj are the respective distances from the two facets. When f

is defined on two opposite facets, we can simply use Cartesian interpolation, which
again means to interpolate according to the distance from each facet.

�∞-norm local polar coordinates Given a point z ∈ Rn we define a new local
�∞-norm polar coordinate system around z. Every x ∈ Rn is transformed into ⟨r,p⟩z ∈
R × Rn where r = ∥x − z∥ is the �∞-norm radius, and p = (x − z) /r is the �∞-norm
unit vector that points from z in the direction of x.

1Our �∞-norm angle was called unit in [HPV89].

CHAPTER 4. BROUWER’S FIXED POINT 60

4.1.2 Embedding the End-of-a-Line graph as paths in
{0,1}2n+1

Our first step in the reduction is to embed an End-of-a-Line graph GS,P as vertex-
disjoint paths on the (2n + 1)-dimensional hypercube graph. We construct a collec-
tion H of vertex-disjoint paths and cycles over the (2n + 1)-dimensional hypercube
graph, such that there is a 1-to-1 correspondence between starting and end points of
paths in H and starting and end points of lines in GS,P .

In order to construct our embedding we divide the 2n + 1 coordinates as follows:
the first n coordinates store the current vertex u, the next n coordinates for the
next vertex in the line, v, and finally, the last coordinate b stores a compute-next vs
copy bit. When b = 0, the path proceeds to update v ← S (u), bit-by-bit. When this
update is complete, the value of b is changed to 1. Whenever b = 1, the path proceeds
by copying u ← v bit-by-bit, and then changes that value of b again. Finally, when
u = v = S (u) and b = 0, the path reaches an end point. For example, the edge u→ v
maps into the path:

(u,u,0) → ⋅ ⋅ ⋅ → (u,v,0) → (u,v,1) → ⋅ ⋅ ⋅ → (v,v,1) → (v,v,0) .

Notice that the paths in H do not intersect. Furthermore, given a vector in
p ∈ {0,1}2n+1, we can efficiently output whether p belongs to a path in H, and if so
which are the previous and consecutive vectors in the path. Finding a starting or
end point of any path in H (other than 02n+1) is therefore equivalent to finding an
odd-degree vertex (other than 0n) in GS,P .

4.1.3 Continuous mapping on [0,1]2n+2

In order to construct a hard instance of Brouwer function, we use techniques in-
troduced by Hirsch, Papadimitriou, and Vavasis [HPV89]. The continuous Brouwer
function is denoted by f ∶ [0,1]2n+2 → [0,1]2n+2, while the associated displacement
function is denoted by g (x) ≜ f (x) − x. The following lemma (proven below) com-
pletes the proof of Theorem 4.1.1.

Lemma 4.1.2. The displacement g satisfies:

1. g is O (1)-Lipschitz (thus, f is also O (1)-Lipschitz)

2. ∥g (x)∥∞ = Ω (1) for every x that does not correspond to a starting or end point
in H.

3. The value of g at each point x can be computed (efficiently) with local, black-box
access to S,P .

CHAPTER 4. BROUWER’S FIXED POINT 61

4.1.3.1 Overview of the construction

The domain of f is the 2n + 2-dimensional (solid) hypercube. The hypercube is
divided into subcubes, of side length h (we fix h = 1/4). We define f separately on
each subcube such that it agrees on the intersections (no interpolation is needed in
this sense).

The last ((2n + 2)-th) dimension is special; we use “up” (resp. “down”) to refer
to the positive (negative) (2n + 2)-th direction. All the action takes place in the
second-from-bottom (2n + 1)-dimensional layer of subcubes; this layer is called the
slice. Within the slice, we also ignore the subcubes that are near the boundary of the
hypercube (those compose the frame); we are left with the subcubes in the center of
the slice, which we call the picture. We identify between the vertices of the (2n + 1)-
dimensional hypercube graph (over which H was defined) and the 22n+1 subcubes of
the picture.

The subset of subcubes into which we embed each path or cycle from H is called a
tube. The home subcube, the subcube that corresponds to the 02n+1-vertex, is special:
all the flow from all subcubes that do not belong to any tube leads to this subcube.

Below we define the displacement in the following regions, and argue that it
satisfies the desiderata of Lemma 4.1.2:

• Inside the picture, but not in any tube;

• inside a tube; and

• outside the picture.

4.1.3.2 Default displacement

Most of the slice has the same default displacement: directly upward, i.e. g (x) =
δξ2n+2, where ξ2n+2 is the (2n + 2)-unit vector, and δ > 0 is a small constant. Formally,

Fact 4.1.3. g (x) = δξ2n+2, for every x such that at least one of the following holds:

1. x lies on a corner, i.e. the intersection of two or more facets of a subcube;

2. x lies on an outer facet of a tube subcube, i.e. a facet other than the two facets
that continue the path; or

3. x lies in a subcube that does not belong to any tube.

Intuitively, Property 2 implies that all subcubes -whether they belong to the tube
or not- look the same from the outside (except for the two facets that continue the
path). In particular, the displacement on both sides of each facet is the same; so if

CHAPTER 4. BROUWER’S FIXED POINT 62

the displacement is O (1)-Lipschitz on each subcube, it is also O (1)-Lipschitz on the
entire hypercube.

Property 1, stating that all corners look the same, is key to the sampling gadgets
in Chapter 6, because it liberates us from having to disambiguate the position of a
point near the corners (that is, deciding exactly to which subcube it belongs).

4.1.3.3 Displacement at a tube

The mapping is defined so that in the center of the tube, the flow goes along the
direction of the path; slightly outside the center, the flow points towards the center
of the tube; further away from the center, the flow goes against the direction of the
path; at the outer boundary of the tube, as we previously described, the flows goes
upwards.

We first define g on facets. Let ⟨r,p⟩z be a point on the facet centered at z, and
suppose that the tube enters the subcube through z, advancing in the positive i-th
coordinate. We define

g (⟨r,p⟩z) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δξi r = 0

−δp r = h/8
−δξi r = h/4
δξ2n+2 r = h/2

(4.1)

(Recall that h is the subcube side length, and δ is some small constant.) Notice that
at each r, the displacement g is O (1)-Lipschitz and has magnitude ∥g (x)∥∞ = Ω (1)
(thus satisfying the first two desiderata of Lemma 4.1.2).

For r ∈ (0, h/8), interpolate between δξi and −δp ([HPV89] call this radial inter-
polation), and similarly for r ∈ (h/8, h/4) and r ∈ (h/4, h/2). See also illustration in
Figure 4.1. It is easy to see that the O (1)-Lipschitz property is preserved. Notice
also that ξi is orthogonal to p and ξ2n+2; this guarantees that the interpolation does
not lead to cancellation, i.e. we still have ∥g (x)∥∞ = Ω (1).

In the last couple of paragraphs we defined g on two facets for each subcube
that belongs to the tubes; for all other points in the tubes we interpolate (angular
interpolation) between those two facets: Consider a point x in the tube, and assume
(w.l.o.g.) that xi, xj > 1/2, and suppose that the value of f (⋅) on the yi = 1/2 and
yj = 1/2 facets of the subcube containing x is determined by (4.1). Let

xi = (x−i,j,
1

2
,max{xi, xj})

xj = (x−i,j,max{xi, xj} ,
1

2
)

CHAPTER 4. BROUWER’S FIXED POINT 63

Figure 4.1: A facet of the Hirsch et al construction

An illustration of the displacement on a facet between two subcubes in a tube; the
direction of the path is into the paper. In the center, the displacement points into the
paper; slightly further outside, the displacement points towards the center; further
outside, the displacement points out of the paper; finally in the outer layer, the
displacements points in the special 2n + 2 dimension.

denote the corresponding “�∞-norm projections” to the respective yi = 1/2 and yj =
1/2 facets. We set

g (x) = θ∞ (xi −
1

2
, xj −

1

2
) g (xi) + (1 − θ∞ (xi −

1

2
, xj −

1

2
)) g (xj) .

Notice that xi and xj are at the same distance from the respective facet centers,
i.e. they have they correspond to the same r. For each case of (4.1), the (i, j)-
components of the displacements at xi and xj are orthogonal, and for the rest of the
components they are aligned. Therefore, when we interpolate between g (xi) and
g (xj) there is again no cancellation, i.e. ∥g (x)∥∞ = Ω (∥g (xi)∥∞) = Ω (1). Finally,
recall that the displacement on each facet is O (1)-Lipschitz, and the displacements
agree on the intersection of the facets. Therefore the interpolated displacement is
O (1)-Lipschitz over the entire subcube by a triangle-inequality argument.

The home subcube is defined using (4.1) as if the tube enters from above, i.e.
coming down the (2n + 2)-dimension, and exits through another facet (in one of
the first (2n + 1) dimensions) in the direction of the path (here again we have
∥g (x)∥∞ = Ω (1)). For all other starting and end points, we define g (x) = δξ2n+2
on the facet opposite the one that continues the tube, and interpolate between the
opposite facets using Cartesian interpolation. Notice that this gives a fixed point
when the interpolation cancels the default displacement at the opposite facet, with
the displacement −δξ2n+2 at the point on the tube facet which is at distance h/8
above the path.

4.1.3.4 Outside the picture

For all points in the frame and below the slice, the displacement points directly
upward, i.e. g (x) = δξ2n+2. Moving above the slice, let z [top] be the point on the
top facet of the hypercube which is directly above the center of the home subcube.
For all points ⟨r,p⟩z[top] on the top facet of the hypercube, define the displacement

CHAPTER 4. BROUWER’S FIXED POINT 64

Figure 4.2: Outside the picture

An illustration of the displacement outside the picture.

as follows:

g (⟨r,p⟩z[top]) =
⎧⎪⎪⎨⎪⎪⎩

−δξ2n+2 r = 0

−δp r ≥ h/8

and interpolate for r ∈ (0, h/8). Notice that this displacement is O (1)-Lipschitz and
has Ω (1) magnitude for each r, and this is preserved after interpolation.

Notice that the definition of g on the slice from the previous subsection, implies
that all the points in the top facet of the slice, except for the top of the home subcube,
point directly upwards. Let z [home] denote the center of the top facet of the home
subcube. We therefore have that for any ⟨r,p⟩

z[home] in the top facet of the slice,

g (⟨r,p⟩
z[home]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−δξ2n+2 r = 0

−δp r = h/8
δξ2n+2 r ≥ h/4

where we again interpolate radially for r in (0, h/8) and (h/8, h/4).
Finally, to complete the construction above the slice, simply interpolate (using

Cartesian interpolation) between the top facets of the slice and the hypercube. See
also illustration in Figure 4.2.

4.2 Euclidean Brouwer

Theorem 4.2.1 (Euclidean Brouwer). There exist constants δ, h > 0 such that the
following holds. Given (local, black-box access to) an instance I = (T,S,P) of Mem-
bership End-of-a-Line, we can construct a computationally-efficient, continuous
function f ∶ [0,1]O(n) → [0,1]O(n), such that

• f is O (1)-Lipschitz in �2-norm; and

• given x for which ∥f (x) − x∥2 < ε, we can efficiently reconstruct a solution to
the Membership End-of-a-Line instance.

CHAPTER 4. BROUWER’S FIXED POINT 65

4.2.1 Discrete embedding of a graph in the Euclidean space

Each vertex v is embedded to the point (E(v),E(v),0m,0m) ∈ [−1,2]4m, which is
called the embedded vertex.

For every edge (v,w)we define five vertices:

x1(v,w) ≜ (E(v),E(v),0m,0m)
x2(v,w) ≜ (E(v),E(v),1m,0m)
x3(v,w) ≜ (E(v),E(w),1m,0m)
x4(v,w) ≜ (E(v),E(w),0m,0m)
x5(v,w) ≜ (E(w),E(w),0m,0m) .

The vertices xi(v,w) are called Brouwer vertices. Note that x1(v,w) is the em-
bedded vertex v, x5(v,w) is the embedded vertex w. The line that connects the
points xi(v,w) and xi+1(v,w) is called a Brouwer line segment. The union of these
four Brouwer line segments is called the embedded edge (v,w).

4.2.2 The function f

We set h to be a sufficiently small constant such that the
√
h neighborhood of any

two Brouwer vertices will not intersect and such that the 3h neighborhood of any
two Brouwer line segments will not intersect- unless they share the same common
Brouwer vertex. We take δ to be a constant arbitrarily smaller than h (δ = h3 suffices).
We define a displacement function g ∶ [−1,2]4m → [−δ, δ]4m and f (x) ≜ x + g (x). In
order that Properties (1)-(3) of Proposition 3.2.5 will be satisfied, we should define
g such that:

1. ∥g(x)∥2 = Ω(δ) for every x that is not 2
√
h-close to the Brouwer line segments

of any non-trivial end or starting of a line.

2. g is O(1)-Lipschitz.

3. g is defined ”locally”, which will allow as to generate the class of functions
{fI1,I2}.

We think of the 4m coordinates as partitioned into four parts: the first m-tuple of
coordinates represent the current vertex in the line; the second m-tuple represent the
next vertex in the line; we think of the third m-tuple as all being equal to a single
bit that monitors helps altering between computing the next vertex, and copying

CHAPTER 4. BROUWER’S FIXED POINT 66

from the second to first m-tuple. Finally, the last m coordinates represent a special
default direction in which the displacement points when far from all Brouwer line
segments (similarly to the single special coordinate in [HPV89]).

We consider a path starting at (03m,2 ⋅1m), i.e. the concatenation of 0 on the first
3m coordinates, and 2 on the last m coordinates. The path first goes to (04m) (in a
straight line), and thereafter the last m coordinates remain constantly 0 (note that
every Brouwer vertex has 0m in its last m-tuple). The first 3m coordinates follow
the line according to the embedding in Section 3.2.3. This path corresponds to the
line starting at 02n+1; for any additional line starting at vertex u, we have another
path starting at (E(u),E(u),02m).

We say that a point x is in the picture if 1
m ∑4m

i=3m+1 xi < 1/2. We construct
g separately inside and outside the picture (and make sure that the construction
agrees on the hyperplane 1

m ∑4m
i=3m+1 xi = 1/2).

Truncation In order for g (⋅) to be a displacement function, we must ensure that
it never sends any points outside the hypercube, i.e. ∀x ∈ [−1,2]4m, we require
that also x + g (x) ∈ [−1,2]4m. Below, it is convenient to first define an untrun-
cated displacement function ĝ ∶ [−1,2]4m → [−δ, δ]4m which is not restricted by
the above condition. We then truncate each coordinate to fit in [−1,2]: [g (x)]i =
max{−1,min{2, xi + [ĝ (x)]i}}−xi. It is clear that if ĝ (⋅) is (M − 1)-Lipschitz, then
g (⋅) is M -Lipschitz. It is, however, important to make sure that the magnitude of
the displacement is not compromised. Typically, some of the coordinates may need
to be truncated, but we design the displacement so that most coordinates, say 99%,
are not truncated. If ĝ (x) has a non-negligible component in at least 5% of the
coordinates, then in total g (x) maintains a non-negligible magnitude.

4.2.2.1 Inside the picture

The line 0 = v0, v1, . . . , v∗ is embedded to a path in [−1,2]4m that goes in straight
lines through the following sequence of Brouwer vertices:

(03m,2 ⋅ 1m), (04m) = x1(v0, v1),x2(v0, v1), . . . ,x5(v0, v1) = x1(v1, v2),x2(v1, v2), . . . ,x5(P (v∗), v∗).

Similarly, if I contains another line u, . . . ,w, it is embedded as a path through:

(E(u),E(u),02m) = x1(u,S(u)), . . . ,x5(P (w), w) = (E(w),E(w),02m),

and analogously for cycles.
Now we cut the corners of this path as follows: For two consecutive Brouwer

vertices s,y in the embedded path we let z1(s→y) be the point in the Brouwer line

CHAPTER 4. BROUWER’S FIXED POINT 67

segment [s,y] that is exactly
√
h-far from s. Similarly, z2(s→y) is the point in [s,y]

that is exactly
√
h-far from y. For three consecutive Brouwer vertices s→ y → t, the

path after ”cutting the corners” goes in straight lines through

. . . ,z1(s→y),z
2
(s→y),z

1
(y→t),z

2
(y→t), . . .

instead of going through s→ y → t.
First, for all points inside the picture that are 3h-far from the embedded path

after cutting the corners we use the same default displacement which points in the
positive special direction: ĝ (x) = (03m, δ ⋅ 1m). Because x is inside the picture, the
truncated displacement g (x) is close to ĝ (x), and therefore satisfies ∥g (x)∥2 = Ω(δ).

Now we define the displacement 3h-close to the embedded path in two regions:

1. For points that are 3h-close to a segment of the form [z1(s→y),z
2
(s→y)] but (ap-

proximately2)
√
h-far from both Brouwer vertices s,y.

2. For the remaining points, those that are 3h-close to a segment of the form
[z2(s→y),z

1
(y→t)] and (approximately2)

√
h-close to the Brouwer vertex y.

We make sure that the definitions agree on the interface between the two regions, as
well as on the interface with the points that receive the default displacement.

4.2.2.2 Close to the path but far from a Brouwer vertex

On the Brouwer line segment, the displacement points in the direction of the path;
at distance h from the Brouwer line segment, the displacement points in towards
the Brouwer line segment; at distance 2h from the Brouwer line segment, the dis-
placement points against the direction of the path; at distance 3h, the displacement
points in the default direction.

Formally, let σ(s→t) (x) denote the magnitude of the component of x − s in the
direction of line (s→ t),

σ(s→t) (x) ≜
(t − s)
∥s − t∥2

⋅ (x − s) ,

where ⋅ denotes the (in-expectation) dot product. Let z = z (x) be the point nearest
to x on the Brouwer line segment; notice that z satisfies

z = σ(s→t) (x) t + (1 − σ(s→t) (x)) s.
2 It will be more convenient to set the threshold of points x that are “far”/“close” from/to a

Brouwer vertex using the expression σ(s→y)(x) that is defined below. σ(s→y)(x) is closely related
to the distance of x from the points s, y but is not precisely the distance.

CHAPTER 4. BROUWER’S FIXED POINT 68

For points near the Brouwer line segment (∥x − z∥2 ≤ 3h), but far from its endpoints

(σ(s→t) (x) ∈ [
√
h,1 −

√
h]), we define the displacement:

ĝ (x) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
(t−s)
∥t−s∥2

∥x − z∥2 = 0

δ
(z−x)

h
∥x − z∥2 = h

δ
(s−t)
∥t−s∥2

∥x − z∥2 = 2h

δ (03m,1m) ∥x − z∥2 = 3h

(4.2)

At intermediate distances from the Brouwer line segment, we interpolate: at dis-
tance ∥x − z∥2 = 1

3
h, for example, we have ĝ (x) = 2

3
δ
(t−s)
∥t−s∥2

+ 1
3
δ
(z−x)

h
. Notice that every

two of (t − s), (z − x), and (03m,1m) are orthogonal, so the interpolation does not
lead to cancellation. Also, every point z on the Brouwer line segment is Ω (1)-far
in every coordinate from {−1,2}, so the truncated displacement g (x) still satisfies
∥g (x)∥2 = Ω (δ). For each case in (4.2), ĝ (⋅) is either constant, or (in the case of

∥x − z∥2 = h) O (δ/h)-Lipschitz ((z−x)
h

is O(1/h)-Lipschitz because two “antipodal”
points at distance 2h have opposite directions, both pointing parallel to the Brouwer
line segment); by choice of δ ≪ h, it follows that ĝ (⋅) is in particular O (1)-Lipschitz.
Furthermore, notice that ∥x − z∥2 is 1-Lipschitz, so after interpolating for intermedi-
ate distances, ĝ (⋅) continues to be O (1)-Lipschitz. Notice also that at distance 3h
the displacement defined in (4.2) agrees with the displacements for points far from
every Brouwer line segment, so Lipschitz continuity is preserved.

4.2.2.3 Close to the path and a Brouwer vertex

Let Ly be the line that connects the points z(s→y) and z(y→t). Given x, we let z be
the closest point to x on Ly.

Our goal is to interpolate between the line displacement for (s→ y) (which is
defined up to σ(s→y) (x) = 1 −

√
h), and the line displacement for (y → t) (which

begins at σ(y→t) (x) =
√
h). Let Δ(s→y) (x) ≜ σ(s→y) (x) − (1 −

√
h), and Δ(y→t) (x) ≜√

h − σ(y→t) (x). We set our interpolation parameter τ = τ (x) ≜ Δ(y→t)(x)
Δ(y→t)(x)+Δ(s→y)(x) ,

and set
z ≜ τz(s→y) + (1 − τ)z(y→t). (4.3)

For points x near y such that Δ(s→y) (x) ,Δ(y→t) (x) ≥ 0, we can now define the

CHAPTER 4. BROUWER’S FIXED POINT 69

displacement analogously to (4.2):

ĝ (x) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ⋅ [τ (y−s)
∥y−s∥2

+ (1 − τ) (t−y)
∥t−y∥2

] ∥x − z∥2 = 0

δ
(z−x)

h
∥x − z∥2 = h

δ ⋅ [τ (s−y)
∥y−s∥2

+ (1 − τ) (y−t)
∥t−y∥2

] ∥x − z∥2 = 2h

δ (03m,1m) ∥x − z∥2 ≥ 3h

. (4.4)

At intermediate distances, interpolate according to ∥x − z∥2. Notice that for each
fixed choice of τ ∈ [0,1] (and z), ĝ is O (δ/h) = O(1)-Lipschitz. Furthermore, Δ(s→y)
and Δ(y→t) are 1-Lipschitz in x. For any z ∈ Ly, Δ(y→t) (z) +Δ(s→y) (z) =

√
h. For

general x, we have

Δ(y→t) (x)+Δ(s→y) (x) ≥Δ(y→t) (z)+Δ(s→y) (z)− 2 ∥x − z∥2 =
√
h− 2 ∥x − z∥2 ; (4.5)

so τ is O (1/
√
h)-Lipschitz whenever ∥x − z∥2 < 3h, and otherwise has no effect on

ĝ (x). We conclude that ĝ is O (1)-Lipschitz when interpolating across different
values of τ . At the interface with (4.2) τ is 1 (0 near z(y→t)), so (4.2) and (4.4) are

equal. Therefore ĝ is O (1)-Lipschitz on all of [−1,2]4m.
To lower bound the magnitude of the displacement, we argue that (z − x) is or-

thogonal to [τ (y−s)
∥y−s∥2

+ (1 − τ) (t−y)
∥t−y∥2

]. First, observe that we can restrict our attention

to the component of (z − x) that belongs to the plane defined by s,y, t (in which
z also lies). Let Ps,y,t (x) denote the projection of x to this plain. We can write
points in this plane in terms of their Δ (⋅) ≜ (Δ(s→y) (⋅) ,Δ(y→t) (⋅)) values. (Recall
that (s→ y) and (y → t) are orthogonal.)

First, observe that Δ (z(s→y)) = (0,
√
h), Δ (z(y→t)) = (

√
h,0) and Δ (y) =

(
√
h,
√
h). Notice also that

[τ (y − s)
∥y − s∥2

+ (1 − τ) (t − y)
∥t − y∥2

] =
⎡⎢⎢⎢⎢⎣
τ
(y − z(s→y))√

h
+ (1 − τ)

(z(y→t) − y)
√
h

⎤⎥⎥⎥⎥⎦
.

Putting those together, we have that

Δ([τ y

∥y − s∥2
+ (1 − τ) t

∥t − y∥2
]) −Δ([τ s

∥y − s∥2
+ (1 − τ) y

∥t − y∥2
]) = (τ,1 − τ) .

(4.6)
For z, we have

Δ (z) = τΔ (z(s→y)) + (1 − τ)Δ (z(y→t)) =
√
h (1 − τ, τ) .

CHAPTER 4. BROUWER’S FIXED POINT 70

Finally, for Ps,y,t (x), we can write

Δ (Ps,y,t (x)) = (Δ(y→t) (x) ,Δ(s→y) (x))

= 1

Δ(y→t) (x) +Δ(s→y) (x)
(1 − τ, τ) .

Therefore Δ (z) −Δ (Ps,y,t (x)) is orthogonal to (4.6).

4.2.2.4 Close to an end-of-any-line

Close to the non-trivial end or start of any line, we don’t have to be as careful with
defining the displacement: any Lipschitz extension of the displacement we defined
everywhere else would do, since here we are allowed (in fact, expect) to have fixed
points.

For concreteness, let (s→ t) be the last Brouwer line segment in a path. In (4.2),
we defined the displacement for points x such that σ(s→t)(x) ≤ 1−

√
h. For points such

that σ(s→t)(x) = 1 (i.e. at the hyperplane through t and perpendicular to (s → t)),
we simply set the default displacement ĝ(x) ≜ δ (03m,1m). For intermediate values of
σ(s→t)(x) ∈ [1−

√
h,1], we simply interpolate according to σ(s→t)(x). Notice that this

induces a fixed point for some intermediate point, since for x directly “above” the
Brouwer line segment, δ z−x

h
perfectly cancels δ (03m,1m). Define the displacement

analogously at the (non-trivial) start of a path.

4.2.2.5 Outside the picture

The displacement outside the picture is constructed by interpolating the displace-
ment at 1

m ∑4m
i=3m+1 xi = 1/2, and the displacement at points in the “top” of the hyper-

cube, where xi = 2 for every i in the last m coordinates. The former displacement,
where Ei∈{3m+1,...,4m}xi = 1/2 is defined to match the displacement inside the picture.
Namely, it is the default displacement everywhere except near the first Brouwer line
segment which goes “down” from s = (03m,2 ⋅ 1m) to t = (04m). Near this line, it is
defined according to (4.2). (Notice that ∥t − s∥2 = 1.)

Formally, let z1/2 = (03m,
1
2
⋅ 1m); for x on the boundary of the picture, we have:

ĝ (x) ≜

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ (03m,−1m) ∥x − z1/2∥2 = 0

δ
(z1/2−x)

h
∥x − z1/2∥2 = h

δ (03m,1m) ∥x − z1/2∥2 ≥ 2h

(4.7)

For points x such that ∑4m
i=3m+1 xi is very close to 2, the displacement δ (03m,1m)

is not helpful because it points outside the hypercube, i.e. it would get completely

CHAPTER 4. BROUWER’S FIXED POINT 71

Figure 4.3: Geometry near a Brouwer vertex

s

z(s→y)

y z(y→t) t

x

z

The figure (not drawn to scale) shows some of the important points near a Brouwer
vertex y: There is an incoming Brouwer line segment from s through z(s→y), and
an outgoing Brouwer line segment to t through z(y→t). For each point x between
the dashed lines, we assign a point z on the line Ly as in (4.3), and define the
displacement according to (4.4). Outside the dashed lines (including at y itself), we
use the default displacement δ (03m,1m).

CHAPTER 4. BROUWER’S FIXED POINT 72

erased by the truncation. Instead, we define the displacement as follows:

ĝ (x) ≜
⎧⎪⎪⎨⎪⎪⎩

δ (03m,−1m) ∥x − z2∥2 = 0

δ
(z1−x)

h
∥x − z2∥2 ≥ h,

(4.8)

where z2 = (03m,2 ⋅ 1m). When θ ≜ ∑4m
i=3m+1 xi ∈ (1/2,2), we interpolate between (4.7)

and (4.8) according to θ−1/2
3/2 .

4.2.3 Locally computing the Brouwer function

The function f defined above is local in two different ways: First, in order to compute
f(x) at a point x which is close to the embedding of one or a few vertices in the
Membership End-of-a-Line instance I, we only need to understand I at those
vertices. The second type of locality observes that in order to compute just a single
coordinate fi(x), we only need partial information about x.

Locality in the Membership End-of-a-Line instance

Fact 4.2.2. The function f defined below is local in the sense that there exists a class
of functions {fI1,I2 ∶ [−1,2]4m → [−1,2]4m} which do not depend on I, and f can be
defined as an interpolation between these functions such that:

1. If the firstm-tuple of coordinates of x is 12
√
h-close to the encoded vertex E(v),

but the secondm-tuple of coordinates of x is 12
√
h-far from any encoded vertex

E(w) then fI(v),I2(x) = f(x) for every I2.

2. If the second m-tuple of coordinates of x is 12
√
h-close to the encoded vertex

E(w), but the first m-tuple of coordinates of x is 12
√
h-far from any encoded

vertex E(v) then fI1,I(w)(x) = f(x) for every I1.

3. If the first m-tuple of coordinates of x is 12
√
h-close to the encoded vertex

E(v), and the second m-tuple of coordinates of x is 12
√
h-close to the encoded

vertex E(w) then fI(v),I(w)(x) = f(x).

4. If none of the above conditions are satisfied, then fI1,I2(x) = f(x) for every
I1, I2.

CHAPTER 4. BROUWER’S FIXED POINT 73

Locality in a single coordinates

In order to compute all of f (x) exactly, we essentially need to know x in every
coordinate. However, in order to compute fi (x) (the i-th coordinate of f (x)), it
suffices to know xi and that x is:

• inside the picture, but far from every Brouwer line segment;

• close to some point z on Brouwer line segment (s→ t) (but far from s and t),

– also need to know si, ti, zi, ∥x − z∥2 and ∥t − s∥2;

• close to some point z on line Ly for Brouwer vertex y on the intersection of
Brouwer lines (s→ y) and (y → t),

– also need to know si, yi, ti, zi, ∥x − z∥2 , ∥y − s∥2 , ∥t − y∥2, and α; or

• outside the picture,

– also need to know Ei∈{3m+1,...,4m}xi and ∥x − z∥2, where z is the (Ei∈{3m+1,...,4m}xi)-
weighted average of z1/2 and z2.

By Lipschitz continuity, if we only want to compute fi (x) to within ±O(ε), it suffices
to know all the quantities above to within ±ε. Furthermore, at distance ±ε near
interfaces between the different cases (inside/outside the picture, close to 0/1/2 lines),
we can use the wrong displacement, and still be within ±O(ε) of fi (x).

74

Part III

PPAD

75

Chapter 5

PPAD-hardness of approximation

In this part of the dissertation we introduce and prove our PPAD-hardness of ap-
proximation results, in particular for finding for Nash equilibria. As we discussed in
the introduction, for a constant number of players, we are unlikely to prove PPAD-
hardness since a quasi-polynomial time approximation algorithm exists [LMM03].
Our main focus in this part is games with a large number of players. For such games,
there is a question of representation: the normal form representation is exponential
in the number of the players. Instead, we consider three natural and well-studied
classes of many-player games that have succinct representations:

Definition 5.0.1. Polymatrix games In a polymatrix game [Yan68], each pair of
players simultaneously plays a separate two-player game. Every player has to
play the same strategy in every two-player subgame, and her utility is the sum
of her subgame utilities. The game is given in the form of the payoff matrix
for each two-player game.

Graphical games In a graphical game [Kea07], the utility of each player depends
only on the action chosen by a few other players. This game now naturally
induces a directed graph: we say that (i, j) ∈ E if the utility of player j depends
on the strategy chosen by player i. When the maximal incoming degree is
bounded, the game has a representation polynomial in the number of players
and strategies.

Succinct games Most generally, in a succinct game [SV12]1 the normal form rep-
resentation is succinctly described by some small circuit.

1Related notions for two-player games have been also considered by [FKS95] and [For+08].

CHAPTER 5. PPAD-HARDNESS OF APPROXIMATION 76

Any of the above restrictions suffices to guarantee that the game has a succinct
representation. Our main result in this part is that even for games that satisfy
all restrictions simultaneously, finding an ε-approximate Nash equilibrium is PPAD-
complete.

Theorem 5.0.2. There exists a constant ε > 0, such that given a degree 3, bipartite,
polymatrix game where each player has two actions, finding an ε-approximate Nash
equilibrium is PPAD-complete.

The notion of ε-approximate Nash equilibrium used in Theorem 5.0.2 requires
that every player plays ε-optimally. The most interesting open question left open in
this part of the dissertation is whether the equilibrium computation problem remains
PPAD-hard even if we only require that most of the players play ε-optimally. This is
the “PCP Conjecture for PPAD”:

Conjecture 5.0.3 (PCP for PPAD). There exist constants ε, δ > 0 such that given
a degree 3, bipartite, polymatrix game where each player has two actions, finding an
(ε, δ)-WeakNash is PPAD-complete.

While, proving (or disproving) the “PCP Conjecture for PPAD” remains open (see
additional discussion in Section 16.1.1), we do prove in this section that for the more
general class of succinct games, finding an (ε, δ)-WeakNash is indeed PPAD-hard.

Theorem 5.0.4. There exist constants ε, δ > 0, such that finding an (ε, δ)-WeakNash
is PPAD-hard for succinct multiplayer games where each player has a constant num-
ber of actions.

Besides Theorem 5.0.4, all our results rely in this part of the dissertation rely
on the hardness of approximation for the generalized circuit problem. Generalized
circuits are similar to standard algebraic circuits, the main difference being that
generalized circuits contain cycles, which allow them to verify fixed points of con-
tinuous functions. A generalized circuit induces a constraint satisfaction problem,
ε-Gcircuit [CDT09]: find an assignment for the values on the lines of the circuit,
that simultaneously ε-approximately satisfies all the constraints imposed by the gates
(see Chapter 6 for a formal definition). ε-Gcircuit was implicitly proven PPAD-
complete for exponentially small ε by Daskalakis et al [DGP09], and explicitly for
polynomially small ε by Chen et al [CDT09]. Here we prove that it continues to be
PPAD-complete for some constant ε.

Theorem 5.0.5 (Generalized circuit). There exists a constant ε > 0 such that ε-
Gcircuit with fan-out 2 is PPAD-complete.

CHAPTER 5. PPAD-HARDNESS OF APPROXIMATION 77

This result, in turn builds on the hardness of finding an �infty-approximate fixed
point, which we proved in Theorem 4.1.1.

We note that except for the hardness of the course allocation problem (Chap-
ter 10), all the problems we consider in this part of the dissertation were previously
known to be PPAD-hard for polynomial approximation factors.

78

Chapter 6

The generalized circuit problem

Generalized circuits are similar to the standard algebraic circuits, the main difference
being that generalized circuits contain cycles, which allow them to verify fixed points
of continuous functions. We restrict the class of generalized circuits to include only
a particular list of gates described below. Formally,

Definition 6.0.1 (Generalized circuits, [CDT09]). A generalized circuit S is a pair
(V,T), where V is a set of nodes and T is a collection of gates. Every gate T ∈ T
is a 5-tuple T = G (ζ ∣ v1, v2 ∣ v), in which G ∈ {Gζ ,G×ζ ,G=,G+,G−,G<,G∨,G∧,G¬} is
the type of the gate; ζ ∈ R ∪ {nil} is a real parameter; v1, v2 ∈ V ∪ {nil} are the first
and second input nodes of the gate; and v ∈ V is the output node.

The collection T of gates must satisfy the following important property: For
every two gates T = G (ζ ∣ v1, v2 ∣ v) and T ′ = G′ (ζ ′ ∣ v′1, v′2 ∣ v′) in T , v ≠ v′.

Alternatively, we can think of each gate as a constraint on the values on the in-
coming and outgoing wires. We are interested in the following constraint satisfaction
problem: given a generalized circuit, find an assignment to all the wires that simul-
taneously satisfies all the gates. When every gate computes a continuous function
of the incoming wires (with inputs and output in [0,1]), a solution must exist by
Brouwer’s fixed point theorem.

In particular, we are interested in the approximate version of this CSP, where we
must approximately satisfy every constraint.

Definition 6.0.2. Given a generalized circuit S = (V,T), we say that an assignment
x∶V → [0,1] ε-approximately satisfies S if for each of the following gates, x satisfies
the corresponding constraints:

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 79

Gate Constraint

Gζ (α ∣∣ a) x [a] = α ± ε

G×ζ (α ∣ a ∣ b) x [b] = α ⋅ x [a] ± ε

G= (∣ a ∣ b) x [b] = x [a] ± ε

G+ (∣ a, b ∣ c) x [c] =min (x [a] + x [b] ,1) ± ε

G− (∣ a, b ∣ c) x [c] =max (x [a] − x [b] ,0) ± ε

G< (∣ a, b ∣ c) x [c] =
⎧⎪⎪⎨⎪⎪⎩

1 ± ε x [a] < x [b] − ε

0 ± ε x [a] > x [b] + ε

G∨ (∣ a, b ∣ c) x [c] =
⎧⎪⎪⎨⎪⎪⎩

1 ± ε x [a] = 1 ± ε or x [b] = 1 ± ε

0 ± ε x [a] = 0 ± ε and x [b] = 0 ± ε

G∧ (∣ a, b ∣ c) x [c] =
⎧⎪⎪⎨⎪⎪⎩

1 ± ε x [a] = 1 ± ε and x [b] = 1 ± ε

0 ± ε x [a] = 0 ± ε or x [b] = 0 ± ε

G¬ (∣ a ∣ b) x [b] =
⎧⎪⎪⎨⎪⎪⎩

1 ± ε x [a] = 0 ± ε

0 ± ε x [a] = 1 ± ε

(Where Gζ and G×ζ also take a parameter α ∈ [0,1].)

Given a generalized circuit S = (V,T), ε-Gcircuit is the problem of finding an
assignment that ε-approximately satisfies it.

Brittle comparators Intuitively, in order for (approximate) solutions to the cir-
cuit problem to correspond to (approximate) equilibria, all our gates should imple-
ment continuous (Lipschitz) functions. The gate G< (∣ a, b ∣ c), for example, approx-

imates that the function c (a, b) =
⎧⎪⎪⎨⎪⎪⎩

1 a < b

0 a ≥ b
, which is not continuous. To overcome

this problem, Daskalakis et al [DGP09] defined the brittle comparator: when a is (ε-)
larger than b, it outputs 0; when b is (ε-) larger than a, it outputs 1. However, when
a and b are (ε-approximately) equal, its behavior is undefined.

Brittleness introduces difficulties in the transition from continuous to discrete
solutions. This challenge is overcome by an averaging gadget, which is described in
detail in Section 6.2.

Our results

ε-Gcircuit was implicitly proven PPAD-complete for exponentially small ε by Daskalakis
et al [DGP09], and explicitly for polynomially small ε by Chen et al [CDT09]. Here

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 80

we prove that it continues to be PPAD-complete for some constant ε.

Theorem (Generalized circuit; Theorem 5.0.5 restated). There exists a constant
ε > 0 such that ε-Gcircuit with fan-out 2 is PPAD-complete.

6.1 Proof overview

The key idea that enables us to improve over previous hardness of approximation
for ε−Gcircuit (and Nash equilibrium) [DGP09; CDT09] is our particular choice
of hard fixed point instance in Section 4.1. The first advantage is that our instance
is simply harder to approximate: finding an ε-approximate fixed point (i.e. x such
that ∥f (x) − x∥∞ ≤ ε) is PPAD-hard for ε = Ω (1) (as opposed to ε = 1/ exp (n) for
[DGP09] and ε = 1/poly (n) in [CDT09]).

A simpler averaging gadget Our construction of hard instances of Brouwer func-
tions, as do the ones form previous works, partitions the (continuous) hypercube into
subcubes, and define the function separately on each subcube. When we construct
a circuit that approximately simulates such a Brouwer function, we have a problem
near the facets of the subcubes: using approximate gates and brittle comparators
(both defined formally in Chapter 6), one cannot determine to which subcube the
input belongs. This is the most challenging part of our reduction, as was also the
case in [DGP09; CDT09].

Originally, Daskalakis et al [DGP09] tackled this obstacle by approximating f (x)
as the average over a ball around x. The key observation is that even if x is close to
a facet between subcubes, most of the points in its neighborhoods will be sufficiently
far. Yet if f is Lipschitz they are mapped approximately to the same point as
x. This works fine in O (1) dimensions, but then the inapproximability parameter
is inherently exponentially small (in constant dimensions, it is easy to construct a
1/poly (n)-net over the unit hypercube). For poly (n) dimensions, the (discretization
of the) ball around x contains exponentially many points.

Chen et al [CDT09] overcome this problem using equiangle sampling: consider
many translations of the input vector by adding small multiples of the all-ones vector;
compute the displacement for each translation, and average. Since each translation
may be close to a facet in a different dimension, Chen et al consider a polynomial
number of translations. Thus, all translations must be polynomially close to each
other - otherwise they will be too far to approximate the true input.

We avoid this problem by observing another nice property of the [HPV89]’s con-
struction: when the input vector lies near two or more facets, the displacement is

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 81

Figure 6.1: Comparison of averaging gadgets

x

Daskalakis et al [DGP09]

x

Chen et al [CDT09]

x

This paper

A comparison of the averaging gadgets of [DGP09], [CDT09], and this paper. x is the
point whose displacement we would like to estimate using imprecise gates and brittle
comparators. Points that are too close to a facet between subcubes are denoted by
triangles, while points that are sufficiently far are denoted by circles. Finally, in this
paper we have a “safe” zone (shaded) around the corner where we don’t need to
parse the subcube; thus we only need to avoid one facet.

(approximately) the same, regardless of the subcube. Once we rule out such points,
it suffices to sample only a constant number of points (as at most one of them may
be too close to a facet). See also illustration in Figure 6.1.

Completing the proof Given a point x
′ ≈ x which is safely in the interior of one

subcube, we can parse the corresponding binary vector, use logical operator gates to
simulate the End-of-a-Line circuit, and then approximately compute f (x′). This
is tedious, but mostly straightforward.

One particular challenge that nevertheless arises is preventing the error from
accumulating when concatenating approximate gates. Of course this is more difficult
in our setting where each gate may err by a constant ε > 0. Fortunately, the definition
of ε-Gcircuit provides logical operator gates that round the output to {0,1} before
introducing new error. As long as the inputs are unambiguous bits, approximate
logical operator gates can be concatenated without accumulating errors.

In order to carry out the reduction to Nash equilibrium (Section 7.1), we must
first ensure that every gate in our generalized circuit has a constant fan-out (Section
6.3). We can replace each logical operator gate with a binary tree of fan-out 2,

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 82

alternating negation gates (that do not accumulate error). Given an arithmetic gate
with large fan-out, we convert its output to unary representation1 using a constant
number of (fan-out 2) gates. Then we copy the unary representation using a binary
tree of negation gates. Finally, we convert each copy back to a real number using a
constant number of gates.

6.2 From Brouwer to ε-Gcircuit

In this section we prove a slightly easier version of Theorem 5.0.5, for a generalized
circuit with unbounded fan-out. We reduce to constant fan-out in the next section.

Proposition 6.2.1. There exists a constant ε > 0 such that ε-Gcircuit is PPAD-
complete.

Proof. We continue to denote the hard Brouwer function by f ∶ [0,1]2n+2 → [0,1]2n+2,
and its associated displacement by g (y) = f (y) −y. We design a generalized circuit
S that computes f , and verifies that the output is equal to the input. We show
that every ε-approximate solution to S corresponds to an O (ε1/4)-approximate fixed
point of f .

Recall that the construction from Section (4.1) divides the hypercube into equal-
sized subcubes (of length 1/4). Furthermore, all the paths in H are embedded in
the 22n+1 subcubes that belong to the picture. For ease of exposition, we present
a construction that only works for points in the picture, i.e. y ∈ [1/4,3/4]2n+1 ×
[1/4,1/2]. It is straightforward how to use the same ideas to extend the circuit to
deal with all y ∈ [0,1]2n+2.

The most challenging part of the construction is the extraction of the information
about the local subcube: is it part of a tube? if so, which are the entrance and exit
facets? This is done by extracting the binary representation of the current subcube,
and feeding it to the (Boolean) circuit that computesH (recall thatH is our collection
of paths and cycles from Section (4.1.2)). Notice that whenever we have valid logic
bits, i.e. x [b] < ε or x [b] > 1 − ε, we can perform logic operations on them without
increasing the error.

Once we know the behavior of the path on the current subcube, we simply have to
locally implement the mapping from the previous section, for which we have a closed
form description, using the available gates in the definition of generalized circuits.

1Unary representation of numbers with constant precision is prevalent throughout our imple-
mentation of the generalized circuit. We prefer unary representation over binary, because in the
former at most one bit can be ambiguous due to the use of brittle comparators.

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 83

Since this definition does not include multiplication and division, we implement mul-
tiplication and division in Algorithms 2 and 3 in Subsection 6.2.1.

Our construction has four parts: (1) equiangle sampling segment, (2) computing
the displacement, (3) summing the displacement vectors, and (4) closing the loop.
The first part contains a new idea introduced in this paper: using a constant size
sample. The second part is a more technical but straightforward description of the
implementation of the closed-form mapping by approximate gates. The third and
fourth parts are essentially identical to [CDT09].

6.2.1 Subroutines

In this subsection we show how to implement a few useful subroutines using the gates
in the definition of ε-Gcircuit.

6.2.1.1 If-Else

We begin by describing how to implement a simple if-else. Similar ideas can be used
to implement more involved cases such as (4.1).

Claim 6.2.2. In any ε-approximate solution to If-Else(∣ a, b, c ∣ d),

x [d] =
⎧⎪⎪⎨⎪⎪⎩

x [c] ±O (ε) if x [a] <
√
ε

x [b] ±O (ε) if x [a] > 1 −
√
ε
.

Proof. By definition of G¬, we have that

x [a] =
⎧⎪⎪⎨⎪⎪⎩

1 ± ε if x [a] <
√
ε

0 ± ε if x [a] > 1 −
√
ε
.

Algorithm 1 If-Else(∣ a, b, c ∣ d)
1. G¬ (∣ a ∣ a)# a is the negation of a

2. G− (∣ b, a ∣ b′)# b′ is (approximately) equal to b iff a = 1

3. G¬ (∣ a ∣ a)# a is the roudning of a to {0,1}

4. G− (∣ c, a ∣ c′)# c′ is (approximately) equal to c iff a = 0

5. G− (∣ b′, c′ ∣ d)

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 84

Therefore by definition of G−,

x [b′] =
⎧⎪⎪⎨⎪⎪⎩

0 ±O (ε) if x [a] <
√
ε

x [b] ±O (ε) if x [a] > 1 −
√
ε
.

Similarly,

x [c′] =
⎧⎪⎪⎨⎪⎪⎩

x [c] ±O (ε) if x [a] <
√
ε

0 ±O (ε) if x [a] > 1 −
√
ε
.

Finally, the claim follows by definition of G+.

6.2.1.2 Multiply

Claim 6.2.3. In any ε-approximate solution to Multiply(∣ a, b ∣ c),

x [c] = x [a] ⋅ x [b] ±O (
√
ε) .

Proof. For any k, the first gate implies that

x [ζk] = k
√
ε ± ε.

The second gate thus gives

x [ak] =
⎧⎪⎪⎨⎪⎪⎩

0 ± ε ifx [a] > k
√
ε +O (ε)

1 ± ε ifx [a] < k
√
ε −O (ε) .

(6.1)

Notice that the above equation is ambiguous for at most one value of k. In particular,

∑
k

(1 − x [ak])
√
ε = x [a] ±O (

√
ε) . (6.2)

We also have
x [dk] = x [b] ⋅

√
ε ± ε.

The subtraction gate zeros x [dk] for all k such that x [a] < k
√
ε − O (ε), and has

negligible effect for k such that x [a] > k
√
ε +O (ε):

x [ek] =
⎧⎪⎪⎨⎪⎪⎩

x [b] ⋅
√
ε ± 2ε ifx [a] > k

√
ε +O (ε)

0 ± 2ε ifx [a] < k
√
ε −O (ε) .

The sum of the x [ek]’s satisfies:

∑
k

x [ek] = x [a] ⋅ x [b] ±O (
√
ε) ,

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 85

Algorithm 2 Multiply(∣ a, b ∣ c)
1. Gζ (0 ∣∣ h0)

2. for each k ∈ [1/
√
ε]:

a) Gζ (k
√
ε ∣∣ ζk), G< (∣ a, ζk ∣ ak)

The vector (ak) is the unary representation of a

∑
k∶x[ak]<ε

√
ε = max

k∶x[ak]<ε
k
√
ε = x [a] ±O (

√
ε)

b) G×ζ (
√
ε ∣ b ∣ dk)

The vector (dk) is simply equal to b ⋅
√
ε everywhere.

∑
k∶x[ak]<ε

x [dk] =
⎛
⎝ ∑
k∶x[ak]<1−ε

√
ε
⎞
⎠
⋅ x [b] ±O (

√
ε) = x [a] ⋅ x [b] ±O (

√
ε)

c) G− (∣ dk, ak ∣ ek)
The vector (ek) is b ⋅

√
ε only when (ak) < ε.

∑
k∶x[ak]<ε

x [ek] = x [a] ⋅ x [b] ±O (
√
ε)

d) G+ (∣ hk−1, ek ∣ hk)
Finally, we sum the ek’s to get a ⋅ b

x [h1/
√
ε] = x [a] ⋅ x [b] ±O (

√
ε)

3. G= (∣ h1/
√
ε ∣ c)

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 86

where we have an error of ±O (√ε) arising from aggregating ±2ε for 1/
√
ε distinct

k’s, and another ±O (√ε) from (6.2).
By induction, each hk is approximately equal to the sum of the first x [ej]’s:

x [hk] =
k

∑
j=1

x [ej] ± kε.

In particular, we have

x [h1/
√
ε] = ∑

k

x [ek] ±
√
ε

= x [a] ⋅ x [b] ±O (
√
ε) .

6.2.1.3 Divide

Claim 6.2.4. In any ε-approximate solution to Divide(∣ a, b ∣ c),
x [c] ⋅ x [b] = x [a] ±O (

√
ε) .

Notice that for Algorithm 3, in any ε-approximate solution, x [c] = x [a] /x [b] ±
O (√ε) /x [b]; when x [b] and ε are bounded away from 0, this is only a constant
factor increase in the error.

Proof. For each k, we have

x [bk] = k
√
ε ⋅ x [b] ± ε.

Thus also

x [dk] =
⎧⎪⎪⎨⎪⎪⎩

1 ± ε ifx [a] > k
√
ε ⋅ x [b] +O (ε)

0 ± ε ifx [a] < k
√
ε ⋅ x [b] −O (ε) .

Notice that x [dk] is ambiguous for at most k. Furthermore, aggregating the ±ε error
over 1/

√
ε distinct k’s, we have:

∑x [dk] ⋅
√
εx [b] = x [a] ±O (

√
ε) .

x [ek]’s are a step closer to what we need:

x [ek] = x [dk]
√
ε ± ε,

and therefore also

∑x [ek] ⋅ x [b] = x [a] ±O (
√
ε) . (6.3)

Finally, by induction
x [h1/

√
ε] = ∑x [ek] ±

√
ε,

and the claim follows by plugging into (6.3).

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 87

Algorithm 3 Divide(∣ a, b ∣ c)
1. Gζ (0 ∣∣ h0)

2. for each k ∈ [1/
√
ε]:

a) G×ζ (k
√
ε ∣ b ∣ bk), G< (∣ bk, a ∣ dk)

The vector (dk) is the unary representation of a/b

⎛
⎝ ∑
k∶x[dk]>ε

√
ε
⎞
⎠
⋅ x [b] = (max

k∶x[dk]>ε
k
√
ε) ⋅ x [b] = x [a] ±O (

√
ε)

b) G×ζ (
√
ε ∣ dk ∣ ek)

The vector (ek) is a (√ε)-scaled version of (dk)

(∑x [ek]) ⋅ x [b] = x [a] ±O (
√
ε)

c) G+ (∣ hk−1, ek ∣ hk)
Finally, we sum the ek’s

x [h1/
√
ε] ⋅ x [b] = x [a] ±O (

√
ε)

3. G= (∣ h1/
√
ε ∣ c)

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 88

6.2.1.4 Max

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 89

Claim 6.2.5. In any ε-approximate solution to Max(∣ a1, . . . an ∣ b),

x [b] =maxx [ai] ±O (
√
ε) .

Proof. Similarly to (6.1), we have that for each i, k

x [ck,i] =
⎧⎪⎪⎨⎪⎪⎩

0 ± ε ifx [ai] < k
√
ε −O (ε)

1 ± ε ifx [ai] > k
√
ε +O (ε) .

For each k, taking OR of all the ck,i’s gives (approximately) 1 iff any of the x [ai]’s
is sufficiently large; in particular if the maximum is:

x [dk,n] =
⎧⎪⎪⎨⎪⎪⎩

0 ± ε if maxi x [ai] < k
√
ε −O (ε)

1 ± ε if maxi x [ai] > k
√
ε +O (ε) .

Therefore also (similarly to (6.2)),

∑
k

x [dk,n]
√
ε =max

i
x [ai] ±O (

√
ε) .

The x [ek] take care of scaling by
√
ε:

∑
k

x [ek] =max
i

x [ai] ±O (
√
ε) .

Finally, by induction,

x [h1/
√
ε] =maxx [ai] ±O (

√
ε) .

6.2.1.5 Interpolate

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 90

Algorithm 4 Max(∣ a1, . . . an ∣ b)
1. Gζ (0 ∣∣ h0)

2. for each k ∈ [1/
√
ε]:

a) Gζ (k
√
ε ∣∣ ζk)

b) Gζ (0 ∣∣ dk,0)
c) for each i ∈ [n]:

i. G< (∣ ζk, ai ∣ ck,i)
The vector (ck,i)k is the unary representation of ai:

∀i (max
k∶x[ck,i]>ε

k
√
ε) = x [ai] ±O (

√
ε)

ii. G∨ (∣ dk,i−1, ck,i ∣ dk,i)
The vector (dk,n) is the unary representation of maxai:

(max
k∶x[dk,n]>ε

k
√
ε) =maxx [ai] ±O (

√
ε)

d) G×ζ (
√
ε ∣ dk,n ∣ ek)

The vector (ek) is a (√ε)-scaled version of (dk)

(∑x [ek]) =maxx [ai] ±O (
√
ε)

e) G+ (∣ hk−1, ek ∣ hk)
Finally, we sum the ek’s

x [h1/
√
ε] =maxx [ai] ±O (

√
ε)

3. G= (∣ h1/
√
ε ∣ b)

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 91

Claim 6.2.6. In any ε-approximate solution to Interpolate(a,wa, b,wb ∣ c),

x [c] (x [wa] + x [wb]) = (x [wa] ⋅ x [a] + x [wb] ⋅ x [b]) ±O (
√
ε) .

Proof. By Claim 6.2.4, we have

x [wa] ⋅ (x [wa] + x [wb]) = x [wa] ±O (
√
ε)

x [wb] ⋅ (x [wa] + x [wb]) = x [wb] ±O (
√
ε) .

Therefore, by Claim 6.2.3,

x [ca] ⋅ (x [wa] + x [wb]) = x [wa] ⋅ x [c] ±O (
√
ε)

x [cb] ⋅ (x [wa] + x [wb]) = x [wb] ⋅ x [c] ±O (
√
ε) .

The claim follows by definition of G+.

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 92

Algorithm 5 Interpolate(a,wa, b,wb ∣ c)

1. G×ζ (1/2 ∣ wa ∣ wa/2) and G×ζ (1/2 ∣ wb ∣ wb/2)
We divide by 2 before adding in order to stay in [0,1]

2. G+ (∣ wa/2, wb/2 ∣ wa/2+b/2) Add the weights

3. Divide(∣ wa/2, wa/2+b/2 ∣ wa) and Divide(∣ wb/2, wa/2+b/2 ∣ wb),
wa and wb are the normalized weights:

x [wa] ⋅ (x [wa] + x [wb]) = x [wa] ±O (
√
ε)

4. Multiply(∣ wa, a ∣ ca) and Multiply(∣ wb, b ∣ cb)
ca and cb are the a and b components, respectively, of c:

x [ca] = x [wa] ⋅ x [a] / (x [wa] + x [wb]) ±O (
√
ε) / (x [wa] + x [wb])

5. G+ (∣ ca, cb ∣ c)

Finally, c is the interpolation of a and b:

x [c] = (x [wa] ⋅ x [a] + x [wb] ⋅ x [b]) / (x [wa] + x [wb])
±O (

√
ε) / (x [wa] + x [wb])

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 93

6.2.2 Equiangle sampling segment

The first information we require in order to compute the Hirsch et al mapping f (y)
is about the subcube to which y belongs: is it part of the tube? if so, which are the
entrance and exit facets? In order to answer those questions, we extract the binary
representation of the cube. Recall that our circuit uses brittle comparators; thus
when y is close to a facet between subcubes, the behavior of the brittle comparators
may be unpredictable. We start with the easy case, where y is actually far from
every facet:

Definition 6.2.7. We say that y is an interior point if for every i, ∣yi − 1/2∣ > ε;
otherwise, we say that y is a boundary point.

A very nice property of the Hirsch et al construction is that whenever y is at
the intersection of two or more facets, the displacement is the same: g (y) = δξ2n+2.
Thus, by the Lipschitz property of g, whenever y is close to the intersection of two
or more facets, the displacement is approximately δξ2n+2. For such y’s, we don’t care
to which subcube they belong.

Definition 6.2.8. We say that y is a corner point if there exist distinct i, j ∈ [2n + 2]
such that ∣yi − 1/2∣ < ε1/4 and ∣yj − 1/2∣ < ε1/4.

(Notice that y may be an interior point and a corner point at the same time.)
We still have a hard time handling y’s which are neither an interior point nor

a corner point. To mitigate the effect of such y’s we use an equiangle averaging
scheme. Namely we consider the set:

Eε (y) = {yl = y + (6l ⋅ ε)1∶0 ≤ l < 1/
√
ε}

where 1 denotes the all-ones vector. Notice that since g is λ-Lipschitz for constant
λ, g (yl) will be approximately the same for all yl ∈ Eε (y).
Fact 6.2.9. If any yl ∈ Eε (y) is not a corner point, then at most one yl′ ∈ Eε (y) is
a boundary point.

Proof. For each dimension, at most one element in Eε (y) can be ε-close to the (1/2)
facet. Thus if two elements in Eε (y) are boundary points, it must be because of
distinct dimensions - and therefore every yl is a corner point.

Given input y, we compute the displacement g (⋅) separately and in parallel for
each yl ∈ Eε, and average at the end. Since at most one yl is a boundary point, this
will incur an error of at most

√
ε.

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 94

In the generalized circuit we can construct Eε using (1/
√
ε) auxiliary nodes and

Gζ and G+ gates:
x [yli] =min{x [y0i] + (6l ⋅ ε) ,1} ± 2ε

6.2.3 Computing the displacement

For each yl ∈ Eε, we construct a disjoint circuit that approximates the displacement
g (yl). In the description of the circuit below we omit the index l.

Lemma 6.2.10. The circuit below O (√ε)-approximately simulates the computation
of the Hirsch et al displacement:

1. Whenever (x [yi])i∈[2n+2] is an interior point,

x [g+i] − x [g−i] = gi (x [y]) ±O (ε1/4)

2. Furthermore, whenever (x [yi])i∈[2n+2] is a corner point,

x [g+2n+2] − x [g−2n+2] = δ ±O (
√
ε)

and ∀i < 2n + 2:
x [g+i] − x [g−i] = 0 ±O (

√
ε)

Proof. We construct the circuit in five stages: (1) given y, we extract b, that is the
binary representation of the corresponding subcube in {0,1}2n+2; (2) we then compute
whether b belongs to a path in H, and if so which are the previous and next vertices;
(3) we compute the centers of the coordinate systems corresponding to the entrance
and exit facets, and label them zin and zout; (4) we project y to each facet, and
transform this projection to the local polar coordinate systems - (rin,pin); and (5)
finally, we use all the information above to compute the displacement g = g (y).

The correctness of Lemma 6.2.10 follows from Claims 6.2.11-6.2.17.

Extract b ∈ {0,1}2n+2

Our first step is to extract the binary vector b which represents the subcube to which
y belongs. In other words we want bi to be the indicator of yi < 1/2. We do that
by adding the following gadgets: Gζ (1/2 ∣∣ c1/2) and, for each i, G< (∣ yi, c1/2 ∣ bi).
Observe that now

x [bi] =
⎧⎪⎪⎨⎪⎪⎩

0 ± ε x [yi] < x [c1/2] − ε

1 ± ε x [yi] > x [c1/2] + ε

Claim 6.2.11. If x [y] is an interior point, x [b] is the correct representation (up to
ε error) of the corresponding bits in {0,1}2n+2.

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 95

Neighbors in H

Given x [b] we can construct, using G∧’s and G¬’s and a polynomial number of
unused nodes, the circuits SH and PH that give the next and previous vertex visited
by our collection of paths, H. The output of each circuit is represented by 2n + 2
unused nodes {PH

i (b)} and {SH
i (b)}.

Recall thatH is defined in {0,1}2n+1, so the last input bit is simply ignored (inside
the picture it is always 0); the last output bit is used as follows. Our convention
is that starting points and end points correspond to PH (b) = b and SH (b) = b,
respectively, and likewise for points that do not belong to any path. An exception to
this is the 0 starting point, which will correspond to PH (0) = (02n+1; 1): This is in
accordance with the Hirsch et al construction, where the home subcube is constructed
as if it continues a path from the subcube above it.

Claim 6.2.12. If x [b] is an ε-approximate binary vector, i.e. x [b] ∈ ([0, ε] ∪ [1 − ε,1])2n+2,
then x [PH (b)] and x [SH (b)] correctly represent (up to ε error) the previous vertex
and next vertex in H.

Entrance and exit facets

Let b+ini = bi ∧ ¬PH
i (b), i.e. b+ini is 1 if the path enters the current subcube via the

positive i-th direction; define b−ini analogously. Let bini denote the OR of b+ini and
b−ini .

The center of the entrance facet is constructed via Gζ , G×ζ , G+, and G− according
to the formula:

zini =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/2 − h/2 bini = 0 AND bi = 0

1/2 + h/2 bini = 0 AND bi = 1

1/2 bini = 1

Construct zout analogously.
Notice that if we know on which coordinate the path enters, in {0,1}2n+2 it has

only one possible direction; in the Hirsch et al hypercube this corresponds to always
entering from the center (i.e. from the yi = 1/2 facet). Also, if b corresponds to a
non-trivial starting point bin = 0 and zin is simply the center of the subcube (and
similarly for bout,zout when b is an end point).

Claim 6.2.13. If x [b], x [PH (b)], and x [SH (b)] are ε-approximate binary vectors,
then x [zin] and x [zout] are O (ε)-approximations to the centers of the entrance facet
and exit facets, respectively.

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 96

Max-norm polar coordinates

We are now ready to compute the local max-norm polar coordinates of the projections
of y on the entrance and exit facets.

The max-norm radius is given by

rin = max
i∶bin

i
=0
∣zini − yi∣

Finding the maximum of a (length 2n+1) vector requires some care when on each
gate we can incur a constant error, the details are described in Algorithm 4.

The direction (max-norm) unit-vector, p, is given by

pini = (zini − yi) /rin

Division is computed using Divide, introducing an error of O (√ε/rin); this approx-
imation suffices because for rin < h/8, we multiply pini by rin when we interpolate.
Also, we will use two nodes for each pini to represent the positive and negative values.
We do the same for (rout,pout).
Claim 6.2.14. If x [y] is an interior point, then x [rin] and x [rout] are O (√ε)-
approximations to the distances of x [y] from x [zin] and x [zout], respectively. Fur-
thermore, x [pin] and x [pout] are O (√ε/x [rin])- and O (√ε/x [rout])- to the unit-
length vectors that point from x [y] in the directions of x [zin] and x [zout], respec-
tively.

The final displacement

Given pin and bin, we can compute gin for the special values of rin. Recall that

gin (⟨rin,pin⟩) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ (b+in − b−in) rin = 0

−δpin rin = h/8
δ (b−in − b+in) rin = h/4
δξ2n+2 rin = h/2

We use Algorithm 5 to interpolate for intermediate values of rin. We also need
to interpolate between gin and gout. The ratio at which we interpolate is exactly
the ratio between the distance of y from the entrance and exit facets. We label the
positive and negative components of this last interpolation g(interior)+ and g(interior)−,
respectively.

When y is close to both facets, the interpolation may be inaccurate; however,
in this case it is a corner point. (We remark that this seems to be the only part

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 97

of the proof which requires us to set the threshold for a corner point and the final
error at Θ (ε1/4) rather than Θ (√ε); this issue may be avoidable by a more careful
construction of Algorithms 3 and 5.)

Claim 6.2.15. If x [y] is an interior point of an intermediate subcube in the tube, and
it is not a corner point, then (x [g(interior)+] − x [g(interior)−]) is aO (ε1/4)-approximation
of the Hirsch et al displacement g (x [y]).

Corner points We must ensure that if y is a corner point, we set g(corner)+ = δξ2n+2
and g(corner)− = 0: check over all pairs of coordinates whether ∣x [yi] − 1/2∣ < 2ε1/4

and ∣x [yj] − 1/2∣ < 2ε1/4. Let z be the variable representing the OR of those (2n+2
2
)

indicators. Interpolate (e.g. using Algorithm 5) between the (g(interior)+,g(interior)−)
we computed earlier and δξ2n+2 with weights z and ¬z. Label the result of the
interpolation (g(tube)+,g(tube)−).

We remark that whenever z is ambiguous, i.e. the second smallest ∣x [yi] − 1/2∣
is very close to 2ε1/4, then we cannot predict the value of x [z]; it can take any value
in [0,1]. Nevertheless, in this case x [y] is not a corner point, thus for most yl ∈ Eε,
x [yl] is an interior point. This means that by Claim 6.2.15, we would compute the
(approximately) correct interior displacement (x [g(interior)+] − x [g(interior)−]). Since
x [y] is close to a corner point, this value is very close to δξ2n+2 = (x [g(corner)+] − x [g(corner)−]).
Therefore, although we don’t know the value of x [z], we use it to interpolate between
two (approximately) equal vectors - so the result is guaranteed to be (approximately)
correct regardless of the value of x [z].
Claim 6.2.16. If x [y] is a corner point, then (x [g(tube)+] − x [g(tube)−]) is a O (√ε)-
approximation of δξ2n+2, and thus also a O (ε1/4)-approximation of the Hirsch et al
displacement g (x [y]). Furthermore, Claim 6.2.15 continues to hold for (g(tube)+,g(tube)−).

Start/end subcubes and subcubes outside the tube For start/end subcubes
(except the home subcube) we use a slightly different (Cartesian) interpolation that
yields a fixed point in the center of the subcube, and a displacement of δξ2n+2 on
all facets but the exit/entrance facet, respectively. For subcubes in the picture but
outside the tube, we again set g = δξ2n+2.

Notice that we can infer the type of subcube from the following two-bits vector:

T = (∨ib
in
i ,∨ib

out
i)

If T = (0,0), the subcube is outside the tube; when T = (0,1), we are at a start
subcube, while T = (1,0) corresponds to an end subcube; T = (1,1) is an intermediate
subcube in the tube. Finally, interpolate between the displacement for each type of
subcube using T and ¬T ; label the result of the interpolation (g+,g−).

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 98

Claim 6.2.17. If x [y] is either an interior point or a corner point, of any subcube
in the slice, then (x [g+] − x [g−]) is an O (ε1/4)-approximation of the Hirsch et al
displacement g (x [y]).

6.2.4 Summing the displacement vectors

We are now ready to average over the displacement vectors we computed for each
yl. Using G×ζ and G+ we have that

x [g+i] =
1/
√
ε

∑
l=1

(
√
εx [gl+i]) ±O (

√
ε) and x [g−i] =

1/
√
ε

∑
l=1

(
√
εx [gl−i]) ±O (

√
ε)

Lemma 6.2.18. For every input x [y] and every i ∈ [2n + 2],

x [g+i] − x [g−i] = gi (x [y]) ±O (ε1/4)

Proof. By Fact 6.2.9, every yl ∈ Eε, except at most one, is either an interior point or a
corner point. By Lemma 6.2.10, for all those yl, (x [g+li] − x [g−li]) is at most O (ε1/4)-
far from the right displacement. The single point which is neither an interior point
nor a corner point increases the error by at most O (√ε), as does the summation
above. Finally, because g is λ-Lipschitz for constant λ, the error added due to the
distance between the yl’s is again at most O (√ε).

6.2.5 Closing the loop

Finally, for each i ∈ [2n + 2]: G+ (∣ y1i , g+i ∣ y′i), G+ (∣ y′i, g−i ∣ y′′i) and G= (∣ y′′i ∣ y1i).

6.3 Gcrcuit with Fan-out 2

In the previous section, we proved that ε-Gcircuit is PPAD-complete for some con-
stant ε > 0. Each generalized circuit gate has fan-in at most 2, which would eventually
correspond to a bound on the incoming degree of each player in the graphical game.
In order to bound the total degree (as well as for the application to A-CEEI), we
need to also bound fan-out of each gate.

Proof of Theorem 5.0.5. We present a black-box reduction that converts a general
ε′-Gcircuit instance to an instance of ε-Gcircuit with fan-out 2, for ε′ = Θ (√ε).
Daskalakis et al [DGP09] bound the fan-out of the generalized circuit by introducing

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 99

Algorithm 6 Real2Unary(∣ a ∣ b1, . . . b4/ε′)

1. G= (∣ a ∣ c0)

2. for each k ∈ [4/ε′]:

a) G= (∣ ck−1 ∣ ck)
The ck’s are simply copies of a, ensuring that each gate has fan-out at
most 2:

∀k x [ck] = x [a] ± (k + 1) ε

b) Gζ (kε′/4 ∣∣ ζk)
c) G< (∣ ζk, ck ∣ bk)

The vector (bk) is the unary representation of a:

∀i (max
k∶x[bk]>ε

kε′/4) = x [a] ± ε′/2

a binary tree of G= gates. Unfortunately, this blows up the error: each G= gate
introduces an additive error of ε, so the increase is proportional to the depth of
the tree, i.e. Θ (ε ⋅ logn). While this was acceptable for [DGP09] who used an
exponentially small ε, it clearly fails in our setting.

We overcome this obstacle by resorting to logical gates (G<, G∨, G∧, and in
particular G¬). Recall that the logical gates are at most ε′-far from the correct
Boolean value. Therefore, concatenating multiple logical gates does not amplify the
error. In particular, if any logical gate has a large fan-out, we can distribute its
output using a binary tree of G¬ gates (we use trees of even depth). When the gate
is arithmetic (Gζ , G×ζ , G=, G+, or G−), we convert its output to unary representation
over Θ (ε′) logical gates (Algorithm 6). Then, we copy the unary representation using
trees of G¬ gates. Finally, we use G×ζ and G+ gates to convert each copy of the unary
representation back to a real value in [0,1] (Algorithm 7).

It is interesting to note that for constant ε and ε′, the unary representation has
constant size, so the number of new gates is proportional to the original fan-out (i.e.
the number of leaves of the binary tree that copies the unary representation). In
particular this reduction increases the size of the circuit by a factor of Θ (1/ε′).

CHAPTER 6. THE GENERALIZED CIRCUIT PROBLEM 100

Algorithm 7 Unary2Real(∣ b1, . . . b4/ε′ ∣ a′)

1. Gζ (0 ∣∣ d0)

2. for each k ∈ [4/ε′]:

a) G×ζ (ε′/4 ∣ bk ∣ ck)
The sum of the ck’s is approximately a:

∑x [ck] = x [a] ± (ε′/2 + ε ⋅ 4/ε′)

b) G+ (∣ dk−1, ck ∣ dk)

3. G= (∣ dk ∣ a′)
a′ approximately recovers the original a:

x [a′] = x [a] ± ε′

101

Chapter 7

Many-player games

In this chapter we prove our hardness results for games with a large number of
players. We begin in Section 7.1 with our result for the more restricted class of
graphical and polymatrix games, and then (Section 7.2) prove a stronger hardness of
approximation for the more general class of succinct games. The two results follow
relatively easily from Theorems 5.0.5 and 4.1.1, respectively.

7.0.1 Related works: tractable special cases

For games with many players and a constant number of strategies, PTAS were given
for the special cases of anonymous games by Daskalakis and Papadimitriou [DP15]
and polymatrix games on a tree by Barman et al. [BLP15]. Finally, let us return
to the more general class of succinct n-player games, and mention an approximation
algorithm due to Goldberg and Roth [GR16]; their algorithm runs in exponential
time, but uses only a polynomial number of oracle queries.

7.1 Graphical, polymatrix games

Theorem (Theorem 5.0.2 restated). There exists a constant ε > 0, such that given
a degree 3, bipartite, polymatrix game where each player has two actions, finding an
ε-approximate Nash equilibrium is PPAD-complete.

The proof proceeds in two steps. First, we reduce to the problem of finding an
ε-Well Supported Nash Equilibrium in a polymatrix, (degree 3, bipartite) graphical
game. This reduction is implicit in Daskalakis et al [DGP09]1. In the second step we

1In [DGP09], polymatrix games are called games with additive utility functions.

CHAPTER 7. MANY-PLAYER GAMES 102

use the fact that our graphical game have a constant degree to reduce to the more
lenient notion ε-approximate Nash equilibrium.

7.1.1 Hardness of Well Supported Nash Equilibrium

Proposition (Essentially [DGP09]). 2ε-Gcircuit with fan-out 2 is polynomial-time
reducible to finding an ε-Well Supported Nash Equilibrium in a graphical (bipartite,
degree 3), polymatrix binary action game.

The reduction closely follows the lines of [DGP09]. We replace each gate in the
generalized circuit with a subgame over a constant number of players. Each subgame
has one or more designated input players, a single output player, and potentially some
auxiliary players. The utility of the input players does not depend on the subgame
at all. The guarantee is that in any ε-WSNE of the subgame, the mixed strategy
profile O(ε)-approximately implements the gate, i.e. the probability that the output
player assigns to strategy 1 is (approximately) equal to the gate function applied to
the corresponding probabilities for the input players.

Finally, we concatenate all the subgames together, i.e. we identify between the
output player of one gadget and an input player of (at most 2) other gadgets. Any
ε-WSNE in the resulting large game O(ε)-approximately implements all the gates in
the generalized circuit - so we can extract valid assignments to all the generalized
circuit lines from the probability that each output player assigns to strategy 1.

In the gadget constructions below, every input and output player has degree 1
(i.e. it only interacts with one other player, in the sense of Definition 5.0.1). Each
player participates in at most one gadget as an output player, and at most 2 gadgets
as an input player (since the circuit has maximum fan-out 2). Therefore, the total
degree of each player is ≤ 3.

Below we construct the gadgets for each of the gates. By the above argument,
Lemmata 7.1.1-7.1.4 together imply Proposition 7.1.1.

G×ζ, Gζ, G+, G= gadgets

Lemma 7.1.1 (G×ζ , Gζ , G+, G= gadgets). Let α,β > 0. Let vin1, vin2, vout, w be
players in a graphical game, and suppose that the payoffs of vout and w are as follows.

Payoff for vout:

w plays 0 w plays 1

v2 plays 0 0 1
v2 plays 1 1 0

Payoffs for w:

CHAPTER 7. MANY-PLAYER GAMES 103

game with vin1:

vin1 plays 0 vin1 plays 1

w plays 0 0 α

w plays 1 0 0

game with vin2:

vin2 plays 0 vin2 plays 1

w plays 0 0 β

w plays 1 0 0

game with vout:

vout plays 0 vout plays 1

w plays 0 0 0
w plays 1 0 1

Then, in every ε-WSNE

p [vout] =min (αp [vin1] + βp [vin2] ,1) ± ε, (7.1)

where p [u] denotes the probability that u assigns to strategy 1.

Notice that each of G×ζ , Gζ , G+, G= can be implemented using (7.1): for G×ζ set
α = ζ, β = 0; for Gζ set the same α,β, and modify w’s game with vin1 as if the latter
always plays strategy 1; etc.

Proof of Lemma 7.1.1. Assume by contradiction that (7.1) is violated:

• If p [vout] > αp [vin1] +βp [vin2] + ε, then in every ε-WSNE p [w] = 1. But then
vout is incentivized to play strategy 0, which contradicts p [vout] > ε.

• Similarly, if p [vout] < αp [vin1] +βp [vin2] − ε, then in every ε-WSNE p [w] = 0.
Therefore, p [vout] ≥ 1 − ε.

G¬, G− gadgets

Lemma 7.1.2 (G¬, G− gadgets). Let vin1, vin2, vout, w be players in a graphical game,
and suppose that the payoffs of vout and w are as follows.

Payoff for vout:

w plays 0 w plays 1

v2 plays 0 0 1
v2 plays 1 1 0

Payoffs for w:

CHAPTER 7. MANY-PLAYER GAMES 104

game with vin1:

vin1 plays 0 vin1 plays 1

w plays 0 0 1
w plays 1 0 0

game with vin2:

vin2 plays 0 vin2 plays 1

w plays 0 1 0
w plays 1 0 0

game with vout:

vout plays 0 vout plays 1

w plays 0 0 0
w plays 1 0 1

Then, in every ε-WSNE

p [vout] =max (p [vin1] − p [vin2] ,0) ± ε, (7.2)

where p [u] denotes the probability that u assigns to strategy 1.

Notice that each of G¬, G− can be implemented using (7.2).

Proof of Lemma 7.1.2. Assume by contradiction that (7.2) is violated:

• If p [vout] > p [vin1] − p [vin2] + ε, then in every ε-WSNE p [w] = 1. But then
vout is incentivized to play strategy 0, which contradicts p [vout] > ε.

• Similarly, if p [vout] < p [vin1] − p [vin2] − ε, then in every ε-WSNE p [w] = 0.
Therefore, p [vout] ≥ 1 − ε.

G< gadget

Lemma 7.1.3 (G< gadget). Let vin1, vin2, vout, w be players in a graphical game, and
suppose that the payoffs of vout and w are as follows.

Payoff for vout:

w plays 0 w plays 1

v2 plays 0 0 1
v2 plays 1 1 0

Payoffs for w:

game with vin1:

vin1 plays 0 vin1 plays 1

w plays 1 0 0
w plays 0 1 1

CHAPTER 7. MANY-PLAYER GAMES 105

game with vin2:

vin2 plays 0 vin2 plays 1

w plays 0 1 0
w plays 1 0 0

Then, in every ε-WSNE

p [vout] =
⎧⎪⎪⎨⎪⎪⎩

≥ 1 − ε p [vin1] < p [vin2] − ε

≤ ε p [vin1] > p [vin2] + ε
, (7.3)

where p [u] denotes the probability that u assigns to strategy 1.

Proof. The payoff for player w for action 0 is 1+p [vin1]−p [vin2], whereas for action
1 it is 1 − p [vin1] + p [vin2]. Therefore, in every ε-WSNE

p [w] =
⎧⎪⎪⎨⎪⎪⎩

≤ ε p [vin1] < p [vin2] − ε

≥ 1 − ε p [vin1] > p [vin2] + ε

(7.3) follows immediately because player vout want to play the opposite of w.

G∨, G∧ gadgets

Lemma 7.1.4 (G∨, G∧ gadgets). Let vin1, vin2, vout, w be players in a graphical game,
and suppose that the payoffs of vout and w are as follows.

Payoff for vout:

w plays 0 w plays 1

v2 plays 0 0 1
v2 plays 1 1 0

Payoffs for w:

game with vin1:

vin1 plays 0 vin1 plays 1

w plays 0 1 0
w plays 1/2 0 1

game with vin2:

vin2 plays 0 vin2 plays 1

w plays 0 1 0
w plays 1/2 0 1

Then, in every ε-WSNE

p [vout] =
⎧⎪⎪⎨⎪⎪⎩

≥ 1 − ε p [vin1] + p [vin2] < 2/3 − ε

≤ ε p [vin1] + p [vin2] > 2/3 + ε
, (7.4)

where p [u] denotes the probability that u assigns to strategy 1.

CHAPTER 7. MANY-PLAYER GAMES 106

Notice that (7.4) implements an G∨ (OR) gadget when the input values are
approximately Boolean. A G∧ (AND) gadget can be implemented analogously. by
interchanging the 1 and 1/2 values in w’s payoff matrices.

Proof of Lemma 7.1.4. The payoff for player w for action 0 is p [vin1] + p [vin2],
whereas for action 1 it is (1−p [vin1])/2+(1−p [vin2])/2 = 1−(p [vin1]+p [vin2])/2. In
particular, the latter payoff from action 1 is larger whenever p [vin1] + p [vin2] < 2/3.

Therefore, in every ε-WSNE

p [w] =
⎧⎪⎪⎨⎪⎪⎩

≤ ε p [vin1] + p [vin2] < 2/3 − ε

≥ 1 − ε p [vin1] + p [vin2] > 2/3 + ε

(7.4) follows immediately because player vout want to play the opposite of w.

7.1.2 From
√
ε-WSNE to Θ (ε)-ANE

The reduction above shows hardness for the slightly stronger notion (therefore weaker
hardness) of ε-WSNE. Daskalakis et al [DGP09] show a reduction from

√
ε-WSNE

to Θ (ε)-ANE for games with a constant number of players. It is easy to see that the
same reduction holds for graphical games with constant degree. We sketch the proof
below.

Lemma 7.1.5. (Essentially [DGP09]) Given an ε-ANE of a graphical game with
payoffs in [0,1] and incoming degree din, we can construct in polynomial time a√
ε ⋅ (

√
ε + 1 + 4din)-WSNE.

Proof. Let V be the set of players, where each v ∈ V has utility U v and action set
Av. Let x = (xv

a) ∈ Δ (×vAv) be an ε-ANE. Let U v
a (x−v) denote the expected pay-

off for playing a when all other players play according to x. Note that U v
a (x−v) =

U v
a (xNin(v)) depends only on the distributions of the players in the incoming neigh-

borhood of v, which we denote Nin (v). Finally, let U v
max (x−v) =maxa∈Av U v

a (x−v).
Let k = k (ε) > 0 be some large number do be specified later. We construct our

new approximate equilibrium by taking, for each player only the strategies that are
within εk of the optimum:

x̂v
a =

⎧⎪⎪⎨⎪⎪⎩

xv
a

1−zv U v
a (x−v) ≥ U v

max (x−v) − εk

0 otherwise

where zv is the total probability that player v assigns to strategies that are more
than εk away from the optimum.

CHAPTER 7. MANY-PLAYER GAMES 107

The above division is well-defined because for k > 1, zv is bounded away from 1.
Moreover, the following claim from [DGP09] formalizes the intuition that when k is
sufficiently large, the total weight on actions removed is small, so x̂v is close to xv:

Claim 7.1.6. (Claim 6 of [DGP09])

∀v ∈ V ∑
a∈Av

∣x̂v
a − xv

a∣ ≤
2

k − 1

Now, the total change to the expected payoff to player v for each action a, is
bounded by the total change in mixed strategies of its incoming neighbors:

∣U v
a (x−v) −U v

a (x̂−v)∣ = ∣U v
a (xNin(v)) −U v

a (x̂Nin(v))∣

≤ ∑
a∈AN(v)

∣x̂Nin(v)
a − x

Nin(v)
a ∣ ≤ ∑

w∈N(v)
∑

a∈Aw

∣x̂w
a − xw

a ∣ ≤
2din
k − 1

It follows that x̂v
a is a (kε + 4din

k−1)-WSNE:

U v
a (x̂−v) ≥ U v

a (x−v) −
2din
k − 1

≥ U v
max (x−v) − εk − 2din

k − 1
≥ U v

max (x̂−v) − εk − 4din
k − 1

Finally, take k = 1 + 1/
√
ε to get that

kε + 4din
k − 1

≤
√
ε ⋅ (

√
ε + 1 + 4din)

7.2 Succinct games

Theorem (Theorem 5.0.4 restated). There exist constants ε, δ > 0, such that finding
an (ε, δ)-WeakNash is PPAD-hard for succinct multiplayer games where each player
has a constant number of actions.

Proof. Let f be the hard function guaranteed by Theorem 4.1.1. We construct a
game with two groups of n players each. The action set of each player corresponds
to {0,1/k,2/k . . . ,1} for a sufficiently large constant k > 0. We denote the choice of
strategies for the first group a ≜ (a1 . . . an), and b ≜ (b1, . . . bn) for the second group.

Each player (A, i) in the first group attempts to imitate the behavior of the
corresponding player in the second group. Her utility is given by

ui (ai, bi) ≜ − ∣ai − bi∣2 .

CHAPTER 7. MANY-PLAYER GAMES 108

The second group players attempt to imitate the value of f , when applied to the
vector of actions taken by all the players in the first group. The utility of the j-th
player, (B, j), is

vj (bj,a) ≜ − ∣fj (a) − bj ∣2 ,
where fj denotes the j-th output of f .

Observe that the expected utility for (A, i) is given by:

E [ui (ai, bi)] = − ∣ai − E (bi)∣2 −Var (bi) .

For any value of E (bi), player (A, i) has an action αi ∈ [E (bi) − 1/2k,E (bi) + 1/2k].
Her utility when playing αi is lower bounded by:

E [ui (αi, bi)] ≥ −
1

4k2
−Var (bi) .

On the other hand, for any âi ∉ {αi, αi + 1/k},

E [ui (âi, bi)] ≤ −
1

k2
−Var (bi) .

Therefore in every (δ, δ/k2)-WeakNash, it holds for all but a 2δ-fraction of i’s, that
player (A, i) assigns probability at least (1 −O (δ)) to strategies {αi, αi + 1/k}. In
particular, with high probability over the randomness of the players, it holds that
all but an O (δ)-fraction of the players play one of those strategies. Therefore with
high probability

∥a − E (b)∥2 = O (
√
δ + 1/k) . (7.5)

Similarly, player (B, j) (the j-th player in the second group) has an action
βj ∈ [E (fj (a)) − 1/2k,E (fj (a)) + 1/2k]. Therefore in every (δ, δ/k2)-WeakNash, it
holds for all but a 2δ-fraction of j’s, that player (B, j) assigns probability at least
(1 −O (δ)) to strategies {βj, βj + 1/k}. In particular, with high probability over the
randomness of the players, it holds that all but an O (δ)-fraction of the players play
one of those strategies. Therefore with high probability

∥b − E (f (a))∥2 = O (
√
δ + 1/k) .

Now, by the Lipschitz condition on f , whenever (7.5) holds,

∥f (a) − f (E (b))∥2 = O (
√
δ + 1/k) .

Therefore E (a) and E (b) are both solutions to the Θ (
√
δ + 1/k)-approximate Eu-

clidean Brouwer instance.

CHAPTER 7. MANY-PLAYER GAMES 109

7.2.1 Binary actions

Corollary 7.2.1. There exist constants ε, δ > 0, such that finding an (ε, δ)-WeakNash
is PPAD-hard for succinct multiplayer games where each player has two actions.

Proof. We replace each player (A, i) (respectively, (B, j)) in the proof of Theo-
rem 5.0.4 with k + 1 players, denoted: (A, i,0) , (A, i,1/k) , . . . , (A, i,1). Each new
player has two actions: {+,−}. Given a (k + 1)-tuple of actions for players {(A, i, ⋅)},
we define the realized value ri ∈ [0,1] to be

ri ≜max{x s.t. (A, i, x) plays action +} .

Let the realized value qj for players (B, j,0) , . . . , (B, j,1) be defined analogously.
We let player (A, i, x)’s utility be:

ui,x (+,b) ≜ − ∣(x + 1

k
) − qi∣

2

ui,x (−,b) ≜ − ∣(x − 1

k
) − qi∣

2

.

Similarly, for player (B, j, y), we have

uj,y (±,a) ≜ − ∣(y ±
1

k
) − fi (r)∣

2

,

where r ≜ (r1, . . . , rn) is the vector of realized values on the first group.
For any (A, i, x), we have

E [(ui,x (±,b))] = − ∣(x ±
1

k
) − E [qi]∣

2

−Var [qi] .

Subtracting her two possible payoffs, we have

E [(ui,x (+,b)) − (ui,x (−,b))] = ∣(x − E [qi]) −
1

k
∣
2

− ∣(x − E [qi]) +
1

k
∣
2

= −4
k
(x − E [qi]) .

In particular, if E [qi] > x + k
√
ε, player (A, i, x) must assign probability at most

√
ε

to action {−} in order to play ε-optimally. For any i such that all players (A, i, ⋅) use
ε-optimal mixed strategies, we have that

∣E [qi] − E [ri]∣ = O (k
√
ε + 1/k) . (7.6)

CHAPTER 7. MANY-PLAYER GAMES 110

In any (ε, δ)-WeakNash, for all but a 2δk-fraction of i’s it holds that all players
(A, i, ⋅) use ε-optimal mixed strategies; thus (7.6) holds for all but a 2δk-fraction of
i’s. Therefore,

∥E [q] − E [r]∥2 = O (
√
δk + k

√
ε + 1/k) .

By the Lipschitz condition on f , the latter also implies,

∥f (E [q]) − f (E [r])∥2 = O (
√
δk + k

√
ε + 1/k) .

Similarly, for every j such that all players (B, j, ⋅) use ε-optimal mixed strategies,
we have that

∣E [qj] − fj (E [r])∣ = O (k
√
ε + 1/k) .

Thus in any (ε, δ)-WeakNash,

∥E [q] − f (E [r])∥2 = O (
√
δk + k

√
ε + 1/k) .

Therefore E (q) and E (r) are both solutions to the Θ (
√
δ + 1/k)-approximate

Euclidean Brouwer instance.

111

Chapter 8

Bayesian Nash equilibrium

In this short chapter we supplement our hardness of approximation of Nash equilib-
rium in many-player games and many-actions game, by showing a different reason
of complexity: players’ uncertainty. Specifically, we prove that finding an approxi-
mate Bayesian Nash equilibrium in two-player games with incomplete information is
PPAD-complete, even when the players have only a constant number of actions.

In a game with incomplete information, each player i has a type ti known only
to her, and the players’ types t = (t1, t2) are drawn from a joint distribution which
is known to everyone. The payoff for player i is a function ui (a, ti) of her own type
and all the players’ actions.

Definition 8.0.1. (e.g. [SSW04])
In a Bayesian Nash equilibrium, for every player i and every type ti, the mixed

strategy xi (ti) must be a best response in expectation over the other players’ types
and actions:

Et∣ti [Ea∼(xi(ti),x−i(t−i)) [ui (a; ti)]] ≥ max
x
′
i
(ti)∈ΔAi

Et∣ti [Ea∼(x′
i
(ti),x−i(t−i)) [ui (a; ti)]] .

Similarly, in an ε-approximate Bayesian Nash equilibrium, for every player i and
every type ti, the mixed strategy xi (ti) must be an ε-best response in expectation
over the other players’ types and actions:

Et∣ti [Ea∼(xi(ti),x−i(t−i)) [ui (a; ti)]] ≥ max
x
′
i
(ti)∈ΔAi

Et∣ti [Ea∼(x′
i
(ti),x−i(t−i)) [ui (a; ti)]] − ε.

Before we prove our main corollary for incomplete information games, it is helpful
to prove the following slightly weaker statement, for two players with many strategies.

CHAPTER 8. BAYESIAN NASH EQUILIBRIUM 112

Lemma 8.0.2. There exists a constant ε > 0, such that given a two-player game with
incomplete information where each player has n actions, finding an ε-approximate
Bayesian Nash equilibrium is PPAD-complete.

Proof. We reduce from a bipartite polymatrix game, and let the typeset for each of
the two players in the incomplete information game correspond to one side of the
bipartite graph. The utility of player i on edge (i, j) of the polymatrix game depends
on her identity (i), as well as the identity (j) of the vertex on the other side of that
edge. We use the types of the incomplete information game, to encode i. We encode
j using the strategies of the second player in the incomplete information game.

In more detail, consider a bipartite polymatrix game for which it is PPAD-hard to
compute a 4ε-approximate Nash equilibrium. Use an affine transformation to change
all the payoffs from [0,1] to [1/2,1]. It is PPAD-hard to find a 2ε-approximate Nash
equilibrium in the transformed game.

We now construct the two-player incomplete information game: As we hinted
before, we let the typeset of each player correspond to the vertices on one side of
the bipartite graphical game. Player i has ∣Ti∣ types and 2 ∣Ti∣ strategies, where each
strategy corresponds to a pair of vertex and strategy for that vertex. If a player
plays a strategy whose vertex does not match her type, her payoff is 0. Therefore in
every ε-approximate Bayesian Nash equilibrium, every player, on every type, plays
the two strategies that correspond to her type with probability at least 1 − 2ε.

Let the joint distribution over types be as follows: pick a random edge in the
bipartite graph, and assign the types corresponding to its vertices. Whenever both
players play strategies that match their respective types, their payoffs are the payoffs
in the (transformed) bimatrix game on that edge. In every ε-approximate Bayesian
Nash equilibrium, every player, on every type, plays a mixed strategy which is ε-
best response. Since the other player plays strategies that correspond to the correct
vertex with probability at least 1 − 2ε, the same mixture must be a 2ε-best response
for the vertex player in the bipartite game.

In order to prove the main corollary, we need to reduce the number of actions in
the above construction. Observe that we don’t need each player to choose an action
that uniquely identifies her type. Rather, it suffices to specify which neighbor of
the other player’s vertex is chosen. This can be done concisely via a coloring of the
vertices such that every pair of vertices of distance exactly two have different colors;
i.e. a coloring of the square of the polymatrix game’s graph. The squared graph has
degree 3 ⋅ (3 − 1) = 6, and therefore we can efficiently find a 7-coloring. It suffices for
each player to specify one of 7 colors, together with one of 2 strategies for the vertex
with that color. Therefore we can encode this choice using only 14 strategies.

CHAPTER 8. BAYESIAN NASH EQUILIBRIUM 113

Corollary 8.0.3. There exists a constant ε > 0, such that given a two-player game
with incomplete information where each player has 14 actions, finding an ε-approximate
Bayesian Nash equilibrium is PPAD-complete.

114

Chapter 9

Market Equilibrium

In this chapter we formally introduce our result for non-monotone markets, discuss
it, and compare it to the original result of Chen, Paparas, and Yannakakis [CPY13].
A sketch of the proof appears in the next section.

Intuitively, a market is monotone if increasing the price of some good, while fixing
the rest of the prices, never increases the excess demand for that good. Formally, we
have the following definition by Chen et al:

Definition 9.0.1. ([CPY13]) Let M be a market with k ≥ 2 goods. We say that M
is non-monotone at price vector π if there exist c > 0, and a good g1 such that:

• the excess demand Z1 (y1, . . . yk) is a continuous function (rather than corre-
spondence) over y ∈ B (π, c);

• Z1 (π) > 0;

• the partial derivative of ∂Z1/∂y1 exists and is continuous over B (π, c);

• and ∂Z1/∂y1 (π) > 0.

We say that a market M is non-monotone if there exists such a rational price vector
π ≥ 0, and Z1 (π) is moderately computable; i.e. for any γ > 0, Z1 (π) can be
approximated to within γ in time polynomial in 1/γ.

In general we want to talk about non-monotone families of utility functions, i.e.
ones that support non-monotone markets. Formally,

Definition 9.0.2. ([CPY13]) We say that a family U of utility functions is non-
monotone if:

CHAPTER 9. MARKET EQUILIBRIUM 115

• U is countable;

• if u∶ [0,∞)k → R is in U , then so is u′ (x1, . . . xm) = a ⋅ u (xl1/b1, . . . xlk/bk) for
any indices l1, . . . , lk ∈ [m] and positive (rational) a, b1, . . . , bk;

• u (x) = g∗ (xi) is in U for some strictly increasing g∶ [0,∞) → R; and

• there exists a non-monotone market MU with utilities from U .

We need to include one more definition: that of ε-tight market equilibrium.

Definition 9.0.3. A price vector π is an ε-tight approximate market equilibrium of
M if there exists a z ∈ Z (π) (the excess demand at π) such that for every good j,
∣zj ∣ ≤ εWj, where Wj is the sum of the endowments of good j.

Our main result for non-monotone markets equilibria is now formally defined:

Theorem 9.0.4 (Non-monotone markets). Let U be any non-monotone family of
utility functions. There exists a constant εU > 0 such that given a market M where the
utility of each trader is either linear or taken from U , finding an εU -tight approximate
market equilibrium is PPAD-hard.

9.0.1 Why are non-monotone markets hard?

Before delving into the details of the construction, we attempt to reach some intu-
ition: why should we expect equilibrium computation to be hard in non-monotone
markets? Probably the most intuitive algorithm for finding market equilibrium is
via tatonnement: raise the prices of over-demanded goods, and decrease the prices
of under-demanded goods. For many markets, the tatonnement process is also com-
putationally efficient [CMV05]. One obvious problem is that when the market is
non-monotone, the tatonnement step actually takes us further away from equilib-
rium. However, the non-monotonicity is only local: if we set the (relative) price of
the non-monotone good high enough, even the most enthusiastic traders can only
afford a small amount.

The “real” reason that tatonnement fails to converge efficiently for non-monotone
markets is a little more subtle. What happens when the demand for the non-
monotone good g increases by a factor of (1 + δ) for some small δ? The tatonnement
increases the price of g, which further increases the demand. Eventually, the price
is high enough, and the demand is reduced; but due to the non-monotonicity we
may have to increase the price by larger factor, i.e. (1 + δ′) for δ′ > δ. Now, another
trader with a positive endowment of g has increased her spending budget by (1 + δ′),

CHAPTER 9. MARKET EQUILIBRIUM 116

further increasing the demand for yet another good (by a larger factor). Thus a small
change in the demand for one good may cause a much larger change in the demand
for another good. Exploiting this “butterfly effect” lies at the heart of Chen et al’s
construction.

9.0.2 High-level structure of the proof

Our reduction from polymatrix games to non-monotone markets closely follows the
footsteps of [CPY13]. To gain some intuition, consider two goods g2i−1 and g2i for each
player i, corresponding to her two available strategies (soon each of those goods will
become a subset of goods). Let π (g2i−1) and π (g2i) denote their corresponding prices;
those prices correspond to the probabilities that player i assigns to her respective
strategies. For every i, j ∈ [n], we add a trader who is interested in selling g2i−1 and
buying g2j−1 (and similarly for (2i,2j − 1), (2i − 1,2j), and (2i,2j)). This trader has
an endowment of g2i−1 that is proportional to P2i−1,2j−1, the utility of player j in the
bimatrix game with player i, when they both play the first strategy. Qualitatively,
if the price π (g2i−1) is high (player i assigns a high probability to her first strategy),
and P2i−1,2j−1 is high (player j receives a high utility from playing her first strategy
to i’s first strategy), then the demand for good g2j−1 is high - implying a high price in
every approximate market equilibrium (i.e. player j indeed assigns a high probability
to her first strategy).

In order to turn this qualitative intuition into a proof we use a more complex
construction. The main difficulty comes from the need to amplify the effect of a
higher income for one trader on the incomes of other traders. To this end we consider,
for each i ∈ [n], two sequences of goods: g2i−1 = g2i−1,0, g2i−1,1, . . . , g2i−1,4t = h2i−1 and
g2i = g2i,0, g2i,1, . . . , g2i,4t = h2i. The trader mentioned in the previous paragraph
actually owns P2i−1,2j−1 units of good h2i−1; she is still interested in good g2j−1. Now
we construct (Lemma 9.1.7) a chain of gadgets that use copies of the non-monotone
markets in U to amplify the small gap guaranteed between π (g2j−1) and π (g2j) to a
larger gap between π (h2j−1) and π (h2j).

Additionally, we want to bound the range that these prices may take. In Lemma
9.1.4 we use a price regulating gadget [Che+09; VY11] to control the relative prices
of π (g2i−1,j) and π (g2i,j). In Lemma 9.1.6 we show that the sums πi,j = π (g2i−1,j) +
π (g2i,j) are approximately equal. Finally, in Section 9.1.5 we combine these lemmata
to formalize a quantitative version of the qualitative intuition described above.

CHAPTER 9. MARKET EQUILIBRIUM 117

9.0.3 Adaptations for constant factor inapproximability

As mentioned in the introduction, Theorem 9.0.4 has a weakness in comparison
to the results of Chen et al [CPY13]: it only applies to tight approximate market
equilibrium.

Maintaining the constant hardness of approximation through most of [CPY13]’s
proof is rather straightforward, but there are a few hurdles along the way. To under-
stand the first obstacle, we must consider a subtle issue of normalization. Chen et al
normalize the bimatrix game between every pair of players to have an average value
of 1/2. While this does not change the absolute utility gained from any deviation,
the relative utility from deviation is now divided by a factor of Θ (n). In contrast,
in Theorem 5.0.2 we prove hardness for a constant ε when normalizing with respect
to a constant degree (3), i.e. each player participates in only a constant number
of bimatrix games. We overcome this difficulty by using a different normalization:
only edges (i.e. bimatrix games) that belong to the game graph will have an average
utility of 1/2, while the utilities on other edges remains 0. Since we proved hardness
for a degree 3 graphical game, the normalization only costs us a constant factor.

More serious complications arise when trying to prove [CPY13]’s Lemma 31 for
a constant ε. This lemma says that certain prices (in fact, these are sums of prices),
denoted πi,0 for i ∈ [n], are approximately equal. A key step in the proof of [CPY13]
is to show, roughly, that in every ε (n)-approximate market equilibrium,

πi,0 ≥
1

n
∑
j∈[n]

πj,0 −O (ε (n))

When ε (n) is polynomially small, this immediately implies that mini∈[n] πi,0 is within
O (ε (n)) of the average, and therefore it must also be that maxi∈[n] πi,0 is within
O (n ⋅ ε (n)) of the average. When taking a larger ε (n), this reasoning breaks. The
first modification we make to overcome this obstacle, is to require ε (n)-tight approx-
imate market equilibrium. This gives a two-sided bound:

44444444444
πi,0 −

1

n
∑
j∈[n]

πj,0

44444444444
= O (ε (n)) (9.1)

A second issue that arises in the same inequality, is that with our new normaliza-
tion, which depends on the game graph G, we can only prove that πi,0 approximates
the values of its neighbors, denoted NG (i). In other words, (9.1) becomes

1Compare with our Lemma 9.1.6. The reader may also want to refer to Lemma 6 in the full
version of [CPY13].

CHAPTER 9. MARKET EQUILIBRIUM 118

44444444444
πi,0 −

1

∣NG (i)∣
∑

j∈NG(i)
πj,0

44444444444
= O (ε (n)) (9.2)

In order to relate the value of πi,0 to the corresponding values of the neighboring
vertices, πj,0’s, we consider T consecutive applications of (9.2): πi,0 is O (T ⋅ ε)-close
to the expectation over πj,0 where j is taken from the distribution of a T -steps
random walk on G starting from i. For example, if G is a constant degree expander,
the random walk converges in O (logn) steps, yielding a (1/ logn)-inapproximability
result.

Achieving constant hardness

Finally, in order to achieve hardness for a constant ε, we want a graph with constant
mixing time - and this clearly cannot be done with a constant degree2. Instead, in
Section 9.1.2 we construct a normalized game whose graph has a constant mixing
time, each vertex has degree O (√n), and yet approximating Nash equilibrium is
hard for a constant ε. In short, we take n copies of the original n-player game (our
new game has n2 players). For any pair of players that play a (non-trivial) bimatrix
game in the original game, we have a copy of the same bimatrix game between all
(n
2
) pairs of their respective copies. We also add a trivial bimatrix game between

every pair of players that belong to the same copy of the original game. In Section
9.1.2 we argue that these newly added trivial edges are only a constant fraction of
all edges in the new game graph, yet this graph has a constant mixing time.

9.1 Non-monotone markets: proof of

inapproximability

In this section we prove our main inapproximability result for non-monotone markets
(Theorem 9.0.4)

9.1.1 Normalized polymatrix games

We identify n-player, 2-strategy polymatrix graphical games with 2n × 2n matrices
by letting the (i, j)-th 2 × 2 block correspond to the payoff matrix of player j in the
bimatrix game with player i.

2In fact, it seems that a graph where the random walks starting from any pair of neighbors
converge in constant time would suffice. We do not know whether such graphs can be constructed
with constant degree.

CHAPTER 9. MARKET EQUILIBRIUM 119

Given a game G, let P′ be the 2n × 2n induced payoff matrix. We normalize P′

as follows:

P2i,2j−1 =
⎧⎪⎪⎨⎪⎪⎩

1/ (2Δ) + (P ′
2i,2j−1 − P

′
2i,2j) / (2Δ) (i, j) ∈ E

0 otherwise
(9.3)

where E is the edge set for the graphical game3 and Δ is the maximum degree. We
define P2i,2j, P2i−1,2j−1, P2i−1,2j analogously. Notice that P and P

′
have the same

ε-WSNE, up to the normalization by the degree Δ. In particular finding an (ε/Δ)-
WSNE in P continues to be PPAD-complete.

Observe that in this formulation, finding an ε-WSNE is equivalent to finding a
vector x ∈ [0,1]2n s.t. x2i−1 + x2i = 1 and

x⊺ ⋅P2i−1 > x⊺ ⋅P2i + ε \⇒ x2i = 0

x⊺ ⋅P2i−1 < x⊺ ⋅P2i − ε \⇒ x2i−1 = 0

9.1.2 Games on graphs with a constant mixing time

Given the correspondence defined above between n-player games and 2n × 2n ma-
trices, we see that the structure of the game graph plays a non-trivial role in the
construction. In particular, adding trivial edges between vertices, i.e. adding zero-
utility bimatrix games between players, has no affect on the utility of the players,
but changes the corresponding normalized matrix. For reasons that will become clear
much later in the proof, we would like our game graph to have a constant mixing
time.

Indeed, a trivial candidate with very fast mixing is the complete graph. However,
such a blowup in the degree would dilute our inapproximability factor in the nor-
malized game. Instead, we consider n copies (v1, . . . , vn) of each player v ∈ V in the
original game. If players u and v play a bimatrix game Gu,v in the original game G,
then for every i, j ∈ [n], we construct the same bimatrix game Gu,v between ui and vj.
Our game graph now consists of n2 vertices, each with degree4 3n. Finally, within
each copy V i, we add trivial edges between all the vertices not otherwise connected
(including self-loops). Normalize this game using (9.3). We use G to denote the new
game and G for the new game graph; we henceforth let Δ = 4n−3 denote the degree.
In the next two lemmata we show that this game satisfies the two properties we need:
finding an ε-WSNE of G is PPAD-complete, and the mixing time of G is constant.

3Notice that this definition allows self-loops in the game graph.
4Theorem 5.0.2 promises a graphical game of degree at most 3. It is not hard to extend to a

3-regular graph game with only a constant loss in the approximation factor.

CHAPTER 9. MARKET EQUILIBRIUM 120

Lemma 9.1.1. Given an ε-WSNE in G, we can (efficiently) construct a (4ε/3)-
WSNE for G.

Proof. For each player v, we take the average of the mixed strategies of v1, . . . , vn.
The utility of v is the same as the average of utilities of v1, . . . , vn, and if v has a
(4ε/3)-improving deviation, then at least one of the copies vi has an ε-improving
deviation. (The (4/3) factor comes from the change in the degree.)

Lemma 9.1.2. Let πvi,T be the distribution of a random walk on G after T steps,

starting from vi, and let π∗ be the uniform distribution on the vertices of G. Then

∥πvi,T − π∗∥
1
≤ (1

4
)
T /2

+ (3
4
)
T /2

= 2−O(T)

Proof. At each step of the random walk, there is a constant probability (greater than
3/4) of walking on a non-trivial edge, which takes us to another (uniformly random)
copy of the original game; thereafter the copy of the game remains uniformly random.
Similarly, at each step there is a constant probability (greater than 1/4) of moving
to a vertex within the same copy (again, uniformly random). Thus conditioned on
having walked on a non-trivial edge, and then on an edge within the same copy,
the distribution is uniform. Since all vertices have the same degree, this is also the
stationary distribution, and we never leave it.

For simplicity, in the following we redefine n to be the size of G (and hence
Δ ≈ 4

√
n).

9.1.3 Construction

Let N be a sufficiently large constant, and let t = logN . Note that N depends
on the parameters of the non-monotone market in U , but not on the size n of our
construction. We use the notation ON (⋅) to denote the asymptotic behavior when
N goes to infinity (but arbitrarily slower than n). We prove that it is PPAD-hard to
find an η-tight approximate market clearing equilibrium for η = N−8ε, where ε is the
inapproximability factor from Lemma 9.1.1.

For each vertex i ∈ [n] we construct a series of 4t + 1 gadgets Ri,j, for j ∈ [0 ∶ 4t].
Each gadget is composed of:

Main goods g2i−1,j and g2i,j are the main goods in the reduction. They are used to
encode the weights assigned to strategies x2i−1 and x2i, respectively.

CHAPTER 9. MARKET EQUILIBRIUM 121

Non-monotone gadget For each j ∈ [4t], we include additional goods si,j,3, . . . , si,j,k
and a non-monotone gadget

nm (μ, γ, g2i−1,j, g2i,j, si,j,3, . . . , si,j,k)

This means that we scale the non-monotone market guaranteed to exist in U
according to parameters γ and μ such that when all the prices are approxi-
mately the same, the excess demand of g2i−1,j increases linearly with its price.
Formally, we have the following lemma by Chen et al.

Lemma 9.1.3. (Lemma 3.1 of [CPY13]) There exist two (not necessarily ratio-
nal) positive constants c and d with the following property. Given any γ > 0, one
can build a market Mγ with utilities from U and goods g2i−1,j, g2i,j, si,j,3, . . . , si,j,k
in polynomial time in 1/γ such that:

Let fγ,μ (x) denote the excess demand function of g2i−1,j when the price of g2i−1
is 1 + x, and the prices of all other k − 1 goods are 1 − x. Then fγ,μ is well
defined over [−c, c] with ∣fγ,μ (0)∣ ≤ μγ and its derivative f

′
γ,μ (0) = d > 0. For

any x ∈ [−c, c] , fγ,μ (x) also satisfies

∣fγ,μ (x) − fγ,μ (0) − μdx∣ ≤ ∣μx/D∣ , where D =max{20,20/d}.

Finally, we would like to set μ = Δ/d; in particular, this would imply that
fγ,μ (x) ≈ Δx. However, as mentioned above, d may be irrational. Instead, let
d∗ be a positive rational constant that satisfies

1 − 1/D ≤ d∗ ⋅ d ≤ 1

We set the parameters μ = d∗Δ and γ = 1/N6.

Price regulating gadget For j ∈ [4t], we include a price regulating gadget

pr (τ, αj, g2i−1,j, g2i,j, si,j,3, . . . si,j,k) ,

whereas for j = 0, we don’t have goods si,0,3, . . . si,0,k, and simply include the
gadget

pr (τ, α0, g2i−1,0, g2i,0) .
The parameters are set to τ = NΔ and αi = 2i/N5. Notice that α0 = N−5 and
α4t = N−1 = β.

CHAPTER 9. MARKET EQUILIBRIUM 122

This gadget ensures that in any approximate equilibrium, the price ratio π (g2i−1,j) /π (g2i,j)
is always in the range [1−αj

1+αj
,
1+αj

1−αj
]. Furthermore, within each gadget Ri,j, the

prices of all the goods besides g2i−1,j are exactly equal:

π (g2i, j) = π (si,j,3) = ⋅ ⋅ ⋅ = π (si,j,k) .

More specifically, we have two traders T1 and T2 with endowments (k − 1) τ of
g2i−1,j, for T1 and τ of each of the other goods for T2. The utilities are defined
as

u1 = (1 + αj)x (g2i−1,j) + (1 − αj)(x (g2i,j) +
k

∑
l=3

x (si,j,l))

u2 = (1 − αj)x (g2i−1,j) + (1 + αj)(x (g2i,j) +
k

∑
l=3

x (si,j,l)) .

In particular, T1 and T2 do not trade whenever π (g2i−1,j) /π (g2i,j) ∈ (1−αj

1+αj
,
1+αj

1−αj
).

Auxiliary goods For j = 0, we also include an auxiliary good auxi. Its eventual
purpose is to disentangle the price of g2i−1,0 and g2i,0 from the utility that the
actions of player i causes to other players.

Single-minded traders graph

We connect the groups of goods (Ri,j’s) using the following single-minded traders.
We use (w, g1∶ g2) to denote a trader with endowment w of good g1 who only wants
good g2. Similarly, we use (w, g1, g2∶ g3) to denote a trader who has an endowment
w of each of g1 and g2, and only wants g3.

1. For each i ∈ [n] and j ∈ [0 ∶ 4t − 1], we add two traders from Ri,j to Ri,j+1:
(Δ, g2i−1,j ∶ g2i−1,j+1) and (Δ, g2i,j ∶ g2i,j+1). These traders help propagate price
discrepancies from gi,0 to gi,4t.

2. Recall that we use gi as short for gi,0 and hi for gi,4t. For each pair (i, j) ∈ E we
add the following four traders: (ΔP2i−1,2j−1, h2i−1 ∶ g2j−1), (ΔP2i,2j−1, h2i ∶ g2j−1),
(ΔP2i−1,2j, h2i−1 ∶ g2j), (ΔP2i,2j, h2i ∶ g2j). Since P is normalized, we have

ΔP2i−1,2j−1 +ΔP2i−1,2j =ΔP2i,2j−1 +ΔP2i,2j = 1

These traders will enforce the approximate Nash equilibrium.

CHAPTER 9. MARKET EQUILIBRIUM 123

3. Connect the auxiliary goods: We let

r2j−1 = 2Δ −Δ ∑
i∈N(j)

(P2i−1,2j−1 + P2i,2j−1) > 0

r2j = 2Δ −Δ ∑
i∈N(j)

(P2i−1,2j + P2i,2j) > 0

note that r2j−1 + r2j = 2Δ.

We add the following traders: ((1 − β) r2j−1,auxj ∶ g2j−1), ((1 − β) r2j,auxj ∶ g2j),
and ((1 − β)Δ, g2j−1, g2j ∶ auxj).

Notice that the economy graph is strongly connected (because G is strongly con-
nected); therefore an equilibrium always exists [Max97]. The supplies and demands
for each good are summarized in Table 9.1.

9.1.4 Structure of a market equilibrium

We now prove some properties that every η-tight approximate equilibrium π must
satisfy. Recall that η = N−8ε, where ε is the inapproximability factor for the poly-
matrix game.

We begin with the application of the price regulating markets:

Lemma 9.1.4. For every i ∈ [n] and j ∈ [0 ∶ 4t],

1 − αj

1 + αj

≤ π (g2i−1, j)
π (g2i, j)

≤ 1 + αj

1 − αj

and
π (g2i, j) = π (si,j,3) = ⋅ ⋅ ⋅ = π (si,j,k)

Proof. Follows from the construction of the price regulating markets. For more
details see the proof5 of Lemma 6 in the full version of [CPY13], or previous works
that use similar gadgets [Che+09; VY11].

We henceforth use πi,j to denote the sum of the (i, j)-th main goods: πi,j =
π (g2i−1,j) + π (g2i,j).

Lemma 9.1.5.

5In their statement, Chen et al require an ε-additively approximate equilibrium, and for a much
smaller ε. However their proof continues to hold with our parameters.

CHAPTER 9. MARKET EQUILIBRIUM 124

Table 9.1: Goods and traders

good

[total supply]
supplied by demanded by

g2i−1, g2i

[NΔ (1 + oN (1))]

pr trader;

(Δ, g2i−1 ∶ g2i−1,1),
(Δ, g2i ∶ g2i,1);

((1 − β)Δ, g2i−1, g2i ∶ auxi)

pr traders;

(ΔP2j−1,2i−1, h2j−1 ∶ g2i−1),
⋮

(ΔP2j,2i, h2j ∶ g2i);
((1 − β) r2i−1,auxi ∶ g2i−1),
((1 − β) r2i,auxi ∶ g2i)

h2i−1

[(k − 1)NΔ (1 + oN (1))]

pr trader;

nm traders;

(ΔP2i−1,2j−1, h2i−1 ∶ g2j−1),
(ΔP2i−1,2j , h2i−1 ∶ g2j)

pr traders;

nm traders;

(Δ, g2i−1,4t−1 ∶ h2i−1)

h2i

[NΔ (1 + oN (1))]

pr trader;

nm traders;

(ΔP2i,2j−1, h2i ∶ g2j−1),
(ΔP2i,2j , h2i ∶ g2j)

pr traders;

nm traders;

(Δ, g2i,4t−1 ∶ h2i)
g2i−1,j

[(k − 1)NΔ (1 + oN (1))]
pr trader;

nm traders;

(Δ, g2i−1,j ∶ g2i−1,j+1)

pr traders;

nm traders;

(Δ, g2i−1,j−1 ∶ g2i−1,j)
g2i,j

[NΔ (1 + oN (1))]
pr trader;

nm traders;

(Δ, g2i,j ∶ g2i,j+1)

pr traders;

nm traders;

(Δ, g2i,j−1 ∶ g2i,j)
si,j,l

[NΔ (1 + oN (1))]
pr trader;

nm traders;

pr traders;

nm traders;

auxi

[NΔ (1 + oN (1))]
((1 − β) r2i−1,auxi ∶ g2i−1),
((1 − β) r2i,auxi ∶ g2i) ((1 − β)Δ, g2i−1, g2i ∶ auxi)

CHAPTER 9. MARKET EQUILIBRIUM 125

(1 −ON (η))πi,0/2 ≤ π (auxi) ≤ (1 +ON (η))πi,0/2

Proof. The total supply of auxi is 2 (1 − β)Δ, yet the demand from the single-
minded trader ((1 − β)Δ, g2i−1, g2i ∶ auxi) is (1 − β)Δ πi,0

π(auxi) . (For the upper bound

we use the fact that π is a tight approximate market equilibrium.)

We are now ready to prove that the cost of every pair of main goods is approxi-
mately the same. Let δ = N2η.

Lemma 9.1.6. Let πmax =maxi,j πi,j and πmin =mini,j πi,j, then

πmax/πmin ≤ 1 +ON (δ) .

Proof. The proof of this lemma is the main obstacle which requires the tightness
assumption of the market equilibrium, as well as our bound on the mixing time from
Lemma 9.1.2.

Recall that by Lemma 9.1.4, the prices of all the goods in each gadget Ri,j are
approximately equal. Thus, using our bound on the clearing error, we have that for
each (i, j) ∈ [n] × [0 ∶ 4t],

∣total spent on Ri,j − total worth of Ri,j ∣ ≤ ON (η ⋅ kNΔ)πi,j = ON (η ⋅NΔ)πi,j

(9.4)
By Walras’ Law, the traders within each Ri,j (i.e. the price regulating and non-

monotone gadgets) contribute the same to both quantities in (9.4). Similarly, by
Lemma 9.1.5, the auxiliary traders contribute ON (ηΔπi,0)-approximately the same
(for j = 0). Therefore the money spent on Ri,j by the single minded traders is
approximately the same as the total worth of endowments in Ri,j of single minded
traders:

• For each (i, j) ∈ [n] × [4t], the restriction of (9.4) to the single-minded traders
gives

∣Δπi,j−1 −Δπi,j ∣ = ON (η ⋅NΔ)πi,j (9.5)

• Similarly, for each group Ri,0, we have

44444444444
∑

l∈N(i)
πl,4t −Δπi,0

44444444444
= ON (η ⋅NΔ)πi,0 (9.6)

CHAPTER 9. MARKET EQUILIBRIUM 126

Applying (9.5) inductively, we have that for any i ∈ [n] and for any j, l ∈ [0∶4t],

∣πi,j − πi,l∣ = ON (η ⋅Nt)πi,l

Combining, with (9.6) we have,

444444444444
πi,0 −

1

Δ
∑

l∈N
GG (i)

πl,0

444444444444
= O (η ⋅Nt)πi,0

Thus for each i, πi,0 is O (η ⋅Nt)-approximately equal to the average of its neigh-
bors in G. Repeating this argument T times, we have that πi,0 is ON (Tη ⋅Nt)-
approximately equal to the expectation over a T -step random walk in G starting
from i. By Lemma 9.1.2, after T = O (log δ) steps the random walk δ-approximately
converges to the uniform distribution, and we have

44444444444
πi,0 −

1

n
∑
l∈[n]

πl,0

44444444444
= ON (Tη ⋅Nt) 1

n
∑
l∈[n]

πl,0 + δmax
l∈[n]

πl,0

= ON (δ)max
l∈[n]

πl,0

Finally, we have the following lemma which describes the action of the non-
monotone gadgets.

Lemma 9.1.7. (Lemma 6 of [CPY13])

1 + αj−1

π (g2i−1,j−1)
= 1 − αj−1

π (g2i,j−1)
\⇒ 1 + αj

π (g2i−1,j)
= 1 − αj

π (g2i,j)
and

1 − αj−1

π (g2i−1,j−1)
= 1 + αj−1

π (g2i,j−1)
\⇒ 1 − αj

π (g2i−1,j)
= 1 + αj

π (g2i,j)

Proof. The demand for g2i−1,j and g2i,j comes from three sources: the single-minded
traders, (Δ, g2i−1,j−1 ∶ g2i−1,j) and (Δ, g2i,j−1 ∶ g2i,j); the non-monotone gadget; and
the price regulating gadget. Assume without loss of generality that the first premise
holds, i.e.

1+αj−1
π(g2i−1,j−1) =

1−αj−1
π(g2i,j−1) . When the prices of g2i−1,j and g2i,j are equal, the

demand from (Δ, g2i−1,j−1 ∶ g2i−1,j) is larger since she has more income from g2i−1,j−1.
In order to account for this difference, π (g2i−1,j) must be higher - but then the
demand from the traders in the non-monotone market increases. Thus we further
have to increase π (g2i−1,j), until we reach the threshold of the price regulating traders:
(1 + αj) / (1 − αj).

CHAPTER 9. MARKET EQUILIBRIUM 127

Formally, normalize π such that πi,j = π (g2i−1,j) + π (g2i,j) = 2. Thus by Lemma
9.1.6, πi,j−1 is also ON (δ)-close to 2. Let f (x) denote the excess demand from the
traders in the non-monotone gadget when π (g2i−1,j) = 1+x and π (g2i−1,j) = π (si,j,3) =
⋅ ⋅ ⋅ = π (si,j,k) = 1−x (recall from Lemma 9.1.4 that the latter prices are always equal
to each other). By Lemma 9.1.3, we have that ∣f (0)∣ ≤ μγ, and for all x ∈ [−c, c]:

∣f (x) − f (0) − μdx∣ ≤ ∣μx/D∣ .

Now, let π (g2i−1,j−1) = 1 + y; notice that by Lemma 9.1.6, y = αj−1 ± ON (δ).
Let h (x, y) excess demand from all traders besides the two that belong to the price
regulating gadget. Then,

h (x, y) = f (x) + Δ (1 + y)
1 + x

−Δ = f (x) − Δx

1 + x
+ Δy

1 + x

For small x, we show that f (x) ≈Δx/ (1 + x). More precisely,

∣f (x) −Δx/ (1 + x)∣ ≤ ∣f (x) − μdx∣ + ∣μdx −Δx∣ +Δ ∣x − x/ (1 + x)∣
≤ ∣f (0)∣ + 2 ∣μx/D∣ + 2Δx2

≤ Δ ⋅ (d∗ ⋅ γ + 2x/20 + 2x2)

≤ Δy

3

where the first inequality follows from the triangle inequality; the second follows by
application of Lemma 9.1.3 for the first difference and the definitions of μ and d∗

for the second; the third inequality applies the Lemma 9.1.3 again; finally the last
inequality holds because for sufficiently large constant N , the parameters γ and x

are sufficiently small.
Therefore, the excess demand must be balanced by the demand from the price

regulating traders, implying that indeed
1+αj

π(g2i−1,j) =
1−αj

π(g2i,j) .

9.1.5 From market equilibrium to Nash equilibrium

To complete the proof of Theorem 9.0.4, we must construct an ε-WSNE from any
η-tight approximate market equilibrium.

For each i ∈ [n], let θi = (π (h2i−1) + π (h2i)) /2. We define

x2i−1 =
π (h2i−1) /θi − (1 − β)

2β
and x2i =

π (h2i) /θi − (1 − β)
2β

(9.7)

Observe that x2i−1 + x2i = 1.

CHAPTER 9. MARKET EQUILIBRIUM 128

Suppose that
x⊺ ⋅P1 ≥ x⊺ ⋅P2 + ε

We show that this forces x1 = 1 and x2 = 0; by the discussion in Section 9.1.1 this
implies that x is indeed an ε-WSNE.

The following traders spend money on g1:

1. For each i ∈ NG (1), there is a (ΔPi,1, hi; g1) trader. The total money these
traders spend on g1 is

∑ΔPi,1 ⋅ π (h1) = ∑ΔPi,1 (1 − β + 2β ⋅ xi) θ⌈i/2⌉

2. For each i ∈ NG (2), there is a (ΔPi,2, hi; g2) trader. The total money these
traders spend on g2 is

∑ΔPi,2 ⋅ π (h2) = ∑ΔPi,2 (1 − β + 2β ⋅ xi) θ⌈i/2⌉

3. ((1 − β) r1,aux1 ∶ g1) and ((1 − β) r2,aux1 ∶ g2) traders

Let M1 be the total amount that these traders spend on g1. Then

M1 = ∑
i∈N

G
(1)

ΔPi,1 (1 − β + 2β ⋅ xi) θ⌈i/2⌉ + (1 − β) r1π (aux1)

Normalizing the prices such that 1
n ∑

n
i=1 θi = 1/Δ, this means that

M1 ≥ 2 (1 − β) + 2βx⊺ ⋅P1 −ON (δ)

Similarly,
M2 ≤ 2 (1 − β) + 2βx⊺ ⋅P2 +ON (δ)

Therefore,
M1 ≥M2 + 2βε −ON (δ) =M2 +ΘN (βε)

so the difference between the demands for g1 and g2 from these traders is

M1

π (g1)
− M2

π (g2)
≥ M2 +ΘN (βε)

π (g1)
− M2 (1 + α0)
π (g1) (1 − α0)

= ΘN (βε)

Thus the price regulating traders T1 and T2 must have different demands for g1 and
g2 - but this can only happen when

1 + α0

π (g1)
= 1 − α0

π (g2)

CHAPTER 9. MARKET EQUILIBRIUM 129

Therefore, by consecutive applications of Lemma 9.1.7,

1 + β

π (h1)
= 1 − β

π (h2)

Finally, by (9.7) this implies that x1 = 1 and x2 = 0.

130

Chapter 10

CourseMatch

University courses have limited capacity, and some are more popular than others.
This creates an interesting allocation problem. Imagine that each student has ordered
all the possible schedules—bundles of courses—from most desirable to least desirable,
and the capacities of the classes are known. What is the best way to allocate seats in
courses to students? There are several desiderata for a course allocation mechanism:

Fairness In what sense is the mechanism “fair”?

Efficiency Are seats in courses allocated to the students who want them the most?

Feasibility Are any courses oversubscribed?

Truthfulness Are students motivated to honestly report their preferences to the
mechanism?

Computational efficiency Can the allocation be computed from the data in poly-
nomial time?

Competitive Equilibrium from Equal Incomes (CEEI) [Fol67; Var74; TV85] is a
venerable mechanism with many attractive properties: In CEEI all agents are allo-
cated the same amount of “funny money”, next they declare their preferences, and
then a price equilibrium is found that clears the market. The market clearing guar-
antees Pareto efficiency and feasibility. The mechanism has a strong, albeit technical,
ex post fairness guarantee that emerges from the notion that agents who miss out on
a valuable, competitive item will have extra funny money to spend on other items at
equilibrium. Truthfulness is problematic—as usual with market mechanisms—but
potential incentives for any individual agent to deviate are mitigated by the large
number of agents. However, CEEI only works when the resources to be allocated

CHAPTER 10. COURSE MATCH 131

are divisible and the utilities are relatively benign. This restriction has both benefits
and drawbacks. It ensures computational feasibility, because CEEI can be computed
in polynomial time with a linear or convex program, depending on the utilities in-
volved [Var74; Dev+08; Gho+11]; on the other hand, it is easy to construct examples
in which a CEEI does not exist when preferences are complex or the resources be-
ing allocated are not divisible. Indeed, both issues arise in practice in a variety of
allocation problems, including shifts to workers, landing slots to airplanes, and the
setting that we focus on here, courses to students [Var74; Bud11].

It was recently shown in [Bud11] that an approximation to a CEEI solution,
called A-CEEI, exists even when the resources are indivisible and agent preferences
are arbitrarily complex, as required by the course allocation problems one sees in
practice. The approximate solution guaranteed to exist is approximately fair (in that
the students are given almost the same budget), and approximately Pareto efficient
and feasible (in that all courses are filled close to capacity, with the possible exception
of courses with more capacity than popularity). This result seems to be wonderful
news for the course allocation problem. However, there is a catch: Budish’s proof is
non-constructive as it relies on Kakutani’s fixed-point theorem.

A heuristic search algorithm for solving A-CEEI was introduced in [OSB10].
The algorithm resembles a traditional tâtonnement process, in which the prices of
courses that are oversubscribed are increased and the prices of courses that are
undersubscribed are decreased. A modified version of this algorithm that guarantees
courses are not oversubscribed is currently used by the Wharton School (University of
Pennsylvania) to assign their MBA students to courses [Bud+14]. While it has been
documented that the heuristic algorithm often produces much tighter approximations
than the theoretical bound, on some instances it fails to find even the guaranteed
approximation [Bud11, Section 9].

Thus A-CEEI is a problem where practical interest motivates theoretical inquiry.
We have a theorem that guarantees the existence of an approximate equilibrium—the
issue is finding it. Can the heuristic algorithms currently used to assign Wharton
MBAs to their courses be replaced by a fast and rigorous algorithm for finding an
approximate CEEI? Or are there complexity obstacles to approximating CEEI?

In this chapter, we show that finding the guaranteed approximation to CEEI is
an intractable problem:

Theorem (Theorem 10.1.5, informal statement). The problem of finding an A-CEEI
as guaranteed by [Bud11] is PPAD-complete.

CHAPTER 10. COURSE MATCH 132

10.1 The Course Allocation Problem

Even though the A-CEEI and the existence theorem in [Bud11] are applicable to a
broad range of allocation problems, we shall describe our results in the language of
the course allocation problem.

We are given a set of M courses with integer capacities (the supply) (qj)Mj=1,
and a set of N students, where each student i has a set Ψi ⊆ 2M of permissible
course bundles, with each bundle containing at most k ≤ M courses. The set Ψi

encodes both scheduling constraints (e.g., courses that meet at the same time) and
any constraints specific to student i (e.g., prerequisites).

Each student i has a strict ordering over her permissible schedules, denoted by
≼i. We allow arbitrarily complex preferences—in particular, students may regard
courses as substitutes or complements. More formally:

Definition 10.1.1. Course Allocation Problem The input to a course allocation
problem consists of:

• For each student i a set of course bundles (Ψi)Ni=1.

• The students’ reported preferences, (≼i)Ni=1,

• The course capacities, (qj)Mj=1, and

The output to a course allocation problem consists of:

• Prices for each course (p∗j)Mj=1,

• Allocations for each student(x∗i)Ni=1, and

• Budgets for each student (b∗i)
N

i=1.

How is an allocation evaluated? The clearing error of a solution to the allocation
problem, is the L2 norm of the length-M vector of seats oversubscribed in any course,
or undersubscribed seats in courses with positive price.

Definition 10.1.2. The clearing error α of an allocation is

α ≡
√

∑
j

z2j

Where zj is given by

zj = {
∑i x

∗
ij − qj if p∗j > 0;

max [(∑i x
∗
ij − qj) ,0] if p∗j = 0.

CHAPTER 10. COURSE MATCH 133

We can now define the notion of approximate CEEI. The quality of approximation
is characterized by two parameters: α, the clearing error (how far is our solution
from a true competitive equilibrium?) and β, the bound on the difference in budgets
(how far from equal are the budgets?). Informally, α can be thought of as the
approximation loss on efficiency, and β can be thought of as the approximation loss
on fairness.

Definition 10.1.3. An allocation is a (α,β)-CEEI if:

1. Each student is allocated their most preferred affordable bundle. Formally

∀i ∶ x∗i = argmax
≼i

[xi ∈ Ψi ∶ ∑
j

xijp
∗
j ≤ b∗i]

2. Total clearing error is at most α.

3. Every budget b∗i ∈ [1,1 + β].

In [Bud11] it is proved that an (α,β)-approximate CEEI always exists, for some
quite favorable (and as we shall see, essentially optimal) values of α and β:

Theorem 10.1.4 ([Bud11]). For any input preferences, there exists an (α,β)-CEEI
with α =

√
kM/2 and any β > 0.

Recall that k is the maximum bundle size.
The bound of α =

√
kM/2 means that, for large number of students and course

capacities, the market-clearing error converges to zero quite fast as a fraction of
the endowment. It is also shown in [Bud11] that the mechanism which allocates
courses according to such an A-CEEI satisfies attractive criteria of approximate
fairness, approximate truthfulness, and approximate Pareto efficiency. The reader
may consult [Bud11] for the precise definitions of the economic properties of the
A-CEEI mechanism.

10.1.1 Our results

We our now ready to formally state our result for the complexity of A-CEEI:

Theorem 10.1.5. Computing a (
√

kM
2
, β)-CEEI is PPAD-complete, for some small

constant β > 0.

CHAPTER 10. COURSE MATCH 134

In Section 10.2, we prove that computing a (
√

kM
2
, β)-CEEI is PPAD-hard; this is

accomplished by a reduction from ε-Gcircuit. Then, in Section 10.3, we prove that
the same problem also belongs to the class PPAD; this proof mostly follows along the
lines of Budish’s existence proof [Bud11], but certain probabilistic arguments must
be constructively derandomized.

10.2 A-CEEI is PPAD-hard

]
Informally, in this section we provide a construction demonstrating that it is

possible to define a set of courses, students, and preferences such that the price of
the courses in an A-CEEI simulates the various “basic circuit functions” (e.g., an
OR gate) that, when combined and wired together, are the necessary building blocks
sufficient to emulate any continuous function. Therefore, any algorithm capable of
solving A-CEEI in polynomial time would also suffice to solve ε-Gcircuit, and hence
any problem in PPAD, in polynomial time as well.

Overview of the Reduction

We shall reduce ε-Gcircuit with fan-out 2 to the problem of finding an (α,β)-CEEI,
with approximation parameters α = Θ(N/M) and ε = ε(β) (Note that, by increasing

N , we can make α arbitrarily large as a function of M ; in particular, α >
√
kM/2.)

We will construct gadgets (that is, small sets of courses, students, capacities and
preferences) for the various types of gates in the generalized circuit problem. Each
gadget that we construct has one or more dedicated “input course”, a single “output
course”, and possibly some “interior courses”. An output course of one gadget can
(and will) be an input to another. The construction will guarantee that in any A-
CEEI the price of the output course will be approximately equal to the gate applied
to the prices of the input courses.

10.2.1 The NOT gate (G¬) gadget

To illustrate what needs to be done, we proceed to construct a gadget for the G¬
gate; in particular, this implements a logical NOT.

Lemma 10.2.1. (NOT gate (G¬) gadget)
Let nx > 4α and suppose that the economy contains the following courses:

• cx (the “input course”) ;

CHAPTER 10. COURSE MATCH 135

• c1−x with capacity q1−x = nx/2 (the “output course”);

and the following set of students:

• nx students interested only in the schedule {cx, c1−x};

and suppose further that at most n1−x = nx/4 other students are interested in
course c1−x.

Then in any (α,β)-CEEI

p∗1−x ∈ [1 − p∗x,1 − p∗x + β]

Proof. Observe that:

• If p∗1−x > 1−p∗x+β, then none of the nx students will be able to afford the bundle
{cx, c1−x}, and therefore there will be at most n1−x = nx/4 students enrolled in
the c1−x - much less than the capacity nx/2. Therefore z1−x ≥ nx/4.

• On the other hand, if p∗1−x < 1 − p∗x, then all nx students can afford the bundle
{cx, c1−x} - therefore the course will be overbooked by nx/2; thus, z1−x ≥ nx/2.

Therefore if p∗1−x ∉ [1 − p∗x,1 − p∗x + β], then ∥z∥2 ≥ nx/4 > α - a contradiction to
(α,β)-CEEI.

Similarly, in Subsection 10.2.3, we construct gadgets that simulate all the gates
of the generalized circuit problem.

10.2.2 Course-size amplification

In the next subsection, we will construct gadgets that compute all the gates necessary
for the circuit in the reduction from ε-Gcircuit. What happens when we try to
concatenate them to form a circuit? Recall the penultimate sentence in the statement
of Lemma 10.2.1: It says that the output course’s price continues to behave like the
output of the simulated gate, as long as there are not too many additional students
that try to take the output course. (If there are more students, they may raise the
price of the course beyond what we expect.) In particular, the number of additional
students that may want the output course is smaller than the number of students that
want the input course.

If we concatenated the gadgets without change, we would need to have larger
course sizes as we increase the depth of the simulated circuit. This increase in course
size is exponential in the depth of the circuit. Things get even worse—since we reduce

CHAPTER 10. COURSE MATCH 136

from generalized circuits, our gates form cycles. If the course size must increase at
every gate it would have to be infinite!

To overcome this problem we construct a special G= gadget that (approximately)
preserves the price from the input course, but is robust to twice as many additional
students:

Lemma 10.2.2. (Course-size amplification gadget)
Let nx ≥ 100α and suppose that the economy contains the following courses:

• cx (the “input course”)

• for i = 1, . . .10, ci with capacities qi = 0.5 ⋅ nx (“interior courses”);

• cx′ with capacity qx′, s.t. qx ≤ qx′ ≤ 4nx (“output course”);

and the following sets of students:

• nx students interested in schedules ({cx, ci})10i=1 (in this order);

• ni = 0.49 ⋅ nx students (∀i) interested in schedules
({cx′ , ci} ,{ci} ,{ci+1} , . . . ,{c10}) (in this order);

and suppose further that at most nx′ = 2nx other students are interested in course
cx′.

Then in any (α,β)-CEEI

p∗x′ ∈ [p∗x − β, p∗x + β]

In particular, notice that the price of cx′ is guaranteed to approximate the price
of cx, even in the presence of additional nx′ = 2nx students - twice as many students
as we added to cx.

Proof. We start by proving that all the ci’s simulate NOT gadgets simultaneously,
i.e. for every i and every (α,β)-CEEI, p∗i ∈ [1 − p∗x,1 − p∗x + β].

• If p∗i > 1− p∗x + β, assume wlog that it is the first such i, i.e. p∗j ≤ 1− p∗x + β < p∗i
for every j < i.

None of the nx students can afford buying both cx and ci. Furthermore, for
every j < i, none of the nj students will prefer ci over cj. Therefore at most ni

students will take this course: z∗i ≥ 0.01nx.

CHAPTER 10. COURSE MATCH 137

• If, on the other hand, p∗i < 1 − p∗x, then all nx students will buy course ci or
some previous course cj (for j ≤ i); additionally for every j ≤ i, each of the nj

corresponding students will buy some course ck for j ≤ k ≤ i. Therefore the
total overbooking of courses 1, . . . , i will be at least ∑j≤i z

∗
j ≥ nx ⋅ (1 − 0.01i) - a

contradiction to (α,β)-CEEI.

Now that we established that p∗i ∈ [1 − p∗x,1 − p∗x + β], we shall prove the main claim,
i.e. that p∗x′ ∈ [p∗x − β, p∗x + β].

• If p∗x′ > p∗x +β, then none of the ni students, for any ni, can afford buying both
cx′ and ci. Therefore, even in the presence of additional nx′ = 2nx students who
want to take cx′ , the course will be undersubscribed by z∗x′ ≥ qx′ − nx′ = 2nx

• If p∗x′ < x+β, then all ni students, for each i, can afford to buy their top schedule
- both {ci, cx′}. Therefore cx′ will be oversubscribed by at least z∗x′ ≥ 0.9 ⋅ nx -
a contradiction to (α,β)-CEEI.

Finally, given an instance of ε-Gcircuit with fan-out 2, we can use the gadgets
we constructed in Lemmata 10.2.1-10.2.2 to construct an instance of (α,β)-CEEI
that simulates the generalized circuit. We concatenate gadgets by identifying the
output course of one gadget with the input course of the next two gadgets. In
particular, after each gate gadget, we insert a series of course-size amplifying gadgets.
Each amplifying gadget doubles the number of additional students that the gadget
can tolerate, so a constant number of amplifying gadgets suffice; thus the blowup
in error is also constant. As for the size of the reduction, each gadget introduces
a constant number of new courses, and Θ(α) new students; thus M = Θ(∣V ∣) and
N = Θ(α ⋅ ∣V ∣), where ∣V ∣ is the number of gates in the generalized circuit.

10.2.3 Additional gate gadgets

In this section we construct the rest of the gate gadgets, completing the proof of the
PPAD-hardness.

In the lemma below we construct gadgets for a slightly modified set of gates. In
particular, instead of implementing gates Gζ and G×ζ from Definition 6.0.2, we only
consider the special cases corresponding to ζ = 1

2
(denoted G 1

2
and G/2, respectively).

Lemma 10.2.3. Let nx ≥ 28 ⋅ α and suppose that the economy has courses cx and
cy. Then for any of the functions f listed below, we can add: a course cz, and

CHAPTER 10. COURSE MATCH 138

at most nx students interested in each of cx and cy, such that in any (α,β)-CEEI
p∗z ∈ [f (p∗x, p∗y) − 2β, f (p∗x, p∗y) + 2β]

1. HALF: fG/2 (x) = x/2

2. VALUE: fG 1
2

≡ 1
2

3. SUM: fG+ (x, y) =min (x + y,1)

4. DIFF: fG− (x, y) =max (x − y,0)

5. LESS: fG< (x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 x > y + β

0 y > x + β

6. AND: fG∧ (x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 (x > 1
2
+ β) ∧ (y > 1

2
+ β)

0 (x < 1
2
− β) ∨ (y < 1

2
− β)

7. OR: fG∨ (x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 (x > 1
2
+ β) ∨ (y > 1

2
+ β)

0 (x < 1
2
− β) ∧ (y < 1

2
− β)

In particular, p∗z ∈ [f (p∗x, p∗y) − 2β, f (p∗x, p∗y) + 2β] in every (α,β)-CEEI even if up
to nz ≤ nx/28 additional students (beyond the ones specified in the proofs below) are
interested in course cz.

Proof.

HALF G/2

Let cz have capacity qz = nx/8, let nz = qz/2, and consider three auxiliary courses c1,
c2, and cx of capacities q1 = q2 = qz and qx = nx/2. Using lemma 10.2.1 add nx students
that will guarantee px ∈ [1 − p∗x,1 − p∗x + β]. Additionally, consider nx = nx/4 students
with preference list: ({cz, c1, cx} ,{cz, c2, cx} ,{c1, c2, cx}) (in this order), then:

• If the total price p∗i + p∗j of any pair i, j ∈ {1,2, z} is less than p∗x − β, then all
nx students will be able to afford some subset in their preference list, leaving a
total overbooking of at least z∗z + z∗1 + z∗2 ≥ 2nx − 3qz = nx/8, which violates the
(α,β)-CEEI conditions

• If the total price of any of the pairs above (wlog, p∗1 + p∗2) is greater than
p∗x+β, then none of the nx students will be able to afford the subset {c1, c2, cx}.
Therefore the number of students taking cz will be at least the sum of students

CHAPTER 10. COURSE MATCH 139

taking c1 or c2. Therefore, even after taking into account nz additional students,
we have that z∗z + z∗1 + z∗2 ≥ qz − nz = nx/16.

VALUE G 1
2

Similarly to the HALF gadget, consider two auxiliary courses c1 and c2, and let nx

students have preferences: ({cz, c1} ,{cz, c2} ,{c1, c2}). Then, following the argument
for the HALF gadget, it is easy to see that p∗z ∈ [12 ,

1
2
+ β] in any (α,β)-CEEI, with

nz = nx/8.

DIFF G−

Let cx be a course with price p∗x ∈ [1 − p∗x,1 − p∗x + β], qx = nx/2, and consider nx = nx/4
students willing to take {cx, cy, cz}. Then it is easy to see that

p∗z ∈ [1 − p∗x − p∗y ,1 − p∗x − p∗y + β]
⊆ [p∗x − p∗y − β, p∗x − p∗y + β]

with nz = nx/16

SUM G+

Concatenating NOT and DIFF gadgets, we have:

p∗x ∈ [1 − p∗x,1 − p∗x + β]
p∗z ∈ [p∗x − p∗y − β, p∗x − p∗y + β]
p∗z ∈ [1 − (p∗x − p∗y + β) ,1 − (p∗x − p∗y − β) + β]

⊆ [p∗x + p∗y − 2β, p∗x + p∗y + 2β]

for nz = nx/28

LESS G<

Let cx be a course with price p∗x ∈ [1 − p∗x,1 − p∗x + β], qx = nx/2; let qz = nx/8 and
nz = nx/16. Consider nx/4 students wishing to take ({cx, cy}{cz}), in this order:

• If p∗y > p∗x + β, then p∗x + p∗y > 1+ β, and therefore none of the nx/4 students will
be able to afford the first pair; they will all try to sign up to cz which will be
overbooked unless p∗z > 1

• If p∗x > p∗y +β, then all nx/4 students will sign up for the first pair, forcing p∗z = 0
in any (α,β)-CEEI.

CHAPTER 10. COURSE MATCH 140

AND G∧

Let c 1
2
be a course with price p∗1

2

∈ [1
2
, 1
2
+ β] and n 1

2
= nx/8, as guaranteed by gadget

VALUE; let qz = nx/32 and nz = nx/64. Consider nx/16 students wishing to take

({cx, c 1
2
} ,{cy, c 1

2
} ,{cz}), in this order.

• If (p∗x > 1
2
+ β) ∧ (p∗y > 1

2
+ β), then the nx/16 students can afford neither pair.

They will all try to sign up for cz, forcing p∗z > 1, in any (α,β)-CEEI.

• If (x < 1
2
− β) ∨ (y < 1

2
− β), then the nx/16 students can afford at least one of

the pairs and will register for those courses. Thus p∗z = 0.

OR G∨

Similar to the AND gadget; students will want ({cx, cy, c 1
2
} ,{cz}), in this order.

10.3 A-CEEI ∈ PPAD
that the problem belongs to the class PPAD; this proof is much harder than usual.

In this section we establish that computing a (
√
σM
2

, β)-CEEI is in PPAD, for

σ = min{2k,M}. We follow the steps of the existence proof in [Bud11], and show
that each one can be carried out either in polynomial time, or through a fixed point.
One difficulty is that certain steps of Budish’s proof are randomized and must be
constructively derandomized in polynomial time.

Remark 10.3.1. We assume that the student preferences (≿i) are given in the form of
an ordered list of all the bundles in Ψi (i.e., all the bundles that student i prefers over
the empty bundle). In particular, we assume that the total number of permissible
bundles is polynomial.

Remark 10.3.2. In fact, we prove that the following, slightly more general problem,
is in PPAD: Given any β, ε > 0 and initial approximate-budgets vector b ∈ [1,1 + β]N ,
find a (

√
σM
2

, β)-CEEI with budgets b∗ such that ∣bi − b∗i ∣ < ε for every i.

Our proof will follow the steps of the existence proof by [Bud11]. We will use the
power of PPAD to solve the Kakutani problem, and derandomize the other noncon-
structive ingredients.

CHAPTER 10. COURSE MATCH 141

10.3.1 Preliminaries

Our algorithm receives as input an economy ((qj)Mj=1 , (Ψi)Ni=1 , (≿i)
N

i=1), parameters

β, ε > 0, and an initial approximate-budgets vector b ∈ [1,1 + β]N . We denote β̄ =
min{β, ε}/2.

We will consider M -dimensional price vectors in P = [0,1 + β + ε]M . In order to
define a price adjustment function, we consider an enlargement P̃ = [−, + β + ε]M, as
well as a truncation function t ∶ P̃ → P (whose j-th coordinate is given by tj(p̃j) =
min{max{p̃j,0},1 + β + ε}).

For each student i, we denote her demand at prices p̃ with budget bi by

di (p̃, bi) =max(≿i) {x′ ∈ Ψi∶ p̃ ⋅ x′ ≤ bi}

Given the total demand of all the students, we can define the excess demand to be:

z (p̃,b) =
N

∑
i=1

di (p̃, bi) − q

A key ingredient to the analysis is the budget-constraint hyperplanes. These
are the hyperplanes in price space along which a student can exactly afford a spe-
cific bundle. For each student i and bundle x, the corresponding budget-constraint
hyperplane is defined as H (i, x) = {p̃ ∈ P∶ p̃ ⋅ = }.

10.3.2 Deterministically finding a “general position”
perturbation (step 1)

It is convenient to assume that the budget-constraint hyperplanes are in “general
position”, i.e. there is no point p̃ ∈ P at which any subset of linearly dependent
budget-constraint hyperplanes intersect (in particular, no more than M hyperplanes
intersect at any point). In the existence proof, this is achieved by assigning a small
random reverse tax τi,x ∈ (−ε, ε), for each student i and bundle x; i’s modified cost
for bundle x at prices p̃ becomes p̃ ⋅x− τi,x. Given taxes τ = (τi,x)i∈S,x∈Ψi

, we redefine
di (p̃, bi, τi), z (p̃,b, τ), and H (i, x, τi,x) analogously.

In this section, we show how to deterministically choose these taxes.

Lemma 10.3.3. There exists a polynomial-time algorithm that finds a vector of taxes
τ = (τi,x)i∈S,x∈Ψi

such that:

1. −ε < τi,x < ε (taxes are small)

2. τi,x > τi,x′ if x ≻i x′ (taxes prefer more-preferred bundles)

CHAPTER 10. COURSE MATCH 142

3. 1 ≤mini,x {bi + τi,x} ≤maxi,x {bi + τi,x} ≤ 1 + β (inequality bound is preserved)

4. bi + τi,x ≠ bi′ + τi′,x′ for (i, x) ≠ (i′, x′) (no two perturbed prices are equal)

5. there is no price p̃ ∈ P at which any subset of linearly dependent budget-
constraint hyperplanes intersect1

Proof. Assume wlog that b is rounded to the nearest integer multiple of β̄M−M :
otherwise we can include this rounding in the taxes.

We proceed by induction on the pairs (i, x) of students and bundles: at each
step let τi,x be much smaller in absolute value than all the taxes introduced so far.
(For each i, we consider the (i, x)’s either in the order ≿i or in the reverse order,
maintaining Property 2 depending on the sign of τi,x.)

More precisely, if (i, x) is the νth pair to be considered, then we set

τi,x ∈ ±β̄M−2νM ,

where the sign is chosen such that condition 3 in the statement of the lemma is
preserved.

Now, assume by contradiction that there exists a k-tupleH (i1, x1, τi1,x1
) , . . . ,H (ik, xk, τik,xk

)
of hyperplanes that intersect at price vector p̃, and such that the xi’s are linearly
dependent. (Note that the latter holds, in particular, for every (M + 1)-tuple.)

Assume further, wlog, that this is the first such k-tuple, with respect to the
order of the induction. In particular, this means that {x1, . . . , xk−1} are linearly
independent. Now consider the system

(xT
1 . . . xT

k−1) (α) = (xk)

Notice that it has rank k − 1. We can now take k − 1 linearly independent rows
j1, . . . jk−1 such that the following system has the same unique solution α:

⎛
⎜
⎝

x1,j1 . . . xk−1,j1
⋮ ⋱

x1,jk−1 xk−1,jk−1

⎞
⎟
⎠
(α) =

⎛
⎜
⎝

xk,j1

⋮
xk,jk−1

⎞
⎟
⎠

Denote

X =
⎛
⎜
⎝

x1,j1 . . . xk−1,j1
⋮ ⋱

x1,jk−1 xk−1,jk−1

⎞
⎟
⎠

1 The original existence proof of [Bud11] requires only that no more than M hyperplanes
intersect at any point; this causes problems in the conditional expectation argument [Bud11, Step
5].

CHAPTER 10. COURSE MATCH 143

Since X is a square matrix of full rank it is invertible, so we have that

α =X−1
⎛
⎜
⎝

xk,j1

⋮
xk,jk−1

⎞
⎟
⎠

Now, recall that

X−1 = 1

detX

⎛
⎜
⎝

X1,1 . . . Xk−1,1
⋮ ⋱

X1,k−1 Xk−1,k−1

⎞
⎟
⎠

where Xi,j is the (i, j)-cofactor of X. Finally, since X is a Boolean matrix, its deter-

minant and all of its cofactors are integers of magnitude less than (k − 1)k−1 ≤MM .
The entries of α are therefore rational fractions with numerators and denominators
of magnitude less than MM .

Now, by our assumption by contradiction, k hyperplanes intersect at p̃:

⎛
⎜
⎝

x1

⋮
xk

⎞
⎟
⎠
(p̃) =

⎛
⎜
⎝

bi1 + τi1,x1

⋮
bik + τik,xk

⎞
⎟
⎠

Therefore,

bik + τik,xk
= xk ⋅ p̃ =

k−1
∑
l=1

αl (xl ⋅ p̃) =
k−1
∑
l=1

αl (bil + τil,xl
) (10.1)

However, if (ik, xk) is the νth pair added by the induction, then the following is an
integer:

k−1
∑
l=1

(det(X) ⋅ αl) ⋅
M2(ν−1)M

β̄
(bil + τil,xl

)

By our assumption that all the budgets are rounded, MM

β̄
⋅ bik is also an integer. Yet

∣det(X) ⋅ M2(ν−1)M

β̄
⋅ τik,xk

∣ ≤ ∣M(2ν−1)M

β̄
⋅ τik,xk

∣ ≤ M−M is not an integer. This yields a

contradiction to Equation (10.1).

10.3.3 Finding a fixed point (steps 2-4)

This subsection describes the price adjustment correspondence of [Bud11], and is
brought here mostly for completeness.

We first define the price adjustment function:

f (p̃) = t (p̃) + 1

2N
z (t (p̃) ;b, τ)

CHAPTER 10. COURSE MATCH 144

Observe that if p̃∗ is a fixed point p̃∗ = f (p̃∗) of f , then its truncation t (p̃∗) = p∗

defines an exact competitive equilibrium2. Yet, we know that the economy may not
have an exact equilibrium - and indeed f is discontinuous at the budget constraint
hyperplanes, and so it is not guaranteed to have a fixed point.

Instead, we define an upper hemicontinuous, set-valued “convexification” of f :

F (p) = co{y∶ ∃ a sequence pw → p, p ≠ pw ∈ P such that f (pw) → y}

The correspondence F is upper hemicontinuous, non-empty, and convex; therefore,
by Kakutani’s fixed point theorem it has a fixed point (i.e. a price vector that satisfies
p̃∗ ∈ F (p̃∗)).

By [Pap94], finding a Kakutani fixed point of F is in PPAD.

Working with finite precision

To be rigorous, we need to complete a few subtle numerical details about finding
a fixed point of F . We round all price vectors to a the nearest integer multiple of

δ ∶= (β̄M 1
2
−2(νmax+1)M) (this precision suffices to implement the algorithm in Lemma

10.3.3).
At any point on the δ-grid, the price of any bundle is an integer multiple of δ,

so, any budget-constraint hyperplane which does not contain p, must be at (L1)
distance at least δ. In particular, this means that every δ/2-approximate fixed point
of F is also an exact fixed point. Finally, we can use the PPAD algorithm of [Pap94]
to find a δ/2-approximate fixed point.

There is also an issue of computing the correspondence F . From the proof of
[Pap94] it follows that it suffices to compute just a single point in F (p) for every
p. This is important because the number of points in F (p) on the δ-grid may be
exponential. As we mentioned earlier, every budget-constraint hyperplane which does
not contain t (p), must be at least δ-far. Therefore, we can take any point p′ whose
truncation t (p′) is at distance δ/2 from t (p), and does not lie on any hyperplanes.
(p′ will not be on the δ-grid.) Because no budget-constraint hyperplanes lie between
t (p′) and t (p), it follows that t (p) + 1

2N
z (t (p′) ;b, τ) ∈ F (p).

10.3.4 From a fixed point to an approximate CEEI (steps
5-9)

Lemma 10.3.4. Given a fixed point p∗ of F , we can find in polynomial time a vector

of prices pφ′ such that ∥z (pφ′ ,b, τ)∥
2
≤

√
σM
2

2See [Bud11, Appendix A, Step 2] for more details.

CHAPTER 10. COURSE MATCH 145

Proof. We use the method of conditional expectation to derandomize Step 8 of
[Bud11].

Recall from the previous subsection that there exists a neighborhood around
p∗ which does not intersect any budget-constraint hyperplanes (beyond those that
contain p∗). Let 1, . . . , L′ be the indices of students whose budget-constraint hyper-
planes intersect at p∗. For student i ∈ [L′], let wi be the number of corresponding

hyperplanes H (i, x1
i , τi,x1

i
) , . . .H (i, xwi

i , τi,xwi
i
) intersecting at p∗, and assume wlog

that the superindices of x1
i , . . . x

wi

i are ordered according to ≿i.
Let d0i be agent i’s demand when prices are slightly perturbed from p∗ such that

all xj
i ’s are affordable. Such a perturbation exists and is easily computable because

the hyperplanes are linearly independent3. Similarly, let d1i denote agent i’s demand
when x2

i , . . . x
wi

i are affordable, but x1
i is not, and so on. Finally, let zS∖[L′] (p∗,b, τ) =

dS∖[L′] (p∗,b, τ) − q be the market clearing error when considering the rest of the
students. (The demands of S ∖ [L′] is constant in the small neighborhood p∗ which
does not intersect any additional hyperplanes.)

By Lemma 3 of [Bud11], there exist distributions afi over dfi :

a
f
i ∈ [0,1] ∀ i ∈ [L′] ,∀f ∈ {0} ∪ [wi]
wi

∑
f=0

a
f
i = 1 ∀ i ∈ [L′]

such that the clearing error of the expected demand is 0:

zS∖[L′] (p∗,b, τ) +
L′

∑
i=1

wi

∑
f=0

a
f
i d

f
i = 0

We first find such a
f
i in polynomial time using linear programming.

The existence proof then considers, for each i, a random vector Θi = (Θ1
i , . . . ,Θ

wi

i):
the vectors are independent and in any realization θi satisfy ∑wi

f=0 θ
f
i = 1, while the

variables each have support supp (Θf
i) = {0,1}, and expectation E [Θf

i] = a
f
i .

By Lemma 4 of [Bud11], the expected clearing error is bounded by:

EΘ!...ΘL′

nnnnnnnnnnn

L′

∑
i=1

wi

∑
f=0

(afi − θ
f
i)d

f
i

nnnnnnnnnnn

2

2

=
L′

∑
i=1

EΘi

nnnnnnnnnnn

wi

∑
f=0

(afi − θ
f
i)d

f
i

nnnnnnnnnnn

2

2

≤ σM

4

3This perturbation eventually guarantees the existence of pφ′ . As we mentioned in Footnote
1, Budish does not require that the hyperplanes are linearly independent, so p

φ′ may not exist.
However, it seems that p

φ′ is not actually crucial to the overall existence proof. In particular, as
Budish points out, even if it exists it may be infeasible (i.e. require negative prices), so the final
solution uses p∗ instead.

CHAPTER 10. COURSE MATCH 146

We now proceed by induction on the students. For each i, if the conditional expec-
tation on (θ̂j)j<i satisfies

EΘi...ΘL′

⎡⎢⎢⎢⎢⎣

nnnnnnnnnnn

L′

∑
i=1

wi

∑
f=0

(afi − θ
f
i)d

f
i

nnnnnnnnnnn

2

2

∣ θ̂1, . . . , θ̂i−1
⎤⎥⎥⎥⎥⎦
≤ σM

4

then at least one θ̂i must also satisfy the above bound. We can find such θ̂i in
polynomial time by computing the conditional expectation for every feasible θ̂

′
i:

EΘi+1...ΘL′

⎡⎢⎢⎢⎢⎣

nnnnnnnnnnn

L′

∑
j=1

wj

∑
f=0

(afj − θ
f
j)d

f
j

nnnnnnnnnnn

2

2

∣ θ̂1, . . . , θ̂i
⎤⎥⎥⎥⎥⎦
=

i

∑
j=1

nnnnnnnnnnn

wj

∑
f=0

(afj − θ̂
f
j)d

f
j

nnnnnnnnnnn

2

2

+
L′

∑
j=i+1

EΘj

nnnnnnnnnnn

wj

∑
f=0

(afj − θ
f
j)d

f
j

nnnnnnnnnnn

2

2

+ ∑
j≠h≤i

wj

∑
f=0

wh

∑
g=0

(afj − θ̂
f
j) (a

g
h − θ̂

g
h
)

Finally, the choice of (θ̂i)
L′

i=1 induces the promised price vector pφ′ .

The chosen (θ̂i)
L′

i=1 define an allocation x∗ with bounded clearing error. We now
follow step 9 of [Bud11] in order to define budgets b∗ such that x∗ is the preferred
consumption by all the students at price p∗.

We define, for every i, b∗i = bi + τi,x∗
i
. For i > L′ we have x∗i = di (p∗, bi, τi). By

requirement 2 of lemma 10.3.3, every bundle that student i prefers over x∗i had a
greater tax and was still unaffordable at p∗; it now costs more than bi + τi,x∗

i
.

For i ≤ L′ notice that every bundle x⊥i that i prefers over x∗i and was exactly
affordable at p∗ with taxes τ and budget b, x⊥ must cost strictly more than i’s new

budget b∗i . Therefore, (x∗,b∗,p∗) is a (
√
σM
2

, β)-CEEI

147

Part IV

Quasi-polynomial Time

148

Chapter 11

Birthday repetition

This part of the thesis deals with several fundamental problems that admit quasi-
polynomial (nlogn) time algorithms. What can we learn from such an algorithm? On
one hand, assuming the Exponential Time Hypothesis (ETH, see Hypothesis 1), it
means that they are not NP-hard. On the other hand, it does not meet our gold
standard of efficiency, polynomial time (P). Furthermore, the logarithmic factor in
the exponent is still prohibitive in applications in practice.

The approach we take in this this thesis is inspired by the birthday repetitionmeta-
reduction due to Aaronson, Impagliazzo, and Moshkovitz [AIM14]. The birthday
repetition is best explained as a game1 between two provers (Alice and Bob) and a
verifier. The omniscient but untrusted provers want to convince the verifier that a
certain 3-SAT formula is (approximately) satisfiable. The provers agree in advance
on an assignment, and are then placed in separate rooms. The verifier asks Alice
for the assignments of 3 variables on one randomly chosen clause, and asks Bob for
the assignment of one of the variables in the same clause. It is not hard to see that
if at most 90% of the clauses are satisfiable, the provers have probability at most
90% to succeed in sending assignments that both satisfy Alice’s clause and agree
on the Bob’s variable. Otherwise, the verifier can detect that Alice and Bob are
lying and the 3-SAT formula is not satisfiable. But this requires coordinating the
challenge-messages sent to Alice and Bob.

In the birthday-repetition version of the same two-prover one-verifier game, the
verifier sends Alice a random selection of

√
n clauses, and sends Bob an indepen-

dently random subset of
√
n variables. By the birthday paradox, we expect that one

of Bob’s variables appears in one of Alice’s clauses. Thus their probability of tricking
the verifier into believing that a far-from-satisfiable formula is satisfiable is not much

1The sense in which we use the word “game” here is unrelated to the game theoretic “game”.

CHAPTER 11. BIRTHDAY REPETITION 149

higher than in the original (no-repetition) two-prover one-verifier game. The main
advantage in this approach is that the challenges sent to Alice and Bob are indepen-
dent; this is sometimes called a free game. This is particularly helpful when reducing
to bilinear optimization problems such as Densest k-Subgraph or Nash equilibrium
(recall (1.1) in the introduction).

The other interesting feature of the birthday repetition game is that it blows
up the number of possible questions to Alice and Bob, and (more importantly) the
length of their answers. In particular, given a list of

√
n variables, Bob has N ≜ 2

√
n

distinct choices of truth assignments to those variables. Therefore, if Alice and Bob
can devise an (approximately) optimal strategy much faster than N logN = 2n, they
would violate ETH. Hence with this approach we can obtain quasi-polynomial lower
bounds on the running time that almost exactly match the running time of the best
known algorithms.

There is one more property that is common to all our quasi-polynomial lower
bounds: while they are all based on the birthday repetition approach, each problem
introduces new obstacle and requires new ideas.

11.1 Warm-up: best ε-Nash

In order to introduce the “birthday repetition” framework, we begin with a partic-
ularly simple application. As we have already discussed, proving hardness of total
problem is notoriously difficult both conceptually and technically. Often, however,
there are related decision problems that admit much easier proofs of intractability.
For example, Gilboa and Zemel [GZ89] proved that deciding whether there exists a
Nash equilibrium with certain welfare guarantees is NP-hard.

By looking at the analogous question for approximate Nash equilibrium, we cir-
cumvent the difficulty of totality. But the quasi-polynomial algorithm of [LMM03]
can approximately2 solve this question as well. Hence, assuming ETH, this problem
is still not NP-hard.

Braverman et al. [BKW15] showed a nearly matching quasi-polynomial lower
bound on the running time for approximating the best ε-Nash equilibrium. The
theorem below obtains slightly better parameters. More importantly, our proof is
significantly simpler3 .

2This is a bi-criteria approximation: in quasi-polynomial time the algorithm can distinguish
between a game that has a high-payoff exact (or ε/2)-approximate Nash equilibrium, and a game
where every ε-approximate Nash equilibrium has low payoff. Notice however that this does not imply
that the algorithm can approximate (to within an additive ε) the value of the best ε-approximate
Nash equilibrium.

3Briefly, in our proof we focus on a single partition of the variables, where it is guaranteed that

CHAPTER 11. BIRTHDAY REPETITION 150

Theorem 11.1.1. There exists a constant ε > 0 such that, given a two-player, N-
strategy game with utilities in [0,1] distinguishing between the following requires
N Ω̃(logN) time (assuming the Exponential Time Hypothesis):

Completeness The game has an exact Nash equilibrium with expected payoff > 0.99
for both players.

Soundness In every ε-approximate Nash equilibrium, both players have expected
payoff < 0.01.

The rest of this section is devoted to the proof of Theorem 11.1.1. We first
prove a small (O (ε)) additive gap between completeness and soundness. This is the
main step that exhibits the birthday repetition. We then achieve a large gap by
a simple amplification step, where we introduce a new action for each player, and
a spurious low-payoff pure equilibrium: in the completeness case, the players don’t
want to deviate from the high-payoff mixed equilibrium; but for the soundness, they
are lured by unilateral deviations into the low-payoff equilibrium.

11.1.1 Constructing the first gap

Lemma 11.1.2. There exist absolute constants ε, δ > 0 such that the following holds.
Given a two-player, N-strategy game with utilities in [0,1] distinguishing between
the following requires N Ω̃(logN) time (assuming the Exponential Time Hypothesis):

Completeness The game has an exact Nash equilibrium with expected payoff c for
both players.

Soundness In every ε-Nash equilibrium, at least one player has expected payoff s ≤
c − δ.

Proof. We reduce from a bipartite, constant alphabet 2CSP. By the PCP Theo-
rem 2.4.1, distinguishing between a completely satisfiable instance and one where
only (1 − η)-fraction (for some constant η > 0) of the clauses are satisfiable requires
time 2Ω̃(n), assuming ETH. We construct a game where, at every approximate Nash
equilibrium, Alice’s and Bob’s respective mixed strategies encode an assignment (or
distribution over assignments) to the 2CSP4. Alice’s and Bob’s expected payoff will
depend on the number of satisfied clauses.

every pair of subsets induces approximately the right number of constraints. In contrast, [BKW15]
enumerate over all the subsets of size ≈ √n. Then it is only true that most pairs of subsets induce
the right number of constraints, which somewhat complicates the proof.

4Note that so far every approximate equilibrium encodes some assignment (or distribution over
assingmnets) - even in the soundness case.

CHAPTER 11. BIRTHDAY REPETITION 151

Construction

At a high level, our construction is composed of three subgames. The main subgame
will test the 2CSP assignment; in this subgame we perform the “birthday repetition”.
The remaining two auxiliary subgames enforce the structure of (approximate) equi-
libria; in particular, they force that the players to assign (approximately) uniform
probabilities in the main subgame to (almost) all 2CSP variables; this step uses a
construction due to Althofer [Alt94].

The players’ final payoff is a weighted average of the payoffs in the three subgame.
Since we want to make sure that the structural constraints on the equilibria are
enforced, we place only ε weight on the main subgame, and weight 1−ε

2
on each of the

auxiliary subgames.

Main subgame We partition Alice’s and Bob’s respective sets of variables into√
n subsets {Si} and {Tj}, respecitively. By Lemma 2.7.6, we can guarantee that

each subset has at most 2
√
n variables, and that the number of constraints between

any pair Si, Tj is at most 8 times the expectation.
In the main subgame, each player, chooses an index i, j ∈ [

√
n], and a partial

assignment for the corresponding respective subsets σ ∈ ΣA
Si , τ ∈ ΣB

Tj . If the partial
assignments jointly satisfy all the induced constraints, both players receive payoff 1;
otherwise they receive payoff 0.

Auxiliary subgames In addition to the choices of i, σ in the main subgame,
Alice chooses a subset CA ⊂ [√n] of cardinality ∣CA∣ =

√
n/2. In the first auxiliary

subgame, Alice wants to use the set CA to “catch” Bob’s index j: Alice has payoff 1
if j ∈ CA, and 0 otherwise. Bob, on the other hand, tries to “escape”: his payoff is 0
if j ∈ CA, and 1 otherwise.

The second auxiliary subgame is defined analogously (Bob chooses a set CB of
cardinality ∣CB ∣ =

√
n/2 and tries to catch Alice’s index i.)

Analysis

Game size Each player has an action set of size N ≤
√
n ⋅ Σ2

√
n ⋅ (

√
n√
n/2) = 2O(

√
n).

Therefore, assuming ETH, finding an (approximately) satisfying assignment to the
Label Cover instance requires time 2Ω(n) = N Ω̃(logN).

Completeness If the 2CSP has a satisfying assignment, the players can play the
following high-welfare equilibrium: in the main subgame, Alice and Bob choose

CHAPTER 11. BIRTHDAY REPETITION 152

i, j uniformly at random, and σ, τ as the respective restrictions of the satisfying
assignments. In the auxiliary subgames, Alice and Bob choose CA, CB uniformly at
random.

Because i, j are chosen uniformly at random, they have no incentives to deviate
from their choice of CA, CB; similarly, since CA, CB are chosen uniformly at random
(and the payoff in the main subgame is always 1), neither player has an incentive to
deviate from the choice of i, j. Therefore this is indeed a Nash equilibrium.

Finally, the expected payoff for each player in each auxiliary subgame is 1/2
(they have probability 1/2 of winning), and 1 in the main subgame; in total it is
c ≜ 1/2 + ε/2.

Soundness

First, we claim that in every ε-approximate Nash equilibrium (ε-ANE), the players’
respective distributions over i, j are O (ε)-close to uniform. Assume by contradiction
that Alice’s distribution over i is 36ε-far from uniform. By Lemma 2.7.8, Bob can

pick a set CB ∈ ([
√
n]√
n/2) such that i ∈ CB with probability 1/2 + 9ε. Therefore Bob can

guarantee a payoff of at least 1/2 + 9ε from the second auxiliary subgame (without
affecting his payoffs from the other subgames). Therefore at any ε-ANE, he guaran-
tees himself more than 1/2 + 6ε (otherwise, having a 3ε-improving deviation on the
auxiliary subgame implies a > ε-deviation in total). Therefore Alice’s payoff on this
subgame is less than 1/2 − 6ε, whereas she can guarantee herself a payoff of 1/2 by
picking i uniformly at random. Thus she can improve her total payoff by more than
2ε, which is a violating deviation even after we subtract ε for potential loss of payoff
due to changing her strategy in the main subgame.

Any mixed strategy profile induces a distribution over assignments to the original
2CSP instance: for each set Si, we take the distribution over ΣA

Si induced by Alice’s
mixed strategy restricted to actions where she picks index i (if she never picks i,
choose an arbitrary assignment for Si). Alice’s expected payoff in the main subgame
is equal to the probability that an assignment drawn from the induced distribution
satisfies the constraints on a random pair (Si, Tj), where i and j are drawn according
to Alice and Bob’s respective mixed strategies. Since those strategies are O (ε)-
close to uniform, Alice’s expected payoff in the main subgame is within O (ε) of the
probability that the constraints between a uniformly random (Si, Tj) are satisfied.
If the value of the 2CSP is 1−η, then the probability that any consistent assignment
(in particular, one drawn from the induced distribution) satisfies a uniformly random
(Si, Tj) is at most 1 − η/8; this is true because, by our construction of the partition,
the η-fraction of unsatisfied constraints cannot concentrate on less than η/8-fraction
of pairs. Therefore Alice’s (respectively Bob’s) expected payoff in the main subgame

CHAPTER 11. BIRTHDAY REPETITION 153

is at most 1−η/8+O (ε). Since the auxiliary subgames are 1-sum games, at least one
of Alice or Bob must have total expected payoff at most 1/2 + ε/2 (1 − η/8 +O (ε)) <
c − ηε/16 + O (ε2). Choosing ε sufficiently small compared to η (yet still constant)
completes the proof.

11.1.2 Gap amplification

Proof of Theorem 11.1.1. Consider the game from Lemma 11.1.2. First, we scale all
the payoffs by a 10−4-factor and shift them so that they are between 1 − 10−4 and 1.
Now, by Lemma 11.1.2, it is hard to distinguish between the game having an exact
Nash equilibrium with expected payoff c′ and every ε′-Nash equilibrium having at
least one player with expected payoff < c′ − δ′. We choose ε sufficiently small; in
particular, ε < ε′/4, δ′/4 < 10−4.

We add one new action to each player. When both players play old actions, their
payoffs are as in the game from Lemma 11.1.2 (with modified payoffs). When Alice
plays the new action and Bob plays an old action, Alice’s payoff is c′−δ′/2, and Bob’s
payoff is 0. Similarly, when Alice plays an old action and Bob plays his new action,
Alice’s payoff is 0 and Bob’s payoff is c′ − δ′/2. Finally, when they both play their
new actions their payoff is 10−3.

Notice that playing the new action is an (exact) pure Nash equilibrium. Notice
further that when the 2CSP is satisfied, the original equilibrium from the complete-
ness of Lemma 11.1.2 is still a Nash equilibrium since the average payoff to both
players from that equilibrium is higher than what they would get by deviating to the
new strategy.

To complete the proof we need to argue for soundness. In particular, we claim that
if the value of the 2CSP is only 1 − η, then every ε-approximate Nash equilibrium is
10−3-close (in total variation distance) to the new strategy pure equilibrium. Assume
by contradiction that this is not the case, i.e. there is an ε-approximate equilibrium
where (wlog) Alice assigns probability more than 10−3 to old strategies. First, notice
that Bob must assign at least 1/2 probability to old strategies: whenever Bob plays
the new strategy, Alice has a large incentive to deviate to her new strategy. Therefore,
by a symmetric argument, Alice must also assign at least 1/2 probability to old
actions.

Finally, the mixed strategy profile restricted to the old strategies must be a
4ε-approximate Nash equilibrium of the scaled old game. By Lemma 11.1.2, the
expected payoff to one of the players is at most c′ − δ′. But then that player has at
least δ′/4 > ε incentive to deviate to her new strategy.

154

Chapter 12

Densest k-Subgraph

k-Clique is one of the most fundamental problems in computer science: given a
graph, decide whether it has a fully connected induced subgraph on k vertices. Since
it was proven NP-complete by Karp [Kar72], extensive research has investigated the
complexity of relaxed versions of this problem.

This work focuses on two natural relaxations of k-Clique which have received
significant attention from both algorithmic and complexity communities: The first
one is to relax “k”, i.e. looking for a smaller subgraph:

Problem 12.0.1 (Approximate Max Clique, Informal). Given an n-vertex graph G,
decide whether G contains a clique of size k, or all induced cliques of G are of size
at most δk for some 1 > δ(n) > 0.

The second natural relaxation is to relax the “Clique” requirement, replacing it with
the more modest goal of finding a subgraph that is almost a clique:

Problem 12.0.2 (Densest k-Subgraph with perfect completeness, Informal). Given
an n-vertex graph G containing a clique of size k, find an induced subgraphs of G of
size k with (edge) density at least (1 − ε), for some 1 > ε > 0. (More modestly, given
an n-vertex graph G, decide whether G contains a clique of size k, or all induced
k-subgraphs of G have density at most (1 − ε)).

Today, after a long line of research [Fei+96; AS98; Aro+98; H̊as99; Kho01; Zuc07]
we have a solid understanding of the inapproximability of Problem 12.0.1. In partic-
ular, we know that it is NP-hard to distinguish between a graph that has a clique of
size k, and a graph whose largest induced clique is of size at most k′ = δk for δ = 1/n1−ε

[Zuc07]. The computational complexity of the second relaxation (Problem 12.0.2)
remained largely open. There are a couple of (very different) quasi-polynomial algo-
rithms that guarantee finding a (1 − ε)-dense k subgraph in every graph containing

CHAPTER 12. DENSEST k-SUBGRAPH 155

a k-clique [FS97; Bar15], suggesting that this problem is not NP-hard. Yet we know
neither polynomial-time algorithms, nor general impossibility results for this prob-
lem.

In this work we provide a strong evidence that the aforementioned quasi-polynomial
time algorithms for Problem 12.0.2 [FS97; Bar15] are essentially tight, assuming the
(deterministic) Exponential Time Hypothesis (ETH) (Hypothesis 1). In fact, we show
that under ETH, both parameters of the above relaxations are simultaneously hard
to approximate:

Theorem 12.0.3 (Main Result). There exists a universal constant ε > 0 such that,
assuming the (deterministic) Exponential Time Hypothesis, distinguishing between
the following requires time nΩ̃(logn), where n is the number of vertices of G.

Completeness G has an induced k-clique; and

Soundness Every induced subgraph of G size k′ = k ⋅ 2−Ω(
logn

log logn
) has density at most

1 − ε,

Our result has implications for two major open problems whose computational
complexity remained elusive for more than two decades: The (general) Densest
k-Subgraph problem, and the Planted Clique problem.

Densest k-Subgraph

The Densest k-Subgraph problem, DkS (η, ε), is the same as (the decision ver-
sion of) Problem 12.0.2, except that in the “completeness” case, G has a k-subgraph
with density η, and in the “soundness” case, every k-subgraph is of density at most
ε, where η ≫ ε. Since Problem 12.0.2 is a special case of this problem, our main
theorem can also be viewed as a new inapproximability result for DkS (1,1 − ε). We
remark that the aforementioned quasi-polynomial algorithms for the “perfect com-
pleteness” regime completely break in the sparse regime, and indeed it is believed that
DkS (n−α, n−β) (for k = nε) in fact requires much more than quasi-polynomial time
[Bha+12]. The best to-date approximation algorithm for Densest k-Subgraph
due to Bhaskara et. al, is guaranteed to find a k-subgraph whose density is within
an ∼ n1/4-multiplicative factor of the densest subgraph of size k [Bha+10], and thus
DkS (η, ε) can be solved efficiently whenever η ≫ n1/4 ⋅ε (this improved upon a previ-
ous n1/3−δ-approximation of Feige et. al [FKP01]). Making further progress on either
the lower or upper bound frontier of the problem is a major open problem.

Several inapproximability results for Densest k-Subgraph were known against
specific classes of algorithms [Bha+12] or under incomparable assumptions of Unique

CHAPTER 12. DENSEST k-SUBGRAPH 156

Games with expansion [RS10] and hardness of random k-CNF [Fei02; Alo+11]. The
most closely related result is by Khot [Kho06], who shows that the Densest k-
Subgraph problem has no PTAS unless SAT can be solved in time 2n

ε
, as opposed

to 2n
1/2+ε

in our paper. While Khot’s work uses a slightly weaker assumption, an
important advantage of our work is simplicity: our construction is very simple, es-
pecially in contrast to Khot’s reduction.

We stress that the result of [Kho06], as well as other aforementioned works,
focus on the sub-constant density regime, i.e. they show hardness for distinguishing
between a graph where every k-subgraph is sparse, and one where every k-subgraph
is even sparser. In contrast, our result has perfect completeness and provides the
first additive inapproximability for Densest k-Subgraph — the best one can hope
for as per the upper bound of [Bar15].

Planted Clique

The Planted Clique problem is a special case of our problem, where the inputs
come from a specific distribution (G (n, p) versus G (n, p)+ “a planted clique of size
k”, where p is some constant1). The Planted Clique Conjecture ([Alo+07; AKS98;
Jer92; Kuc95; FK00; DGGP10]) asserts that distinguishing between the aforemen-
tioned cases for p = 1/2, k = o(

√
n) cannot be done in polynomial time, and has served

as the underlying hardness assumption in a variety of recent applications including
machine-learning and cryptography (e.g. [Alo+07; BR13]) that inherently use the
average-case nature of the problem, as well as in reductions to worst-case problems
(e.g. [HK11; Alo+11; KZ11; Bal+13; Che+15a; Bad+16]).

The main drawback of average-case hardness assumptions is that many average-
case instances (even those of worst-case-hard problems) are in fact tractable. In
recent years, the centrality of the planted clique conjecture inspired several works
that obtain lower bounds in restricted models of computation [Fel+13; MPW15;
DM15; Hop+16; Bar+16]. Nevertheless, a general lower bound for the average-case
planted clique problem appears out of reach for existing techniques. Therefore, an
important potential application of our result is replacing average-case assumptions
such as the planted-clique conjecture, in applications that do not inherently rely on
the distributional nature of the inputs (e.g., when the ultimate goal is to prove a
worst-case hardness result). In such applications, there is a good chance that planted
clique hardness assumptions can be replaced with a more “conventional” hardness
assumption, such as the ETH, even when the problem has a quasi-polynomial algo-

1 Planted Clique typically refers to p = 1/2, while our hardness result is analogous to p = 1−δ,
for a small constant δ > 0. Nevertheless, in almost all applications of Planted Clique, hardness
for any constant p suffices.

CHAPTER 12. DENSEST k-SUBGRAPH 157

rithm. Recently, such a replacement of the planted clique conjecture with ETH was
obtained for the problem of finding an approximate Nash equilibrium with approxi-
mately optimal social welfare [BKW15].

We also remark that, while showing hardness for Planted Clique from worst-
case assumptions seems beyond the reach of current techniques, our result can also be
seen as circumstantial evidence that this problem may indeed be hard. In particular,
any polynomial time algorithm (if exists) would have to inherently use the (rich and
well-understood) structure of G (n, p).

Followup work by Manurangsi

The soundness in our result was greatly improved by Manurangsi [Man17], who
showed that even DkS (1, n−1/poly log logn) may be intractable; i.e. in the NO case the
maximal density is almost inverse-polynomial.

Techniques

Our simple construction is inspired by the “birthday repetition” technique: given
a 2CSP (e.g. 3COL), we have a vertex for each Ω̃ (√n)-tuple of variables and
assignments (respectively, 3COL vertices and colorings). We connect two vertices by
an edge whenever their assignments are consistent and satisfy all 2CSP constraints
induced on these tuples. In the completeness case, a clique consists of choosing
all the vertices that correspond to a fixed satisfying assignment. In the soundness
case (where the value of the 2CSP is low), the “birthday paradox” guarantees that
most pairs of vertices (i.e. two Ω̃ (√n)-tuples of variables) will have a significant
intersection (nonempty CSP constraints), thus resulting in lower densities whenever
the 2CSP does not have a satisfying assignment. In the language of two-prover
games, the intuition here is that the verifier has a “constant chance in catching the
players in a lie if they are trying to cheat” in the game while not satisfying the CSP.

While our construction is simple, analyzing it is intricate. The main challenge
is to rule out a “cheating” dense subgraph that consists of different assignments to
the same variables (inconsistent colorings of the same vertices in 3COL). Intuitively,
this is similar in spirit to proving a parallel repetition theorem where the provers can
answer some questions multiple times, and completely ignore other questions. Con-
tinuing with the parallel repetition metaphor, notice that the challenge is doubled:
in addition to a cheating prover correlating her answers (the standard obstacle to
parallel repetition), each prover can now also correlate which questions she chooses
to answer. Our argument follows by showing that a sufficiently large subgraph must
accumulate many non-edges (violations of either 2CSP or consistency constraints).

CHAPTER 12. DENSEST k-SUBGRAPH 158

To this end we introduce an information theoretic argument that carefully counts
the entropy of choosing a random vertex in the dense subgraph.

We note that our entropy-based argument is completely different from all other
known applications of “birthday repetition” to other problems. The main reason
is that enforcing consistency is much more difficult in the case of Densest k-
Subgraph than in other applications because the problem formulation is so simple.
In fact, even the follow-up work on the same problem by [Man17] used a completely
different (and quite elegant) argument that is based on counting small bi-cliques in
any given subgraph.

12.1 Construction (and completeness)

12.1.1 Construction

Let ψ be the 2CSP instance produced by the reduction in Theorem 2.4.4, i.e. a
constraint graph over n variables with alphabet A of constant size. We construct the
following graph Gψ = (V,E):

• Let ρ ∶=
√
n log logn and k ∶= (n

ρ
).

• Vertices of Gψ correspond to all possible assignments (colorings) to all ρ-
tuples of variables in ψ, i.e V = [n]ρ × Aρ. Each vertex is of the form v =
(yx1

, yx2
, . . . , yxρ

) where {x1, . . . , xρ} are the chosen variables of v, and yxi
is

the corresponding assignment to variable xi.

• If v ∈ V violates any 2CSP constraints, i.e. if there is a constraint on (xi, xj)
in ψ which is not satisfied by (yxi

, yxj
), then v is an isolated vertex in Gψ.

• Let u = (yx1
, yx2

, . . . , yxρ
) and v = (y′

x′1
, y′

x′2
, . . . , y′x′ρ). (u, v) ∈ E iff:

– (u, v) does not violate any consistency constraints: for every shared vari-
able xi, the corresponding assignments agree, yxi

= y′xi
;

– and (u, v) also does not violate any 2CSP constraints: for every 2CSP

constraint on (xi, x
′
j) (if exists), the assignment (yxi

, y′
x′
j
) satisfy the con-

straint.

Notice that the size of our reduction (number of vertices of Gψ) is N = (n
ρ
) ⋅ ∣A∣ρ =

2Õ(
√
n).

CHAPTER 12. DENSEST k-SUBGRAPH 159

Completeness If OPT(ψ) = 1, then Gψ has a k-clique: Fix a satisfying assignment
for ψ, and let S be the set of all vertices that are consistent with this assignment.
Notice that ∣S∣ = (n

ρ
) = k. Furthermore its vertices do not violate any consistency

constraints (since they agree with a single assignment), or 2CSP constraints (since
we started from a satisfying assignment).

12.2 Soundness

Suppose that OPT(ψ) < 1−η, and let ε0 > 0 be some constant to be determined later.
We shall show that for any subset S of size k′ ≥ k ⋅ ∣V ∣−ε0/ log log ∣V ∣, den(S) < 1 − δ,
where δ is some constant depending on η. The remainder of this section is devoted
to proving the following theorem:

Theorem 12.2.1. If OPT(ψ) < 1 − η, then ∀S ⊂ V of size k′ ≥ k ⋅ ∣V ∣−ε0/ log log ∣V ∣,
den(S) < 1 − δ for some constant δ.

12.2.1 Setting up the entropy argument

Fix some subset S of size k′, and let v ∈R S be a uniformly chosen vertex in S (recall
that v is a vector of ρ coordinates, corresponding to labels for a subset of ρ chosen
variables). For i ∈ [n], let Xi denote the indicator variable associated with v such
that Xi = 1 if the i’th variable appears in v and 0 otherwise. We let Yi represent
the coloring assignment (label) for the i’th variable whenever Xi = 1, which is of the
form l ∈ A. Throughout the proof, let

Wi−1 =X<i, Y<i

denote the i’th prefix corresponding to v. We can write :

H(Yi∣Wi−1,Xi) = Pr[Xi = 0] ⋅H(Yi∣Wi−1,Xi = 0)
+Pr[Xi = 1] ⋅H(Yi∣Wi−1,Xi = 1)

= Pr[Xi = 1] ⋅H(Yi∣Wi−1,Xi = 1)

since H(Yi∣Wi−1,Xi = 0) = 0. Notice that since (XY) and v determine each other,
and v was uniform on a set of size ∣S∣ = k′, we have

Observation 12.2.2. H(XY) = log k′.

Thus, in total, the choice of challenge and the choice of assignments should con-
tribute log k′ to the entropy of v. If much of the entropy comes from the assignment

CHAPTER 12. DENSEST k-SUBGRAPH 160

distribution (conditioned on the fixed challenge variables), we will show that S must
have many consistency violations, implying that S is sparse. If, on the other hand,
almost all the entropy comes from the challenge distribution, we will show that
this implies many CSP constraint violations (implied by the soundness assumption).
From now on, we denote

αi ∶=H(Xi∣X<i, Y<i) and βi ∶=H(Yi∣X≤i, Y<i).

When conditioning on the i’th prefix, we shall write αi(wi−1) ∶=H(Xi∣X<i, Y<i = wi−1),
and similarly for βi(⋅). Also for brevity, we denote

qi ∶= Pr[Xi = 1] and qi(wi−1) ∶= Pr[Xi = 1∣wi−1].

Prefix graphs

The consistency constraints induce, for each i, a graph over the prefixes: the vertices
are the prefixes, and two prefixes are connected by an edge if their labels are consis-
tent. (We can ignore the 2CSP constraints for now — the prefix graph will be used
only in the analysis of the consistency constraints.) Formally,

Definition 12.2.3 (Prefix graph). For i ∈ [n+1] let the i-th prefix graph, Gi = (Vi,Ei)
be defined over the prefixes of length i− 1 as follows. We say that wi−1 is a neighbor
of σi−1 if they do not violate any consistency constraints. Namely, for all j < i, if
Xj = 1 for both wi−1 and σi−1, then wi and σi assign the same label Yj.

In particular, we will heavily use the following notation: let N(wi−1) be the prefix
neighborhood of wi−1; i.e. it is the set of all prefixes (of length i−1) that are consistent
with wi−1. For technical issues of normalization, we let wi−1 ∈ N(wi−1), i.e. all the
prefixes have self-loops.

Notice that Gn+1 is defined over the vertices of S (the original subgraph). The
set of edges on S is contained in the set of edges of Gn+1, since in the latter we only
remove pairs that violated consistency constraints (recall that we ignore the 2CSP
constraints).

Unless stated otherwise, we always think of prefixes as weighted by their proba-
bilities. Naturally, we also define the weighted degree and weighted edge density of
the prefix graph.

Definition 12.2.4 (Prefix degree and density). The prefix degree of wi−1 is given by:

deg(wi−1) = ∑
σi−1∈N(wi−1)

Pr[σi−1].

CHAPTER 12. DENSEST k-SUBGRAPH 161

Similarly, we define the prefix density of Gi as:

den(Gi) = ∑
wi−1

∑
σi−1∈N(wi−1)

Pr[wi−1] ⋅Pr[σi−1].

When it is clear from the context, we henceforth drop the prefix qualification,
and simply refer to the neighborhood or degree, etc., of wi−1.

Notice that in Gn+1, the probabilities are uniformly distributed. In particular,
den(Gn+1) ≥ den(S), since, as we mentioned earlier, the set of edges in S is contained
in that of Gn+1. Finally, observe also that because we accumulate violations, the
density of the prefix graphs is monotonically non-increasing with i.

Observation 12.2.5.

den(G1) ≥ ⋅ ⋅ ⋅ ≥ den(Gn+1) ≥ den(S).

Useful approximations

We use the following bounds on αi and βi many times throughout the proof:

Fact 12.2.6.
αi = E [H(qi(wi−1))] ≤H(E [qi(wi−1)]) =H(qi)

Fact 12.2.7.
βi = E [βi(wi−1))] ≤ E [qi(wi−1) ⋅ log ∣A∣] = qi log ∣A∣

Proof. The bound on αi follows from concavity of entropy (Fact 2.6.3). For the
second bound, observe that βi is maximized by spreading qi mass uniformly over
alphabet A.

We also recall some elementary approximations to logarithms and entropies that
will be useful in the analysis. The proofs are deferred to the appendix.

Fact 12.2.8. For k = (n
ρ
) then,

log k = nH (ρ
n
) ±O (logn) = (1

2
− o (1))ρ logn

More useful to us will be the following bounds on log k′:

Fact 12.2.9. Let ε1 ≥ 5ε0, and k, k′, V, n, ρ as specified in the construction. Then,

log k′ ≥max{log k, nH (ρ
n
)} − ε1 log k/ logn

sttttttttttttttttttttttttttttttuttttttttttttttttttttttttttttttv
≈ ε1

2
⋅ρ

.

This means that most indices i should contribute roughlyH (ρ

n
) entropy to the choice

of v.

CHAPTER 12. DENSEST k-SUBGRAPH 162

We will also need the following bound which relates the entropies of a very biased
coin and a slightly less biased one:

Fact 12.2.10. Let 1/n≪ ∣υ∣ ≪ 1. Then

H (1 + υ

n
) =H (1

n
) − υ

n
log

1

n
− (log e) υ

2

2n

+O (n−2) +O (υ
3

n
)

A useful lemma: bias implies less entropy

In Fact 12.2.6 we saw that always αi ≤ H(qi). Equality happens only if the qi-
mass is evenly distributed across all prefixes. We argue that if qi is far from evenly
distributed, then the inequality is also far from tight. In particular:

Claim 12.2.11. Let B ⊂ Vi be a subset of prefixes such that for some 0 < a < b < 1,

1. ∑wi−1∈B Pr[wi−1] ≤ b; but also

2. ∑wi−1∈B Pr[wi−1]qi (wi−1) > a.

Then αi ≤H(qi) − qiDKL (a∥b).

Proof. Abusing notation, let B(⋅) be the indicator variable for Wi−1 ∈ B. By the
data-processing inequality (Fact 2.6.8),

αi = H (Xi ∣Wi−1)
≤ H (Xi ∣ B(Wi−1))
= H (Xi) − I (Xi;B(Wi−1)) (12.1)

Since we can write mutual information as expected KL-divergence (Fact 2.6.10), and
KL-divergence is non-negative, we get

I(Xi;B(Wi−1)) = Exi
[DKL (B(Wi−1)∣xi∥B(Wi−1))]

≥ qiDKL (Pr[B(Wi−1) = 1 ∣xi = 1]∥B(Wi−1) = 1)

≥ qiDKL (a∥b),

where the second inequality follows from the premise assumptions that Pr[B(Wi−1)] ≤
b and Pr[B(Wi−1 = 0 ∣ xi = 1] ≥ a

CHAPTER 12. DENSEST k-SUBGRAPH 163

Plugging into (12.1) we have:

αi ≤H (qi) − qiDKL (a∥b). (12.2)

12.2.2 Consistency violations

In this section, we show that if the total entropy contribution of the assignments
(∑i βi)) is large, there are many consistency violations between vertices, which lead
to constant density loss. First, we show that if ∑i βi > 5ε1 log k/ logn, then at least
a constant fraction of such entropy is concentrated on good variables that contribute
to both “types” of entropy.

Definition 12.2.12 (Good Variables). We say that an index i is good if

• αi ≥H(qi) − 2qi log ∣A∣

• βi ≥ 1
2
ε1qi

where ε1 is a constant to be determined later in the proof.

Claim 12.2.13. For any constant ε1, if ∑i βi > 5ε1 log k/ logn,

∑
good i’s

q2i ≥ (
1

5
ε1ρ)

2

/(n log2 ∣A∣) = Ω(ρ2/n).

Proof. We want to show that many of the indices i have both a large αi and a large
βi simultaneously. Let ι ⊆ [n] denote the set of i such that αi+βi <H (qi)− qi log ∣A∣.
We can write

∑
i∈[n]

(αi + βi) = ∑
i∈ι
(αi + βi) +∑

i∉ι
(αi + βi)

Using Facts 12.2.6 and 12.2.7, we have

∑
i∈[n]

(αi + βi) ≤ ∑
i∈ι
(H (qi) − βi) +∑

i∉ι
(H (qi) + βi) .

Because the subgraph is of size k′, from the expansion of log k′ (Fact 12.2.9),

∑
i∈[n]

(αi + βi) ≥ nH (ρ
n
) − ε1 log k/ logn

≥ ∑H (qi) − ε1 log k/ logn,

CHAPTER 12. DENSEST k-SUBGRAPH 164

where the second inequality follows from the concavity of entropy. Plugging into
(12.2.2), we have

∑
i∉ι

βi ≥ ∑
i∈ι

βi − ε1 log k/ logn

= (∑
i

βi −∑
i∉ι

βi) − ε1 log k/ logn

Rearranging, we get

∑
i∉ι

βi ≥
1

2
∑
i

βi − ε1 log k/ logn (12.3)

For all the i’s in the LHS summation, αi ≥H (qi)−2qi log ∣A∣ by Fact 12.2.7. From
now on, we will consider only i’s that satisfy this condition. Now, using the premise
on ∑i βi and (12.3) we have:

∑
i∶αi≥H(qi)−2qi log ∣A∣

βi ≥ (5/2 − 1)ε1 log k/ logn

≥ 0.7ε1ρ,

where the second inequality follows from our approximation for log k (Fact 12.2.8).
We want to further restrict our attention to i’s for which βi is at least

1
2
ε1qi (aka

good i’s). Note that the above inequality can be decomposed to

∑
good i’s

βi + ∑
i∶αi≥H(qi)−2qi log ∣A∣

βi< 1
2
ε1qi

βi ≥ 0.7ε1ρ

Now via a simple sum bound,

∑
i∶αi≥H(qi)−2qi log ∣A∣

βi< 1
2
ε1qi

βi ≤
1

2
ε1∑

i

qi =
1

2
ε1ρ

Rearranging, we get,

∑
good i’s

βi ≥
1

5
ε1ρ

By Cauchy-Schwartz we have:

∑
good i’s

β2
i ≥ (

1

5
ε1ρ)

2

/n

CHAPTER 12. DENSEST k-SUBGRAPH 165

Finally, since βi ≤ qi log ∣A∣,

∑
good i’s

q2i ≥ (
1

5
ε1ρ)

2

/(n log2 ∣A∣).

In the same spirit, we now define a notion of a “good” prefix. Intuitively, con-
ditioning on a good prefix leaves a significant amount of entropy on the i’th index.
We also require that a good prefix has a high prefix degree; that is, it has many
neighbors it could potentially lose when revealing the i-th label.

Definition 12.2.14 (Good Prefixes). We say wi−1 is a good prefix if:

• i is good;

• ∑σi−1∈N(wi−1) qi(σi−1)Pr[σi−1] ≥ (1 − ε2)qi;

• βi(wi−1) ≥ ε3qi(wi−1),

for ε3 = (ε4+κ) log ∣A∣, with ε4 an arbitrarily small constant that denotes the fraction
of assignments that disagree with the majority of the assignments, κ = Θ(1/ log ∣A∣),
and ε2 a constant that satisfies δ = (ε2

∣A∣2/ε2)
4

, with den(S) = 1 − δ.

In the following claim, we show that these prefixes contribute some constant
fraction of entropy, assuming that our subset is dense.

Claim 12.2.15. If den(S) > 1 − δ, where δ = (ε2
∣A∣2/ε2)

4

and ε1 ≥ 4ε2 log ∣A∣ + 8ε3, then

for every good index i, it holds that

∑
good wi−1’s

Pr[wi−1]βi (wi−1) ≥ βi/4

Proof. We begin by proving that most prefixes satisfy the degree condition of Def-
inition 12.2.14. Let wi−1 be popular if i is a good variable and its degree in the
prefix graph Gi is at least deg(wi−1) ∶= ∑σi−1∈N(wi−1)Pr[σi−1] ≥ 1 −

√
δ. Recall that

den(Gi) ≥ den(S) ≥ (1 − δ) (by Observation 12.2.5). Thus by Markov inequality, at
most

√
δ-fraction of the prefixes are unpopular.

We now argue that:

∑
unpopular wi−1’s

Pr[wi−1]qi (wi−1) ≤ ε2qi. (12.4)

CHAPTER 12. DENSEST k-SUBGRAPH 166

Otherwise, by Claim 12.2.11, αi ≥ H (qi) − qiDKL (ε2∥
√
δ). On the other hand,

recall that since i is good, αi ≥H (qi) − 2qi log ∣A∣. Recall also that δ = (ε2
∣A∣2/ε2)

4

, and

therefore DKL (ε2∥
√
δ) ≥ 2 log ∣A∣. Thus, we get a contradiction.

Ineq. (12.4) implies that even if the assignment is uniform over the alphabet, the
contribution to ∑βi from unpopular prefixes is small:

∑
unp.

Pr[wi−1]βi (wi−1) ≤ ∑
unp.

Pr[wi−1]qi (wi−1) log ∣A∣

≤ ε2qi log ∣A∣

≤ 1

4
ε1qi ≤ 1

2
βi

where first inequality follows from Fact 12.2.7, second from (12.4), third from our
setting of ε1 ≥ 4ε2 log ∣A∣, and fourth from βi ≥ 1

2
ε1qi since i is good. Therefore,

∑
pop.

Pr[wi−1]βi (wi−1) = βi − ∑
unp.

Pr[wi−1]βi (wi−1)

≥ βi/2

Using a similar argument, we show that for any popular wi−1, most of the qi
mass is concentrated on its neighbors. Consider any popular wi−1, and let NC (wi−1)
denote the complement of N (wi−1). Then we can rewrite αi as:

αi = ∑
σi−1∈N(wi−1)

Pr[σi−1]αi (σi−1)

+ ∑
σi−1∈NC(wi−1)

Pr[σi−1]αi (σi−1)

Notice that since wi−1 is popular, NC (wi−1) has measure at most
√
δ. Thus, if an

ε2-fraction of the qi mass is concentrated on NC (wi−1), Claim 12.2.11 implies:

αi ≤H (qi) − qiDKL (ε2∥
√
δ),

which (as in (12.4)) would yield a contradiction to i being a good variable. Therefore
every popular prefix also satisfies the qi-weighted condition on the degree:

∑
σi−1∈N(wi−1)

Pr[σi−1]qi (σi−1) ≥ (1 − ε2) qi (12.5)

CHAPTER 12. DENSEST k-SUBGRAPH 167

Recall that a prefix wi−1 is good if it also satisfies βi (wi−1) ≥ ε3 ⋅ qi (wi−1). For-
tunately, prefixes that violate this condition (i.e. those with small βi (wi−1)), cannot
account for much of the weight on βi:

∑
βi(wi−1)<ε3qi(wi−1)

Pr[wi−1]βi (wi−1) ≤ ε3qi.

Since i is good and ε1 ≥ 8ε3, this implies:

∑
good wi−1’s

Pr[wi−1]βi (wi−1) ≥ βi/2 − ε3qi ≥ βi/4

since

ε3qi ≤
1

8
ε1qi ≤

1

4
βi

where last inequality follows from i being good.

Corollary 12.2.16. For every good index i,

∑
good wi−1’s

Pr[wi−1]qi (wi−1) ≥
ε1

8 log ∣A∣qi.

Proof.

∑
good

Pr[wi−1]qi (wi−1) ≥ ∑
good

Pr[wi−1]βi/ log ∣A∣

≥ βi/(4 log ∣A∣)
≥ ε1

8 log ∣A∣qi.

Where the first inequality follows by Fact 12.2.7, the second by Claim 12.2.15, and
the last by definition of good i’s.

With Claim 12.2.13 and Corollary 12.2.16, we are ready to prove the main lemma
of this section:

Lemma 12.2.17 (Labeling Entropy Bound). If ∑iH(Yi∣X≤i, Y<i) > 5ε1 log k

logn
, then

den(S) < 1 − δ.

Proof. Assume for a contradiction that den(S) ≥ 1 − δ. For prefix wi−1, let Dwi−1

denote the induced distribution on labels to the i-th variable, conditioned on wi−1
and xi = 1. (If qi(wi−1) = 0, take an arbitrary distribution.) After revealing each
variable i, the loss in prefix density is given by the probability of “fresh violations”:

CHAPTER 12. DENSEST k-SUBGRAPH 168

the sum over all prefix edges (wi−1, σi−1) of the probability that they assign different
labels to the i-th variable:

den(Gi) − den(Gi+1) = ∑
wi−1

∑
σi−1∈N(wi−1)

. . . (12.6)

(Pr[wi−1]Pr[σi−1]qi(wi−1)qi(σi−1)) Pr
Yi∼Dwi−1
Y ′i ∼Dσi−1

[Yi ≠ Y ′
i]

We now lower-bound PrDwi−1×Dσi−1
[Yi ≠ Y ′

i] for good wi−1 (notice that we assume
nothing about σi−1). A simple calculation shows that for κ < 1/2, if

βi(wi−1) ≥
(κ log ∣A∣ − κ logκ − (1 − κ) log(1 − κ)) qi(wi−1),

then the probability mass (under D(wi−1)) on the most common label is at most
1−κ. Observe that this probability is an upper bound on PrDwi−1×Dσi−1

[Yi = Y ′
i]. For

good wi−1, we indeed have

βi(wi−1) ≥ ε3qi(wi−1) ≥
(ε4 log ∣A∣ − ε4 log ε4 − (1 − ε4) log(1 − ε4)) qi(wi−1),

where the second inequality follows from choice of ε4. Therefore PrDwi−1×Dσi−1
[Yi ≠

Y ′
i] ≥ ε4.
We now have, for every good index i,

den(Gi) − den(Gi+1) ≥ ∑
good wi−1’s

∑
σi−1∈N(wi−1)

ε4⋅

⋅ (Pr[wi−1]Pr[σi−1]qi(wi−1)qi(σi−1))

≥ ε4qi(1 − ε2) ∑
good wi−1’s

Pr[wi−1]qi(wi−1)

≥ ε1ε4

10 log ∣A∣q
2
i ,

where the first inequality follows by Eq. (12.6); the second definition of good prefix;
and the last by Corollary 12.2.16 and ε2 < 0.2.

CHAPTER 12. DENSEST k-SUBGRAPH 169

Finally, summing over all good i’s, we get a negative density for S, which is, of
course, a contradiction. By Observation 12.2.5 we have:

1 − den(S) ≥ den(G1) − den(Gn+1)
= ∑

i

den(Gi) − den(Gi+1)

≥ ∑
good i’s

den(Gi) − den(Gi+1)

≥ ∑
good i’s

(ε1ε4

10 log ∣A∣) q
2
i

≥ (ε31ε4

250 log3 ∣A∣
)ρ2/n = Ω(ρ2/n),

where the last inequality follows by Claim 12.2.13.

12.2.3 2CSP violation

Intuitively, if ∑iH(Xi∣X<i, Y<i) is large, then the subgraph approximately corre-
sponds to assignments to all subsets in ([n]

ρ
). More specifically, in this section we

show that most of the constraints appear approximately as frequently as we expect.
Since in any assignment, a constant fraction of them must be violated, this implies
(eventually) that a constant fraction of the edges have a violated constraint.

First, we show that most of the variables appear approximately as frequently as
we expect by showing that most of them are “typical.”

Definition 12.2.18 (Typical variables). Prefix wi−1 is typical if

(1 − ε5) ⋅ ρ/n < Pr[Xi = 1∣wi−1] < (1 + ε5) ⋅ ρ/n,

where ε5 is some constant such that (log e

8
) ε45 > 14ε1.

Similarly, we say that variable xi is typical if

∑
typical wi−1’s

Pr[wi−1] ≥ 1 − ε5

Claim 12.2.19. If ∑iH(Xi∣X<i, Y<i) ≥ (1 − 6ε1
logn

) log k = log k −Θ(ρ), then all but at

most ε5n variables are typical.

CHAPTER 12. DENSEST k-SUBGRAPH 170

Proof. Assume by contradiction that there are ε5n atypical variables. That is ε5n/2
variables xi appear with probability at least (1 + ε5) ⋅ ρ/n (or at most (1 − ε5) ⋅ ρ/n)
for an (ε5/2)-fraction of the prefixes wi−1. Now, subject only to this constraint and
maintaining the correct expected number of variables in each vertex, the entropy is
maximized by spreading the (ε35/4)-loss in frequency evenly across all other prefixes
and variables. That is on the atypical prefixes, labels are assigned with probability

(1 + ε5)ρ/n, and with probability (1 − ε35/4
1−ε25/4

)ρ/n on the rest. Thus,

∑
i

H(Xi∣X<i, Y<i) <
ε25
4
n ⋅H ((1 + ε5)ρ/n) + (1 −

ε25
4
)nH ((1 − ε35/4

1 − ε25/4
)ρ/n)

Recall from Fact 12.2.10 the expansion of the entropy function:

H (1 + υ

n
) =H (1

n
) − υ

n
log

1

n
− (log e

2
) υ

2

n
+O (n−2) +O (υ

3

n
)

Therefore,

∑
i

H(Xi∣X<i, Y<i) < ε25
4
n [H (ρ

n
) − ε5

ρ

n
log

ρ

n
− (log e

2
) ρ

n
⋅ ε25 +O ((ρ

n
)
2

) +O (ρ
n
ε35)]

+(1 − ε25
4
)n [H (ρ

n
) + (ε35/4

1 − ε25/4
) ρ

n
log

ρ

n
+O ((ρ

n
)
2

) +O (ρ
n
ε65)]

= n [H (ρ
n
) − (log e

8
) ρ

n
⋅ ε45 +O ((ρ

n
)
2

) +O (ρ
n
ε55)]

Recall that −2 log ρ

n
< logn. Thus for (log e

8
) ε45 > 14ε1, we have that

(log e
8

) ρ

n
⋅ε45−O ((ρ

n
)
2

)−O (ρ
n
ε55) >

ρ

n
⋅12ε1 > −

ρ

n
log

ρ

n
⋅24ε1/ logn > (12ε1/ logn)H (ρ

n
)

and therefore,

∑
i

H(Xi∣X<i, Y<i) < (1 − 12ε1/ logn)nH (ρ
n
) < (1 − 6ε1/ logn) log k,

where the second inequality follows from Fact 12.2.8. Thus we have reached a con-
tradiction. Notice that the (log e

8
) ρ

n
⋅ε45 term of missing entropy is symmetric (but not

the negligible higher order terms); i.e. the same derivation can be used to show a
contradiction when many variables appear with probability less than (1 − ε5)ρ/n.

Definition 12.2.20. Let I(u, v) be defined as the number of (i, j) pairs such that

CHAPTER 12. DENSEST k-SUBGRAPH 171

• In the original 2CSP instance ψ, there exists an edge (constraint) between
typical variables xi and xj.

• Xi = 1 for u and Xj = 1 for v.

• ui−1 and vj−1 are typical prefixes, where ui−1 denotes the prefix represented by
u for X<i, Y<i, similarly for vj−1.

Intuitively, I(u, v) is the number of “tests” of 2CSP-constraints between vertices
u, v, when restricting to typical prefixes and variables. We now use the properties of
typical prefixes and constraints to show that I(u, v) behaves “nicely”.
Claim 12.2.21. Eu,v [I (u, v)] ≥ (1 − ε7)ρ2/n and Eu,v [I2 (u, v)] ≤ (1 + 2ε7)d4 (Eu,v [I (u, v)])2,
where ε7 is some constant ε7 ≥ 6ε5 +Θ(ε25).

Proof. For any i, j ∈ [n], we say that i ∈ N 2CSP (j) if there is a constraint on (xi, xj).
For the proof of this claim, we also abuse notation and denote i ∈ v when i is typical,
vi−1 is a typical prefix, and Xi = 1 for v. We also say that i ∈ N (u) if i is a
typical variable, i ∈ N 2CSP (j), and j ∈ u (for some j ∈ [n]). (Do not confuse this
notation with prefix neighborhood in the prefix graph.) We can now lower bound
the expectation of I (u, v) as:

Eu,v [I (u, v)] ≥ Eu

⎡⎢⎢⎢⎢⎣
∑

i∈N(u)
Pr
v
[i ∈ v]

⎤⎥⎥⎥⎥⎦
Notice that this bound may not be tight since any i ∈ v can potentially have d

neighbors in u. Thus our upper bound is:

Eu,v [I (u, v)] ≤ d ⋅ Eu

⎡⎢⎢⎢⎢⎣
∑

i∈N(u)
Pr
v
[i ∈ v]

⎤⎥⎥⎥⎥⎦
By definition of typical variables, for each typical i, i ∈ v with probability at least

(1 − ε5)2 ρ/n; thus,

Eu,v [I (u, v)] ≥ Eu

⎡⎢⎢⎢⎢⎣
∑

i∈N(u)
(1 − ε5)2 ρ/n

⎤⎥⎥⎥⎥⎦
= (1 − ε5)2 ρ/n ⋅ Eu [∣N (u)∣] (12.7)

All but ε5n variables are typical, so all but 2ε5n variables are typical and have at
least one typical neighbor. We restrict our attention to the set of such variables and

CHAPTER 12. DENSEST k-SUBGRAPH 172

fix one typical neighbor for each; this neighbor appears in u with probability at least
(1 − ε5)2 ρ/n. Therefore,

Eu [∣N (u)∣] ≥ (1 − 2ε5)n ⋅ ((1 − ε5)2ρ/n) ≥ (1 − 4ε5)ρ (12.8)

Combining (12.7) and (12.8), we get the desired bound:

Eu,v [I (u, v)] ≥ ((1 − ε5)2 ρ/n) (1 − 4ε5)ρ ≥ (1 − ε7)ρ2/n. (12.9)

Similarly, for the variance we have

Eu,v [I2 (u, v)] ≤ d2 ⋅ Eu,v

⎛
⎝ ∑
i∈v∩N(u)

1
⎞
⎠

2

= d2 ⋅ Eu,v

⎡⎢⎢⎢⎢⎣
∑

i≠j∈v∩N(u)
1 + ∑

i∈v∩N(u)
1

⎤⎥⎥⎥⎥⎦

≤ d2 ⋅ Eu

⎡⎢⎢⎢⎢⎣
2 ∑
i<j∈N(u)

Pr
v
[i ∈ v]Pr

v
[j ∈ v ∣ i ∈ v]

⎤⎥⎥⎥⎥⎦
+ d2 ⋅ Eu,v [I (u, v)] .

Since for every prefix, each variable receives a typical assignment with probability at
most (1 + ε5) ⋅ ρ/n, we have that

Eu,v [I2 (u, v)] ≤ 2d2 ⋅ Eu

⎡⎢⎢⎢⎢⎣
∑

i<j∈N(u)
((1 + ε5) ⋅ ρ/n)2

⎤⎥⎥⎥⎥⎦
+ d2 ⋅ Eu,v [I (u, v)]

≤ ((1 + ε5) ⋅ ρ/n)2 ⋅ 2d2 ⋅ Eu(
∣N (u) ∣

2
) + d2 ⋅ Eu,v [I (u, v)](12.10)

We would like to bound Eu(N(u)
2
).

Eu(
N (u)

2
) = ∑

i<j
∑

k∈N 2CSP (i)
∑

l∈N 2CSP (j)
Pr
u
[k ∈ u]Pr

u
[l ∈ u ∣ k ∈ u]

= ∑
i<j

∑
k∈N 2CSP (i)
l∈N 2CSP (j)
and k<l

Pr
u
[k ∈ u]Pr

u
[l ∈ u ∣ k ∈ u] (12.11)

+∑
i<j

∑
k∈N 2CSP (i)
l∈N 2CSP (j)
and k>l

Pr
u
[l ∈ u]Pr

u
[k ∈ u ∣ l ∈ u] (12.12)

+∑
i<j

∑
k∈N 2CSP (i)∩N 2CSP (j)

Pr
u
[k ∈ u] (12.13)

CHAPTER 12. DENSEST k-SUBGRAPH 173

For the first two summands, we can use the condition on the prefixes to conclude
that

(12.11) + (12.12) ≤ (n
2
)d2 ((1 + ε5) ⋅ ρ/n)2

Whereas to bound the third summand we first change the order of summation:

(12.13) = ∑
k

Pr
u
[k ∈ u] ⋅ ∣{(i, j) ∶ i ≠ j and k ∈ N 2CSP (i) ∩N 2CSP (j)}∣

≤ ((1 + ε5) ⋅ ρ)(
d

2
) = O (ρ)

Summing the last two inequalities, we have

2 ⋅ Eu(
∣N (u)∣

2
) ≤ d2 ((1 + ε5) ⋅ ρ)2 +O (ρ) ≤ (1 + ε5)3 d2ρ2

Plugging back into (12.10):

Eu,v [I2 (u, v)] ≤ (1 + ε5)5 d4ρ4/n2 + d2 ⋅ Eu,v [I (u, v)]

Using (12.9) and the fact that ρ =
√
n log logn≫

√
n, this gives

Eu,v [I2 (u, v)] ≤ d4(1 + ε5)5
1 − ε7

(Eu,v [I (u, v)])2 + d2 ⋅ Eu,v [I (u, v)]

≤ (1 + 2ε7)d4 (Eu,v [I (u, v)])2

It will also be convenient to count the number of tests between a pair of variables.

Definition 12.2.22. For any pair of typical (i, j) ∈ ψ, let I⊺(i, j) be defined as the
number of (u, v) ∈ (S × S) pairs such that

• Xi = 1 for u and Xj = 1 for v.

• ui−1 and vj−1 are typical prefixes, where ui−1 denotes the prefix represented by
u for X<i, Y<i, similarly for vj−1.

We now have two ways to count the total number of tests between typical prefixes
to typical variables:

Observation 12.2.23. ∑(u,v)∈(S×S) I(u, v) = ∑(i,j)∈ψ I⊺(i, j).
Furthermore, since i and j are typical, the number of tests between also behaves

“nicely”:

CHAPTER 12. DENSEST k-SUBGRAPH 174

Observation 12.2.24. For every typical (i, j) ∈ ψ, we have I⊺(i, j) ∈ ∣S∣2ρ2/n2[(1 − ε5)4 , (1 + ε5)2].

Proof.

I⊺(i, j) = ∑
typical ui−1’s

∣S∣ ⋅Pr[ui−1]Pr [Xi = 1 ∣ ui−1] ∑
typical vj−1’s

∣S∣ ⋅Pr [vj−1]Pr [Xj = 1 ∣ vj−1]

∈ ∣S∣2ρ2/n2[(1 − ε5)4 , (1 + ε5)2].

Armed with these Claims 12.2.19 and 12.2.21 and Observations 12.2.23 and
12.2.24, we are now ready to prove the main lemma of this section. Recall that
the soundness of the 2CSP we started with is 1 − η for a small constant η.

Lemma 12.2.25. If ∑iH(Xi∣X<i, Y<i) ≥ (1 − 6ε1
logn

) log k, then δ(S) < 1 − δ, where

δ < ε26
d4(1+2ε7) and ε6 = (η/2 − ε5) (1/∣A∣2) (1−ε5)4

(1+ε5)2
.

Proof. Let the mode assignment be the assignment A∶ [n] → A which assigns to
each variable xi its most common typical assignment (i.e. assignment after a typical
prefix), breaking ties arbitrarily. In particular, at least 1/∣A∣ of the typical assign-
ments for xi are equal to A(i). Of course, this assignment cannot satisfy more than
a (1 − η)-fraction of the constraints in the original 2CSP; after removing the ε5n

atypical variables, (η/2 − ε5)dn constraints out of the dn/2 constraints must still be
unsatisfied.

Recall that the number of tests for each constraint over typical variables, I⊺(i, j),
is approximately the same for every pair of (i, j) — up to a (1−ε5)4

(1+ε5)2
-multiplicative fac-

tor (Observation 12.2.24). Therefore, the total fraction of tests over unsatisfied con-
straints, out of all tests, is approximately proportional to the fraction of unsatisfied
constraints:

CHAPTER 12. DENSEST k-SUBGRAPH 175

∑
typical,
unsatisfied
(i, j)’s

I⊺(i, j) ≥ (1 − ε5)4

(1 + ε5)2
⋅
∣{typical, unsatisfied (i, j)’s}∣

∣{typical (i, j) ∈ ψ}∣
⋅ ∑
(i,j)∈ψ

I⊺(i, j)

≥ (1 − ε5)4

(1 + ε5)2
⋅ (η/2 − ε5)dn

dn/2 ⋅ ∑
(i,j)∈ψ

I⊺(i, j)

= (1 − ε5)4

(1 + ε5)2
⋅ (η − 2ε5) ⋅ ∑

(u,v)∈(S×S)
I(u, v) (Observation 12.2.23)

For each such pair (i, j), on at least a 1/∣A∣2-fraction of the tests both variables
receive the mode assignment, so the constraint is violated2. Thus the total number

of violations is at least ε6∑(u,v)∈(S×S) I (u, v) (where ε6 = (η/2 − ε5) (1/∣A∣2) (1−ε5)4

(1+ε5)2
).

Finally, we show that so many violations cannot concentrate on less than a δ-
fraction of the pairs u, v ∈ S; otherwise:

∑
(u,v)∈(S×S)∖E

I2 (u, v) ≥ 1

δ ∣S∣2
⎛
⎝ ∑
(u,v)∈(S×S)∖E

I (u, v)
⎞
⎠

2

(Cauchy-Schwartz)

≥ 1

δ ∣S∣2
⎛
⎝
ε6 ∑

(u,v)∈(S×S)
I (u, v)

⎞
⎠

2

= ∣S∣2ε26
δ

(Eu,v [I (u, v)])2 ;

yet by Claim 12.2.21,

∑
(u,v)∈(S×S)∖E

I2 (u, v) ≤ ∑
(u,v)∈S×S

I2 (u, v) ≤ (1 + 2ε7)d4∣S∣2 (Eu,v [I (u, v)])2 .

Thus we have a contradiction since d4(1 + 2ε7) < ε26/δ by our setting of δ. Therefore
we have 2CSP-violations in more than a δ-fraction of the pairs u, v ∈ S.

With Lemma 12.2.17 and Lemma 12.2.25, we can now complete the proof of
Theorem 12.2.1.

2We remark that a more careful analysis of the expected number of violations would allow one
to save an ∣A∣2-factor in the value of ε6. Since it does not qualitatively affect the result, we opt for
the simpler analysis.

CHAPTER 12. DENSEST k-SUBGRAPH 176

Proof of Theorem 12.2.1. Recall that∑i αi+βi = log k′ ≥ (1− ε1
logn

) log k by Fact 12.2.9.

If ∑i βi > (5ε1
logn

) log k, then by Lemma 12.2.17, δ(S) < 1 − δ. Otherwise, if ∑i αi >
(1 − 6ε1

logn
) log k, by Lemma 12.2.25, δ(S) < 1 − δ.

177

Chapter 13

Community detection

Identifying communities is a central graph-theoretic problem with important appli-
cations to sociology and marketing (when applied to social networks), biology and
bioinformatics (when applied to protein interaction networks), and more (see e.g.
Fortunato’s classic survey [For10]). Defining what exactly is a community remains
an interesting problem on its own (see Arora et al [Aro+12] and Borgs et al [Bor+16]
for excellent treatment from a theoretical perspective). Ultimately, there is no sin-
gle “right” definition, and the precise meaning of community should be different for
social networks and protein interaction networks.

In this paper we focus on the algorithmic questions arising from one of the simplest
and most canonical definitions, which has been considered by several theoretical
computer scientists [Mis+08; Aro+12; Bal+13] (see Subsection 13.0.1 for further
discussion):

Definition 13.0.1 ((α,β)-Community). Given an undirected graph G = (V,E) an
(α,β)-community is a subset S ⊆ V that satisfies:

Strong ties inside the community For every v ∈ S, ∣{v} × S∣ ∩E ≥ α ⋅ ∣S∣; and

Weak ties to nodes outside the community For every u ∉ S, ∣{u} × S∣ ∩ E ≤
β ⋅ ∣S∣.

Arora et al [Aro+12, Theorem 3.1] gave a simple quasi-polynomial (nO(logn)) time
for detecting (α,β)-communities whenever α − β is at least some positive constant.
Similar to the meta-algorithm we described in the introduction, [Aro+12]’s algorithm
enumerates over O (logn)-tuples of vertices. For each tuple, consider the set of
vertices that are neighbors of an (α + β) /2-fraction of the tuple; test whether this
candidate set is indeed a community.

CHAPTER 13. COMMUNITY DETECTION 178

Here we show that, for every constants α > β ∈ (0,1], community detection re-
quires quasi-polynomial time (assuming ETH). For example, when α = 1 and β = 0.01,
this means that we can hide a clique C, such that every single vertex not in C is
connected to at most 1% of C. Our main result is actually a much stronger inapprox-
imability: even in the presence of a (1, o (1))-community, finding any (β + o (1) , β)-
community is hard.

Theorem 13.0.2. For every n there exists an ε = ε (n) = o (1) such that, assuming
ETH, distinguishing between the following requires time nΩ̃(logn):

Completeness G contains an (1, ε)-community; and

Soundness G does not contain an (β + ε, β)-community for any β ∈ [0,1].

Unlike many related quasi-polynomial approximation schemes mentioned above,
Arora et al’s algorithm has the unique property that it can also exactly count all the
(α,β)-communities. Our second result is that counting even the number of (1, o (1))-
communities requires quasi-polynomial time. A nice feature of this result is that we
can base it on the much weaker #ETH assumption, which asserts that counting the
satisfying assignment for a 3SAT instance requires time 2Ω(n). (Note, for example,
that #ETH is likely to be true even if P = NP.)

Theorem 13.0.3. For every n there exists an ε = ε (n) = o (1) such that, assuming
#ETH, counting (1, ε)-communities requires time nlog1−o(1) n.

13.0.1 Related works

The most closely related work is a reduction by Balcan, Borgs, Braverman, Chayes,
and Teng [Bal+13, Theorem 5.3] from Planted Clique to finding (1,1 − γ)-communities,
for some small (unspecified) constant γ > 0. Note that our inapproximability in
Theorem 13.0.2 is much stronger in all parameters; furthermore, although formally
incomparable, our ETH assumption is preferable over the average-case hardness as-
sumption of Planted Clique.

Algorithms for special cases

Mishra, Schreiber, Stanton, and Tarjan [Mis+08] gave a polynomial-time algorithm
for finding (α,β)-communities that contain a vertex with very few neighbors outside
the community. Balcan et al [Bal+13] give a polynomial-time algorithm for enu-
merating (α,β)-communities in the special case where the degree of every node is
Ω (n).

CHAPTER 13. COMMUNITY DETECTION 179

Arora, Ge, Sachdeva, and Schoenebeck [Aro+12] consider several semi-random
models where the edges inside the community are generated at random, according
to the expected degree model. (In fact, their quasi-polynomial time algorithm is
also stated in this setting, but only their “Gap Assumption”, which is equivalent to
α − β = Ω (1), is used in the analysis.)

Stochastic Block Model

Variants of the community detection problem on graphs generated by different stochas-
tic models are extremely popular (see e.g. [BBV16; Ban+16; Che+16; FP16; HWX16;
MMV16; MPW16; MX16; Tre+16] for papers in conference proceedings from June
2016). Perhaps the most influential is the Stochastic Block Model [HLL83]: The
graph is partitioned into two disjoint communities; the edges within each community
are present with probability α, independently, whereas edges between communities
are present with probability β. Hence this model can also be seen as a special case
of the (α,β)-Community Detection problem.

Stochastic models are extremely helpful in physics, for example, because atoms’
interactions obey simple mathematical formulas with high precision. Unfortunately,
for applications such as social networks, existing models do not describe human
behavior with atomic precision, hence casting a shadow over the applicability of
algorithms that work on ideal stochastic models. Recent works [MPW16; MMV16]
attempted to bridge the gap from ideal model to practice by showing that certain
SDP-based algorithms continue to work in a particular semi-random model where
a restricted adversary is allowed to modify the random input graph. These success
stories beg the question of how strong can one make the adversary? The current
paper illuminates some of the computational barriers.

Alternative approaches to modeling communities

As we mentioned above, there are many different definitions of “communities” in
networks. For in-depth discussion of different definitions see Arora et al [Aro+12]
or Borgs et al [Bor+16]. As pointed out by the latter, for some definitions even
verifying that a candidate subset is a community is intractable.

There is also an important literature on axiomatic approaches to the related
problem of clustering (e.g. [Kle02; BA08; LM14]); note that while clustering typi-
cally aims to partition a set of nodes, our main focus is on detecting just a single
community; in particular, different communities may intersect.

CHAPTER 13. COMMUNITY DETECTION 180

13.0.2 Overview of proofs

A good starting point for the technical discussion is the reduction reduction from
3SAT to the related problem of Densest-k-Subgraph we describe in Chapter 12.
Let us recall the main two ingredients in that reduction: “birthday repetition”
[AIM14] and the “FGLSS graph” [Fei+96].

“Birthday repetition” Starting with an instance of Label Cover (see defini-
tion in Section 2.4), the reduction considers a mega-variable for every ρ-tuple
of variables, for ρ ≈

√
n. By the birthday paradox, almost every pair of ρ-

tuples of variables intersect, inducing a consistency constraint on the two mega-
assignments. Similarly, we expect to see some Label Cover edges in the union
of the two ρ-tuples, inducing an additional Label Cover constraint between
the two mega assignments. Notice that we have (n

ρ
) ≈ 2

√
n mega variables, and

the alphabet size is also approximately N = 2
√
n. Therefore, assuming ETH,

finding an approximately satisfying assignment for the mega-variables requires
time 2Ω(n) ≈ N logN .

FGLSS Similarly to the classic reduction by Feige et al. [Fei+96] for the Clique
problem, In Chapter 12, we construct a vertex for each mega assignment to
each mega variable, and draw an edge between two vertices if the induced as-
signments do not violate any consistency or Label Cover constraints. Notice
that if the Label Cover instance has a satisfying assignment, then the graph
contains a clique of size (n

ρ
) where each mega variable receives the mega as-

signment induced by the globally satisfying assignment. On the other hand,
any subgraph that corresponds to a consistent assignment which violates many
constraints must be missing most of its edges.

Unfortunately, this simple reduction is still quite far from working for the Commu-
nity Detection problem. Below we describe some of the obstacles and outline
how we overcome them.

Completeness

Surprisingly, the main problem with using the same reduction for Community De-
tection is the completeness: even if the Label Cover instance has a satisfying
assignment, the resulting graph has no (α,β)-communities, for any constants α > β!
Observe, in particular, that the clique that corresponds to the satisfying assignment
does not satisfy the weak ties condition. For any vertex v in that clique, consider
any vertex v′ that corresponds to changing the assignment to just one variable xi in

CHAPTER 13. COMMUNITY DETECTION 181

v’s assignment. If v agrees with the assignments of all other vertices in the clique,
v′ agrees with almost all of them - except for the negligible fraction that cover xi or
its neighbors in the Label Cover graph.

To overcome this problem of vertices that are “just outside the community”,
we use error correcting codes. Namely, we encode each assignment as a low-degree
bivariate polynomial over finite field G of size ∣G∣ ≈

√
n. Now vertices correspond to

low-degree assignments to rows/columns of the polynomial. This guarantees that the
assignments induced by every two vertices are far. If v agrees with all other vertices
in the community, then almost all of those vertices disagree with v′.

Soundness

The main challenge for soundness is ruling out communities that do not correspond
to a single, globally consistent assignment to the Label Cover instance. The key
idea is to introduce auxiliary vertices that punish such communities by violating the
weak ties desideratum.

Let us begin with the reduction to the counting variant (Theorem 13.0.3), which is
easier, mostly because we are not concerned with approximation (i.e. we only have
to show that subsets that are exactly (1, ε)-communities correspond to satisfying
assignments). Here we further simplify matters by sketching a construction with
weighted edges. The full reduction (Section 13.1) uses unweighted edges and is only
slightly more involved. Consider, for every g ∈ G, an auxiliary vertex that is ε-
connected to all proper vertices that do not correspond to assignments to the g-th
row/column. Now if a (1, ε)-community C does not contain a vertex with assignment
to the g-th row/column, the auxiliary vertex must simultaneously: (i) belong to C so
as not to violate the weak ties desideratum; yet (ii) it cannot belong to C because all
its edges have weight ε (this would violate the strong ties desideratum). Therefore
every (1, ε)-community assigns values to every row/column in G2.

The reduction we described above suffices to show that (assuming ETH) deciding
whether the graph contains a (1, ε)-community also requires quasi-polynomial time.
To get the stronger statement of Theorem 13.0.2 we must rule out even (β, β + ε)-
communities in case the Label Cover instance is far from satisfiable. In particular,
we need to show that subsets that do not correspond to unique, consistent assign-
ments are never (β, β + ε)-communities. Instead of a single column/row, we let each
proper vertex correspond to a subset of t ≈ logn columns/rows. Instead of a single
g ∈ G, each auxiliary vertex corresponds to subset H ⊂ G of size ∣H ∣ = ∣G∣ /2. We
draw an edge between an auxiliary vertex and a proper vertex if the indices of all
t columns/rows are contained in H; if they are picked randomly this only happens
with polynomially small probability. If, however, a β-fraction of the community

CHAPTER 13. COMMUNITY DETECTION 182

is restricted to a small subset R ⊂ G, then there are auxiliary vertices for H ⊇ R

that connect to all those nodes and violate the weak ties desideratum. Roughly,
we show that at least a (1 − β)-fraction of the vertices have assignments that are
“well spread” over G2, and among those assignments there are many violations of
the Label Cover constraints.

13.1 Hardness of counting communities

Theorem 13.1.1. There exists an ε (n) = o (1) such that, assuming #ETH, counting
(1, ε)-communities requires time nlog1−o(1) n.

Construction

Begin with an instance (A,B,E,π) of Label Cover of size n = nA + nB where
nA ≜ ∣A∣ and nB ≜ ∣B∣. Let G be a finite field of size

√
n/ε3, and let F ⊂ G be an

arbitrary subset of size ∣F∣ =
√
n. We identify between A∪B and points in F2; we also

identify between a subset of G and ΣA∪ΣB. Thus there is a one-to-one correspondence
between a subset of assignments to PF ∶ F2 → G and assignments to the Label Cover
instance. We can extend any such PF to an individual-degree-(∣F∣ − 1) polynomial
P ∶ G2 → G. In the other direction, we think of each low individual degrees polynomial
P ∶ G2 → G as a (possibly invalid) assignment to the Label Cover instance.

For every g ∈ G, and degree-(∣F∣ − 1) polynomials p1, p2 ∶ G → G such that p1 (g) =
p2 (g), we construct 1/ε vertices {vg,p1,p2,i}

1/ε
i=1 ⊂ V in the communities graph. Each

vertex naturally induces an assignment (p1, p2) on (G × {g})∪({g} × G). We draw an
edge between two vertices in V if they agree on the intersection of their lines, and if
their induced assignments satisfy all the Label Cover constraints.

For every g ∈ G and i ∈ [1/ε], we also add two identical auxiliary vertices ug,i

which are connected to every vg′,p1,p2,i for g
′ ≠ g (but not to each other).

Completeness

For each assignment to the Label Cover instance, we construct a (1, ε)-community
by taking the induced assignment PF ∶ F2 → G and extending it to an individual-
degree-(∣F∣ − 1) polynomial P ∶ G2 → G. Let C be all the vertices vg,p1,p2,i such
that p1, p2 are the restrictions of P to (G × {g}) , ({g} × G). This correspondence is
one-to-one and we need to show that the resulting C is actually a (1, ε)-community.

Because all the vertices correspond to a consistent satisfying assignment, C is a
clique. Let vg,q1,q2,i ∉ C; wlog q1 disagrees with the restriction of P to (G × {g}). Since
both q1 and the restriction of P are degree-(∣F∣ − 1) polynomials, they must disagree

CHAPTER 13. COMMUNITY DETECTION 183

on all but at most (∣F∣ − 1) elements of G. For all other h ∈ G, the vertex vg,q1,q2,i
does not share edges with any vh,p1,p2,j ∈ C. Therefore, vg,q1,q2,i has edges to less than
an (∣F∣ / ∣G∣)-fraction of vertices in C. Finally, every auxiliary vertex ug,i has edges

to a ∣G∣−1
∣G∣ ⋅ ε < ε-fraction of the vertices in ε. Therefore, C is a (1, ε)-community.

13.1.1 Soundness

Structure of (1, ε)-communities

Claim 13.1.2. Every (1, ε)-community C contains exactly 1/ε vertices {vg,p1,p2,i}
1/ε
i=1

for each g.

Proof. First, observe that C cannot contain any auxiliary vertices: if C contains one
copy of ug,i, it must also contain the other; but they don’t have an edge between
them, so they cannot both belong to a (1, ε)-community.

Now, assume by contradiction that for some g ∈ G, C does not contain any vertices
with assignments for (G × {g}) ∪ ({g} × G). Then every vertex in C is connected to
(both copies of) ug,i, for some i ∈ [1/ε]. Therefore there is at least one i ∈ [1/ε] such
that ug,i is connected to an ε-fraction of the vertices in C. But this is a contradiction
since ug,i ∉ C.

If we ignore the auxiliary vertices (which, as we argued, C does not contain), the
different vertices vg,p1,p2,i that correspond to the same assignment to the same lines
(i.e. if we only change i) are indistinguishable. Therefore if C contains one of them,
it must contain all of them (hence, at least 1/ε vertices for each g).

Finally, since C is a clique, it cannot contain vertices that disagree on any as-
signments. (In particular, it cannot contain more than 1/ε vertices for each g.)

Completing the proof

Proof of Soundness. By Claim 13.1.2, every (1, ε)-community C contains exactly 1/ε
vertices {vg,p1,p2,i}

1/ε
i=1 for each g. Furthermore, since C is a clique, all the induced

assignments agree on all the intersections. So every (1, ε)-community corresponds to
a unique consistent assignment to the Label Cover instance. Finally, appealing
again to the fact that C is a clique, this assignment must also satisfy all the Label
Cover constraints.

CHAPTER 13. COMMUNITY DETECTION 184

13.2 Hardness of detecting communities

Theorem 13.2.1. There exists an ε (n) = o (1) such that, assuming ETH, distin-
guishing between the following requires time nΩ̃(logn):

Completeness G contains an (1, ε)-community; and

Soundness G does not contain an (β + ε, β)-community for any β ∈ [0,1].

The rest of this section is devoted to the proof of Theorem 13.2.1. Our starting
point is the Label Cover of Moshkovitz-Raz (Theorem 2.4.4). We compose the
birthday repetition technique of [AIM14] with a bi-variate low-degree encoding. We
then encode this as a graph a-la FGLSS [Fei+96]. We add auxiliary vertices to ensure
that any (β + ε, β)-community corresponds, approximately, to a uniform distribution
over the variables.

Construction

Begin with a (dA, dB)-bi-regular instance (A,B,E,π) of Label Cover of size n =
nA + nB where nA ≜ ∣A∣ and nB ≜ ∣B∣. Let ρ ≜

√
n logn; let G be a finite field of size

ρ/ε3 = Õ (ρ), and let F ⊂ G be an arbitrary subset of size ∣F∣ = 2ρ. Let FA,FB ⊂ F be
disjoint subsets of size nA/ρ, nB/ρ, respectively. By Lemma 2.7.7, we can partition
A and B into subsets X1, . . . ,X∣FA∣ and Y1, . . . , Y∣FB ∣ of size at most ∣F∣ such that

between every two subsets there are approximately dAρ2

nB
= dBρ2

nA
constraints. For

i ∈ FA, we think of the points {i} × F ⊂ G2 as representing assignments to variables
in Xi; for j ∈ FB, we think of F ×{j} ⊂ G2 as representing assignments to variables in
Yj. Notice that each point in F2 may represent an assignment to both a vertex from
A and a vertex from B, to one of them, or to neither. In particular, any assignment
P ∶ G2 → G induces an assignment for the Label Cover instance; note that since
∣G∣ > ∣ΣA∣ ∣ΣB ∣, one value P (f1, f2) ∈ G suffices to describe assignments to both a ∈ A
and b ∈ B.

Let t ≜ logn ⋅ (∣G∣
∣FA∣ +

∣G∣
∣FB ∣) = polylog (n). We say that a subset S ∈ (G

t
) is balanced

if: ∣S ∩FA∣ = ∣FA∣
∣G∣ ⋅ t and ∣S ∩FB ∣ = ∣FB ∣

∣G∣ ⋅ t. For every balanced subset S, consider

2t polynomials q�∶ G → G of degree at most ∣F∣ − 1, representing an assignment1

Q∶ (S × G) ∪ (G × S) → G. For balanced S and 2t-tuple of polynomials (q�), we
construct a corresponding vertex vS,(q�) in the communities graph. Let V denote the
set of vertices defined so far. For g ∈ G we abuse notation and say that g ∈ vS,(q�) if

1We will only consider polynomials that correspond to a consistent assignment Q; i.e. for each
point in S × S we expect the two corresponding polynomials to agree with each other.

CHAPTER 13. COMMUNITY DETECTION 185

g ∈ S. We construct an edge in the communities graph between two vertices in V

if their assignments agree on the variables in their intersection, and their induced
assignments to A ∪B satisfy all the Label Cover constraints.

Additionally, for every H ⊂ G of size ∣H ∣ = ∣G∣ /2, define ∣V ∣2 identical auxiliary
vertices uH in the communities graph. We draw an edge between auxiliary vertex
uH and vertex vS,(q�) if S ⊂ H. Similarly, for every HA ⊂ FA of size ∣HA∣ = ∣FA∣ /2,
we define ∣V ∣2 identical auxiliary vertices uHA

with edges to every vertex vS,(q�) such
that (S ∩FA) ⊂HA. For HB ⊂ FB of size ∣HB ∣ = ∣FB ∣ /2, we draw edges between uHB

and vS,(q�) such that (S ∩FB) ⊂HB.

Completeness

Suppose that the Label Cover instance has a satisfying assignment. Let Z ⊆ G2

denote the subset of points that correspond to at least one variable in A or B.
Let PZ ∶ Z → G be the induced function on Z that corresponds to the satisfying
assignment, and let P ∶ G2 → G be the extension of PZ by setting P (f1, f2) = 0
for (f1, f2) ∈ F2 ∖ Z (this choice is arbitrary), and then extending to an (∣F∣ − 1)-
individual-degree polynomial over all of G2.

Let C be the set of vertices that correspond to restrictions of P to balanced sets,
i.e.

C = {vS,(P ∣S) ∶ S is balanced} ,
where P ∣S denotes the restriction of P to (S × G) ∪ (G × S). Since all those vertices
correspond to a consistent satisfying assignment, C is a clique.

For any vertex vS,(q�) ∉ C, at least one of the polynomials, q�∗ disagrees with
the restriction of P to the corresponding line. Since both q�∗ and the restriction
of P to that line are degree-(∣F∣ − 1) polynomials, they must disagree on at least

(1 − ∣F∣
∣G∣)-fraction of the coordinates. The probability that a random balanced set S′

is contained in the O (ε3)-fraction of coordinates where they do agree is smaller than
ε (and in fact polynomially small in n). Therefore vS,(q�) has inconsistency violations
with all but (less than) an ε-fraction of the vertices in C.

For any auxiliary vertex uHA
, the probability that a random vertex vS,(P ∣S) ∈ C is

connected to uHA
is 2−∣S∩FA∣ < 1/n, and similarly for uHB

and uH . Therefore, every
auxiliary vertex is connected to less than a (1/n)-fraction of the vertices in C.

13.2.1 Soundness

Lemma 13.2.2. If the Label Cover instance has value at most ε3, then there are
no (β + ε, β)-communities.

CHAPTER 13. COMMUNITY DETECTION 186

Auxiliary vertices

Claim 13.2.3. Every (β + ε, β)-community does not contain any auxiliary vertices.

Proof. There are ∣V ∣2 identical copies of each auxiliary vertex. Since they are iden-
tical, any community must either contain all of them, or none of them. If the
community contains all ∣V ∣2 copies, then it has a vast majority of auxiliary vertices,
so none of them can have edges to an ε-fraction of the community.

List decoding

Claim 13.2.4. The vertices in any (β + ε, β)-community C induce at most 4/ε different
assignments for each variable.

Proof. Suppose by contradiction that this is not the case. Then, wlog, there is
a line {g1} × G that receives at least 2/ε different assignments from vertices in C.
Every two assignments agree on at most ∣F∣ points (g1, g′) on the line, so in total
there are at most 2 ∣F∣ /ε2 points where at least two assignments agree. Let R ⊆ G
denote the set of g′ such that no two assignments agree on (g1, g′); we have that
∣R∣ ≥ ∣G∣ − 2 ∣F∣ /ε2 ≥ ∣G∣ /2. Therefore, by the weak ties property, for at most a
β-fraction of the vertices vS,(q�) ∈ C, S ∩R = ∅.

Consider the remaining (1 − β)-fraction of vertices in C. Suppose that v assigns
a value to some (g1, g′) for g′ ∈ R: this value can only agree with one of the 2/ε
different assignments to (g1, g′). Therefore, in expectation, each of the 2/ε vertices
that assign different values for (g1, g′) is connected to at most a (β + ε/2)-fraction of
the vertices in C. This is a contradiction to C being a (β + ε, β)-community.

Completing the proof

Proof of Lemma 13.2.2. Suppose that at most a ε3-fraction of the Label Cover
constraints can be satisfied by any single assignment, and assume by contradiction
that C is a (β + ε, β)-community. By Claim 13.2.4, C induces at most 4/ε assignments
on each variable, so at most O (ε)-fraction of the constraints are satisfied by any pair
of assignments.

By Markov’s inequality, for at least half of the subsets Xi ⊂ A, only an O (ε)-
fraction of the constraints that depend on Xi are satisfied. By Claim 13.2.3 at least
(1 − β)-fraction of the vertices in C assign values to at least one suchXi. Consider any
such vertex vS,(q�) where S ∋ i. By construction of the partitions (Lemma 2.7.7), each
Xi shares approximately the same number of constraints with each Yj. Therefore, for
all but an O (ε)-fraction of Yj’s, Xi and Yj observe a violation - for all the assignments
given by vertices in C to the variables in Yj. In other words, vS,(q�) cannot have edges

CHAPTER 13. COMMUNITY DETECTION 187

to any vertex vT,(r�) such that T ∋ j, for a (1 −O (ε))-fraction of j ∈ [nB/kB]. Finally,
applying Claim 13.2.3 again, at most a β fraction of vertices in C do not contain any
of those j’s. This is a contradiction to vS,(q�) having edges to (β + ε)-fraction of the
vertices in C.

188

Chapter 14

VC and Littlestone’s dimensions

A common and essential assumption in learning theory is that the concepts we want
to learn come from a nice, simple concept class, or (in the agnostic case) they can
at least be approximated by a concept from a simple class. When the concept class
is sufficiently simple, there is hope for good (i.e. sample-efficient and low-error)
learning algorithms.

There are many different ways to measure the simplicity of a concept class. The
most influential measure of simplicity is the VC Dimension, which captures learning
in the PAC model. We also consider Littlestone’s Dimension [Lit87], which corre-
sponds to minimizing mistakes in online learning (see Section 2.5 for definitions).
When either dimension is small, there are algorithms that exploit the simplicity of
the class, to obtain good learning guarantees.

Two decades ago, it was shown that (under appropriate computational complex-
ity assumptions) neither dimension can be computed in polynomial time [PY96;
FL98]; and these impossibility results hold even in the most optimistic setting where
the entire universe and concept class are given as explicit input (a binary matrix
whose (x, c)-th entry is 1 iff element x belongs to concept c). The computational
intractability of computing the (VC, Littlestone’s) dimension of a concept class sug-
gests that even in cases where a simple structure exists, it may be inaccessible to
computationally bounded algorithms (see Discussion below).

In this work we extend the results of [PY96; FL98] to show that the VC and
Littlestone’s Dimensions cannot even be approximately computed in polynomial time.
We don’t quite prove that those problems are NP-hard: both dimensions can be
computed (exactly) in quasi-polynomial (nO(logn)) time, hence it is very unlikely
that either problem is NP-hard. Nevertheless, assuming the randomized Exponential

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 189

Time Hypothesis (ETH)1, we prove essentially tight quasi-polynomial lower bounds
on the running time - that hold even against approximation algorithms.

Theorem 14.0.1 (Hardness of Approximating VC Dimension). Assuming Random-
ized ETH, approximating VC Dimension to within a (1/2 + o(1))-factor requires
nlog1−o(1) n time.

Theorem 14.0.2 (Hardness of Approximating Littlestone’s Dimension). There ex-
ists an absolute constant ε > 0 such that, assuming Randomized ETH, approximating
Littlestone’s Dimension to within a (1 − ε)-factor requires nlog1−o(1) n time.

14.0.1 Discussion

As we mentioned before, the computational intractability of computing the (VC,
Littlestone’s) dimension of a concept class suggests that even in cases where a simple
structure exists, it may be inaccessible to computationally bounded algorithms. We
note however that it is not at all clear that any particular algorithmic applications
are immediately intractable as a consequence of our results.

Consider for example the adversarial online learning zero-sum game correspond-
ing to Littlestone’s Dimension: At each iteration, Nature presents the learner with
an element from the universe; the learner attempts to classify the element, and loses
a point for every wrong classification; at the end of the iteration, the correct (binary)
classification is revealed. The Littlestone’s Dimension is equal to the worst case loss
of the Learner before learning the exact concept. (see Section 2.5 for a more detailed
definition.)

What can we learn from the fact that the Littlestone’s Dimension is hard to
compute? The first observation is that there is no efficient learner that can commit
to a concrete mistake bound. But this does not rule out a computationally-efficient
learner that plays optimal strategy and makes at most as many mistakes as the
unbounded learner. We can, however, conclude that Nature’s task is computationally
intractable! Otherwise, we could efficiently construct an entire worst-case mistake
tree (for a concept class C, any mistake tree has at most ∣C∣ leaves, requiring ∣C∣ − 1
oracle calls to Nature).

On a philosophical level, we think it is interesting to understand the implications
of an intractable, adversarial Nature. Perhaps this is another evidence that the
mistake bound model is too pessimistic?

1The randomized ETH (rETH) postulates that there is no 2o(n)-time Monte Carlo algorithms
that solves 3SAT correctly with probability at least 2/3 (i.e. 3SAT ∉ BPTIME(2o(n))).

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 190

Also, the only algorithm we know for computing the optimal learner’s decision
requires computing the Littlestone’s Dimension. We think that it is an interesting
open question whether an approximately optimal computationally-efficient learner
exist.

Finally, let us note that in the other direction, computing Littlestone’s Dimension
exactly implies an exactly optimal learner. However, since the learner has to compute
Littlestone’s Dimension many times, we have no evidence that an approximation
algorithm for Littlestone’s Dimension would imply any guarantee for the learner.

Finally, we remark that for either problem (VC or Littlestone’s Dimension), we
are not aware of any non-trivial approximation algorithms.

14.0.2 Techniques

Our reductions in this chapter are also inspired by “birthday repetition”, but sur-
prising challenges arise.

VC Dimension The first challenge we have to overcome in order to adapt this
framework to hardness of approximation of VC Dimension is that the number of
concepts involved in shattering a subset S is 2∣S∣. Therefore any inapproximability
factor we prove on the size of the shattered set of elements, “goes in the exponent”
of the size of the shattering set of concepts. Even a small constant factor gap in the
VC Dimension requires proving a polynomial factor gap in the number of shattering
concepts (obtaining polynomial gaps via “birthday repetition” for simpler problems
is an interesting open problem [MR16; Man17]). Fortunately, having a large number
of concepts is also an advantage: we use each concept to test a different set of
3-Color constraints chosen independently at random; if the original instance is
far from satisfied, the probability of passing all 2Θ(∣S∣) tests should now be doubly-
exponentially small (2−2

Θ(∣S∣)
)! More concretely, we think of half of the elements in

the shattered set as encoding an assignment, and the other half as encoding which
tests to run on the assignments.

Littlestone’s Dimension Our starting point is the reduction for VC Dimension
outlined in the previous paragraph. Without going into the exact definition of Lit-
tlestone’s Dimension, recall that it corresponds to an online learning model. If the
test-selection elements arrive before the assignment-encoding elements, the adver-
sary can adaptively tailor his assignment to pass the specific test selected in the
previous steps. To overcome this obstacle, we introduce a special gadget that forces
the assignment-encoding elements to arrive first; this makes the reduction to Lit-

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 191

tlestone’s Dimension somewhat more involved. Note that there is a reduction by
[FL98] from VC Dimension to Littlestone’s Dimension. Unfortunately, their reduc-
tion is not (approximately) gap-preserving, so we cannot use it directly to obtain
Theorem 14.0.2 from Theorem 14.0.1.

14.0.3 Related Work

The study of the computational complexity of the VC Dimension was initiated by
Linial, Mansour, and Rivest [LMR91], who observed that it can be computed in
quasi-polynomial time. [PY96] proved that it is complete for the class LOGNP which
they define in the same paper. [FL98] reduced the problem of computing the VC
dimension to that of computing Littlestone’s Dimension, hence the latter is also
LOGNP-hard. (It follows as a corollary of our Theorem 14.0.1 that, assuming ETH,
solving any LOGNP-hard problem requires quasi-polynomial time.)

Both problems were also studied in an implicit model, where the concept class is
given in the form of a Boolean circuit that takes as input an element x and a concept
c and returns 1 iff x ∈ c. Observe that in this model even computing whether either
dimension is 0 or not is already NP-hard. Schafer proved that the VC Dimension is
ΣP

3 -complete [Sch99], while the Littlestone’s Dimension is PSPACE-complete [Sch00].
[MU02] proved that VC Dimension is ΣP

3 -hard to approximate to within a factor of
almost 2; can be approximated to within a factor slightly better than 2 in AM; and
is AM-hard to approximate to within n1−ε.

Another line of related work in the implicit model proves computational in-
tractability of PAC learning (which corresponds to the VC Dimension). Such in-
tractability has been proved either from cryptographic assumptions, e.g. [KV94;
Kha93; Kha95; Fel+06; Kal+08; KS09; Kli16] or from average case assumptions,
e.g. [DS16; Dan16]. [Blu94] showed a “computational” separation between PAC
learning and online mistake bound (which correspond to the VC Dimension and Lit-
tlestone’s Dimension, respectively): if one-way function exist, then there is a concept
class that can be learned by a computationally-bounded learner in the PAC model,
but not in the mistake-bound model.

Recently, [BFS16] introduced a generalization of VC Dimension which they call
Partial VC Dimension, and proved that it is NP-hard to approximate (even when
given an explicit description of the universe and concept class).

It is interesting to note that in contrast to other problems discussed in this part
of the thesis, VC and Littlestone’s dimension do not naturally fit into the bilin-
ear optimization framework, and they can be computed exactly in quasi-polynomial
time with completely different algorithms: For VC Dimension, it suffices to sim-
ply enumerate over all log ∣C∣-tuples of elements (where C denotes the concept class

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 192

and log ∣C∣ is the trivial upper bound on the VC dimension) [LMR91]. Littlestone’s
Dimension can be computed in quasi-polynomial time via a recursive “divide and
conquer” algorithm (See our Theorem 14.3.1).

14.1 Inapproximability of VC Dimension

In this section, we present our reduction from Label Cover to VC Dimension, stated
more formally below. We note that this reduction, together with Moshkovitz-Raz
PCP (Theorem 2.4.4), with parameter δ = 1/ logn gives a reduction from 3SAT of
size n to VC Dimension of size 2n

1/2+o(1)
with gap 1/2 + o(1), which immediately

implies Theorem 14.0.1.

Theorem 14.1.1. For every δ > 0, there exists a randomized reduction from a bi-
regular Label Cover instance L = (A,B,E,Σ,{πe}e∈E) to a ground set U and a concept
class C such that, if n ≜ ∣A∣+ ∣B∣ and r ≜

√
n/ logn, then the following conditions hold

for every sufficiently large n.

• (Size) The reduction runs in time ∣Σ∣O(∣E∣poly(1/δ)/r) and ∣C∣, ∣U ∣ ≤ ∣Σ∣O(∣E∣poly(1/δ)/r).

• (Completeness) If L is satisfiable, then VC-dim(C,U) ≥ 2r.

• (Soundness) If val(L) ≤ δ2/100, then VC-dim(C,U) ≤ (1 + δ)r with high proba-
bility.

14.1.1 A Candidate Reduction (and Why It Fails)

To best understand the intuition behind our reduction, we first describe a simpler
candidate reduction and explain why it fails, which will lead us to the eventual
construction. In this candidate reduction, we start by evoking Lemma 2.7.7 to par-
tition the vertices A ∪B of the Label Cover instance L = (A,B,E,Σ,{πe}e∈E) into
U1 ≜ (S1, T1), . . . , Ur where r =

√
n/ logn. We then create the universe U and the

concept class C as follows:

• We make each element in U correspond to a partial assignment to Ui for some
i ∈ [r], i.e., we let U = {xi,σi

∣ i ∈ [r], σi ∈ ΣUi}. In the completeness case, we
expect to shatter the set of size r that corresponds to a satisfying assignment
σ∗ ∈ ΣA∪B of the Label Cover instance L, i.e., {xi,σ∗∣Ui

∣ i ∈ [r]}. As for the
soundness, our hope is that, if a large set S ⊆ U gets shattered, then we will
be able to decode an assignment for L that satisfies many constraints, which
contradicts with our assumption that val(L) is small. Note that the number of

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 193

elements used in this candidate reduction is at most r ⋅ ∣Σ∣O(∣E∣poly(1/δ)r) = 2Õ(
√
n)

as desired.

• As stated above, the intended solution for the completeness case is {xi,σ∗∣Ui
∣ i ∈

[r]}, meaning that we must have at least one concept corresponding to each
subset I ⊆ [r]. We will try to make our concepts “test” the assignment; for
each I ⊆ [r], we will choose a set TI ⊆ A ∪B of Õ(

√
n) vertices and “test” all

the constraints within TI . Before we specify how TI is picked, let us elaborate
what “test” means: for each TI-partial assignment φI that does not violate any
constraints within TI , we create a concept CI,φI

. This concept contains xi,σi
if

and only if i ∈ I and σi agrees with φI (i.e. φI ∣TI∩Ui
= σi∣TI∩Ui

). Recall that, if a
set S ⊆ U is shattered, then each T ⊆ S is an intersection between S and CI,φI

for some I, φI . We hope that the I’s are different for different T so that many
different tests have been performed on S.

Finally, let us specify how we pick TI . Assume without loss of generality that r
is even. We randomly pick a perfect matching between r, i.e., we pick a random

permutation πI ∶ [r] → [r] and let (πI(1), πI(2)), . . . , (πI(r − 1), πI(r)) be the

chosen matching. We pick TI such that all the constraints in the matchings,
i.e., constraints between UπI(2i−1) and UπI(2i) for every i ∈ [r/2], are included.
More specifically, for every i ∈ [r], we include each vertex v ∈ UπI(2i−1) if at least
one of its neighbors lie in UπI(2i) and we include each vertex u ∈ UπI(2i) if at
least one of its neighbors lie in UπI(2i−1). (By Lemma 2.7.7, for every pair in the

matching the size of the intersection is at most 2∣E∣
r2

, so each concept contains

assignments to at most 2∣E∣
r

variables; so the total size of the concept class is

at most 2r ⋅ ∣Σ∣
2∣E∣
r .)

Even though the above reduction has the desired size and completeness, it unfor-
tunately fails in the soundness. Let us now sketch a counterexample. For simplicity,
let us assume that each vertex in T[r] has a unique neighbor in T[r]. Note that, since

T[r] has quite small size (only Õ(
√
n)), almost all the vertices in T[r] satisfy this

property w.h.p., but assuming that all of them satisfy this property makes our life
easier.

Pick an assignment σ̃ ∈ ΣV such that none of the constraints in T[r] is violated.
From our unique neighbor assumption, there is always such an assignment. Now,
we claim that the set Sσ̃ ≜ {xi,σ̃∣Ui

∣ i ∈ [r]} gets shattered. This is because, for
every subset I ⊆ [r], we can pick another assignment σ′ such that σ′ does not
violate any constraint in T[r] and σ′∣Ui

= σ̃∣Ui
if and only if i ∈ I. This implies

that {xi,σ̃i
∣ i ∈ I} = S ∩C[r],σ′ as desired. Note here that such σ′ exists because, for

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 194

every i ∉ I, if there is a constraint from a vertex a ∈ Ui to another vertex b ∈ T[r],
then we can change the assignment to a in such a way that the constraint is not
violated; by doing this for every i ∉ I, we have created the desired σ′. As a result,
VC-dim(C,U) can still be as large as r even when the value of L is small.

14.1.2 The Final Reduction

In this subsection, we will describe the actual reduction. To do so, let us first take
a closer look at the issue with the above candidate reduction. In the candidate
reduction, we can view each I ⊆ [r] as being a seed used to pick a matching. Our
hope was that many seeds participate in shattering some set S, and that this means
that S corresponds to an assignment of high value. However, the counterexample
showed that in fact only one seed (I = [r]) is enough to shatter a set. To circumvent
this issue, we will not use the subset I as our seed anymore. Instead, we create r new
elements y1, . . . , yr, which we will call test selection elements to act as seeds; namely,
each subset H ⊆ Y will now be a seed. The benefit of this is that, if S ⊆ Y is shattered
and contains test selection elements yi1 , . . . , yit , then at least 2t seeds must participate
in the shattering of S. This is because, for each H ⊆ Y , the intersection of S with
any concept corresponding to H, when restricted to Y , is always H ∩ {yi1 , . . . , yit}.
Hence, each subset of {yi1 , . . . , yit} must come a from different seed.

The only other change from the candidate reduction is that each H will test
multiple matchings rather than one matching. This is due to a technical reason: we
need the number of matchings, �, to be large in order get the approximation ratio
down to 1/2 + o(1); in our proof, if � = 1, then we can only achieve a factor of 1 − ε

to some ε > 0. The full details of the reduction are shown in Figure 14.1.
Before we proceed to the proof, let us define some additional notation that will

be used throughout.

• Every assignment element of the form xi,σi
is called an i-assignment element ;

we denote the set of all i-assignment elements by Xi, i.e., Xi = {xi,σi
∣ σi ∈ ΣUi}.

Let X denote all the assignment elements, i.e., X = ⋃iXi.

• For every S ⊆ U , let I(S) denote the set of all i ∈ [r] such that S contains an
i-assignment element, i.e., I(S) = {i ∈ [r] ∣ S ∩Xi ≠ ∅}.

• We call a set S ⊆ X non-repetitive if, for each i ∈ [r], S contains at most one
i-assignment element, i.e., ∣S ∩ Xi∣ ≤ 1. Each non-repetitive set S canonically
induces a partial assignment φ(S) ∶ ⋃i∈I(S)Ui → Σ. This is the unique partial
assignment that satisfies φ(S)∣Ui

= σi for every xi,σi
∈ S

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 195

• Even though we define each concept as CI,H,σH
where σH is a partial assignment

to a subset TH ⊂ A∪B, it will be more convenient to view each concept as CI,H,σ

where σ ∈ ΣV is the assignment to the entire Label Cover instance. This is just
a notational change: the actual definition of the concept does not depend on
the assignment outside TH .

• For each I ⊆ [r], let UI denote ⋃i∈I Ui. For each σI ∈ ΣUI , we say that (I, σI)
passes H ⊆ Y if σI does not violate any constraint within TH . Denote the
collection of H’s that (I, σI) passes by H(I, σI).

• Finally, for any non-repetitive set S ⊆ X and any H ⊆ Y , we say that S passes
H if (I(S), φ(S)) passes H. We write H(S) as a shorthand for H(I(S), φ(S)).

The output size of the reduction and the completeness follow almost immediately
from definition.

Output Size of the Reduction. Clearly, the size of U is ∑i∈[r] ∣Σ∣∣Ui∣ ≤ r ⋅ ∣Σ∣n/r ≤
∣Σ∣O(∣E∣poly(1/δ)/r). As for ∣C∣, note first that the number of choices for I and H are

both 2r. For fixed I and H, Lemma 2.7.7 implies that, for each matching π
(t)
H , the

number of vertices from each Ui with at least one constraint to the matched partition
in π

(t)
H is at most O(∣E∣/r2). Since there are � matchings, the number of vertices in

TH = N1(MH(1)) ∪ ⋯ ∪ Nr(MH(r)) is at most O(∣E∣�/r). Hence, the number of
choices for the partial assignment σH is at most ∣Σ∣O(∣E∣poly(1/δ)/r). In total, we can
conclude that C contains at most ∣Σ∣O(∣E∣poly(1/δ)/r) concepts.

Completeness. If L has a satisfying assignment σ∗ ∈ ΣV , then the set Sσ∗ =
{xi,σ∗

i
∣ i ∈ [r]}∪Y is shattered because, for any S ⊆ Sσ∗ , we have S = Sσ∗∩CI(S),S∩Y,σ∗ .

Hence, VC-dim(C,U) ≥ 2r.
The rest of this section is devoted to the soundness analysis.

14.1.3 Soundness

In this subsection, we will prove the following lemma, which, combined with the
completeness and output size arguments above, imply Theorem 14.1.1. For brevity,
we will assume throughout this subsection that r is sufficiently large, and leave it
out of the lemmas’ statements.

Lemma 14.1.2. Let (C,U) be the output from the reduction in Figure 14.1 on input
L. If val(L) ≤ δ2/100, then VC-dim(C,U) ≤ (1 + δ)r with high probability.

At a high level, the proof of Lemma 14.1.2 has two steps:

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 196

1. Given a shattered set S ⊆ U , we extract a maximal non-repetitive set Sno-rep ⊆ S

such that Sno-rep passes many (≥ 2∣S∣−∣S
no-rep∣) H’s. If ∣Sno-rep∣ is small, the trivial

upper bound of 2r on the number of different H’s implies that ∣S∣ is also small.
As a result, we are left to deal with the case that ∣Sno-rep∣ is large.

2. When ∣Sno-rep∣ is large, Sno-rep induces a partial assignment on a large fraction
of vertices of L. Since we assume that val(L) is small, this partial assignment
must violate many constraints. We will use this fact to argue that, with high
probability, Sno-rep only passes very few H’s, which implies that ∣S∣ must be
small.

The two parts of the proof are presented in Subsection 14.1.3.1 and 14.1.3.2
respectively. We then combine them in Subsection 14.1.3.3 to prove Lemma 14.1.2.

14.1.3.1 Part I: Finding Non-Repetitive Set That Passes Many Tests

The goal of this subsection is to prove the following lemma, which allows us to, given
a shattered set S ⊆ U , find a non-repetitive set Sno-rep that passes many H’s.

Lemma 14.1.3. For any shattered S ⊆ U , there is a non-repetitive set Sno-rep of size
∣I(S)∣ s.t. ∣H(Sno-rep)∣ ≥ 2∣S∣−∣I(S)∣.

We will start by proving the following lemma, which will be a basis for the proof
of Lemma 14.1.3.

Lemma 14.1.4. Let C,C ′ ∈ C correspond to the same H (i.e. C = CI,H,σ and
C ′ = CI′,H,σ′ for some H ⊆ Y , I, I ′ ⊆ [r], σ, σ′ ∈ ΣV).

For any subset S ⊆ U and any maximal non-repetitive subset Sno-rep ⊆ S such that
I(Sno-rep) = I(S), if Sno-rep ⊆ C and Sno-rep ⊆ C ′, then S ∩C = S ∩C ′.

The most intuitive interpretation of this lemma is as follows. Recall that if S
is shattered, then, for each S̃ ⊆ S, there must be a concept CI

S̃
,H

S̃
,σ

S̃
such that

S̃ = S ∩ CI
S̃
,H

S̃
,σ

S̃
. The above lemma implies that, for each S̃ ⊇ Sno-rep, HS̃ must

be different. This means that at least 2∣S∣−∣S
no-rep∣ different H’s must be involved in

shattering S. Indeed, this will be the argument we use when we prove Lemma 14.1.3.

Proof of Lemma 14.1.4. Let S,Sno-rep be as in the lemma statement. Suppose for
the sake of contradiction that there exists H ⊆ Y , I, I ′ ⊆ [r], σ, σ′ ∈ ΣV such that
Sno-rep ⊆ CI,H,σ, Sno-rep ⊆ CI′,H,σ′ and S ∩CI,H,σ ≠ S ∩CI′,H,σ′ .

First, note that S ∩ CI,H,σ ∩ Y = S ∩H ∩ Y = S ∩ CI′,H,σ′ ∩ Y . Since S ∩ CI,H,σ ≠
S ∩CI′,H,σ′ , we must have S ∩CI,H,σ ∩X ≠ S ∩CI′,H,σ′ ∩X . Assume w.l.o.g. that there
exists xi,σi

∈ (S ∩CI,H,σ) ∖ (S ∩CI′,H,σ′).

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 197

Note that i ∈ I(S) = I(Sno-rep) (where the equality follows by maximality of
Sno-rep). Thus there exists σ′i ∈ ΣUi such that xi,σ′

i
∈ Sno-rep ⊆ CI,H,σ ∩CI′,H,σ′ . Since

xi,σ′
i
is in both CI,H,σ and CI′,H,σ′ , we have i ∈ I ∩ I ′ and

σ∣Ni(MH(i)) = σ′i∣Ni(MH(i)) = σ′∣Ni(MH(i)). (14.1)

However, since xi,σi
∈ (S∩CI,H,σ)∖(S∩CI′,H,σ′), we have xi,σi

∈ CI,H,σ ∖CI′,H,σ′ . This
implies that

σ∣Ni(MH(i)) = σi∣Ni(MH(i)) ≠ σ′∣Ni(MH(i)),

which contradicts to (14.1).

In addition to the above lemma, we will also need the following observation, which
states that, if a non-repetitive Sno-rep is contained in a concept CI,H,σH

, then Sno-rep

must pass H. This observation follows definitions.

Observation 14.1.5. If a non-repetitive set Sno-rep is a subset of some concept CI,H,σH
,

then H ∈ H(Sno-rep).
With Lemma 14.1.4 and Observation 14.1.5 ready, it is now easy to prove Lemma 14.1.3.

Proof of Lemma 14.1.3. Pick Sno-rep to be any maximal non-repetitive subset of S
such that I(Sno-rep) = I(S). Clearly, ∣Sno-rep∣ = ∣I(S)∣. To see that ∣H(Sno-rep)∣ ≥
2∣S∣−∣I(S)∣, consider any S̃ such that Sno-rep ⊆ S̃ ⊆ S. Since S is shattered, there exists
IS̃,HS̃, σS̃ such that S ∩CI

S̃
,H

S̃
,σ

S̃
= S̃. Since S̃ ⊇ Sno-rep, Observation 14.1.5 implies

that HS̃ ∈ H(Sno-rep). Moreover, from Lemma 14.1.4, HS̃ is distinct for every S̃. As
a result, ∣H(Sno-rep)∣ ≥ 2∣S∣−∣I(S)∣ as desired.

14.1.3.2 Part II: No Large Non-Repetitive Set Passes Many Tests

The goal of this subsection is to show that, if val(L) is small, then w.h.p. (over the
randomness in the construction) every large non-repetitive set passes only few H’s.
This is formalized as Lemma 14.1.6 below.

Lemma 14.1.6. If val(L) ≤ δ2/100, then, with high probability, for every non-
repetitive set Sno-rep of size at least δr, ∣H(Sno-rep)∣ ≤ 100n log ∣Σ∣.

Note that the mapping Sno-rep ↦ (I(Sno-rep), φ(Sno-rep)) is a bijection from the
collection of all non-repetitive sets to {(I, σI) ∣ I ⊆ [r], σI ∈ ΣUI}. Hence, the above
lemma is equivalent to the following.

Lemma 14.1.7. If val(L) ≤ δ2/100, then, with high probability, for every I ⊆ [r] of
size at least δr and every σI ∈ ΣUI , ∣H(I, σI)∣ ≤ 100n log ∣Σ∣.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 198

Here we use the language in Lemma 14.1.7 instead of Lemma 14.1.6 as it will be
easier for us to reuse this lemma later. To prove the lemma, we first need to bound
the probability that the assignment σI does not violate any constraint induced by a
random matching. More precisely, we will prove the following lemma.

Lemma 14.1.8. For any I ⊆ [r] of size at least δr and any σI ∈ ΣUI , if π ∶ [r] → [r]
is a random permutation of [r], then the probability that σI does not violate any
constraint in ⋃i∈[r]Ni(M(i)) is at most (1 − 0.1δ2)δr/8 where M(i) denote the index

that i is matched with in the matching (π(1), π(2)), . . . , (π(r − 1), π(r)).

Proof. Let p be any positive odd integer such that p ≤ δr/2 and let i1, . . . , ip−1 ∈
[r] be any p − 1 distinct elements of [r]. We will first show that conditioned on
π(1) = i1, . . . , π(p− 1) = ip−1, the probability that σI violates a constraint induced by
π(p), π(p + 1) (i.e. in Nπ(p)(π(p + 1)) ∪Nπ(p+1)(π(p))) is at least 0.1δ2.

To see that this is true, let I≥p = I ∖ {i1, . . . , ip−1}. Since ∣I ∣ ≥ δr, we have ∣I≥p∣ =
∣I ∣ − p + 1 ≥ δr/2 + 1. Consider the partial assignment σ≥p = σI ∣UI≥p

. Since val(L) ≤
0.01δ2, σ≥p can satisfy at most 0.01δ2∣E∣ constraints. From Lemma 2.7.7, we have,
for every i ≠ j ∈ I≥p, the number of constraints between Ui and Uj are at least
∣E∣/r2. Hence, there are at most 0.01δ2r2 pairs of i < j ∈ I≥p such that σ≥p does
not violate any constraint between Ui and Uj. In other words, there are at least

(∣I≥p∣
2
) − 0.01δ2r2 ≥ 0.1δ2r2 pairs i < j ∈ I≥p such that σ≥p violates some constraints

between Ui and Uj. Now, if π(p) = i and π(p + 1) = j for some such pair i, j, then
φ(Sno-rep) violates a constraint induced by π(p), π(p + 1). Thus, we have

Pr [σI doesn’t violate a constraint induced by π(p), π(p + 1) ∣
p−1
⋀
t=1

π(t) = it] ≤ 1 − 0.1δ2.

(14.2)

Let Ep denote the event that σI does not violate any constraints induced by π(p)
and π(p + 1). We can now bound the desired probability as follows.

Pr

⎡⎢⎢⎢⎢⎢⎣

σI doesn’t violate
any constraint in ⋃i∈[r]Ni(M(i))

⎤⎥⎥⎥⎥⎥⎦
≤ Pr

⎡⎢⎢⎢⎢⎣
⋀

odd p∈[δr/2+1]
Ep

⎤⎥⎥⎥⎥⎦

= ∏
odd p∈[δr/2+1]

Pr

⎡⎢⎢⎢⎢⎣
Ep

44444444444
⋀

odd t∈[p−1]
Et

⎤⎥⎥⎥⎥⎦
(From (14.2)) ≤ ∏

odd p∈[δr/2+1]
(1 − 0.1δ2)

≤ (1 − 0.1δ2)δr/4−1,

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 199

which is at most (1 − 0.1δ2)δr/8 for sufficiently large r (i.e. r ≥ 8/δ).

We can now prove our main lemma.

Proof of Lemma 14.1.7. For a fixed I ⊆ [r] of size at least δr and a fixed σI ∈ ΣUI ,
Lemma 14.1.8 tells us that the probability that σI does not violate any constraint
induced by a single matching is at most (1 − 0.1δ2)δr/8. Since for each H ⊆ Y the
construction picks � matchings at random, the probability that (I, σI) passes each
H is at most (1 − 0.1δ2)δ�r/8. Recall that we pick � = 80/δ3; this gives the following
upper bound on the probability:

Pr[(I, σI) passes H] ≤ (1 − 0.1δ2)δ�r/8 = (1 − 0.1δ2)10r/δ2 ≤ (1

1 + 0.1δ2
)
10r/δ2

≤ 2−r

(14.3)

where the last inequality comes from Bernoulli’s inequality.
Inequality (14.3) implies that the expected number of H’s that (I, σI) passes is

less than 1. Since the matchings MH are independent for all H’s, we can apply
Chernoff bound which implies that

Pr[∣H(I, σI)∣ ≥ 100n log ∣Σ∣] ≤ 2−10n log ∣Σ∣ = ∣Σ∣−10n.

Finally, note that there are at most 2r∣Σ∣n different (I, σI)’s. By union bound,
we have

Pr [∃I ⊆ [r], σI ∈ ΣUI s.t. ∣I ∣ ≥ δr AND ∣H(I, σI)∣ ≥ 100n log ∣Σ∣] ≤ (2r∣Σ∣n) (∣Σ∣−10n)

≤ ∣Σ∣−8n,

which concludes the proof.

14.1.3.3 Putting Things Together

Proof of Lemma 14.1.2. From Lemma 14.1.6, every non-repetitive set Sno-rep of size
at least δr, ∣H(Sno-rep)∣ ≤ 100n log ∣Σ∣. Conditioned on this event happening, we will
show that VC-dim(U ,C) ≤ (1 + δ)r.

Consider any shattered set S ⊆ U . Lemma 14.1.3 implies that there is a non-
repetitive set Sno-rep of size ∣I(S)∣ such that ∣H(Sno-rep)∣ ≥ 2∣S∣−∣I(S)∣. Let us consider
two cases:

1. ∣I(S)∣ ≤ δr. Since H(Sno-rep) ⊆ P(Y), we have ∣S∣ − ∣I(S)∣ ≤ ∣Y∣ = r. This
implies that ∣S∣ ≤ (1 + δ)r.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 200

2. ∣I(S)∣ > δr. From our assumption, ∣H(Sno-rep)∣ ≤ 100n log ∣Σ∣. Thus, ∣S∣ ≤
∣I(S)∣ + log(100n log ∣Σ∣) ≤ r + o(r); when r is sufficiently large, the latter ex-
pression is at most (1 + δ)r.

Hence, for sufficiently large r, VC-dim(U ,C) ≤ (1 + δ)r with high probability.

14.2 Inapproximability of Littlestone’s

Dimension

We next proceed to Littlestone’s Dimension. The main theorem of this section is
stated below. Again, note that this theorem, together with Theorem 2.4.4 implies
Theorem 14.0.2.

Theorem 14.2.1. There exists ε > 0 such that there is a randomized reduction from
a bi-regular Label Cover instance L = (A,B,E,Σ,{πe}e∈E) to a ground set U and a
concept classes C such that, if n ≜ ∣A∣ + ∣B∣, r ≜

√
n/ logn and k ≜ 1010∣E∣ log ∣Σ∣/r2,

then the following conditions hold for every sufficiently large n.

• (Size) The reduction runs in time 2rk ⋅ ∣Σ∣O(∣E∣/r) and ∣C∣, ∣U ∣ ≤ 2rk ⋅ ∣Σ∣O(∣E∣/r).

• (Completeness) If L is satisfiable, then L-dim(C,U) ≥ 2rk.

• (Soundness) If val(L) ≤ 0.001, then L-dim(C,U) ≤ (2− ε)rk with high probabil-
ity.

14.2.1 Why the VC Dimension Reduction Fails for
Littlestone’s Dimension

It is tempting to think that, since our reduction from the previous section works
for VC Dimension, it may also work for Littlestone’s Dimension. In fact, thanks to
Fact 2.5.5, completeness for that reduction even translates for free to Littlestone’s
Dimension. Alas, the soundness property does not hold. To see this, let us build a
depth-2r mistake tree for C,U , even when val(L) is small, as follows.

• We assign the test-selection elements to the first r levels of the tree, one element
per level. More specifically, for each s ∈ {0,1}<r, we assign y∣s∣+1 to s.

• For every string s ∈ {0,1}r, the previous step of the construction gives us a
subset of Y corresponding to the path from root to s; this subset is simply
Hs = {yi ∈ Y ∣ si = 1}. Let THs

denote the set of vertices tested by this seed

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 201

Hs. Let φs ∈ ΣV denote an assignment that satisfies all the constraints in THs
.

Note that, since THs
is of small size (only Õ(

√
n)), even if val(L) is small, φs is

still likely to exist (and we can decide whether it exists or not in time 2Õ(
√
n)).

We then construct the subtree rooted at s that corresponds to φs by assigning
each level of the subtree xi,φs∣Ui

. Specifically, for each t ∈ {0,1}≥r, we assign
x∣t∣−r+1,φt≤r ∣U∣t∣−r+1

to node t of the tree.

It is not hard to see that the constructed tree is indeed a valid mistake tree. This
is because the path from root to each leaf l ∈ {0,1}2r agrees with CI(l),Hl≤r ,φl≤r (where
I(l) = {i ∈ [r] ∣ li = 1}).

14.2.2 The Final Reduction

The above counterexample demonstrates the main difference between the two dimen-
sions: order does not matter in VC Dimension, but it does in Littlestone’s Dimension.
By moving the test-selection elements up the tree, the tests are chosen before the
assignments, which allows an adversary to “cheat” by picking different assignments
for different tests. We would like to prevent this, i.e., we would like to make sure
that, in the mistake tree, the upper levels of the tree are occupied with the assign-
ment elements whereas the lower levels are assigned test-selection elements. As in
the VC Dimension argument, our hope here is that, given such a tree, we should be
able to decode an assignment that passes tests on many different tests. Indeed we
will tailor our construction to achieve such property.

Recall that, if we use the same reduction as VC Dimension, then, in the com-
pleteness case, we can construct a mistake tree in which the first r layers consist
solely of assignment elements and the rest of the layers consist of only test-selection
elements. Observe that there is no need for different nodes on the r-th layer to
have subtrees composed of the same set of elements; the tree would still be valid if
we make each test-selection element only work with a specific s ∈ {0,1}r and cre-
ate concepts accordingly. In other words, we can modify our construction so that
our test-selection elements are Y = {yI,i ∣ I ⊆ [r], i ∈ [r]} and the concept class is
{CI,H,σH

∣ I ⊆ [r],H ⊆ Y , σH ∈ ΣTH} where the condition that an assignment element
lies in CI,H,σH

is the same as in the VC Dimension reduction, whereas for yI′,i to be
in CI,H,σH

, we require not only that i ∈H but also that I = I ′. Intuitively, this should
help us, since each yI,i is now only in a small fraction (≤ 2−r) of concepts; hence,
one would hope that any subtree rooted at any yI,i cannot be too deep, which would
indeed implies that the test-selection elements cannot appear in the first few layers
of the tree.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 202

Alas, for this modified reduction, it is not true that a subtree rooted at any yI,i
has small depth; specifically, we can bound the depth of a subtree yI,i by the log
of the number of concepts containing yI,i plus one (for the first layer). Now, note
that yI,i ∈ CI′,H,σH

means that I ′ = I and i ∈ H, but there can be still as many as
2r−1⋅∣Σ∣∣TH ∣ = ∣Σ∣O(∣E∣/r) such concepts. This gives an upper bound of r+O(∣E∣ log ∣Σ∣/r)
on the depth of the subtree rooted at yI,i. However, ∣E∣ log ∣Σ∣/r = Θ(

√
n logn) =

ω(r); this bound is meaningless here since, even in the completeness case, the depth
of the mistake tree is only 2r.

Fortunately, this bound is not useless after all: if we can keep this bound but
make the intended tree depth much larger than ∣E∣ log ∣Σ∣/r, then the bound will
indeed imply that no yI,i-rooted tree is deep. To this end, our reduction will have
one more parameter k = Θ(∣E∣ log ∣Σ∣/r) where Θ(⋅) hides a large constant and the
intended tree will have depth 2rk in the completeness case; the top half of the tree
(first rk layers) will again consist of assignment elements and the rest of the tree
composes of the test-selection elements. The rough idea is to make k “copies” of
each element: the assignment elements will now be {xi,σi,j ∣ i ∈ [r], σi ∈ ΣUi , j ∈ [k]}
and the test-selection elements will be {yI,i,j ∣ I ⊆ [r] × [k], j ∈ [k]}. The concept
class can then be defined as {CI,H,σH

∣ I ⊆ [r]×[k],H ⊆ [r]×[k], σH ∈ ΣTH} naturally,
i.e., H is used as the seed to pick the test set TH , yI′,i,j ∈ CI,H,σH

iff I ′ = I and
(i, j) ∈H whereas xi,σi,j ∈ CI,H,σH

iff (i, j) ∈ I and σi∣(I,σI) = σH ∣(I,σI). For this concept
class, we can again bound the depth of yI,i-rooted tree to be rk + O(∣E∣ log ∣Σ∣/r);
this time, however, rk is much larger than ∣E∣ log ∣Σ∣/r, so this bound is no more
than, say, 1.001rk. This is indeed the desired bound, since this means that, for any
depth-1.999rk mistake tree, the first 0.998rk layers must consist solely of assignment
elements.

Unfortunately, the introduction of copies in turn introduces another technical
challenge: it is not true any more that a partial assignment to a large set only
passes a few tests w.h.p. (i.e. an analogue of Lemma 14.1.7 does not hold). By
Inequality (14.3), each H is passed with probability at most 2−r, but now we want
to take a union bound there are 2rk ≫ 2r different H’s. To circumvent this, we will
define a map τ ∶ P([r] × [k]) → P([r]) and use τ(H) to select the test instead of
H itself. The map τ we use in the construction is the threshold projection where
i is included in H if and only if, for at least half of j ∈ [k], H contains (i, j). To
motivate our choice of τ , recall that our overall proof approach is to first find a node
that corresponds to an assignment to a large subset of the Label Cover instance;
then argue that it can pass only a few tests, which we hope would imply that the
subtree rooted there cannot be too deep. For this implication to be true, we need
the following to also hold: for any small subset H ⊆ P([r]) of τ(H)’s, we have that
L-dim(τ−1(H), [r]× [k]) is small. This property indeed holds for our choice of τ (see

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 203

Lemma 14.2.9).
With all the moving parts explained, we state the full reduction formally in

Figure 14.2.
Similar to our VC Dimension proof, we will use the following notation:

• For every i ∈ [r], let Xi ≜ {xi,σi,j ∣ σi ∈ ΣUi , j ∈ [k]}; we refer to these elements
as the i-assignment elements. Moreover, for every (i, j) ∈ [r] × [k], let Xi,j ≜
{xi,σi,j ∣ σi ∈ ΣUi}; we refer to these elements as the (i, j)-assignment elements.

• For every S ⊆ U , let I(S) = {i ∈ [r] ∣ S ∩Xi ≠ ∅} and IJ(S) = {(i, j) ∈ [r] × [k] ∣
S ∩ Xi,j ≠ ∅}.

• A set S ⊆ X is non-repetitive if ∣S ∩Xi,j ∣ ≤ 1 for all (i, j) ∈ [r] × [k].

• We say that S passes H̃ if the following two conditions hold:

– For every i ∈ [r] such that S ∩ Xi ≠ ∅, all i-assignment elements of S
are consistent on TH̃ ∣Ui

, i.e., for every (i, σi, j), (i, σ′i, j′) ∈ S, we have
σi∣Ui

= σ′i∣Ui
.

– The canonically induced assignment on TH̃ does not violate any constraint
(note that the previous condition implies that such assignment is unique).

We use H(S) to denote the collection of all seeds H̃ ⊆ [r] that S passes.

We also use the following notation for mistake trees:

• For any subset S ⊆ U and any function ρ ∶ S → {0,1}, let C[ρ] ≜ {C ∈ C ∣ ∀a ∈
S, a ∈ C ⇔ ρ(a) = 1} be the collections of all concept that agree with ρ on S.
We sometimes abuse the notation and write C[S] to denote the collection of
all the concepts that contain S, i.e., C[S] = {C ∈ C ∣ S ⊆ C}.

• For any binary string s, let pre(s) ≜ {∅, s≤1, . . . , s≤∣s∣−1} denote the set of all
proper prefixes of s.

• For any depth-dmistake tree T , let vT ,s denote the element assigned to the node
s ∈ {0,1}≤d, and let PT ,s ≜ {vT ,s′ ∣ s′ ∈ pre(s)} denote the set of all elements
appearing from the path from root to s (excluding s itself). Moreover, let
ρT ,s ∶ PT ,s → {0,1} be the function corresponding to the path from root to s,
i.e., ρT ,s(s′) = s∣s′∣+1 for every s′ ∈ pre(s).

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 204

Output Size of the Reduction The output size of the reduction follows im-
mediately from a similar argument as in the VC Dimension reduction. The only
different here is that there are 2rk choices for I and H, instead of 2r choices as in the
previous construction.

Completeness. If L has a satisfying assignment σ∗ ∈ ΣV , we can construct a
depth-rk mistake T as follows. For i ∈ [r], j ∈ [k], we assign xi,σ∗

i
,j to every node

in the ((i − 1)k + j)-th layer of T . Note that we have so far assigned every node in
the first rk layers. For the rest of the vertices s’s, if s lies in layer rk + (i − 1)k + j,
then we assign yI(ρ−1T ,s

(1)),i,j to it. It is clear that, for a leaf s ∈ {0,1}rk, the concept

CI(ρ−1T ,s
(1)),HT ,s,σ∗ agrees with the path from root to s where HT ,s is defined as {(i, j) ∣

yI(ρ−1T ,s
(1)),i,j ∈ ρ−1T ,s(1)}. Hence, L-dim(C,U) ≥ 2rk.

14.2.3 Soundness

Next, we will prove the soundness of our reduction, stated more precisely below.
Note that this lemma, together with completeness and output size properties we
argue above, implies Theorem 14.2.1 with ε = 0.001.

Lemma 14.2.2. Let (C,U) be the output from the reduction in Figure 14.2 on input
L. If val(L) ≤ 0.001, then L-dim(C,U) ≤ 1.999rk with high probability.

Roughly speaking, the overall strategy of our proof of Lemma 14.2.2 is as follows:

1. First, we will argue that any subtree rooted at any test-selection element must
be shallow (of depth ≤ 1.001rk). This means that, if we have a depth-1.999rk
mistake tree, then the first 0.998rk levels must be assigned solely assignment
elements.

2. We then argue that, in this 0.998rk-level mistake tree of assignment elements,
we can always extract a leaf s such that the path from root to s indicates
inclusion of a large non-repetitive set. In other words, the path to s can be
decoded into a (partial) assignment for the Label Cover instance L.

3. Let the leaf from the previous step be s and the non-repetitive set be Sno-rep.
Our goal now is to show that the subtree rooted as s must have small depth.
We start working towards this by showing that, with high probability, there
are few tests that agree with Sno-rep. This is analogous to Part II of the VC
Dimension proof.

4. With the previous steps in mind, we only need to argue that, when ∣H(Sno-rep)∣
is small, the Littlestone’s dimension of all the concepts that contains Sno-rep

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 205

(i.e. L-dim(C[Sno-rep],U)) is small. Thanks to Fact 2.5.6, it is enough for us
to bound L-dim(C[Sno-rep],X) and L-dim(C[Sno-rep],Y) separately. For the
former, our technique from the second step also gives us the desired bound; for
the latter, we prove that L-dim(C[Sno-rep],Y) is small by designing an algo-
rithm that provides correct predictions on a constant fraction of the elements
in Y .

Let us now proceed to the details of the proofs.

14.2.3.1 Part I: Subtree of a Test-Selection Assignment is Shallow

Lemma 14.2.3. For any yI,i,j ∈ Y, L-dim(C[{yI,i,j}],U) ≤ rk + (4∣E∣�/r) log ∣Σ∣ ≤
1.001rk.

Note that the above lemma implies that, in any mistake tree, the depth of the
subtree rooted at any vertex s assigned to some yI,i,j ∈ Y is at most 1+1.001rk. This
is because every concept that agrees with the path from the root to s1 must be in
C[{yI,i,j}], which has depth at most 1.001rk.

Proof of Lemma 14.2.3. Consider any CI′,H,στ(H) ∈ C[{yI,i,j}],U). Since yI,i,j ∈ CI′,H,στ(H) ,

we have I = I ′. Moreover, from Lemma 2.7.7, we know that ∣Ni (Mτ(H)(i))∣ ≤
4∣E∣�/r2, which implies that ∣Tτ(H)∣ ≤ 4∣E∣�/r. This means that there are only at most
∣Σ∣4∣E∣�/r choices of στ(H). Combined with the fact that there are only 2rk choices of
H, we have ∣C[{yI,i,j}]∣ ≤ 2rk ⋅ ∣Σ∣4∣E∣�/r. Fact 2.5.5 then implies the lemma.

14.2.3.2 Part II: Every Deep Mistake Tree Contains a Non-Repetitive
Set

The goal of this part of the proof is to show that, for mistake tree of X ,C of depth
slightly less than rk, there exists a leaf s such that the corresponding path from root
to s indicates an inclusion of a large non-repetitive set; in our notation, this means
that we would like to identify a leaf s such that IJ(ρ−1T ,s(1)) is large. Since we will
also need a similar bound later in the proof, we will prove the following lemma, which
is a generalization of the stated goal that works even for the concept class C[Sno-rep]
for any non-repetitive Sno-rep. To get back the desired bound, we can simply set
Sno-rep = ∅.

Lemma 14.2.4. For any non-repetitive set Sno-rep and any depth-d mistake tree T of
X ,C[Sno-rep], there exists a leaf s ∈ {0,1}d such that ∣IJ(ρ−1T ,s(1))∖IJ(Sno-rep)∣ ≥ d−r.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 206

The proof of this lemma is a double counting argument where we count a specific
class of leaves in two ways, which ultimately leads to the above bound. The leaves
that we focus on are the leaves s ∈ {0,1}d such that, for every (i, j) such that an
(i, j)-assignment element appears in the path from root to s but not in Sno-rep, the
first appearance of (i, j)-assignment element in the path is included. In other words,
for every (i, j) ∈ IJ(PT ,s)∖ IJ(Sno-rep), if we define ui,j ≜ infs′∈pre(s),vT ,s′∈Xi,j

∣s′∣, then
sui,j

must be equal to 1. We call these leaves the good leaves. Denote the set of good
leaves of T by GT ,Sno-rep .

Our first way of counting is the following lemma. Informally, it asserts that
different leaves agree with different sets H̃ ⊆ [r]. This can be thought of as an
analogue of Lemma 14.1.4 in our proof for VC Dimension. Note that this lemma
immediately gives an upper bound of 2r on ∣GT ,Sno-rep ∣.
Lemma 14.2.5. For any depth-d mistake tree T of X ,C[Sno-rep] and any different
s1, s2 ∈ GT ,Sno-rep, if CI1,H1,σ1

agrees with s1 and CI2,H2,σ2
agrees with s2 for some

I1, I2,H1,H2, σ1, σ2, then τ(H1) ≠ τ(H2).
Proof. Suppose for the sake of contradiction that there exist s1 ≠ s2 ∈ GT ,Sno-rep ,
H1,H2, I1, I2, σ1, σ2 such that CI1,H1,σ1

and CI2,H2,σ2
agree with s1 and s2 respectively,

and τ(H1) = τ(H2). Let s be the common ancestor of s1, s2, i.e., s is the longest string
in pre(s1) ∩ pre(s2). Assume w.l.o.g. that (s1)∣s∣+1 = 0 and (s2)∣s∣+1 = 1. Consider
the node vT ,s in tree T where the paths to s1, s2 split; suppose that this is xi,σi,j.
Therefore xi,σi,j ∈ CI2,H2,σ2

∖CI1,H1,σ1
.

We now argue that there is some xi,σ′
i
,j (with the same i, j but a different assign-

ment σ′i) that is in both concepts, i.e. xi,σ′
i
,j ∈ CI2,H2,σ2

∩ CI1,H1,σ1
. We do this by

considering two cases:

• If (i, j) ∈ IJ(Sno-rep), then there is xi,σ′
i
,j ∈ Sno-rep ⊆ CI1,H1,σ1

, CI2,H2,σ2
for some

σ′i ∈ ΣUi .

• Suppose, that (i, j) ∉ IJ(Sno-rep). Since s1 is a good leaf, there is some t ∈
pre(s) such that vT ,t = xi,σ′

i
,j for some σ′i ∈ ΣUi and t is included by the path

(i.e. s∣t∣+1 = 1). This also implies that xi,σ′
i
,j is in both CI1,H1,σ1

and CI2,H2,σ2
.

Now, since both xi,σi,j and xi,σ′
i
,j are in the concept CI2,H2,σ2

, we have (i, j) ∈ I2
and

σi∣Ni(Mτ(H1)) = σ2∣Ni(Mτ(H1)) = σ′i∣Ni(Mτ(H1)). (14.4)

On the other hand, since CI1,H1,σ1
contains xi,σ′

i
,j but not xi,σi,j, we have (i, j) ∈ I1

and

σi∣Ni(Mτ(H2)) ≠ σ1∣Ni(Mτ(H2)) = σ′i∣Ni(Mτ(H2)). (14.5)

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 207

which contradicts (14.4) since τ(H1) = τ(H2).

Next, we will present another counting argument which gives a lower bound on
the number of good leaves, which, together with Lemma 14.2.5, yields the desired
bound.

Proof of Lemma 14.2.4. For any depth-d mistake tree T of C[Sno-rep],X , let us con-
sider the following procedure which recursively assigns a weight λs to each node s

in the tree. At the end of the procedure, all the weight will be propagated from the
root to good leaves.

1. For every non-root node s ∈ {0,1}≥1, set λs ← 0. For root s = ∅, let λ∅ ← 2d.

2. While there is an internal node s ∈ {0,1}<d such that λs > 0, do the following:

a) Suppose that vs = xi,σi,j for some i ∈ [r], σi ∈ ΣUi and j ∈ [k].
b) If so far no (i, j)-element has appeared in the path or in Sno-rep, i.e.,

(i, j) ∉ IJ(PT ,s) ∪ IJ(Sno-rep), then λs1 ← λs. Otherwise, set λs0 = λs1 =
λs/2.

c) Set λs ← 0.

The following observations are immediate from the construction:

• The total of λ’s over all the tree, ∑s∈{0,1}≤d λd always remain 2d.

• At the end of the procedure, for every s ∈ {0,1}≤d, λs ≠ 0 if and only if s ∈
GT ,Sno-rep .

• If s ∈ GT ,Sno-rep , then λs = 2∣IJ(ρ
−1
T ,s(1))∖IJ(S

no-rep)∣ at the end of the execution.

Note that the last observation comes from the fact that λ always get divides in half
when moving down one level of the tree unless we encounter an (i, j)-assignment
element for some i, j that never appears in the path or in Sno-rep before. For any
good leaf s, the set of such (i, j) is exactly the set IJ(ρ−1T ,s(1)) ∖ IJ(Sno-rep).

As a result, we have 2d = ∑s∈GT 2
∣IJ(ρ−1T ,s(1))∖IJ(S

no-rep)∣. Since Lemma 14.2.5 implies
that ∣GT ,S ∣ ≤ 2r, we can conclude that there exists s ∈ GT ,Sno-rep such that ∣IJ(ρ−1T ,s(1))∖
IJ(Sno-rep)∣ ≥ d − r as desired.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 208

14.2.3.3 Part III: No Large Non-Repetitive Set Passes Many Test

The main lemma of this subsection is the following, which is analogous to Lemma 14.1.6

Lemma 14.2.6. If val(L) ≤ 0.001, then, with high probability, for every non-repetitive
set Sno-rep of size at least 0.99rk, ∣H(Sno-rep)∣ ≤ 100n log ∣Σ∣.

Proof. For every I ⊆ [r], let UI ≜ ⋃i∈I Ui. For every σI ∈ ΣUI and every H̃ ⊆ Y , we
say that (I, σI) passes H̃ if σI does not violate any constraint in TH̃ . Note that
this definition and the way the test is generated in the reduction is the same as
that of the VC Dimension reduction. Hence, if we can apply Lemma 14.1.7 with
δ = 0.99, which implies the following: with high probability, for every I ⊆ [r] of size
at least 0.99r and every σI ∈ ΣUI , ∣H(I, σI)∣ ≤ 100n log ∣Σ∣. Conditioned on this event
happening, we will show that, for every non-repetitive set Sno-rep of size at least
0.99rk, ∣H(Sno-rep)∣ ≤ 100n log ∣Σ∣.

Consider any non-repetitive set Sno-rep of size 0.99rk. Let σI(Sno-rep) be an as-
signment on UI(Sno-rep) such that, for each i ∈ I(Sno-rep), we pick one xi,σi,j ∈ Sno-rep

(if there are more than one such x’s, pick one arbitrarily) and let σI(Sno-rep)∣Ui
=

σi. It is obvious that H(Sno-rep) ⊆ H(I(Sno-rep), σI(Sno-rep)). Since Sno-rep is non-
repetitive and of size at least 0.99rk, we have ∣I(Sno-rep)∣ ≥ 0.99r, which means that
∣H(I(Sno-rep), σI(Sno-rep))∣ ≤ 100n log ∣Σ∣ as desired.

14.2.3.4 Part IV: A Subtree Containing Sno-rep Must be Shallow

In this part, we will show that, if we restrict ourselves to only concepts that contain
some non-repetitive set Sno-rep that passes few tests, then the Littlestone’s Dimension
of this restrictied concept class is small. Therefore when we build a tree for the whole
concept class C, if a path from root to some node indicates an inclusion of a non-
repetitive set that passes few tests, then the subtree rooted at this node must be
shallow.

Lemma 14.2.7. For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep],U) ≤ 1.75rk − ∣Sno-rep∣ + r + 1000k
√
r log(∣H(Sno-rep)∣ + 1).

We prove the above lemma by bounding L-dim(C[Sno-rep],X) and L-dim(C[Sno-rep],Y)
separately, and combining them via Fact 2.5.6. First, we can bound L-dim(C[Sno-rep],X)
easily by applying Lemma 14.2.4 coupled with the fact that ∣IJ(Sno-rep)∣ = ∣Sno-rep∣
for every non-repetitive Sno-rep. This gives the following corollary.

Corollary 14.2.8. For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep],X) ≤ rk − ∣Sno-rep∣ + r.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 209

We will next prove the following bound on L-dim(C[Sno-rep],Y). Note that Corol-
lary 14.2.8, Lemma 14.2.9, and Fact 2.5.6 immediately imply Lemma 14.2.7.

Lemma 14.2.9. For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep],Y) ≤ 0.75rk + 500k
√
r log(∣H(Sno-rep)∣ + 1).

The overall outline of the proof of Lemma 14.2.9 is that we will design a prediction
algorithm whose mistake bound is at most 0.75rk + 1000k

√
r log ∣H(Sno-rep)∣. Once

we design this algorithm, Lemma 2.5.4 immediately implies Lemma 14.2.9. To define
our algorithm, we will need the following lemma, which is a general statement that
says that, for a small collection of H’s, there is a some H̃∗ ⊂ [r] that agrees with
almost half of every H in the collection.

Lemma 14.2.10. Let H ⊆ P([r]) be any collections of subsets of [r], there exists
H̃∗ ⊆ [r] such that, for every H̃ ∈ H, ∣H̃∗ΔH̃ ∣ ≤ 0.5r + 1000

√
r log(∣H∣ + 1) where Δ

denotes the symmetric difference between two sets.

Proof. We use a simple probabilistic method to prove this lemma. Let H̃r be a
random subset of [r] (i.e. each i ∈ [r] is included independently with probability 0.5).
We will show that, with non-zero probability, ∣H̃rΔH̃ ∣ ≤ 0.5r + 1000

√
r log(∣H∣ + 1)

for all H̃ ∈ H, which immediately implies that a desired H̃∗ exists.
Fix H̃ ∈ H. Observe that ∣H̃rΔH̃ ∣ can be written as ∑i∈[r]�[i ∈ (H̃rΔH̃)]. For

each i, �[i ∈ (H̃rΔH̃)] is a 0,1 random variable with mean 0.5 independent of other
i′ ∈ [r]. Applying Chernoff bound here yields

Pr[∣H̃rΔH̃ ∣ > 0.5r + 1000
√
r log(∣cH ∣ + 1)] ≤ 2− log2(∣H∣+1) ≤ 1

∣H∣ + 1
.

Hence, by union bound, we have

Pr[∃H̃ ∈ H, ∣H̃rΔH̃ ∣ > 0.5r + 1000
√
r log(∣cH ∣ + 1)] ≤ ∣H∣

∣H∣ + 1
< 1.

In other words, ∣H̃rΔH̃ ∣ ≤ 0.5r + 1000
√
r log(∣H∣ + 1) for all H̃ ∈ H with non-zero

probability as desired.

We also need the following observation, which is an analogue of Observation 14.1.5
in the VC Dimension proof; it follows immediately from definition of H(S).
Observation 14.2.11. If a non-repetitive set Sno-rep is a subset of some concept
CI,H,στ(H) , then τ(H) ∈ H(Sno-rep).

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 210

With Lemma 14.2.10 and Observation 14.2.11 in place, we are now ready to prove
Lemma 14.2.9.

Proof of Lemma 14.2.9. Let H̃∗ ⊆ [r] be the set guaranteed by applying Lemma 14.2.10
with H = H(Sno-rep). Let H∗ ≜ H̃∗ × [k].

Our prediction algorithm will be very simple: it always predicts according to H∗;
i.e., on an input2 y ∈ Y , it outputs �[y ∈H∗]. Consider any sequence (y1, h1), . . . , (yw, hw)
that agrees with a concept CI,H,στ(H) ∈ C[Sno-rep]. Observe that the number of incor-
rect predictions of our algorithm is at most ∣H∗ΔH ∣.

Since CI,H,στ(H) ∈ C[Sno-rep], Observation 14.2.11 implies that τ(H) ∈ H(Sno-rep).
This means that ∣τ(H)ΔH̃∗∣ ≤ 0.5r + 1000

√
r log(∣H∣ + 1). Now, let us consider each

i ∈ [r] ∖ (τ(H)ΔH̃∗). Suppose that i ∈ τ(H) ∩ H̃∗. Since i ∈ τ(H), at least k/2
elements of Yi are in H and, since i ∈ H̃∗, we have Yi ⊆ H∗. This implies that
∣(H∗ΔH) ∩ Yi∣ ≤ k/2. A similar bound can also be derived when i ∉ τ(H) ∩ H̃∗. As
a result, we have

∣H∗ΔH ∣ = ∑
i∈[r]

∣(H∗ΔH) ∩ Yi∣

= ∑
i∈τ(H)ΔH̃∗

∣(H∗ΔH) ∩ Yi∣ + ∑
i∈[r]∖(τ(H)ΔH̃∗)

∣(H∗ΔH) ∩ Yi∣

≤ (∣τ(H)ΔH̃∗∣)(k) + (r − ∣τ(H)ΔH̃∗∣)(k/2)
≤ 0.75rk + 500k

√
r log(∣H∣ + 1),

concluding our proof of Lemma 14.2.9.

14.2.3.5 Putting Things Together

Proof of Lemma 14.2.2. Suppose for the sake of contradiction that val(L) ≤ 0.001
but L-dim(C,U) ≥ 1.999rk. Consider any depth-1.999rk mistake tree T of C,U . From
Lemma 14.2.3, we know that no test-selection element is assigned to any node in the
first 1.999rk−1.001rk−1 ≥ 0.997rk levels. In other words, the tree induced by the first
0.997rk levels is simply a mistake tree of C,X . By Lemma 14.2.4 with Sno-rep = ∅,
there exists s ∈ {0,1}0.997rk such that ∣IJ(ρ−1T ,s(1))∣ ≥ 0.997rk − r ≥ 0.996rk.

Since ∣IJ(ρ−1T ,s(1))∣ ≥ 0.996rk, there exists a non-repetitive set Sno-rep ⊆ ρ−1T ,s(1) of
size 0.996rk. Consider the subtree rooted at s. This is a mistake tree of C[ρT ,s],U of
depth 1.002rk. Since Sno-rep ⊆ ρ−1T ,s(1), we have C[ρT ,s] ⊆ C[Sno-rep]. However, this

2We assume w.l.o.g. that input elements are distinct; if an element appears multiple times, we
know the correct answer from its first appearance and can always correctly predict it afterwards.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 211

implies

1.002rk ≤ L-dim(C[ρT ,s],U)
≤ L-dim(C[Sno-rep],U)

(From Lemma 14.2.7) ≤ 1.75rk − 0.996rk + r + 100k
√
r log(∣H(Sno-rep)∣ + 1)

(From Lemma 14.2.6) ≤ 0.754rk + r + 100k
√
r log(100n log ∣Σ∣ + 1)

= 0.754rk + o(rk),

which is a contradiction when r is sufficiently large.

14.3 Quasi-polynomial Algorithm for

Littlestone’s Dimension

Theorem 14.3.1 (Quasi-polynomial Time Algorithm for Littlestone’s Dimension).
Littlestone’s Dimension can be computed (exactly) in time

O (∣C∣ ⋅ (2∣U ∣)L-dim(C,U)) ≤ ∣C∣ ⋅ ∣U ∣O(log ∣C∣)
.

Proof. We prove by induction on L-dim(C,U). Assume by induction that the bound
on the running time holds for all concept classes of smaller dimension. Enumerate
over all posible roots x ∈ U for the mistake tree. For each root x, partition C into
Cx=1, concepts that include x, and Cx=0 (this takes time O(∣C∣)). Now any mistake
tree rooted at x has depth exactly 1 +min{L-dim(Cx=0,U),L-dim(Cx=1,U)}. We at-
tempt to compute both L-dim(Cx=0,U),L-dim(Cx=1,U) until one of the computations
terminates. Since one of Cx=0,Cx=1 has a lower Littlestone’s Dimension, it follows by
our induction hypothesis that we can compute it in time O (∣C∣ ⋅ (2∣U ∣)L-dim(C,U)−1).
Multiplying by 2 because we’re computing for two classes and by U because we’re
performing this computation for every root x, the total upper bound on the running
time follows.

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 212

Input: A bi-regular Label Cover instance L = (A,B,E,Σ,{πe}e∈E) and a param-
eter δ > 0.
Output: A ground set U and a concept class C.
The procedure to generate (U ,C) works as follows:

• Let r be
√
n/ logn where n = ∣A∣ + ∣B∣. Use Lemma 2.7.7 to partition A∪B

into r blocks U1, . . . , Ur.

• For convenience, we assume that r is even. Moreover, for i ≠ j ∈ [r], let
Ni(j) ⊆ Ui denote the set of all vertices in Ui with at least one neighbor in
Uj (w.r.t. the graph (A,B,E)). We also extend this notation naturally to
a set of j’s; for J ⊆ [r], Ni(J) denotes ⋃j∈J Ni(j).

• The universe U consists of two types of elements, as described below.

– Assignment elements : for every i ∈ [r] and every partial assignment
σi ∈ ΣUi , there is an assignment element xi,σi

corresponding to it. Let
X denote all the assignment elements, i.e., X = {xi,σi

∣ i ∈ [r], σi ∈ ΣUi}.
– Test selection elements : there are r test selection elements, which we

will call y1, . . . , yr. Let Y denote the set of all test selection elements.

• The concepts in C are defined by the following procedure.

– Let � ≜ 80/δ3 be the number of matchings to be tested.

– For each H ⊆ Y , we randomly select � permutations π
(1)
H , . . . , π

(�)
H ∶

[r] → [r]; this gives us � matchings (i.e. the t-th matching is

(π(t)H (1), π(t)H (2)), . . . , (π(t)H (r − 1), π(t)H (r))). For brevity, let us denote
the set of (up to �) elements that i is matched with in the matchings
by MH(i). Let TH = ⋃iNi(MH(i))

– For every I ⊆ [r],H ⊆ Y and for every partial assignment σH ∈ ΣTH

that does not violate any constraints, we create a concept CI,H,σH
such

that each xi,σi
∈ X is included in CI,H,σH

if and only if i ∈ I and σi is
consistent with σH , i.e., σi∣Ni(MH(i)) = σH ∣Ni(MH(i)) whereas yi ∈ Y in
included in CI,H,σH

if and only if y ∈H.

Figure 14.1: Reduction from Label Cover to VC Dimension

CHAPTER 14. VC AND LITTLESTONE’S DIMENSIONS 213

Input: A bi-regular Label Cover instance L = (A,B,E,Σ,{πe}e∈E).
Output: A ground set U and a concept class C.
The procedure to generate (U ,C) works as follows:

• Let r,U1, . . . , Ur,N be defined in the same manner as in Reduction 14.1
and let k ≜ 1010∣E∣ log ∣Σ∣/r2.

• The universe U consists of two types of elements, as described below.

– Assignment elements : for every i ∈ [r], every partial assignment
σi ∈ ΣUi and every j ∈ [k], there is an assignment element xi,σi,j

corresponding to it. Let X denote all the assignment elements, i.e.,
X = {xi,σi,j ∣ i ∈ [r], σi ∈ ΣUi , j ∈ [k]}.

– Test-selection elements : there are rk(2rk) test-selection elements,
which we will call yI,i,j for every i ∈ [r], j ∈ [k], I ⊆ [r] × [k].
Let Y denote the set of all test-selection elements. Let Yi denote
{yI,i,j ∣ I ⊆ [r]×[k], j ∈ [k]}. We call the elements of Yi i-test-selection
elements.

• The concepts in C are defined by the following procedure.

– Let � ≜ 1000 be the number of matchings to be tested.

– For each H̃ ⊆ [r], we randomly select � permutations π
(1)
H̃

, . . . , π
(�)
H̃

∶
[r] → [r]; this gives us � matchings (i.e. the t-th matching is

(π(t)
H̃
(1), π(t)

H̃
(2)), . . . , (π(t)

H̃
(r − 1), π(t)

H̃
(r))). Denote the set of ele-

ments that i is matched with in the matchings by MH̃(i). Let
TH = ⋃iNi(MH̃(i))

– Let τ ∶ P([r]×[k]) → P([r]) denote the threshold projection operation
where each i ∈ [r] is included in τ(H) if and only if H contains at least
half of the i-test-selection elements, i.e., τ(H) = {i ∈ [r] ∣ ∣H ∩ Yi∣ ≥
k/2}.

– For every I ⊆ [r] × [k],H ⊆ [r] × [k] and for every partial assign-
ment στ(H) ∈ ΣTτ(H) that does not violate any constraints, we cre-
ate a concept CI,H,στ(H) such that each xi,σi,j ∈ X is included in
CI,H,στ(H) if and only if (i, j) ∈ I and σi is consistent with στ(H), i.e.,
σi∣Ni(Mτ(H)(i)) = στ(H)∣Ni(Mτ(H)(i)) whereas each yI′,i,j ∈ Y in included in
CI,H,στ(H) if and only if (i, j) ∈H and I ′ = I.

Figure 14.2: Reduction from Label Cover to Littlestone’s Dimension

214

Chapter 15

Signaling

Many classical questions in economics involve extracting information from strategic
agents. Lately, there has been growing interest within algorithmic game theory in
signaling: the study of how to reveal information to strategic agents (see e.g. [MS12;
DIR13; Eme+14; Dug14; Che+15b] and references therein). Signaling has been stud-
ied in many interesting economic and game theoretic settings. Among them, Zero-
Sum Signaling proposed by Dughmi [Dug14] stands out as a canonical problem
that cleanly captures the computational nature of signaling. In particular, focusing
on zero-sum games clears away issues of equilibrium selection and computational
tractability of finding an equilibrium.

Definition 15.0.1 (Zero-Sum Signaling [Dug14]). Alice and Bob play a Bayesian
zero-sum game where the payoff matrix M is drawn from a publicly known prior.
The signaler Sam privately observes the state of nature (i.e. the payoff matrix),
and then publicly broadcasts a signal ϕ (M) to both Alice and Bob. Alice and Bob
Bayesian-update their priors according to ϕ (M)’s and play the Nash equilibrium of
the expected game; but they receive payoffs according to the true M . Sam’s goal is
to design an efficient signaling scheme ϕ (a function from payoff matrices to strings)
that maximizes Alice’s expected payoff.

Dughmi’s [Dug14] main result proves that assuming the hardness of the Planted
Clique problem, there is no additive FPTAS for Zero-Sum Signaling. The main
open question left by [Dug14] is whether there exists an additive PTAS. Here we
answer this question in the negative: we prove that assuming the Exponential Time
Hypothesis (ETH), obtaining an additive-ε-approximation (for some constant ε > 0)
requires quasi-polynomial time (nΩ̃(lgn)). This result is tight thanks to a recent quasi-

polynomial (n
lgn

poly(ε)) time algorithm by Cheng et al. [Che+15b]. Another important

CHAPTER 15. SIGNALING 215

advantage of our result is that it replaces the hardness of Planted Clique with a
more believable worst-case hardness assumption (see e.g. the discussion in [BKW15]).

Theorem 15.0.2. There exists a constant ε > 0, such that assuming ETH, approxi-
mating Zero-Sum Signaling with payoffs in [−1,1] to within an additive ε requires
time nΩ̃(lgn).

NP-hard variants

This chapter is based on [Rub15] where we also proved two NP-hardness of ap-
proximation result: first, we show that obtaining a multiplicative approximation is
NP-hard. Then, we introduce a new variant of the signaling problem where the sig-
naler may lie, i.e. he commits to one signaling scheme, but uses a different scheme.
In the lying variant even an additive 1 − 2−Ω(n)-approximation is NP-hard.

Concurrent work of Bhaskar et al.

In independent concurrent work by Bhaskar et al. [Bha+16], quasi-polynomial time
hardness for additive approximation of Zero-Sum Signaling was obtained assum-
ing the hardness of the Planted Clique problem (among other interesting results1

about network routing games and security games). Although we are not aware of a
formal reduction, hardness of Planted Clique is a qualitatively stronger assump-
tion than ETH in the sense that it requires average case instances to be hard. Hence
in this respect, our result is stronger.

15.0.1 Techniques

Our starting point for this reduction is “birthday repetition” We reduce from a 2-ary
constraint satisfaction problem (2-CSP) over n variables to a distribution over N

zero-sum N × N games, with N = 2Θ(
√
n). Alice and Bob’s strategies correspond

to assignments to tuples of
√
n variables. By the birthday paradox, the two

√
n-

tuples chosen by Alice and Bob share a constraint with constant probability. If a
constant fraction of the constraints are unsatisfiable, Alice’s payoff will suffer with
constant probability. Assuming ETH, approximating the value of the CSP requires
time 2Ω̃(n) = N Ω̃(lgN).

1For zero-sum games, [Bha+16] also rule out an additive FPTAS assuming P ≠ NP. This result
follows immediately the NP-hardness for multiplicative approximation in [Rub15].

CHAPTER 15. SIGNALING 216

The challenge The main difficulty is that once the signal is public, the zero-sum
game is tractable. Thus we would like to force the signaling scheme to output a
satisfying assignment. Furthermore, if the scheme would output partial assignments
on different states of nature (aka different zero-sum games in the support), it is
not clear how to check consistency between different signals. Thus we would like
each signal to contain an entire satisfying assignment. The optimal scheme may
be very complicated and even require randomization, yet by an application of the
Caratheodory Theorem the number of signals is, wlog, bounded by the number
of states of nature [Dug14]. If the state of nature can be described using only
lgN = Θ̃ (√n) bits2, how can we force the scheme to output an entire assignment?

To overcome this obstacle, we let the state of nature contain a partial assign-
ment to a random

√
n-tuple of variables. We then check the consistency of Alice’s

assignment with nature’s assignment, Bob’s assignment with nature’s assignment,
and Alice and Bob’s assignments with each other; let τA,Z , τB,Z , τA,B denote the
outcomes of those consistency checks, respectively. Alice’s payoff is given by:

U = δτA,Z − δ2τB,Z + δ3τA,B

for some small constant δ ∈ (0,1). Now, both Alice and Bob want to maximize
their chances of being consistent with nature’s partial assignment, and the signaling
scheme gains by maximizing τA,B.

Of course, if nature outputs a random assignment, we have no reason to expect
that it can be completed to a full satisfying assignment. Instead, the state of nature
consists of N assignments, and the signaling scheme helps Alice and Bob play with
the assignment that can be completed.

15.1 Near-optimal signaling is hard

Theorem 15.1.1. There exists a constant ε > 0, such that assuming ETH, approxi-
mating Zero-Sum Signaling with payoffs in [−1,1] to within an additive ε requires
time nΩ̃(lgn).

Construction overview

Our reduction begins with a 2CSP ψ over n variables from alphabet Σ. We partition
the variables into n/k disjoint subsets {S1, . . . , Sn/k}, each of size at most 2k for
k =

√
n such that every two subsets share at most a constant number of constraints.

2In other words, N , the final size of the reduction, is an upper bound on the number of states
of nature.

CHAPTER 15. SIGNALING 217

Nature chooses a random subset Si from the partition, a random assignment
u⃗ ∈ Σ2k to the variables in Si, and an auxiliary vector b̂ ∈ {0,1}Σ×[2k]. As mentioned
in Section 15.0.1, u⃗ may not correspond to any satisfying assignment. Alice and
Bob participate in one of ∣Σ∣2k subgames; for each v⃗ ∈ Σ2k, there is a corresponding
subgame where all the assignments are XOR-ed with v⃗. The goal of the auxiliary
vector b̂ is to force Alice and Bob to participate in the right subgame, i.e. the one
where the XOR of v⃗ and u⃗ can be completed to a full satisfying assignment. In
particular, the optimum signaling scheme reveals partial information about b̂ in a
way that guides Alice and Bob to participate in the right subgame. The scheme also
outputs the full satisfying assignment, but reveals no information about the subset
Si chosen by nature.

Each player has (∣Σ∣2k × 2) × (n/k × (n/k
n/2k) × ∣Σ∣

2k) = 2Θ(
√
n) strategies. The first

∣Σ∣2k strategies correspond to a Σ-ary vector v⃗ that the scheme will choose after ob-
serving the random input. The signaling scheme forces both players to play (w.h.p.)
the strategy corresponding to v⃗ by controlling the information that corresponds to
the next 2 strategies. Namely, for each v⃗′ ∈ Σ2k, there is a random bit b (v⃗′) such
that each player receives a payoff of 1 if they play (v⃗′, b (v⃗′)) and 0 for (v⃗′,1 − b (v⃗′)).
The b’s are part of the state of nature, and the optimal signaling scheme will reveal
only the bit corresponding to the special v⃗. Since there are ∣Σ∣2k bits, nature cannot
choose them independently, as that would require 2∣Σ∣

2k

states of nature. Instead we
construct a pairwise independent distribution.

The next n/k strategies correspond to the choice of a subset Si from the speci-

fied partition of variables. The (n/k
n/2k) strategies that follow correspond to a gadget

due to Althofer [Alt94] whereby each player forces the other player to randomize
(approximately) uniformly over the choice of subset.

The last ∣Σ∣2k strategies correspond to an assignment to Si. The assignment to
each Si is XOR-ed entry-wise with v⃗. Then, the players are paid according to checks
of consistency between their assignments, and a random assignment to a random Si

picked by nature. (The scheme chooses v⃗ so that nature’s random assignment is part
of a globally satisfying assignment.) Each player wants to pick an assignment that
passes the consistency check with nature’s assignment. Alice also receives a small
bonus if her assignment agrees with Bob’s; thus her payoff is maximized when there
exists a globally satisfying assignment.

See formal construction below, as well as summary in Table 15.1.

CHAPTER 15. SIGNALING 218

Table 15.1: Variables in proof of Theorem 15.1.1

Variable Role in reduction Chosen by...

Nature

i ∈ [n/k] Specifies subset Si

Uniformly at randomu⃗ ∈ Σ2k Specifies (shifted) assignment for Si

b̂ ∈ {0,1}Σ×[2k] Force Alice and Bob into right subgame

Alice3 (expected behvaior)

v⃗A, cA Force Alice into right subgame cA = b (v⃗A)
jA ∈ [n/k] Specifies subset SjA Uniformly at random

TA ⊂ [n/k] Force Bob to pick jB at random Random subset of size n/2k
w⃗A ∈ Σ2k Assignment for SjA α⃗ restricted to SjA

Signaler (completeness)

α⃗ ∈ Σn Assignment to entire 2CSP Satisfying assignment

v⃗ ∈ Σ2k Correct shift to Nature’s assignment v⃗ ⊕Σ u⃗ is α⃗ restricted to Si

b (v⃗) ∈ {0,1} Force Alice and Bob into v⃗-subgame Extracted from b̂

Formal construction

Let ψ be a 2CSP-d over n variables from alphabet Σ, as guaranteed by Theorem
2.4.1. In particular, ETH implies that distinguishing between a completely satisfiable
instance and (1 − η)-satisfiable requires time 2Ω̃(n). By Lemma 2.7.6, we can (deter-
ministically and efficiently) partition the variables into n/k subsets {S1, . . . , Sn/k} of
size at most 2k = 2

√
n, such that every two subsets share at most 8d2k2/n = O (1)

constraints.

States of nature Nature chooses a state (b̂, i, u⃗) ∈ {0,1}Σ×[2k] × [n/k] × Σ2k uni-

formly at random. For each v⃗, b (v⃗) is the XOR of bits from b̂ that correspond to
entries of v⃗:

∀v⃗ ∈ Σ2k b (v⃗) ≜
⎛
⎝ ⊕
(σ,�)∶[v⃗]�=σ

[b̂](σ,�)
⎞
⎠
.

CHAPTER 15. SIGNALING 219

Notice that the b (v⃗)’s are pairwise independent and each marginal distribution is
uniform over {0,1}.

Strategies Alice and Bob each choose a strategy (v⃗, c, j, T, w⃗) ∈ Σ2k×{0,1}×[n/k]×
([n/k]
n/2k) × Σ2k. We use v⃗A, cA, etc. to denote the strategy Alice plays, and similarly

v⃗B, cB, etc. for Bob. For σ, σ′ ∈ Σ, we denote σ ⊕Σ σ′ ≜ σ + σ′ (mod ∣Σ∣), and for
vectors v⃗, v⃗′ ∈ Σ2k, we let v⃗ ⊕Σ v⃗′ ∈ Σ2k denote the entry-wise ⊕Σ.

Payoffs Consider state of nature (b̂, i, u⃗) and players’ strategies (v⃗A, cA, jA, TA, w⃗A)
and (v⃗B, cB, jB, TB, w⃗B).

When v⃗A = v⃗B = v⃗, we set τA,Z = 1 if assignments w⃗A and (v⃗ ⊕Σ u⃗) to subsets
SjA and Si, respectively, satisfy all the constraints in ψ that are determined by

(Si ∪ SjA), and τA,Z = 0 otherwise. Similarly, τB,Z = 1 iff w⃗B and (v⃗ ⊕Σ u⃗) satisfy the
corresponding constraints in ψ; and τA,B checks w⃗A and w⃗B. When v⃗A ≠ v⃗B, we set
τA,Z = τB,Z = τA,B = 0.

We decompose Alice’s payoff as:

UA ≜ UA
b +UA

Althofer +UA
ψ ,

where
UA
b ≜ 1{cA = b (v⃗A)} − 1{cB = b (v⃗B)} ,

UA
Althofer ≜ 1{jB ∈ TA} − 1{jA ∈ TB} ,

and
UA
ψ ≜ δτA,Z − δ2τB,Z + δ3τA,B, (15.1)

for a sufficiently small constant 0 < δ ≪√
η.

Completeness

Lemma 15.1.2. If ψ is satisfiable, there exists a signaling scheme and a mixed
strategy for Alice that guarantees expected payoff δ − δ2 + δ3.

Proof. Fix a satisfying assignment α⃗ ∈ Σn. Given state of nature (b̂, i, u⃗), let v⃗ be
such that (v⃗ ⊕Σ u⃗) = [α⃗]Si

. The scheme outputs the signal (v⃗, b (v⃗) , α⃗). Alice’s mixed
strategy sets (v⃗A, cA) = (v⃗, b (v⃗)), picks jA and TA uniformly at random, and sets
w⃗A = [α⃗]S

jA
.

Because Bob has no information about b (v⃗′) for any v⃗′ ≠ v⃗, he has probability
1/2 of losing whenever he picks v⃗B ≠ v⃗, i.e. E [UA

b
] ≥ 1

2
Pr [v⃗B ≠ v⃗]. Furthermore,

because Alice chooses TA and jA uniformly, E [UA
Althofer

] = 0.

CHAPTER 15. SIGNALING 220

Since α⃗ completely satisfies ψ, we have that τA,Z = 1 as long as v⃗B = v⃗ (regardless
of the rest of Bob’s strategy). Bob’s goal is thus to maximize E [δ2τB,Z − δ3τA,B].
Notice that w⃗A and (v⃗ ⊕Σ u⃗) are two satisfying partial assignments to uniformly
random subsets from the partition. In particular, they are both drawn from the
same distribution, so we have that for any mixed strategy that Bob plays, E [τB,Z] =
E [τA,B]. Therefore Alice’s payoff is at least

(δ − δ2 + δ3)Pr [v⃗B = v⃗] + 1

2
Pr [v⃗B ≠ v⃗] ≥ δ − δ2 + δ3.

Soundness

Lemma 15.1.3. If at most a (1 − η)-fraction of the constraints are satisfiable, Alice’s
maxmin payoff is at most δ − δ2 + (1 −Ωη (1)) δ3, for any signaling scheme.

Proof. Fix any mixed strategy by Alice; we show that Bob can guarantee a payoff
of at least −(δ − δ2 + (1 −Ωη (1)) δ3). On any signal, Bob chooses (v⃗B, cB) from
the same distribution that Alice uses for (v⃗A, cA). He chooses jB uniformly, and
picks TB so as to minimize E [UA

Althofer
]. Finally, for each jB, he draws w⃗B from

the same marginal distribution that Alice uses for w⃗A conditioning on jA = jB (and
uniformly at random if Alice never plays jA = jB). By symmetry, E [UA

b
] = 0 and

E [UA
Althofer

] ≤ 0.
In this paragraph, we use Althoefer’s gadget to argue that, wlog, Alice’s dis-

tribution over the choice of jA is approximately uniform. In Althofer’s gadget,
Alice can guarantee an (optimal) expected payoff of 0 by randomizing uniformly
over her choice of jA and TA. By Lemma 2.7.8, if Alice’s marginal distribution
over the choice of jA is 8δ2-far from uniform (in total variation distance), then

Bob can guess that jA is in some subset TB ∈ ([n/k]
n/2k) with advantage (over guess-

ing at random) of at least 2δ2. Therefore E [UA
Althofer

] ≤ −2δ2; but this would imply

E [UA] ≤ −2δ2 + E [UA
ψ
] ≤ δ − 2δ2 + δ3. So henceforth we assume wlog that Alice’s

marginal distribution over the choice of jA is O (δ2)-close to uniform (in total varia-
tion distance).

Since Alice’s marginal distribution over jA is O (δ2)-close to uniform, we have that
Bob’s distribution over (jB, w⃗B) is O (δ2)-close to Alice’s distribution over (jA, w⃗A).
Therefore E [τB,Z] ≥ E [τA,Z] −O (δ2), and so we also get:

E [UA] ≤ E [UA
ψ] ≤ δ − δ2 + δ3E [τA,B] +O (δ4) . (15.2)

CHAPTER 15. SIGNALING 221

Bounding E [τA,B] To complete the proof, it remains to show an upper bound on
E [τA,B]. In particular, notice that it suffices to bound the probability that Alice’s and
Bob’s induced assignments agree. Intuitively, if they gave assignments to uniformly
random (and independent) subsets of variables, the probability that their assignments
agree cannot be much higher than the value of the 2CSP; below we formalize this
intuition.

By the premise, any assignment to all variables violates at least an η-fraction
of the constraints. In particular, this is true in expectation for assignments drawn
according to Alice’s and Bob’s mixed strategy. This is a bit subtle: in general, it is
possible that Alice’s assignment alone doesn’t satisfy many constraints and neither
does Bob’s, but when we check constraints between Alice’s and Bob’s assignments
everything satisfied (for example, think of the 3-Coloring CSP, where Alice colors
all her vertices blue, and Bob colors all his vertices red). Fortunately, this subtlety
is irrelevant for our construction since we explicitly defined Bob’s mixed strategy so
that conditioned on each set Sj of variables, Alice and Bob have the same distribution
over assignments.

The expected number of violations between pairs directly depends on the value
of the 2CSP. To bound the probability of observing at least one violations, recall
that every pair of subsets shares at most a constant number of constraints, so this
probability is within a constant factor of the expected number of violations. In
particular, an Ω (η)-fraction of the pairs of assignments chosen by Alice and Bob
violate ψ.

Finally, Alice doesn’t choose jA uniformly at random; but her distribution is
O (δ2)-close to uniform. Therefore, we have E [τA,B] ≤ 1 − Ω (η) +O (δ2). Plugging
into (15.2) completes the proof.

222

Part V

Approximate Nash Equilibrium

223

Chapter 16

2-Player approximate Nash
Equilibrium

For the past decade, the central open problem in equilibrium computation has been
whether two-player Nash equilibrium admits a PTAS. We had good reasons to be
hopeful: there was a series of improved approximation ratios [KPS09; DMP09;
DMP07; BBM10; TS08] and several approximation schemes for special cases [KT07;
DP09; Alo+13; Bar15]. Yet most interesting are two inefficient algorithms for two-
player Nash:

• the classic Lemke-Howson algorithm [LH64] finds an exact Nash equilibrium
in exponential time; and

• a simple algorithm by Lipton, Markakis, and Mehta [LMM03] finds an ε-
Approximate Nash Equilibrium in time nO(logn).

Although the Lemke-Howson algorithm takes exponential time, it has a special struc-
ture which places the problem inside the complexity class PPAD [Pap94]. Proving
hardness for problems in PPAD is notoriously challenging because they are total,
i.e. they always have a solution, so the standard techniques from NP-hardness do
not apply. By now, however, we know that exponential and polynomial approx-
imations for two-player Nash are PPAD-complete [DGP09; CDT09]. However, ε-
approximation for two-player Nash is unlikely to have the same fate: otherwise, the
quasi-polynomial algorithm of [LMM03] would refute the Exponential Time Hypoth-
esis for PPAD. Thus the strongest hardness result we can hope to prove (given our
current understanding of complexity1) is a quasi-polynomial hardness that sits inside

1Given our current understanding of complexity, refuting ETH for PPAD seems unlikely: there
are matching black-box lower bounds [HPV89; Bea+98]. Recall that the NP-analogue ETH [IPZ01]

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 224

PPAD:

Theorem (Theorem 1.3.1 restated). There exists a constant ε > 0 such that, assum-
ing ETH for PPAD, finding an ε-Approximate Nash Equilibrium in a two-player n×n
game requires time T (n) = nlog1−o(1) n.

16.0.1 Additional related work

Previous attempts to show lower bounds for approximate Nash in two player games
have mostly focused on limited models of computation [DP09] and lower bounding
the support required for obtaining approximate equilibria [Alt94; FNS07; Anb+13;
Anb+15] (in contrast, [LMM03]’s algorithm runs in quasi-polynomial time because
there exist approximate equilibria with support size at most O (logn

ε2
)).

Best Nash equilibrium Hazan and Krauthgamer [HK11] showed that finding an
ε-Approximate Nash Equilibrium with ε-optimal welfare is as hard as the Planted-
Clique problem; Austrin et al. [ABC13] later showed that the optimal-welfare
constraint can be replaced by other decision problems. Braverman et al. [BKW15]
recently showed that the hardness Planted-Clique can be replaced by the Expo-
nential Time Hypothesis, the NP-analog of the ETH for PPAD we use here. (See
also Theorem 11.1.1.)

Multiplicative hardness of approximation Daskalakis [Das13] and our recent
work [Rub15˙simpler-games] show that finding an ε-relative Well-Supported Nash
Equilibrium in two-player games is PPAD-hard. The case of ε-relative Approximate
Nash Equilibrium is still open: our main theorem implies that it requires at least
quasi-polynomial time, but it is not known whether it is PPAD-hard, or even if it
requires a large support (see also discussion in [BPR16]).

Approximation algorithms The state of the art for games with arbitrary payoffs
is ≈ 0.339 for two-player games due to Tsaknakis and Spirakis [TS08] and 0.5 + ε for
polymatrix games due to Deligkas et al. [Del+17]. For two-player games, PTAS have
been given for the special cases of constant rank games by Kannan and Theobald
[KT07], small-probability games by Daskalakis and Papadimitriou [DP09], positive
semi-definite games by Alon et al. [Alo+13], and sparse games by Barman [Bar15].

is widely used (e.g. [KS10; LMS11; AIM14; BKW15; CPP16],as well as the previous part of this
thesis), often in stronger variants such as SETH [IP01; CIP09] and NSETH [Car+16].

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 225

16.1 Technical overview

Given an End-of-a-Line instance of size n, we construct a two-player N ×N game
for N = 2n

1/2+o(1)
whose approximate equilibria correspond to solutions to the End-

of-a-Line instance. Thus, assuming the “ETH for PPAD”, finding an approximate
equilibrium requires time 2n = N log1−o(1)N .

The main steps of the final construction are: (i) reducing End-of-a-Line to a
new discrete problem which we call Local End-of-a-Line; (ii) reducing Local
End-of-a-Line to a problem of finding an approximate Brouwer fixed point (this
step uses our reduction from Section 4.2); (iii) reducing from Brouwer fixed point to
finding an approximate Nash equilibrium in a multiplayer game over n1/2+o(1) players
with 2n

1/2+o(1)
actions each; and (iv) reducing to the two-player game.

The main novelty in the reduction is the use of techniques such as error correcting
codes and probabilistically checkable proofs (PCPs) inside PPAD. In particular, the
way we use PCPs in our proof is very unusual.

Constructing the first gap: showing hardness of Euclidean Brouwer

The first step in all known PPAD-hardness results for (approximate) Nash equi-
librium is reducing End-of-a-Line to the problem of finding an (approximate)
Brouwer fixed point of a continuous, Lipschitz function f ∶ [0,1]n → [0,1]n. Even
Theorem 4.1.1, which shows hardness of approximation in �∞-norm does not suffice
for our purposes. In particular, it only implies that it is hard to find an x such that
f (x) is approximately equal to x on every coordinate. The first step in our proof is
to strengthen this result to obtain hardness of approximation with respect to 2-norm
(Theorem 4.2.1). Now, even finding an x such that f (x) is approximately equal to
x on most of the coordinates is already PPAD-hard.

Theorem 4.1.1 was obtained by adapting a construction due to Hirsch, Papadim-
itriou, and Vavasis [HPV89] via the use of error correcting code. The first obstacle to
using PCP-like techniques for problems in PPAD is totality: problems in PPAD al-
ways have a solution. For NP-hard problems, the PCP verifier expects the proof to
be encoded in some error correcting code. If the proof is far from any codeword, the
verifier detects that (with high probability), and immediately rejects. For problems
in PPAD (more generally, in TFNP) this is always tricky because it is not clear what
does it mean “to reject”. Hirsch et al.’s original construction has the following useful
property: for the vast majority of x’s (in particular, all x’s far from the embedding
of the paths) the displacement f (x) − x is the same default displacement. Thus,
when an x is too far from any codeword to faithfully decode it, we can simply apply
the default displacement.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 226

The main challenge: locality.

Our ultimate goal is to construct a two-player game that simulates the Brouwer
function from Theorem 4.2.1. This is done via an imitation gadget: Alice’s mixed
strategy induces a point x(A) ∈ [0,1]n; Bob’s strategy induces x(B) ∈ [0,1]n; Alice
wants to minimize ∥x(A) − x(B)∥2, whereas Bob wants to minimize ∥f (x(A)) − x(B)∥2.
Alice and Bob are both satisfied at a fixed point, where x(A) = x(B) = f (x(A)).
(Recall also our construction of communicationally-hard games for Theorem 3.0.1.)

The main obstacle is that we want to incentivize Bob to minimize ∥f (x(A)) − x(B)∥2
via local constraints (payoffs - each depends on one pure strategy), while f (x(A))
has a global dependency on Alice’s entire mixed strategy.

Our goal is thus to construct a hard Brouwer function that can be locally com-
puted. How local does the computation need to be? In a game of size 2

√
n×2

√
n, each

strategy can faithfully store information about
√
n bits. Specifically, our construction

will be n1/2+o(1)-local.
We haven’t yet defined exactly what it means for our construction to be “n1/2+o(1)-

local”; the exact formulation is quite cumbersome as the query access needs to be
partly adaptive, robust to noise, etc. Eventually (Section 16.4), we formalize the
“locality” of our Brouwer function via a statement about multiplayer games. On a
high level, however, our goal is to show that for any j ∈ {1, . . . , n}, the j-th output
fj (x) can be approximately computed, with high probability, by accessing x at only
n1/2+o(1) coordinates.

This is a good place to note that achieving any sense of “local computation” in
our setting is surprising, even if we consider just the error correcting encoding for
our Brouwer function: in order to maintain constant relative distance, an average
bit of the output must depend on a constant fraction of the input bits!

Local End-of-a-Line

In order to introduce locality, we go back to the End-of-a-Line problem. “Wishful
thinking”: imagine that we could replace the arbitrary predecessor and successor
circuits in End-of-a-Line with NC0 (constant depth and constant fan-in) circuits
Slocal, P local ∶ {0,1}n → {0,1}n, so that each output bit only depends on a constant
number of input bits. Imagine further that we had the guarantee that for each input,
the outputs of Slocal, P local differ from the input on just a constant number of bits.
Additionally, it would be really nice if we had a succinct pointer that immediately
told us which bits are about to be replaced. (We later call this succinct pointer the
counter, because it also cycles through its possible values in a fixed order.)

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 227

Suppose all our wishes came true, and furthermore the hard Brouwer function
from Theorem 4.2.1 used a linear error correcting code. Then, we could use the
encoding of the counter, henceforth C (u), to read only the bits that are about to be
replaced, and the inputs that determine the new values of those bits. Thus, using
only local access to a tiny fraction of the bits (∣C (u)∣ + O (1)), we can construct
a difference vector u − Slocal (u) (which is 0 almost everywhere). As we discussed
above, the encodings E (u) ,E (Slocal (u)) must differ on a constant fraction of the
bits - but because the code is linear, we can also locally construct the difference
vector E (u)−E (Slocal (u)) = E (u − (Slocal (u))). Given E (u)−E (Slocal (u)), we
can locally compute any bit of E (Slocal (u)) by accessing only the corresponding
bit of E (u).

Back to reality: unfortunately we do not know of a reduction to such a restricted
variant of End-of-a-Line. Surprisingly, we can almost do that. The problem
Local End-of-a-Line (formally defined in Section 16.2) satisfies all the guarantees
defined above, is linear-time reducible from End-of-a-Line, but has one caveat: it
is only defined on a strict subset V local of the discrete hypercube (V local ⊊ {0,1}n).
Verifying that a vertex belongs to V is quite easy - it can be done in AC0. Let us
take a brief break to acknowledge this new insight about the canonical problem of
PPAD:

Theorem 16.1.1. The predecessor and successor circuits of End-of-a-Line are,
wlog, AC0 circuits.

The class AC0 is quite restricted, but the outputs of its circuits are not local
functions of the inputs. Now, we want to represent u in a way that will make it
possible to locally determine whether u ∈ V local or not. To this end we augment the
linear error correcting encoding E (u) with a probabilistically checkable proof (PCP)
π (u) of the statement (u ∈ V local).

Our holographic proof system

Some authors distinguish between PCPs and holographic proofs2: a PCP verifier
has unrestricted access to the instance, and queries the proof locally; whereas the
holographic proof verifier has restricted, local access to both the proof and (an error
correcting encoding of) the instance. In this sense, what we actually want is a
holographic proof.

2In a nutshell, PCPs or holographic proofs are proofs that can be verified “locally” (with high
probability) by reading only a small (random) portion of the proof; see e.g. [AB09, Chapter 18] for
many more details.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 228

We construct a holographic proof system with some very unusual properties.
We are able to achieve these properties thanks to our modest locality desideratum:
n1/2+o(1), as opposed to the typical polylog (n) or O (1). We highlight here a few of
these properties; see Section 16.3 for details.

• (Local proof construction) The most surprising property of our holographic
proof system is that the proof π (u) can be constructed from local access to the
encoding E (u). In particular, note that we can locally compute E (Slocal (u))
because E (⋅) is linear - but π (⋅) is not. Once we obtain E (Slocal (u)), we can
use local proof construction to compute π (Slocal (u)) locally.

• (Very low random-bit complexity) Our verifier is only allowed to use
(1/2 + o (1)) log2 n random bits - this is much lower even than the log2 n bits
necessary to choose one entry at random. In related works, similar random-bit
complexity was achieved by bundling the entries together via “birthday repe-
tition”. To some extent, something similar happens here, but our locality is
already n1/2+o(1) so no bundling (or repetition) is necessary. To achieve nearly
optimal random-bit complexity, we use λ-biased sets over large finite fields
together with the Sampling Lemma of Ben-Sasson et al. [Ben+03].

• (Tolerant verifier) Typically, a verifier must reject (with high probability)
whenever the input is far from valid, but it is allowed to reject even if the input
is off by only one bit. Our verifier, however, is required to accept (with high
probability) inputs that are close to valid proofs. (This is related to the notion
of “tolerant testing”, which was defined in [PRR06] and discussed in [GR05]
for locally testable codes.)

• (Local decoding) We make explicit use of the property that our holographic
proof system is also a locally decodable code. While the relations between PCPs
and locally testable codes have been heavily explored (see e.g. Goldreich’s sur-
vey [Gol10]), the connection to locally decodable codes is not as immediate.
Nevertheless, related ideas of Locally Decode/Reject Codes [MR10] and de-
codable PCP [DH13] have been used before in order to facilitate composition
of tests (our holographic proof system, in contrast, is essentially composition-
free). Fortunately, as noted by [DH13] many constructions of PCPs are already
implicitly locally decodable.

• (Robust everything) Ben-Sasson et al. [Ben+06] introduce a notion of ro-
bust soundness, where on an invalid proof, the string read by the verifier must
be far from any acceptable string. (Originally the requirement is far in expec-
tation, but we want far with high probability.) Another way of looking at the

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 229

same requirement, is that even if a malicious prover adaptively changes a small
fraction of the bits queried by the verifier, the test is still sound. In this sense,
we require that all our guarantees, not just soundness, continue to hold (with
high probability) even if a malicious entity adaptively changes a small fraction
of the bits queried by the verifier.

How is local proof construction possible? At a high level, our holographic proof
system expects an encoding of u as a low-degree t-variate polynomial, and a few
more low-degree t-variate polynomials, that encode the proof of u ∈ V local. (This
is essentially the standard “arithmetization”, dating back at least to [BF91; Sha92],
although our construction is most directly inspired by [PS94; Spi95].) In our actual
proof, t is a small super-constant, e.g. t ≜

√
logn; but for our exposition here, let us

consider t = 2, i.e. we have bivariate polynomials.
The most interesting part of the proof verification is testing that a certain low-

degree polynomial Ψ∶ G2 → G, for some finite field G of size ∣G∣ = Θ (n1/2+o(1)), is iden-
tically zero over all of F2, for some subset F ⊊ G of cardinality ∣F∣ = ∣G∣ /polylog (n).
This can be done by expecting the prover to provide the following low-degree poly-
nomials:

Ψ′ (x, y) ≜ ∑
fi∈F

Ψ (x, fi) yi

Ψ′′ (x, y) ≜ ∑
fj∈F

Ψ′ (fj, y)xj.

Then, Ψ′′ (x, y) = ∑fi,fj∈F Ψ (fj, fi)xjyi is the zero polynomial if and only if Ψ is
indeed identically zero over all of F2. Ψ (x, y) can be computed by accessing E (u)
on just a constant number of entries. Thus, computing Ψ′ (x, y) requires Ψ (x, fi)
for all fi ∈ F , so a total of Θ (n1/2+o(1)) queries to E (u). However, computing even
one entry of Ψ′′ (⋅) requires Ω (n) queries to E (u). The crucial observation is that
we don’t actually need the prover to provide Ψ′′. Instead, it suffices that the prover
provide Ψ′, and the verifier checks that ∑fj∈F Ψ′ (fj, y)xj = 0 for sufficiently many
(x, y).

Putting it all together via polymatrix games

The above arguments suffice to construct a hard Brouwer function (in the sense of
Theorem 4.2.1) that can be computed “n1/2+o(1)-locally”. We formalize this statement
in terms of approximate Nash equilibria in a polymatrix game.

Definition 16.1.2 (Polymatrix games). In a polymatrix game, each pair of players
simultaneously plays a separate two-player subgame. Every player has to play the

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 230

same strategy in every two-player subgame, and her utility is the sum of her subgame
utilities. The game is given in the form of the payoff matrix for each two-player
subgame.

We construct a bipartite polymatrix game between n1/2+o(1) players with 2n
1/2+o(1)

actions each. By “bipartite”, we mean that each player on Alice’s side only interacts
with players on Bob’s side and vice versa. The important term here is “polymatrix”:
it means that when we compute the payoffs in each subgame, they can only depend
on the n1/2+o(1) coordinates described by the two players’ strategies. It is in this sense
that we guarantee “local computation”.

The mixed strategy profile A of all the players on Alice’s side of the bipartite
game induces a vector x(A) ∈ [0,1]m, for some m = n1+o(1). The mixed strategy
profile B of all the players on Bob’s side induces a vector x(B) ∈ [0,1]m. Our main
technical result is:

Proposition 16.1.3 (Informal). If all but an ε-fraction of the players play ε-optimally,

then ∥x(A) − x(B)∥22 = O (ε) and ∥f (x(A)) − x(B)∥22 = O (ε) .

Each player on Alice’s side corresponds to one of the PCP verifier’s random string.
Her strategy corresponds to an assignment to the bits queried by the verifier given
this random string. On Bob’s side, we consider a partition of {1, . . . ,m} into n1/2+o(1)

tuples of n1/2+o(1) indices each. Each player on Bob’s side assigns values to one such
tuple.

On each two-player subgame, the player on Alice’s side is incentivized to imitate
the assignment of the player on Bob’s side on the few coordinates where they inter-
sect. The player on Bob’s side, uses Alice’s strategy to locally compute fj (x(A)) on
a few j’s in his (n1/2+o(1))-tuple of coordinates. This computation may be inaccurate,
but we can guarantee that for most coordinates it is approximately correct most of
the time.

From polymatrix to bimatrix

The final reduction from the polymatrix game to two-player game follows more or
less from known techniques for hardness of Nash equilibria [Alt94; DGP09; BPR16].
We let each of Alice and Bob control one side of the bipartite polymatrix game. In
particular, each strategy in the two-player game corresponds to picking a player of
the polymatrix game, and a strategy for that player. We add a gadget due to Althofer
[Alt94] to guarantee that Alice and Bob mix approximately uniformly across all their
players. See Section 16.5 for details.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 231

16.1.1 The PCP Conjecture for PPAD

Recall our conjecture from Chapter 5:

Conjecture (PCP for PPAD; [BPR16]). There exist constants ε, δ > 0 such that
finding an (ε, δ)-WeakNash in a bipartite, degree three polymatrix game with two
actions per player is PPAD-complete.

The main original motivation was an approach to prove our main theorem given
this conjecture. As pointed out by [BPR16], it turns out that resolving this conjecture
would also have interesting consequences for relative approximations of two-player
Nash equilibrium, as well as applications to inapproximability of market equilibrium.

More importantly, this question is interesting in its own right: how far can we
extend the ideas from the PCP Theorem (for NP) to the wold of PPAD? The
PCP [r (n) , q (n)] characterization [AS98] is mainly concerned with two parame-
ters: r (n), the number of random bits, and q (n), the number of bits read from
the proof. A major tool in all proofs of the PCP Theorem is verifier composi-
tion: in the work of Polishchuk and Spielman [PS94; Spi95], for example, it is
first shown that NP ⊆ PCP [O (logn) , n1/2+o(1)], and then via composition it is
eventually obtained that NP = PCP [O (logn) ,O (1)]. In some informal sense,
one may think of our main technical result as something analogous3 to PPAD ⊆
PCP [(1/2 + o (1)) log2 n,n1/2+o(1)]. Furthermore, our techniques in Section 16.3 build
on many existing ideas from the PCP literature [Bab+91; PS94; Spi95; Ben+03;
Ben+06] that have been used to show similar statements for NP. It is thus nat-
ural to ask: is there a sense in which our “verifier” can be composed? can such
composition eventually resolve the PCP Conjecture for PPAD?

More generally, some of the tools we use here, even as simple as error correcting
codes, have been the basic building blocks in hardness of approximation for decades,
yet to the best of our knowledge have not been used before for any problem in PPAD.
We hope to see other applications of similar ideas in this regime.

16.1.2 Organization

In Section 16.2 we introduce the restricted variant Local End-of-a-Line and prove
that it is also PPAD-complete. In Section 16.3 we construct our holographic proof
system. In Section 16.4 we bring together ideas from Sections 4.2, 16.2, and 16.3 to
prove our hardness for polymatrix games of subexponential size. Finally, in Section
16.5 we reduce from polymatrix to two-player games.

3We stress that our analogy is very loose. For example, we are not aware of any formal extension
of PCP to function problems, and it is well known that NP ⊆ PCP [(1/2 + o (1)) log2 n,n1/2+o(1)].

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 232

Small constants

Our proof uses several arbitrary small constants that satisfy:

0 < εPrecision ≪ εNash ≪ δ ≪ h≪ εComplete ≪ εSound ≪ εDecode ≪ 1.

By ≪ we mean that we pick them such that εPrecision is arbitrarily smaller than any
polynomial in εNash, and εNash is arbitrarily smaller than any polynomial in δ, etc.
Although their significance will be fully understood later in the paper, we briefly
mention that εPrecision is the precision with which the players can specify real values;
εNash is the approximation factor of Nash equilibrium in Proposition 16.3.1; δ and h

are parameters of the Brouwer function construction; finally, εComplete, εSound, εDecode,
are parameters of our holographic proof system.

16.2 End-of-a-Line with local computation

In this section we introduce a local variant of End-of-a-Line with very simple
successor and predecessor circuits.

Definition 16.2.1 (Local End-of-a-Line). The problem Local End-of-a-
Line is similar to End-of-a-Line, but the graph is defined on a subset V local ⊆
{0,1}n. The input consists of a membership circuit MV local ∶ {0,1}n → {0,1} that
determines whether a string u ∈ {0,1}n corresponds to a vertex of the graph (i.e.

MV local (u) =
⎧⎪⎪⎨⎪⎪⎩

1 u ∈ V local

0 u ∉ V local
), a special vertex u0 ∈ V local, and successor and prede-

cessor circuits Slocal, P local ∶ {0,1}n → {0,1}n with the promise that every output
bit depends only on a constant number of input bits. (I.e. Slocal and P local are in
NC0.) Furthermore, we require that the outputs of Slocal and P local are identical
to the respective inputs, except at a constant number of coordinates. Similarly to
End-of-a-Line, we are guaranteed that P local (u0) = u0 ≠ Slocal (u0).

The goal is to find an input u ∈ V local that satisfies any of the following:

• End-of-a-line: P local (Slocal (u)) ≠ u or Slocal (P local (u)) ≠ u ≠ u0; or

• Boundary conditions: Slocal (u) ∉ V local or P local (u) ∉ V local.

Notice that each vertex u ∈ V local, only defers from Slocal (u) and P local (u) at
a constant number of bits, and the value of each of those only depends on a constant
number of bits of u. We will refer to all those bits as the criticial bits of u, and
denote their cardinality qcritical.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 233

We now reduce End-of-a-Line to Local End-of-a-Line, proving that the
latter is PPAD-complete. In the following sections we use this reduction “white-
box”, and revisit some of its specific properties.

Theorem 16.2.2. There is a linear-time reduction from End-of-a-Line to Local
End-of-a-Line.

Notice that there is a trivial reduction in the other direction: add self-loops to
all strings not in V local.

Proof of Theorem 16.2.2. Given circuits S,P ∶ {0,1}n → {0,1}n, we construct new
circuits Slocal, P local ∶ {0,1}m → {0,1}m that satisfy Definition 16.2.1. We assume
wlog that the circuits have fan-out 2 (otherwise, replace gates with larger fan-outs
with a binary tree of equality gates; this only blows up the size of the circuit by a
constant factor). We set m = 4 (∣S∣ + ∣P ∣), where by ∣S∣ and ∣P ∣ we mean the number
of lines (i.e. number of inputs + number of logic gates) in each circuit, respectively.
We think of the m bits as representing two copies of each circuit (S1, P1 and S2, P2),
with each line represented by two bits, representing three possible states: value 0,
value 1, and inactive.

The path begins with circuit S1 containing the computation from 0n to S (0n),
and circuit P1 containing the reverse computation back to 0n; the lines of circuits
S2, P2 are inactive. This is the special vertex, u0.

Over the next n steps, the output bits of S1 are copied (one-by-one) to the input
bits of S2 (and the corresponding lines are activated). Over the next ∣S∣ − n steps,
the values on the lines of S2 are updated -one-by-one, starting from the inputs and
propagating to the outputs in a fixed order- until all the output bits are activated and
set to S (S (0n)). Then, over the next ∣P ∣ steps, the input of P2 is set to S (S (0n)),
the values on the gates are updated (propagating in a fixed order from output to
input), and finally setting the output of P2 to S (0n).

Notice that so far, if we want to trace back a step (a.k.a. implement P local), we
simply need to deactivate the last activated line. We now start erasing values when
going forward, but we must do so carefully so that we can reconstruct them when
going backward. We proceed by deactivating the lines in S1: line by line, in reverse
order from outputs to inputs. Indeed, in order to go back we can reconstruct the
output of any gate from its inputs. If we want to reconstruct an input to S1 - this
is no problem as it is saved as the output of P1. Once we finish deactivating S1, we
deactivate P1, also in reverse order. Notice again that the input to P1 is saved as the
input to S2 and output of P2. Now, we copy the values from S2 and P2 to S1 and
P1 in the same order that we used to deactivate the lines, starting from the outputs
of S1, to inputs, to outputs of P1, to inputs. Then we deactivate the lines in S2 and

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 234

P2; again, we use the same order in which they were activated, starting from inputs
of S2, to outputs, to inputs of P2, to outputs. So now we have S1 as a witness to
the computation of S (S (0n)) from S (0n) and P1 goes in the reverse order, while
all the lines of S2 and P2 are inactive.

We repeat the process from the last two paragraphs to find S (S (S (0n))), etc.
We let V local to be the set of strings that correspond to a legal partial compu-

tation as described above. MV local verifies that a string corresponds to one of the
following scenarios:

• S1 holding the computation from some x ∈ {0,1}n to S (x), P1 holding the com-
putation from S (x) back to x, and S2 and P2 holding part of the computation
from S (x) to S (S (x)) and back to S (x);

• S2 and P2 holding the computation from some x to S (x) and back to x, and
P1 and S1 are in the process of erasing the computation from x to P (x) and
back to x;

• S2 and P2 holding the computation from some x to S (x) and back to x, and
S1 and P1 are in the process of copying it; or

• S1 and P1 holding the computation from some x to S (x) and back to x, are
S2 and P2 in the process of erasing the same computation.

Notice that the joint active/inactive state of all the lines always belongs to one of
O (m) different states (that can be described by log2m +O (1) bits. Verifying that
a string corresponds to one of the above scenarios is equivalent to checking that the
joint active/inactive state is valid, and that the values on all the lines satisfy all of
the following local conditions:

• The i-th input of S1 is either inactive, equal to the i-th output of P1, or, if the
latter is inactive (during the copy phase), equal to the i-th input of S2.

• The i-th input of P1 is either inactive, equal to the i-th output of S1, or, if the
latter is inactive (during the erase phase), equal to the i-th input of S2.

• The output of every gate in S1, P1 is either inactive, equal to the gate applied
to its inputs, or, if either of the inputs is inactive (during the copy phase),
equal to the respective line in S2, P2.

• The i-th input of S2 is either inactive, equal to the i-th output of P2, or, if the
latter is inactive (during the compute phase), equal to the i-th input of P2.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 235

• The i-th input of P2 is either inactive, equal to the i-th output of S2, or, if the
latter is inactive (during the erase phase), equal to the i-th input of P1.

• The output of every gate in S2, P2 is either inactive, equal to the gate applied
to its inputs, or, if either of the inputs is inactive (during the erase phase),
equal to the respective line in S1, P1.

Notice that each line participates in at most three local constraints. Note also that
each of those conditions only depends on a constant number of bits so MV local , which
simply needs to compute their AND, is in AC0 (this proves Theorem 16.1.1).

In every step a line is either activated or deactivated, so there are no fixed points;
but fixed points of the original circuit lead to violations of the form P local (Slocal (u)) ≠
u and Slocal (P local (u)) ≠ u ≠ u0. In particular, every solution to the new Local
End-of-a-Line instance corresponds to a valid solution to the original End-of-a-
Line instance.

Also, notice that in every step we change at most two bits (and at least one),
and deciding the next value of each bit can be done by looking only at a constant
number of bits (conditioned on being a legal vertex in V local): which is the next line
to be activated/deactivated? if activated, what are the inputs to the corresponding
gate?

16.2.1 The Local End-of-a-Line counter

Consider the instance produced in the reduction above. Notice that joint active/inactive
state of all the lines rotates amongO (m) possible vectors. I.e. there is a (logm +O (1))-
bit vector, henceforth called the counter which describes precisely which lines should
be active. Furthermore, given the counter of some u ∈ V local, it is easy to com-
pute the counter of Slocal (u) , i.e. we always know which line should be acti-
vated/deactivated next - regardless of the values on the lines. Similarly, for all
u ≠ u0 ∈ V local, it is also easy to compute the counter of P local (u). An additional
useful property is that given the counter of u, we also know the coordinates of the
critical bits of u.

16.3 Holographic Proof

In this section we construct our holographic proof system for statements of the
form u ∈ V local. Note that we use the term “verifier” loosely, as our verifier’s
responsibilities extend far beyond checking the validity of a proof - it is also expected
to perform local decoding, “local proof construction”, etc.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 236

Proposition 16.3.1. For sufficiently small constants εDecode ≫ εSound ≫ εComplete >
0, the following holds. Fix any instance (Slocal, P local, V local) of Local End-of-
a-Line, generated via the reduction in Section 16.2 from an instance (S,P) End-
of-a-Line. Given a vertex u ∈ V local, there is a polynomial time deterministic
algorithm that takes as input (S,P) and u, and outputs a holographic proof Π (u) =
(E (u) , C (u) , π (u)) where:

• E (u) is an encoding of u with a linear error correcting code of constant
relative distance.

• C (u) is an encoding of the counter of u (with a good error correcting code).

• π (u) is a proof that u ∈ V local.

• Let n ≜ ∣u∣; then the total length of Π (u) is n1+o(1).

• Let t ≜
√
logn (in particular, t = ω (1), but also t = o (logn

log logn
)). Let G be a

finite field of size O (n1/t+o(1)). E (u) and π (u) can be written as functions over
domain Gt. In particular, we can talk about accessing E (u), π (u), or Π (u) at
a point g ∈ Gt. (C (u) is much shorter and the verifier reads it entirely.)

• There is a quasi-polynomial4 time probabilistic verifier such that:

– (Local access) The verifier’s access to Π (u) is restricted as follows:

∗ (Querying subspaces) The verifier reads no(1) axis-parallel (t/2)-
dimensional subspaces of Π (u). Each subspace is defined by a re-
striction of a (t/2)-tuple of coordinates. The tuple of coordinates
which is restricted is always one of a constant number of possibili-
ties (either {2, . . . , t/2 + 1}, or the union of any two of: {1, . . . , t/4},
{t/4 + 1, . . . , t/2}, {t/2 + 1, . . . ,3t/4}, and {3t/4 + 1, . . . , t}). We de-
note the union of all the subspaces read by the verifier GAll. It will
be useful to decompose GAll = GPCP∪GLTC∪Gcritical; another subset
of interest is GSample ⊂ GPCP.

∗ (Partially adaptive) GSample,GPCP,GLTC are chosen non-adaptively,
i.e. they depend only on the verifier’s internal randomness. Gcritical

is a union of affine translations of a subspace that is also chosen non-
adaptively, but the affine translations depend on C (u).

4The verifier of our holographic proof actually runs in polynomial time, except for the deran-
domization of the construction of λ-biased sets. As we discuss in Section 2.7.3 this could also be
obtained (with slightly worse parameters) in deterministic polynomial time, but quasi-polynomial
time suffices for the purpose of our main theorem.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 237

∗ (Randomness) The verifier uses only (1/2 + o (1)) log2 n bits of ran-
domness to decide which subspaces to query.

∗ (Good Sample) For any function B∶ Gt → [0,1], and any G ∈ {GSample,GPCP,GLTC,Gcritica

with probability 1 − o (1) over the verifier’s randomness,

∣Eg∈G [B (g)] − Eh∈Gt [B (h)]∣ = o (1) .

– (Soundness) If the verifier is given a string Π′ which is εSound-far from
Π (u) for every u ∈ V local, the verifier rejects with probability 1 − o (1).

∗ (Robust soundness) Furthermore, with probability 1−o (1), the bits
read by the verifier are ε2Sound-far from any string that would make the
verifier accept. In other words, the verifier continues to reject with
probability 1 − o (1) even in the presence of an adaptive adversary,
who observes the queries made by the verifier, and then corrupts an
ε2Sound/2-fraction of each of GPCP,GLTC.

– (Completeness) If the verifier is given access to a string Π̂ that is
εComplete-close to a valid Π (u) for some u ∈ V local, then the verifier
accepts with probability 1 − o (1).

∗ (Robust completeness) Furthermore, the verifier continues to ac-
cept with probability at least 1−o (1) even in the presence of an adap-
tive adversary, who observes the queries made by the verifier, and
then corrupts a

√
εComplete-fraction of GPCP,GLTC.

– (Decoding) If the verifier is given access to a string Π̂ that is εDecode-
close to a valid Π (u) for some u ∈ V local:

∗ (Error-correction on a sample) With probability at least 1−o (1),
the verifier correctly decodes the entries of E (u) and π (u) on GSample.
In particular, with probability 1 − o (1), the verifier can estimate the
distance between Π̂ and Π (u) to within an additive error of ±o (1).

∗ (Error-correction on the critical bits) The verifier can adap-
tively decode and correct any qcritical-tuple of symbols from the proof
with success probability at least 1− o (1). Let Gcritical ⊂ Gt denote the
union of all O (∣G∣2) axis-parallel subspaces queried in this process.

∗ (Proof-construction) Given access as above to the counter C (u)
and the linear code E (u) (but not to the proof π (u)), the verifier can
output (with probability at least 1 − o (1)) the correct values of π (u)
on GSample.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 238

∗ (Robust decoding) Both types of error-correction and the proof-
construction continue to hold even in the presence of an adaptive
adversary, who observes the queries made by the verifier, and then
corrupts a

√
εDecode-fraction of each of GSample,GPCP,GLTC,Gcritical.

The rest of this section is devoted to the proof of Proposition 16.3.1.

16.3.1 From Local End-of-a-Line to coloring graphs

Let t ≜
√
logn. Set � ≜ log2 n

t−1 = Θ (
√
logn), and �′ ≜ � + c log logn for some sufficiently

large constant c. Let p (z) be an F2-irreducible polynomial of degree �′, and let
G ≜ F2 [z] / ⟨p (z)⟩ denote the field of size 2�

′
. We will focus our attention on a subset

F ⊂ G of polynomials (modulo p (z)) of degree �; notice that ∣G∣ / ∣F∣ = poly logn.
Let α be a generator of G, and let E ≜ {1, α, . . . , α5t�}. We define the Extended

Shuffle-F-Exchange graph on F t−1×E to be the directed graph such that each vertex
(x1, . . . , xt−1, αi) ∈ F t−1 × (E ∖ {α5t�}), has a static edge to vertex (x1, . . . , xt−1, αi+1),
a shuffle edge to vertex (x2, . . . , xt−1, x1, αi+1), and � exchange edges to all vertices of
the form (x1 + [zj] , . . . , xt−1, αi+1), for every j ∈ {0, . . . , � − 1}. Here [zj] is the ele-
ment of G representing the equivalence class {zj + q (z)p (z) ∶ q (z) ∈ F2 [z]}. Notice
that x ∈ F iff it can be written as x = ∑j∈S [zj] for some subset S ⊆ {0, . . . , � − 1}.
In particular, for any (x1, . . . , xt−1) , (y1, . . . , yt−1) ∈ F t−1, the Extended Shuffle-F -
Exchange graph contains a path of length (t − 1) (� + 1) from (x1, . . . , xt−1,1) to
(y1, . . . , yt−1, α(t−1)(�+1)).

For each αi ∈ E , we call the set of vertices {(x1, . . . , xt−1, αi)} a layer; in particular,
{(x1, . . . , xt−1,1)} form the first layer, and {(x1, . . . , xt−1, α5t�)} form the last layer.

We encode each vertex u ∈ V local as a partial coloring of the Extended Shuffle-
F -Exchange graph, representing the assignments to the lines in the four circuits
S1, P1, S2, P2. Recall that ∣F∣ = 2� = n1/(t−1). We associate each line of S1, P1, S2, P2

(including input, gates, and output lines) with a vector x ∈ F t−1 arbitrarily. For
the first- and last-layer vertices (x,1) and (x, α5t�), we assign colors that represent
the assignments (from {0,1,⊥}, where ⊥ represents an inactive line) to the corre-
sponding line. Recall from the “local conditions” in Section 16.2 that every line only
participates in three constraints.

We would like the inputs to the line in (x1, . . . , xt−1, α5t�) to be propagated by
the Extended Shuffle-F -Exchange graph from the first layer. One important feature
of the Extended Shuffle-F -Exchange graph is that we can do exactly that: By using
standard packet-routing techniques, we can route the assignments from the first layer
to the last layer so that every vertex on the way needs to remember at most three
assignments [Lei92, Theorem 3.16]. Fix one such routing. Our coloring now assigns

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 239

the same color from {0,1,⊥}×{⊥}2 to each of the corresponding vertices on the first
and last layers, and propagates this assignment through the middle layers according
to the routing scheme; each vertex has a color in {0,1,⊥}3.

It is important to note that the middle layers do not perform any computation
- they only copy symbols according to a fixed routing. In particular, if we change
one entry in the representation of Local End-of-a-Line vertex u, we can locally
compute the difference of the old and new assignments for every middle layer node,
even if we don’t know the old assignment itself (which may correspond to up to three
values routed through that node).

Notice that in order to verify that u ∈ V local, we need to check that the ac-
tive/inactive pattern matches the counter, and the “local conditions”. Given a
coloring of the Extended Shuffle-F -Exchange graph, checking the local conditions
reduces to checking that the color for each first-layer vertex is equal to the color on
the respective vertex on the last layer, and that the color of every vertex not in the
first layer is computed correctly from its incoming neighbors.

16.3.2 Arithmetization

We now want to represent the verification of u ∈ V local as constraints on polynomials
over G (do not confuse with polynomials over F2!).

We represent each vertex u ∈ V local as two polynomials: Tu∶ F t−1 × E → C
and Tcounter∶ F t−1 → C, where C ⊂ F is a subset of F of constant size. For each
(x1, . . . , xt−1, αi) ∈ F t−1 × E , we set Tu (x1, . . . , xt−1, αi) to be equal to the color as-
signed to the respective vertex. Tcounter (x1, . . . , xt−1) is assigned 1 if the correspond-
ing line should be active, and 0 otherwise. Additionally, we construct a polynomial
TS,P ∶ F t−1 × E → C′, for C ⊂ C′ ⊂ F of size ∣C′∣ = Θ (log3/2 n); TS,P (⋅) represents the
instance of End-of-a-Line: for each (x1, . . . , xt−1, α5t�) ∈ F t−1 × {α5t�}, it specifies
the gate functionality, whereas for (x1, . . . , xt−1, αi) (i < 5t�) it specifies the routing
through this vertex. Note that each vertex takes its inputs from at most 3 out of
Θ (

√
logn) incoming edges.

Notice that Tu, Tcounter, TS,P are all polynomials of degree at most ∣F∣ , ∣E ∣ in their
respective variables. The verifier will expect low degree extensions of Tu, TS,P on all
of Gt, and analogously for Tcounter over Gt−1.

In the following, keep in mind that Tcounter is constructed implicitly (once we
decode all log2 n + O (1) bits of the counter), and TS,P is part of the input of the
problem, so we only need to locally decode and verify the validity of Tu.

First, we construct a polynomial

Ψ (x) ≜ ψ (Tu (x)) ≜∏
c∈C

(Tu (x) − c) , (16.1)

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 240

such that ψ (Tu (x)) = 0 iff Tu (x) ∈ C.
Similarly, we would like to construct a polynomial that verifies that the colors are

propagated correctly through the middle layers; for the last layer, it should also verify
that the gate functionality is implemented correctly. First, we describe the edges of
the Extended Shuffle-F -Exchange graph with the following affine transformations:

ρStatic (x1, . . . , xt−1, α
i+1) ≜ (x1, . . . , xt−1, α

i)
ρShuffle (x1, . . . , xt−1, α

i+1) ≜ (xt−1, x1, . . . , xt−2, α
i)

ρ0 (x1, . . . , xt−1, α
i+1) ≜ (x1 + [z0] , . . . , xt−1, α

i)
⋮

ρ�−1 (x1, . . . , xt−1, α
i+1) ≜ (x1 + [z�−1] , . . . , xt−1, α

i)

(So each vertex x ∈ F t−1×(E ∖ {1}) has incoming edges from ρStatic (x) , ρShuffle (x) , ρ0 (x) ,
. . . , ρ�−1 (x).)

Now we can define a polynomial

Φ (x) ≜ φ (Tu (x) , Tu (ρStatic (x))Tu (ρShuffle (x)) , Tu (ρ0 (x)) , . . . , Tu (ρ�−1 (x)) , T(S,P) (x)) ,
(16.2)

where for x ∈ F t−1 × (E ∖ {1, α5t�}), φ (⋯) = 0 iff the colors are propagated correctly
to the corresponding vertex, and for x ∈ F t × {α5t�}, φ (⋯) further checks that the
gate functionality is implemented correctly.

Finally, we add a third polynomial over F t−1,

Ξ (x) ≜ ξ (Tu (x1, . . . , xt−1,1) , Tu (x1, . . . , xt−1, α
5t�) , Tcounter (x1, . . . , xt−1)) , (16.3)

which is zero iff Tu (x1, . . . , xt−1,1) = Tu (x1, . . . , xt−1, α5t�) and the corresponding line
is active or inactive as dictated by Tcounter (x1, . . . , xt−1).

We now have that u ∈ V local is equivalent to AND of the following conditions:

• Values-in-domain: Ψ (x) = 0 for all x ∈ F t−1 × E ;

• Value-propagation and computation:Φ (x) = 0 for all x ∈ F t−1 × (E ∖ {1}); and

• Active-vs-inactive: Ξ (x) = 0 for all x ∈ F t−1.

Notice also that ψ, ξ are constant total degree polynomials, whereas φ has total
degree polylogn; thus Ψ,Φ,Ξ are of degrees ∣F∣ ⋅polylogn, ∣E ∣ ⋅polylogn ≤ ∣G∣ /2 in their
respective variables.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 241

16.3.3 PCP

Our verifier should test that Ψ,Φ,Ξ are zero everywhere on the respective domains
(F t−1×E ,F t−1×(E ∖ {1}) ,F t−1). We describe the test for Ψ; the corresponding tests
for Φ and Ξ follow analogously.

In order to test that Ψ (x) is zero over all of F t−1 × E , consider the following
polynomials:

Ψ
′ (x1, . . . , xt−1, α

j) ≜ ∑
fit/2+1

,...,fit−1 ∈F

j′∈{1,...,5t�}

Ψ (x1, . . . , xt/2, fit/2+1 , . . . , fit−1 , α
j
′
)

t−1
∏

k=t/2+1
xik−1
k ⋅ (αj)j

′

(16.4)

Ψ
′′ (x1, . . . , xt−1, α

j) ≜ ∑
fi1 ,...,fit/2∈F

Ψ
′ (fi1 , . . . , fit/2 , xt/2+1, . . . , xt−1, α

j)
t/2
∏
k=1

xik−1
k . (16.5)

In particular, observe that

Ψ
′′ (x1, . . . , xt−1, α

j) = ∑
fi1

,...,fit−1 ∈F
j′∈{1,...,5t�}

Ψ (fi1 , . . . , fit−1 , αj′) ⋅
t−1
∏
k=1

xik−1
k ⋅ (αj)j

′
.

The main point of this construction is that Ψ
′′
is the zero polynomial if and only

if Ψ (x) = 0 for every x ∈ F t−1×E . Now, by definition, Ψ
′′
has degrees at most ∣F∣ , ∣E ∣

in each variable, respectively, so it suffices to test that it is indeed zero at one random
point from Gt.

The verifier should also ensure that Ψ
′
and Ψ

′′
are constructed correctly. This is

done by picking a uniformly random x ∈ Gt and verifying that (16.4) and(16.5) hold.
If Ψ is constructed correctly, then Ψ

′
also has low degrees in each variable (compared

to ∣G∣), so it suffices to test on a single x ∈ Gt. Similarly, the verifier should also check
that Ψ is constructed correctly as in (16.1); thanks to the low-degree guarantee, a
single x ∈ Gt suffices here as well.

Notice that the verifier does not need to receive Ψ
′′
explicitly. (This is cru-

cial later for the proof construction!) Testing that Ψ
′′
is constructed correctly at

(x1, . . . , xt−1, αj) and that it is zero at the same point is equivalent to simply testing
that

∑
fi1 ,...,fit/2∈F

Ψ
′ (fi1 , . . . , fit/2 , xt/2+1, . . . , xt−1, α

j)
t/2
∏
k=1

xik−1
k = 0. (16.6)

We also need to test that all polynomials are indeed low degree. We do this later,
in Subsection 16.3.7.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 242

Define and test Φ
′
,Ξ

′
analogously to Ψ

′
. We conclude that if Tu,Ψ,Φ,Ξ,Ψ

′
,Φ

′
,Ξ

′

are all indeed of low degrees as promised and the verifier accepts with probability
greater than ε, then Tu, Tcounter represent a real vertex u ∈ V local. Notice that all of
our tests choose x ∈ Gt/2 with uniform marginal probabilities.

For simplicity of notation, we henceforth treat Ξ (⋅) as t-variate polynomial (with
the t-th variable being a dummy variable).

16.3.4 The final encoding

Our proof Π (u) consists of the following strings.

• C (u) consists of a good encoding of the “counter” of u. (Notice that we require
a succinct encoding that can be fully decoded, and then the entire Tcounter can
be computed locally.)

• E (u) consists of the polynomial Tu∶ Gt → G.

• π (u) consists of the polynomials Ψ,Ψ
′
,Φ,Φ′,Ξ,Ξ

′ ∶ Gt → G.

Although they have different lengths (in particular, C (u) is much shorter), we think
of them as having equal “weights”, i.e. we allow only a constant fraction of errors in
each. Also, we think of symbols in larger alphabets as encoded with a good binary
error correcting code.

16.3.5 Local decoding and error correction

When a typical PCP verifier is given a proof that is wrong even at a single bit,
it is already allowed to reject the proof. For our purpose, we want a more lenient
verifier that, when given a proof that is wrong at a small fraction of the bits, corrects
those bits and accepts. Furthermore, we want to ensure that our verifier only uses
very little randomness: only (1/2 + o (1)) log2 n random bits. A second goal of this
subsection is to establish the desideratum that the verifier can adaptively decode an
arbitrary qcritical-tuple of entries from the proof.

We describe how to locally decode and correct Ψ; Tu,Ψ
′
,Φ,Ξ,Φ

′
,Ξ

′
follow with

minor modifications, whereas the counter has a succinct representation and can be
fully decoded. Specifically, the verifier needs to decode Ψ in order to test (16.1),
(16.4). For (16.1) the verifier only needs to decode Ψ at one uniformly random
point, so this is the easy case. For (16.4), the verifier wants to decode an entire
axis-parallel (t/2)-dimensional affine subspace, Q(x1,...,xt/2) ≜ {(x1, . . . , xt/2)} × Gt/2,

for a uniformly random choice of (x1, . . . , xt/2) ∈ Gt/2.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 243

Let S ⊂ Gt/2 be a (1/ (t2 log ∣G∣))-biased set of cardinality ∣S∣ = poly (t, log ∣G∣) (as
guaranteed by Section 2.7.3). We pick a uniformly random x = (x1, . . . , xt/2) ∈ Gt/2,

and a uniformly random y = (y1, . . . , yt/2) ∈ S. We then consider the (t/2 + 1)-
dimensional affine subspace Rx,y ≜ ⋃β∈G Q(x+βy). If Ψ̂ is O (εDecode)-close to Ψ, we

have by Lemma 2.7.5 that with probability 1 − o (1), the restriction of Ψ̂ to Rx,y,
denoted Ψ̂ ∣Rx,y

, is also O (εDecode)-close to Ψ ∣Rx,y
. Whenever this is the case, the

verifier correctly decodes Ψ on Rx,y.

Notice that so far, our verifier queries ∣G∣t/2+1 = n1/2+o(1) symbols, and uses
log2 ∣Gt/2∣ + log2 ∣S∣ = (1/2 + o (1)) log2 n random bits.

The local decoding for Tu,Ψ
′
,Φ,Ξ,Φ

′
,Ξ

′
follows with minor modifications which

we now describe. Notice that we can reuse the same random bits from the decoding
of Ψ to decode each of the other polynomials. For (16.5) the verifier wants to decode
Ψ
′
(equivalently for Φ

′
,Ξ

′
) on a subspace that fixes the second half of the coordinates,

Q
′

(xt/2+1,...,xt)
≜ Gt/2 × {(xt/2+1, . . . , xt)}.

For (16.1) and (16.3), the verifier also needs to decode one or two entries of
Tu, but this is no harder than decoding an entire plane. For (16.2), there is some
subtlety: Φ (x) is a function of the values of Tu on a super-constant number (� + 3 =
Θ (

√
logn)) of points x, ρStatic (x) , ρShuffle (x) , ρ0 (x) , . . . , ρ�−1 (x). Observe that

x, ρStatic (x) , ρ0 (x) , . . . , ρ�−1 (x) all belong to the same (t/2)-dimensional subspace
(only the first and last coordinates change); thus we only need to apply subspace-
decoding twice.

Notice that our decoding mechanism also suffices to locally correct errors (with
probability at least (1 − o (1)), and assuming that we start with a function that is
close to low-degrees). Furthermore, by Lemma 2.7.5, the distance ∣Ψ̂ ∣Rx,y

−Ψ ∣Rx,y
∣

is within ±o (1) of the global distance ∣Ψ̂ −Ψ∣. Handling the rest of the polynomials

as described in the previous paragraphs, we can thus estimate ∣Π̂ ∣E,π −Π (u) ∣E,π∣
to within ±o (1); for the bits that correspond to the counter, we can compute the
distance exactly.

Decoding a particular subspace

Above, we described how to locally decode a random subspace. Suppose instead that
we want to locally decode Ψ ∣Q(w1,...,wt/2)

for some particular w ∈ Gt/2 (specifically,

when Q(w1,...,wt/2) contains information about one of the critical bits). Since we did

not waste any random bits on picking w, we can afford to pick y uniformly from all of
Gt/2. On the other hand, since w is arbitrary, there may still be an Θ (εDecode) chance
that ∣Ψ̂ ∣Rw,y

−Ψ ∣Rw,y
∣ is too large (> 1/2) to guarantee correct decoding. Instead, we

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 244

pick a third vector z ∈ S, and query Ψ̂ on the (t/2 + 2)-dimensional affine subspace
Pw,y,z ≜ ⋃β,γ∈G Q(w+β(y+γz)); notice that Pw,y,z ≜ ⋃γ∈G Rw,y+γz. In expectation, for

each (y + γz)’s, the restriction Ψ̂ ∣Rw,y+γz is at distance at most O (εDecode) from
Ψ ∣Rw,y+γz . Therefore, by Lemma 2.7.5, with probability 1 − o (1), we have that

∣Ψ̂ ∣Pw,y,z
−Ψ ∣Pw,y,z

∣ = O (εDecode).

16.3.6 Local proof-construction

We now want to establish the following unusual property of our holographic proof
scheme: we can, with high probability, locally construct any subspace Q(x1,...,xt/2) of

the proof π (u), by reading only a small part of the encoding E (u) (in particular, we
need to decode a constant number of (t/2 + 1)-dimensional subspaces from E (u)).
Here, it is important that Q(x1,...,xt/2) is defined via a restriction of the first t/2
coordinates, but we assume access to decoded subspaces of E (u) with restriction of
any (t/2)-tuple of coordinates.

Recall that in order to compute Ψ (x) or Ξ (x), it suffices to know the values of Tu

at a constant number of locations ((16.1) and (16.3)), so here this property trivially
holds. For Φ (x), we need to know Tu at Θ (

√
logn) locations (16.2); however, as

we argue in Subsection 16.3.5, they belong to two axis-parallel subspaces, so it again
suffices to decode Tu on a constant number of subspaces.

In order to compute Ψ
′ (x) ,Φ′ (x) ,Ξ′ (x), we need to correctly decode the val-

ues of Ψ,Φ,Ξ on (almost) an entire axis-parallel subspace Q(x1,...,xt/2). The values of

Ψ,Φ,Ξ are not given as part of E (u), but (as we argued in the previous paragraph),
we can reconstruct them from Tu. Specifically, in order to know the values of Ψ or
Ξ on Q(x1,...,xt/2), we simply need to decode Tu on Q(x1,...,xt/2). In order to construct

Φ on an entire subspace, observe that for every (x1, . . . , xt/2, fit/2+1 , . . . , fit−1 , α
j) ∈

Q(x1,...,xt/2), all the vectors ρStatic (x1, . . . , xt/2, fit/2+1 , . . . , fit−1 , α
j) , ρ0 (x1, . . . , xt/2, fit/2+1 , . . . , fit−1 , α

j) , . . . ,
ρ�−1 (x1, . . . , xt/2, fit/2+1 , . . . , fit−1 , α

j) belong to the same subspace Q(x1,...,xt/2). Fur-

thermore, all the vectors ρShuffle (x1, . . . , xt/2, fit/2+1 , . . . , fit−1 , α
j) = (fit−1 , x1, . . . , xt/2, fit/2+1 , . . . , fit−2 , α

j)
belong to the subspace QShuffle

(x1,...,xt/2)
≜ G × (x1, . . . , xt/2) ×Gt/2−1. Therefore the value of

Φ
′ (x) can also be computed from the values of Tu on a constant number of subspaces.

16.3.7 Local robust testing

So far, we assumed that we are given functions that are low degree (Subsection
16.3.3), or approximately low degree (Subsection 16.3.5). However, we must verify
that this is indeed the case.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 245

We will use results for locally testing tensor codes [Vid15]. In order to describe
them, let us briefly introduce some minimal background and notation. Given linear
codes C1, C2 with respective generator matricesM1,M2, their tensor product, denoted
C1 ⊗C2 is the linear code generated by the tensor product of the matrices M1 ⊗M2.
We say that C1⊗C2 is a tensor code. In general, we can talk about the tensor product
of k codes, C1 ⊗ ⋅ ⋅ ⋅ ⊗ Ck, which is defined recursively. We say that C1 ⊗ ⋅ ⋅ ⋅ ⊗ Ck is
the k-th power of C (denoted Ck), if Ci = C for all i ∈ [k]. In our case, for example,
the code C of all (∣G∣ /2)-individual degrees polynomials T ∶ Gt → G is the t-th power
of the code of all (∣G∣ /2)-degree polynomials t∶ G → G.

Alternatively, we can think of any product code as a function from some product
domain to some range. The (axis-parallel) hyperplane tester picks a uniformly ran-
dom index i ∈ [k], and a uniformly random value vi from the i-th domain. It reads
the assignment of the function for all vectors that have vi in their i-th coordinate, and
tests whether they form (or are close to) a codeword from C1⊗⋅ ⋅ ⋅⊗Ci−1⊗Ci+1⊗⋅ ⋅ ⋅⊗Ck.
Going back to our setting, this could mean selecting a random i ∈ {1, . . . , t}, and a
random value vi ∈ G; reading T (x) for all x such that xi = vi, and verifying that the
restricted (t − 1)-variate function is close to a low degrees polynomial.

To optimize query complexity, it will be more convenient for us to think of the
code of (t/4)-variate (∣G∣ /2)-individual degrees polynomials Tt/4∶ Gt/4 → G, henceforth
denoted C1/4. The code C can now be written C = (C1/4)

4
. The hyperplane tester now

chooses a random i ∈ {1,2,3,4} and a random value vi ∈ Gt/4, and reads T (x) for all
x whose restriction to the i-th (t/4)-tuple of coordinates is equal to vi.

We can now apply the following theorem due to Viderman [Vid15]:

Theorem 16.3.2. [Vid15, Theorem 4.4] Let C = C1⊗⋅ ⋅ ⋅⊗Ck be the tensor product of
k > 2 linear codes of relative distances δ1, . . . , δk. Let M be a string which is ε-far from
the tensor code C. Then the restriction of M to a random hyperplane drawn from the

above distribution is, in expectation, at least (ε ⋅ ∏
k
j=1 δj
2k2

)-far from the restricted code

C1 ⊗ ⋅ ⋅ ⋅ ⊗Ci−1 ⊗Ci+1 ⊗ ⋅ ⋅ ⋅ ⊗Ck.

Let S1/4 ⊂ Gt/4 be a (1/ (t2 log ∣G∣))-biased set of cardinality ∣S1/4∣ = poly (t, log ∣G∣)
(for example, take the restriction of each y ⊂ S to its first t/4 entries). Sample

x ∈ Gt/4 and y ∈ S1/4 uniformly at random. Run the hyperplane tester for (C1/4)
4

on each alleged polynomial 4 ∣G∣ times, taking all the possibilities for i ∈ {1,2,3,4}
and vi = (x + βy) for all β ∈ G. By Theorem 16.3.2, if the polynomial is εSound-far

from (C1/4)
4
, then the expected distance on each of the 4 ∣G∣ tests is (εSound ⋅

∏k
j=1 δj
2k2

) =
εSound/512 (since k = 4 and δj ≥ 1/2). By Lemma 2.7.5, the average over all the tests
is, with probability 1 − o (1), within ±o (1) of this expectation.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 246

So far the tester requires (1/4 + o (1)) log2 n random bits to sample a hyperplane,
but has prohibitively high query complexity: n3/4+o(1). In order to drive down the
query complexity, we can recurse on the test using fresh (1/4 + o (1)) log2 n random

bits: we re-partition (C1/4)
3
as a tensor product of three linear codes, and reapply

Viderman’s theorem. Our query complexity is now n1/2+o(1), the total random-bits

complexity is (1/2 + o (1)) log2 n, and the robustness guarantee is (εSound ⋅ 2−4

2⋅42 ⋅
2−3

2⋅32)−
o (1) > εSound/105.

Finally, our tester accepts iff the average distance across all (t/2)-dimensional sub-
spaces from the nearest low-degrees polynomial is less than 2

√
εComplete < εSound/ (2 ⋅ 105).

Thus our tester accepts with high probability whenever Ψ̂ is εComplete-close to the
true Ψ, and rejects with high probability whenever Ψ̂ is εSound-far from any low
degrees polynomial. (Testing T̂u, Φ̂, Ξ̂, Ψ̂

′
, Φ̂′ , Ξ̂′ follows analogously.)

16.3.8 Summary

The verifier, on input Π̂ = (Ê, Ĉ, π̂), does the following.

Randomness

In a preprocessing step, the verifier fixes in advance a (1/ (t2 log ∣G∣))-biased set S of
cardinality ∣S∣ = poly (t, log ∣G∣). Let S1/4 denote the restriction of S to the first t/4
coordinates.

The tester then:

• draws x uniformly at random from Gt/2, and y uniformly at random from S;
and

• reusing the same randomness, draws x1,x2 ∈ Gt/4 and y1,y2 ∈ S1/4.

Queries

The verifier reads T̂u on all vectors z ∈ Gt such that one of {(z1, . . . , zt/2) , (z2, . . . zt/2+1)}
is of the form (x + βy) for some β ∈ G. It also reads Ψ̂, Φ̂, Ξ̂, Ψ̂′

, Φ̂′ , Ξ̂′on all z ∈ Gt such
that (z1, . . . zt/2) = (x + βy) for some β ∈ G (denote those vectors Rx,y). Similarly, it

also reads Ψ
′
, Φ

′
, and Ξ

′
on all z ∈ Gt such that (zt/2+1, . . . , zt) = (x + βy) (denote

those vectors R
′
x,y). The union of all those subspaces (i.e. Rx,y ∪R

′
x,y) forms GPCP,

while GSample ≜ Rx,y.
For each choice of i1 ≠ i2 ∈ {1,2,3,4} and each β1, β2 ∈ G, the verifier reads each

polynomial on all vectors z ∈ Gt such that the i1-th (t/4)-tuple of z is equal to

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 247

x1 +β1y1, and the i2-th (t/4)-tuple of z is equal to x2+β2y2 . The union of all those
subspaces forms GLTC.

Finally, the verifier also reads the entire encoding C (u) of the counter of u. Given
C (u), the verifier also picks qcritical vectors w1, . . . ,wqcritical ∈ Gt/2 that correspond
to each of the critical bits, and reads Tu on all vectors z ∈ Gt such that (z1, . . . , zt/2) =
(wi + β (x + βy)) for some β, γ ∈ G and i ∈ {1, . . . , qcritical}. Those are Gcritical.

Test

The verifier uses the hyperplane tester from Subsection 16.3.7 to verify that all the
polynomials are indeed close to low-degree polynomials. (If not, it suffices to return
an error message and abort.)

Correct & decode

For each subspace queried, the verifier finds the unique low-degree polynomials
Tu,Ψ,Φ,Ξ,Ψ

′
,Φ

′
,Ξ

′
that are close to the values read.

Verify

The verifier checks that the corrected polynomials Tu,Ψ,Φ,Ξ,Ψ
′
,Φ

′
,Ξ

′
satisfy (16.1),

(16.2), (16.3), and (16.4) on all of Rx,y. It also checks that (16.6) (and its analogues
for Φ

′
,Ξ

′
) are satisfied on all of R

′
x,y.

Estimate distance

The verifier also computes the hamming distance between the values of T̂u, Ψ̂, Φ̂, Ξ̂, Ψ̂′
, Φ̂′ , Ξ̂′

and Tu,Ψ,Φ,Ξ,Ψ
′
,Φ

′
,Ξ

′
on Rx,y.

Extrapolate

Given C (u), the verifier can locally reconstruct C (Slocal (u)). Additionally, after
the verifier decoded the values of Tu at the critical bits, it also knows the current
and new values of all the entries that change between u and Slocal (u). Since E (⋅)
is a linear encoding, the verifier can also completely construct the difference vector
E (Slocal (u))−E (u). In other words, given the value of Tu (x) for any x, the verifier
can locally compute TSlocal(u) (x).

The verifier can use the ideas from Subsection (16.3.6) to also construct the values
of all the polynomials (Ψ,Φ,Ξ,Ψ

′
,Φ

′
,Ξ

′
) for Slocal (u), on all of Rx,y.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 248

For P local (u), the verifier must first check that u is not the special vertex u0.
This is easy to do since Tu and the respective Tu0

are both low degree polynomials
and must differ (if u ≠ u0) on a constant fraction of their entries. If indeed u ≠ u0,
recovering information about P local (u) is completely analogous to the procedure for
Slocal (u). Otherwise, we simply have P local (u0) = u0.

16.4 Polymatrix WeakNash

In this section we prove our main technical result:

Theorem 16.4.1. There exists a constant εNash > 0, such that there is a 2n
1/2+o(1)

-time
reduction from End-of-a-Line to finding an (εNash, εNash)-Well-Supported-WeakNash
of a complete bipartite polymatrix game between n1/2+o(1) players with 2n

1/2+o(1)
actions

each; the payoffs in each bimatrix subgame are in [0,1/nB] , [0,1/nA], where nA, nB

denote the number of players on each side of the bipartite graph.

We construct a subexponential polymatrix game that implements a variant of
the hard Brouwer function constructed in Section 4.2. The new Brouwer function is
very similar, but we make the following modifications:

• We use the vertices of a Local End-of-a-Line instance instead of End-of-
a-Line.

• Instead of encoding each Local End-of-a-Line vertex u with an arbitrary
error correcting code, the Brouwer vertices correspond to the holographic proofs
Π (u) from Section 16.3.

• For convenience of notation, instead of maintaining m coordinates (which we
expect to be identical anyway), for each of the auxiliary compute-vs-copy bit
and the special direction, we keep just one coordinate for each, but give each
a constant relative weight.

• In particular, the “first” Brouwer line segment goes from z2 ≜ (Π (u0) ,Π (u0) ,0,2)
to (Π (u0) ,Π (u0) ,0,0).

The rest proof proceeds as follows: In Subsection 16.4.1, we define the strategy space
for the players and relate it to the holographic proof system from Section 16.3. In
Subsection 16.4.2 we introduce some important notation used throughout this sec-
tion. In the next two subsections (16.4.3 and 16.4.4) we define the players’ payoffs,

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 249

and implement an imitation gadget, assuming that the Brouwer function f can be lo-
cally computed. In Subsection 16.4.5, we translate the PCP guarantees from Propo-
sition 16.3.1 to guarantees about approximate equilibria of our polymatrix game.
This completes the setup of the argument. The rest of this section (Subsections
16.4.6-16.4.9) shows that we can indeed locally compute f in the different regions
where it is defined (outside the picture, close to a Brouwer line segment, etc.).

16.4.1 Players and strategies

Let RPCP denote the set of random strings used by the PCP verifier in Proposition
16.3.1. For each r ∈ RPCP we construct a player (A, r) on one side of the bipartite
game. On the opposite side, we construct a player (B,q) for every q ∈ Gt/2. We refer
to the respective sides of the bipartite game as Alice’s players and Bob’s players. (In
Section 16.5 we will construct a bimatrix game between Alice and Bob where each
player “controls” the vertices on her or his side of the polymatrix game.)

Each player has (3/εPrecision + 1)n
1/2+o(1)+2

actions. We think of each action as an
ordered tuple of:

• two vectors in [−1,2]n
1/2+o(1)

, where the interval [−1,2] is discretized into {−1,−1 + εPrecision, . . . ,2 − εPr
and

• two more variables in [−1,2].

Recall that each Brouwer vertex corresponds to a pair (u, v) of either identical or
consecutive vertices from the Local End-of-a-Line instance. For player (A, r),
the two vectors allegedly correspond to bits read from two holographic proofs (a-la
Section 16.3) (Π (u) ,Π (v)) by the PCP verifier with random string r. For player
(B,q) the vectors represent (a binary encoding of) the counters C (u) , C (v), and
the entries of E (u) , π (u) ,E (v) , π (v) on a (t/2)-dimensional subspace G(B,q) ⊂ Gt

to be specified below.
The additional two variables represent the compute-vs-copy bit and the special

direction.
In addition to the assignments described above, each player on Alice’s side has

an additional choice among (3/εPrecision + 1)n
1/2+o(1)

actions. These additional actions
allegedly correspond to 2qcritical (affine, (t/2 + 2)-dimensional) subspaces from which
we can decode the qcritical critical bits of each of the vertices. (We know which entries
are represented by reading the “counter” part of the proof.)

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 250

Bob’s subspace G(B,q)

Let G
(A,r)
All ⊂ Gt denote the set of entries of E (⋅) , π (⋅) read by the PCP verifier with

random string r. Recall that the PCP verifier picks a set of (t/2)-dimensional axis-
parallel affine subspaces; each subspace is an affine shift of a linear subspace, spanned
by one of a constant number of (t/2)-tuples of standard basis vectors. We pick G(B,q)

so that it is spanned by vectors that are linearly independent of all those tuples. In
particular, G(B,q) intersects each of (A, r)’s subspaces at exactly one point.

For any (t/2)-tuple of standard basis vectors of Gt, a uniformly random (t/2)-
tuple of new vectors in Gt completes it to a basis with high probability. To see
this, consider adding the new vectors one by one; at each step, there is at least a
(1 − 1/ ∣G∣)-probability that it is linearly independent of the previously chosen vectors;
the claim follows by union bound and t = o (∣G∣). Therefore, a random (t/2)-tuple
of vectors will also, with high probability, be simultaneously linearly independent of
each of the relevant tuples of standard basis vectors. Fix any such a (t/2)-tuple (there
are also efficient ways to deterministically find such a tuple, but in quasi-polynomial
time we can simply brute-force enumerate through all tuples).

Finally, we let G(B,0t/2) be the linear subspace spanned by those vectors; for
general q ∈ Gt/2, we let G(B,q) be the same subspace shifted by (q,0t/2).

16.4.2 Notation

We introduce some necessary additional notation for formally handling vectors in
this section. The notation for (A, r)’s assignment to the critical bits is analogous in
spirit but more subtle to formalize; we come back to it to Subsection 16.4.3.

Definition 16.4.2. We say that a player is happy if every strategy on her support
is εNash-optimal.

Rounding For x ∈ R, let ν (x) ≜
⎧⎪⎪⎨⎪⎪⎩

1 x > 1/2
0 otherwise

denote the rounding of x to {0,1};

for x ∈ Rn, we compute ν (x) coordinate-wise.

Coordinates Let M ≜ {1, . . . ,2m + 2} denote the set of all coordinates. We par-
tition M into: M1 ≜ {1, . . . ,m} (the first proof), M2 ≜ {m + 1, . . . ,2m} (the second
proof), M3 ≜ {2m + 1} (the Compute-vs-Copy bit), and M4 ≜ {2m + 2} (the special
direction). We will also use the abbreviations M1,2 ≜M1 ∪M2 and M3,4 ≜M3 ∪M4.

Fix some player (A, r) on Alice’s side; we further detail (A, r)’s strategy space as

follows. Let G
(A,r)
Sample,G

(A,r)
PCP ,G

(A,r)
LTC ⊂ Gt denote the sets of entries of E (⋅) , π (⋅) read by

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 251

the PCP verifier with random string r from the alleged proofs. Let I
(A,r)
Sample, I

(A,r)
PCP , I

(A,r)
LTC ⊂

M1,2 denote the indices of the corresponding bits, respectively. For player (B,q) on
Bob’s side, let I(B,q) ⊂ M1,2 denote the indices of the bits corresponding to G(B,q).
We also let K ⊂ M1,2 (K for Kounter) denote the set of indices that correspond to
the encodings of counters in both proofs. (Notice that K is the same for every player
on both sides.)

Finally we will be particularly interested in the following sets:

J(A,r) ≜ K ∪ I
(A,r)
Sample ∪M3,4

J(B,q) ≜ K ∪ I(B,q) ∪M3,4.

Partial vectors Player (A, r)’s strategy a naturally corresponds to a partial vector

x
(a)
All ∈ ([−1,2] ∪ {⊥})

M
. For i ∈ K ∪ I

(A,r)
PCP ∪ I

(A,r)
LTC ∪M3,4, we set the i-th coordinate

of x
(a)
All to the value that a assigns to the corresponding coordinate; for all other i’s,

we let x
(a)
All ∣i≜⊥.

In particular we are interested in the partial vector x(a) ∈ ([−1,2] ∪ {⊥})M that
describes (A, r)’s partial assignment to J(A,r). For i ∈ J(A,r), we set the i-th coordi-
nate of x(a) to the value that a assigns to the corresponding coordinate; for all other
i’s, we let x(a) ∣i≜⊥.

For action b taken by player (B,q), we can simply define one partial vector
x(b) ∈ ([−1,2] ∪ {⊥})M , where x(b) ∣i≜⊥ for i ∉ J(B,q).

Partial norms All norms in this section are 2-norm: we henceforth drop the
2 subscript from ∥⋅∥2. Instead, we will use the subscript to denote the subset of
coordinates over which we want to compute the norm. For example,

∥x∥2K ≜ Ei∈K [x2
i] .

In fact, we are often interested in expectation with respect to a non-uniform distri-
bution; for example:

∥x∥2J(A,r) ≜ 1

4
E
i∈I(A,r)

Sample

[x2
i] +

1

4
Ei∈K [x2

i] +
1

2
Ei∈M3,4

[x2
i]

∥x∥2J(B,q) ≜ 1

4
Ei∈I(B,q) [x2

i] +
1

4
Ei∈K [x2

i] +
1

2
Ei∈M3,4

[x2
i] .

The distribution is set such that each part (e.g. K, I
(A,r)
PCP , I(B,q), or M1, . . . ,M4)

receives an equal weight (up to constant factors). The distribution will henceforth
be implicit, and only the subset of coordinates will be explicit.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 252

This notation also allows us to talk about distances between partial vectors, e.g.

∥x(a) − x(b)∥2
J(A,r)∩J(B,q) ≜ 1

4
∥x(a) − x(b)∥2

K
+ 1

2
∥x(a) − x(b)∥2

M3,4
+ 1

4
∥x(a) − x(b)∥2

I
(A,r)
Sample∩I(B,q) .

Aggregate vectors Let A denote the joint (product) distribution over all Alice’s
players’ mixed strategies, and define B analogously for Bob’s players. We define
x(A),x(B) ∈ [−1,2]M to be the weighted entry-wise average of x(a),x(b), respectively,
where for each coordinate we only take the expectation over vectors for which it is
assigned a real (non-⊥) value.

16.4.3 Alice’s imitation gadget

Our first goal is to incentivize player (A, r) to imitate x(B) on her assigned coordi-
nates. We break up her utility on each bimatrix subgame as follows5:

U (A,r) ≜ U
(A,r)
Sample +U

(A,r)
PCP +U

(A,r)
LTC +U

(A,r)
Counter +U

(A,r)
M3,4

+U
(A,r)
critical.

For each player (B,q) on Bob’s side, we simply define the first five parts to
incentivize copying (B,q)’s strategy on each shared coordinate. Let a,b denote
(A, r) and (B,q) respective strategies; then

U
(A,r)
Sample ≜ −∥x(a)All − x(b)∥

2

I
(A,r)
Sample∩I(B,q)

U
(A,r)
PCP ≜ −∥x(a)All − x(b)∥

2

I
(A,r)
PCP ∩I(B,q)

U
(A,r)
LTC ≜ −∥x(a)All − x(b)∥

2

I
(A,r)
LTC ∩I(B,q)

U
(A,r)
Counter ≜ −∥x(a)All − x(b)∥

2

K

U
(A,r)
M3,4

≜ −∥x(a)All − x(b)∥
2

M3,4

.

Notice that

1

8
U
(A,r)
PCP + 1

8
U
(A,r)
LTC + 1

4
U
(A,r)
Counter +

1

2
U
(A,r)
M3,4

= −∥x(a)All − x(b)∥
2

(K∪I(A,r)
PCP ∪I(A,r)

LTC ∪M3,4)∩J(B,q),

5For convenience of notation, we define bimatrix subgames with payoffs in
[−54/nB ,0] , [−36/nA,0]. Payoffs [0,1/nB] , [0,1/nA] can be obtained by scaling and shift-
ing.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 253

whereas

1

4
U
(A,r)
Sample +

1

4
U
(A,r)
Counter +

1

2
U
(A,r)
M3,4

= −∥x(a) − x(b)∥2
J(A,r)∩J(B,q) .

As we mentioned earlier, we also want (A, r) to encode the critical bits for each
Local End-of-a-Line vertex. The indices of this encoding depend on both:

• the indices of the critical bits - which depends on the “counter” of the two
Local End-of-a-Line vertices, allegedly encoded in both a and b; and

• the directions in Gt/2 that the PCP verifier uses to locally decode those bits -
which depend on the random string r.

We let G
(A,r)
critical (a) ⊂ Gt denote the set of additional entries that encode the critical

bits - as induced by (A, r)’s strategy x(a) ∣K and random string r; let I
(A,r)
critical (a) ⊂

M1,2 denote the corresponding bits’ indices. In order to define (A, r)’s utilities, it is
actually more convenient to use the critical bits determined by (B,q)’s b, henceforth
denoted I

(A,r)
critical (b). (The superscript remains (A, r) because we still decode those

bits according to random string r.) This added level of indirection prevents (A, r)
from manipulating her encoding of the counter to increase her utility from the critical
bits. In other words, a includes an assignment to qcritical affine (t/2 + 2)-dimensional
subspaces of Gt. On each subgame, we subjectively interpret a’s assignment as a
partial vector x

(a)
critical with values in [−1,2] on I

(A,r)
critical (b). In particular, we define

U
(A,r)
critical ≜ −∥x(a)critical − x(b)∥

2

I
(A,r)
critical(b)∩I(B,q)

.

For some choices of b, the induced assignment to the counter may be ambiguous or
just far from every codeword. However, in that case we are probably far from every
Brouwer line segment, so we don’t care what (A, r) assigns to the critical bits.

Claim 16.4.3. For every happy player (A, r) on Alice’s side and any action a in her

support, for each I ∈ {I(A,r)
Sample, I

(A,r)
PCP , I

(A,r)
LTC }

∥x(a)All − x(B)∥
2

I
= O (εNash) .

Proof. Recall that (A, r)’s total utility from her assignment to I
(A,r)
LTC is given by

U
(A,r)
LTC = −Eq∈Gt/2Eb∼B[(B,q)] [∥x(a)All − x(b)∥

2

I
(A,r)
LTC ∩I(B,q)

]

= −E
i∈I(A,r)

LTC

[(x(a)All ∣i −Eb∼B[(B,q(i))] [x(b) ∣i])
2

] − E
i∈I(A,r)

LTC

[Varb∼B[(B,q(i))] [x(b) ∣i]] ,
(16.7)

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 254

where (B,q (i)) is the player on Bob’s side for which i ∈ I(B,q(i)) (i.e. q (i) denotes
the value q ∈ Gt/2 such that bit i is part of the representation of some g ∈ G(B,q)).

Notice that the second term of (16.7) does not depend on (A, r)’s strategy, so
she simply wants to maximize the first term. For every i, she can approximate
Eb∼B[(B,q(i))] [x(b) ∣i] to within ±εPrecision. Therefore, if a is an εNash-optimal strategy,
we have

U
(A,r)
PCP ≥ −E

i∈I(A,r)
PCP

[Varb∼B[(B,q(i))] [x(b) ∣i]] − εNash − ε2Precisionsttutttv
=O(εNash)

.

An analogous argument works for I
(A,r)
Sample, I

(A,r)
PCP .

The following claims follow along the same lines:

Claim 16.4.4. For every happy player (A, r) on Alice’s side and any action a in her
support,

∥x(a) − x(B)∥2
K
= O (εNash) .

Claim 16.4.5. For every happy player (A, r) on Alice’s side and any action a in her
support,

∥x(a) − x(B)∥2
J(A,r) = O (εNash) .

Corollary 16.4.6. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash, then

∥x(A) − x(B)∥2
M
= O (εNash) .

16.4.4 Bob’s imitation gadget

We would like to also have the players on Bob’s side minimize ∥f (x(A)) − x(b)∥2J(B,q) .
In order to implement this in a polymatrix game, we want to locally compute f (⋅)
given access only to the partial information provided by player (A, r)’s strategy a. In
Section 4.2.3 we argued that we can locally compute fi (x) using only approximate,
partial information about x. The main goal of this section is to argue that for most
i ∈ J(A,r), we can compute this partial information from a, approximately and with
high probability over r. Before we do that, however, let us assume that that we have
some estimate f (a) ∣i and derive the utility of player (B,q).

For any action a that (A, r) plays, we define a partial target vector f (a) ∈
([−1,2] ∪ {⊥})M that we would like (B,q) to imitate. In particular, (B,q) is in-
centivized to play a strategy that is close to f (a) on the coordinates where both f (a)

and x(b) are defined. We define,

U (B,q) ≜ −∥f (a) − x(b)∥2
J(A,r)∩J(B,q) .

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 255

Similarly to x(A) and x(B), let f (A) ∈ [−1,2]M denote the weighted entry-wise
average of f (a), where for each i we take an average over f (a) ∣i for all a in the
support of (A, r), for r such that i ∈ J(A,r).

Claim 16.4.7. For every happy player (B,q), on Bob’s side and any action b in his
support,

∥x(b) − f (A)∥2
J(B,q) = O (εNash) .

Proof. Analogous to Claim 16.4.3.

Corollary 16.4.8. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash, then

∥x(B) − f (A)∥2
M
= O (εNash) .

For the rest of this section, our goal is to prove that f (A) is also close to f (x(B))
- this would prove that x(B) is an approximate fixed point of f .

16.4.5 Reading the holographic proofs

In this subsection we translate the desiderata from Proposition 16.3.1 to guarantees
about approximate equilibria in our game. Our first task in approximating f (x(B))
is deciding whether x(B) is close to a Brouwer line segment, close to a Brouwer vertex,
or far from both. Close to any Brouwer vertex, both restrictions x(B) ∣M1

and x(B) ∣M2

are close to some Π (u) ,Π (v), for some u, v ∈ V local; close to a Brouwer line, at least
one of x(B) ∣M1

and x(B) ∣M2
is close to some Π (u).

The first step of this first task is to decide whether x(B) ∣M1
is close to some

Π (u). Formally, we have a game verifier that encapsulates rounding assignments in
[−1,2]M to {0,1}M and feeding them to the PCP verifier. Given that player (A, r)
chooses strategy a, we say that the game verifier accepts a ∣M1

if:

• x(a) ∣M1
is close to binary, i.e.

∥x(a) − ν (x(a) ∣M1
)∥2

J(A,r) <
√
εComplete;

• and the PCP verifier accepts the rounded bits it reads from the first proof,

ν (x(a)All ∣M1
).

If either of those does not hold, we say that the game verifier rejects a ∣M1
.

The main idea in all the lemmata below is that by the Good Sample desidera-
tum in Proposition 16.3.1, G

(A,r)
Sample, G

(A,r)
PCP , G

(A,r)
LTC and G

(A,r)
critical (a) are all represent-

ing samples of Gt. Therefore, if x(B) ∣M1
is close to {0,1}M1 , then we expect that

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 256

x(B) ∣
M1∩I(A,r)

PCP

is also close to {0,1}M1∩I(A,r)
PCP . By Claim 16.4.3, we can then also ex-

pect that x
(a)
All ∣M1∩I(A,r)

PCP

is close to the same vector in {0,1}M1∩I(A,r)
PCP . Furthermore, if

x
(a)
All ∣M1∩I(A,r)

PCP

is ε-close to some binary vector ν (x(B) ∣
M1∩I(A,r)

PCP

), then its rounding,

ν (x(a)All ∣M1∩I(A,r)
PCP

), is also O (ε)-close to ν (x(B) ∣
M1∩I(A,r)

PCP

): On each coordinate i, if

the two binary vectors disagree (if ∣ν (x(B) ∣i) − ν (x(a)All ∣i)∣ = 1), then we must have

∣ν (x(B) ∣i) − x(B) ∣i∣ + ∣x(B) ∣i −x(a)All ∣i∣ ≥ 1/2. Finally, if ν (x(a)All ∣M1∩I(A,r)
PCP

) is close to

ν (x(B) ∣
M1∩I(A,r)

PCP

) for most a, then we can argue that reading ν (x(a)All ∣M1∩I(A,r)
PCP

) is

almost like sampling ν (x(B) ∣M1
), and then letting an adaptive adversary corrupt a

small fraction of the entries. Therefore, we can use the guarantees of the PCP verifier
with robust soundness / decoding / completeness.

16.4.5.1 Soundness

Lemma 16.4.9. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash. If ∥x(B) −Π (u)∥2M1
>

4εSound for every u ∈ V local, then for a (1 −O (εNash))-fraction of r’s, the game ver-
ifier rejects a ∣M1

for every strategy a in the support of (A, r).

Proof. Suppose that ∥x(B) −Π (u)∥2M1
> 4εSound. Then by triangle inequality we have

that at least one of the following holds:

∥x(B) − ν (x(B))∥2
M1

> ε3Sound (16.8)

∥ν (x(B)) −Π (u)∥2
M1

> εSound (16.9)

Far from {0,1}M1

Assume first that (16.8) holds. We can further break (16.8) into its K-component
and (E,π)-component:

∥x(B) − ν (x(B))∥2
M1

= 1

2
∥x(B) − ν (x(B))∥2

M1∩K
+ 1

2
∥x(B) − ν (x(B))∥2

M1∖K
(16.10)

When restricted to a random r ∈ RPCP, we can learn the first term exactly, and
estimate the second term via the proxy:

∥x(B) − ν (x(B))∥2
M1∩I(A,r)

Sample

.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 257

By the Good Sample guarantee from Proposition 16.3.1, the (M1 ∩ I
(A,r)
Sample)-restricted

distance between x(B) and ν (x(B)) concentrates (to within ±o (1), with high proba-
bility) around its expectation (the last term of (16.10)). Therefore, with probability
(1 − o (1)) over the choice of r ∈ RPCP,

∥x(B) − ν (x(B))∥2
J(A,r) ≥

1

4
∥x(B) − ν (x(B))∥2

M1∩J(A,r)

. tttttttttttttttttt/ tttttttttttttttttt0
=M1∩(I

(A,r)
Sample

∪K)

= Ω (ε3Sound) .

For any such r, if player (A, r) is also happy, we have by Claim 16.4.5 that for every
strategy a in her support,

∥x(a) − ν (x(a))∥2
J(A,r) = Ω (ε3Sound) ≫

√
εComplete. (16.11)

Close to {0,1}M1, but far from every Π (u)

Alternatively, assume that x(B) ∣M1
is close to {0,1}M1 , but (16.9) holds: we have a

binary vector ν (x(B) ∣M1
) which is εSound-far from a valid proof.

We assume wlog that (16.8) is false, namely

∥x(B) − ν (x(B))∥2
M1

≤ ε3Sound.

By the Good Sample guarantee in Proposition (16.3.1), we have that for (1 − o (1))-
fraction of r’s, also

∥x(B) − ν (x(B))∥2
M1∩I(A,r)

PCP

= O (ε3Sound) . (16.12)

By Claim 16.4.3, for every happy (A, r) and every strategy a in her support,

∥x(a)All − x(B)∥
2

M1∩I(A,r)
PCP

= O (ε3Sound) .

Therefore, combining with (16.12), we have:

∥ν (x(a)All) − ν (x(B))∥
2

M1∩I(A,r)
PCP

= O (ε3Sound) ,

and analogous arguments hold for M1 ∩K and M1 ∩ I(A,r)
LTC . Therefore, by the Robust

soundness guarantee in Proposition 16.3.1, the game verifier rejects every a ∣M1
for

all but an o (1)-fraction of happy (A, r)’s.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 258

16.4.5.2 Completeness

Lemma 16.4.10. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash. If ∥x(B) −Π (u)∥2M1
≤

1
4
εComplete for some u ∈ V local, then for a (1 −O (εNash))-fraction of r’s, and every

strategy a in the support of (A, r), the game verifier accepts a ∣M1
.

Proof. First, notice that the premise implies that,

∥ν (x(B)) −Π (u)∥2
M1

≤ εComplete. (16.13)

(Since for any i ∈M1, ∥ν (x(B)) −Π (u)∥2i ≤ 4 ∥x(B) −Π (u)∥2i .)
Furthermore, we also have that

∥x(B) − ν (x(B))∥2
M1

≤ ∥x(B) −Π (u)∥2
M1

≤ 1

4
εComplete.

Therefore, by the Good Sample guarantee from Proposition 16.3.1, we also have that
for a (1 − o (1))-fraction of r’s,

∥x(B) − ν (x(B))∥2
M1∩I(A,r)

PCP

= O (εComplete) .

Combining with Claim 16.4.3, we get that whenever (A, r) is also happy,

∥x(a)All − ν (x(B))∥
2

M1∩I(A,r)
PCP

= O (εComplete) .

Thus, as in (16.13), we have

∥ν (x(a)All) − ν (x(B))∥
2

M1∩I(A,r)
PCP

= O (εComplete) .

Analogous arguments hold forM1∩K andM1∩I(A,r)
LTC . Therefore, for a (1 −O (εNash))-

fraction of (A, r)’s, sampling ν (x(a)All ∣M1
) satisfies the distance criteria for the Com-

pleteness and Robust completeness in Proposition 16.3.1.

16.4.5.3 Decoding

Lemma 16.4.11. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash. If ∥x(B) −Π (u)∥2M1
≤

1
4
εDecode for some u ∈ V local, then for a (1 −O (εNash))-fraction of r’s, and every

strategy a in the support of (A, r):

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 259

• (Error correction) The game verifier can compute the restriction of Π (u)
to M1 ∩ J(A,r) correctly.

• (Critical bits) The induced assignment on the critical bits is approximately
correct:

∥x(a)critical −Π (u)∥
2

M1∩I(A,r)
critical(a)

= O (εDecode) .

• (Extrapolation) The game verifier can also compute the restrictions of Π (Slocal (u))
and Π (P local (u)) to M1 ∩ J(A,r) correctly.

Proof. By analogous argument to Lemma 16.4.10 (replace εComplete with εDecode),

we have that, for a (1 −O (εNash))-fraction of (A, r)’s, sampling ν (x(a)All ∣M1
) satisfies

the distance criteria for the Decoding and Robust decoding in Proposition 16.3.1.
Thus the decoding of Π (u) on M1 ∩ J(A,r) follows from the “Error-correction on a
sample” desideratum of Proposition 16.3.1.

Critical bits

By the premise, we have that

∥x(B) −C (u)∥2
M1∩K

= O (εDecode) . (16.14)

Thus, by Corollary 16.4.8, also

∥f (A) −C (u)∥2
M1∩K

= O (εDecode) .

By Claims 16.4.4 and 16.4.7, for every εNash-optimal a and b we also have that

∥x(a) −C (u)∥2
M1∩K

= O (εDecode) . (16.15)

∥x(b) −C (u)∥2
M1∩K

= O (εDecode) . (16.16)

Therefore, we have that for every εNash-optimal a and b, the counter’s encoding
C (u) is decoded correctly; and in particular,

M1 ∩ I
(A,r)
critical (a) =M1 ∩ I

(A,r)
critical (b) . (16.17)

Let U
(A,r)
critical ∣M1

denote the portion of U
(A,r)
critical that is derived from assignments to

the critical bits in the first proof. For every happy player (A, r), and every strategy

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 260

a in her support, we have

U
(A,r)
critical ∣M1

= −Eq∈Gt/2Eb∼B[(B,q)] [∥x(a)critical − x(b)∥
2

M1∩I(A,r)
critical(b)∩I(B,q)

]

= −Eq∈Gt/2Eb∼B[(B,q)] [∥x(a)critical − x(b)∥
2

M1∩I(A,r)
critical(a)∩I(B,q)

] ±O (εNash)

= −∥x(a)critical − x(B)∥
2

M1∩I(A,r)
critical(a)

− E
i∈M1∩I(A,r)

critical(a)
[Varb∼B[(B,q(i))] [x(b) ∣i]] ±O (εNash) ,

where the second equality follows from (16.17). Therefore, for every εNash-optimal
strategy a,

∥x(a)critical − x(B)∥
2

M1∩I(A,r)
critical(a)

= O (ε2Precision + εNash) = O (εNash) . (16.18)

By the Good Sample guarantee from Proposition 16.3.1, we have that for a (1 − o (1))-
fraction of r’s,

∥x(B) −Π (u)∥2
M1∩I(A,r)

critical(a)
= O (εDecode) , (16.19)

Combining with (16.18), we have that for a (1 −O (εNash))-fraction of r’s,

∥x(a)critical −Π (u)∥
2

M1∩I(A,r)
critical(a)

= O (εDecode) .

Extrapolation

Notice that (16.19) in particular implies

∥x(B) − ν (x(B))∥2
M1∩I(A,r)

critical(a)
= O (εDecode) .

Combining with (16.18), we have that

∥x(a)critical − ν (x(B))∥
2

M1∩I(A,r)
critical(a)

= O (εDecode) .

Therefore, for a (1 −O (εNash))-fraction of (A, r)’s, sampling ν (x(a)critical ∣M1
) sat-

isfies the distance criteria for the Decoding and Robust decoding in Proposition
16.3.1. Therefore, by the “Error-correction on the critical bits” desideratum, for a
(1 −O (εNash))-fraction of (A, r)’s, the PCP verifier correctly decodes the assignment
to all the critical bits.

From the assignment to the critical bits, the PCP verifier can reconstruct the
complete difference vector E (u)−E (Slocal (u)). So now, accessing E (Slocal (u)) is
equivalent to accessing E (u) (with the same error guarantees). Using the local proof
construction guarantee from Proposition 16.3.1, the PCP verifier can correctly com-
pute π (Slocal (u)) on I

(A,r)
Sample. Finally, recall that once the PCP verifier successfully

decoded C (u), it can also locally compute C (Slocal (u)).

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 261

16.4.6 Default displacement

The simplest case is when the restrictions of x(B) to both proofs are far from any
Π (u) ,Π (v). In this case x(B) is far from all Brouwer line segments, and f (A) needs
to apply the default displacement.

Lemma 16.4.12. If (A,B) is an (εNash, εNash)-Well-Supported-WeakNash, and both

∥x(B) −Π (u)∥2M1
> 4εSound and ∥x(B) −Π (v)∥2M2

> 4εSound for every u, v ∈ V local, then

∥f (A) − f (x(B))∥2M = O (εNash).

Proof. By Lemma 16.4.9, for a (1 −O (εNash))-fraction of r’s and every strategy a
in their support, the game verifier rejects both proofs. In this case, for all those a’s,
f (a) implements the default displacement. If a is also an εNash-optimal strategy, then
∥x(a) − x(B)∥2J(A,r) = O (εNash), in which case also

∥f (a) − f (x(B))∥2
J(A,r) = O (εNash) .

Since the rest of Alice’s players can have at most an O (εNash) effect, we have that

∥f (A) − f (x(B))∥2
M
= O (εNash) .

The following cases are handled with minor modifications:

• x(B) is outside the picture and far from the first line (z2 → (Π (u0) ,Π (u0) ,0,0)).

• x(B) is inside the picture, both x(B) ∣M1
and x(B) ∣M2

are close to valid proofs,
but x(B) ∣M3,4

doesn’t match any Brouwer line segment or vertex.

• x(B) is inside the picture, both x(B) ∣M1
and x(B) ∣M2

are close to valid proofs
Π (u) and Π (v), but u and v are not consecutive vertices in the Local End-
of-a-Line graph.

16.4.7 Close to a line (1)

Now suppose that x(B) is close to some Brouwer line segment (s→ t) from s =
(Π (u) ,Π (u) ,0,0) to t = (Π (u) ,Π (v) ,0,0), for u, v ∈ V local such that v is the Lo-
cal End-of-a-Line-successor of u. (The case of a line from (Π (u) ,Π (v) ,1,0) to
(Π (v) ,Π (v) ,0,1) follows with minor modifications.) Now, the line (s→ t) consists
of points of the form βs + (1 − β) t (for β ∈ [0,1]). From player (A, r)’s assignment

to M1, we can locally decode and verify Π (u) on I
(A,r)
PCP ∪ I(A,r)

LTC ∪K. Furthermore, we

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 262

can reconstruct both Π (u) and Π (v) on I
(A,r)
Sample ∪K. Let s(a), t(a) denote the locally

reconstructed restrictions of s, t, respectively, to J(A,r).
If all the tests passed, then we want to locally apply the displacement close to

a line, as defined in (4.2). The assignments of x(a), s(a), t(a) also induce a partial
vector z(a), which is the point closest to x(a) on the line segment (s(a) → t(a)). We
can also use ∥x(a) − z(a)∥J(A,r) , ∥t(a) − s(a)∥J(A,r) as estimates of ∥x − z∥M , ∥t − s∥M .

Lemma 16.4.13. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash. Sup-
pose that x(B) is somewhat close to some Brouwer line segment,

ε2Complete <min
β

∥x(B) − (Π (u) , βΠ (u) + (1 − β)Π (v) ,0,0)∥2
M
< εDecode, (16.20)

but far from its endpoints,

∥x(B) − (Π (u) ,Π (u) ,0,0)∥
M

> 2
√
h

∥x(B) − (Π (u) ,Π (v) ,0,0)∥
M

> 2
√
h, (16.21)

where u, v ∈ V local satisfy v = Slocal (u) and u = P local (v).
Then ∥f (A) − f (x(B))∥2M = O (εNash).

Proof. By Lemma 16.4.11, for a (1 −O (εNash))-fraction of r’s, and every strat-
egy a in the support of (A, r), the game verifier can compute Π (u) ∣

I
(A,r)
Sample∪K

and

Π (v) ∣
I
(A,r)
Sample∪K

correctly; let Π̂ (u) and Π̂ (v) denote the respective results of those

computations.
Consider

β
(a)
(s→t) ≜ argmin

β
∥x(a) − (βΠ̂ (u) + (1 − β) Π̂ (v))∥

2

M2∩(I(A,r)
Sample∪K)

. (16.22)

and

z
(β(a)(s→t)) ≜ (Π (u) , β(a)(s→t)Π (u) + (1 − β

(a)
(s→t))Π (v) ,0,0) ∈ [−1,2]M ;

By (16.20), we have

∥x(B) − z
(β(a)(s→t))∥

2

M

> ε2Complete. (16.23)

By the Good Sample guarantee from Proposition 16.3.1, whenever Π (u) ∣
I
(A,r)
Sample∪K

and Π (v) ∣
I
(A,r)
Sample∪K

are indeed decoded correctly,

∥x(a) − z(a)∥2
J(A,r) > ε2Complete −O (εNash) ≫ (3h)2 .

Therefore, for all those a’s, we have that f (a) correctly applies the default dis-
placement.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 263

Lemma 16.4.14. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash. Sup-
pose that x(B) is close to some Brouwer line segment,

min
β

∥x(B) − (Π (u) , βΠ (u) + (1 − β)Π (v) ,0,0)∥2
M
≤ ε2Complete, (16.24)

but far from its endpoints,

∥x(B) − (Π (u) ,Π (u) ,0,0)∥
M

> 2
√
h

∥x(B) − (Π (u) ,Π (v) ,0,0)∥
M

> 2
√
h, (16.25)

where u, v ∈ V local satisfy v = Slocal (u) and u = P local (v).
Then ∥f (A) − f (x(B))∥2M = O (εNash).

Proof. We show that f (a) correctly implements the displacement close to a line (Sub-
section 16.4.7) for s = (Π (u) ,Π (u) ,0,0) and t = (Π (u) ,Π (v) ,0,0).

By Lemma 16.4.10, for a (1 −O (εNash))-fraction of r’s, and every strategy a in
the support of (A, r), the game verifier accepts a ∣{1,...,m}. Furthermore, by Lemma
16.4.11, it can compute Π (u) ∣

I
(A,r)
Sample∪K

and Π (v) ∣
I
(A,r)
Sample∪K

correctly; we again de-

note the partial proofs locally computed by the game verifier Π̂ (u) and Π̂ (v). De-
note the induced partial vectors s(a) and t(a). Recall that for every ε-optimal a,
∥x(a) − x(B)∥2J(A,r) = O (εNash), and also,∣∥s(a) − t(a)∥J(A,r) − ∥s − t∥M ∣2 = o (1).

Let

β
(a)
(s→t) ≜

(t(a) − s(a))
∥s(a) − t(a)∥J(A,r)

⋅ (x(a) − s(a)) ,

where the (⋅) denotes a J(A,r)-restricted dot-product.

For every ε-optimal a, ∥x(a) − x(B)∥2J(A,r) = O (εNash); for most of them Π (u) ∣
I
(A,r)
Sample∪K

and Π (v) ∣
I
(A,r)
Sample∪K

are also computed correctly, so s(a), t(a) are the correct restric-

tions of s, t to J(A,r). Then, by the Good Sample guarantee from Proposition 16.3.1,
we have that with probability (1 − o (1)), the J(A,r)-restricted dot-product is a good
approximation. Namely,

∣(t(a) − s(a)) ⋅ (x(B) ∣J(A,r) −s(a)) − (t − s) ⋅ (x(B) − s)∣ = o (1)

and

∣(t(a) − s(a)) ⋅ (x(a) − x(B) ∣J(A,r))∣ = O (∥x(a) − x(B)∥
J(A,r)) = O (√εNash) ,

and thus also

∣(t(a) − s(a)) ⋅ (x(a) − s(a)) − (t − s) ⋅ (x(B) − s)∣ = O (√εNash) .

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 264

Because Π (⋅) is a constant relative distance error correcting code, ∥s − t∥M =
Θ (1). Therefore,

∣β(a)(s→t) − β(s→t) (x(B))∣
2

= O (εNash) .

In particular, let

z(a) ≜ β
(a)
(s→t)s

(a) + (1 − β
(a)
(s→t)) t

(a)

z ≜ β(s→t) (x(B)) s + (1 − β(s→t) (x(B))) t;

then for a (1 −O (εNash))-fraction of r’s, we have

∥z(a) − z∥2
J(A,r) = O (εNash) .

By the triangle inequality, also:

∣∥x(a) − z(a)∥
J(A,r) − ∥x(B) − z∥

J(A,r) ∣
2 = O (εNash) ,

and thus by the Good Sample guarantee also

∣∥x(a) − z(a)∥
J(A,r) − ∥x(B) − z∥

M
∣2 = O (εNash) .

Finally, whenever a is εNash-optimal and satisfies all the above, we have by Lips-
chitz continuity that:

∥f (a) − f (x(B))∥2
J(A,r) = O (εNash) .

16.4.8 Close to a line (2)

There are a few different scenarios where we expect the game verifier to accept both
proofs:

• x(B) may still be far from every Brouwer line segment; e.g. because the corre-
sponding vertices are not neighbors in the Local End-of-a-Line graph, or
the values on M3,4 don’t match.

• x(B) may be close to the “first” Brouwer line segment, where only the special
direction (M4) changes.

• x(B) may be close to a Brouwer line segment where only the Compute-vs-Copy
bit (M3) changes.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 265

• or x(B) may be close to a Brouwer vertex.

In the first case, simply apply the default displacement. In this subsection we briefly
describe the two cases corresponding to x(B) close to a single Brouwer line segment.
Finally, the case where x(B) is close to a Brouwer vertex is deferred to Subsection
16.4.9.

Close to the first line

Near the “first” Brouwer line segment, locally computing the displacement is rela-
tively simple. First observe that this case is easy to recognize by local access: by
the Good Sample guarantee from Proposition 16.3.1, we can estimate the hamming
distance of the first 2m+1 coordinates to (Π (u0) ,Π (u0) ,0). Furthermore we know
s = z2 and t = (Π (u0) ,Π (u0) ,0,0) exactly, and therefore also ∥t − s∥M = 1. Finally,
let z(a) be equal to (Π (u0) ,Π (u0) ,0) on its first 2m + 1 coordinates, and x(a) ∣M4

on the last one.

Close to a line that updates the auxiliary compute-vs-copy bit

Suppose that x(B) is close to a Brouwer line segment from s = (Π (u) ,Π (v) ,0,0)
to t = (Π (u) ,Π (v) ,1,0), for u, v ∈ V local such that v is the Local End-of-a-
Line-successor of u. (The case of a Brouwer line segment from (Π (v) ,Π (v) ,1,0)
to (Π (v) ,Π (v) ,0,0) follows with minor modifications.)

By Lemma 16.4.11, we can locally decode both Π (u) and Π (v) (and verify
that they are valid proofs of consecutive vertices in the Local End-of-a-Line
graph). We can therefore construct partial vectors s(a), t(a) which are equal, for a
(1 −O (εNash))-fraction of (A, r)’s, to the restrictions of the true s, t to J(A,r). Fi-
nally, let

z(a) ≜ (x(a) ∣M3
) t(a) + (1 − x(a) ∣M3

) s(a).

16.4.9 Close to a vertex

In this subsection we consider the case where x(B) is close to a Brouwer vertex
representing two different Local End-of-a-Line vertices. In particular, we assume
that it is close to a Brouwer vertex of the form y = (Π (u) ,Π (v) ,1,0). The case of
(Π (u) ,Π (v) ,0,0) follows with minor modifications; we will return to the cases of
(Π (u) ,Π (u) ,0,0) and (Π (v) ,Π (v) ,1,0) in a couple of paragraphs.

After the game verifier accepts both proofs and that v is the successor of u

in the Local End-of-a-Line graph, we are assured that x(B) is indeed close to
some Brouwer vertex y. Furthermore, we know that there is an incoming Brouwer

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 266

line segment from s = (Π (u) ,Π (v) ,1,0) and an outgoing Brouwer line segment to
t = (Π (v) ,Π (v) ,1,0). We can locally compute s,y, t on J(A,r) with high probability;
denote the resulting partial vectors s(a),y(a), t(a).

Alternatively, consider the case where y = (Π (v) ,Π (v) ,1,0) (similarly for (Π (u) ,Π (u) ,0,0)),
with an incoming Brouwer line segment from s = (Π (P local (v)) ,Π (v) ,1,0) and
outgoing Brouwer line segment to t = (Π (v) ,Π (v) ,0,0). By the Error-correction
guarantee in Lemma 16.4.11, we can (with high probability over r) locally decode
partial vectors y(a) and t(a) on J(A,r); furthermore, by the Extrapolation guarantee
in the same lemma, we can locally compute s(a).

It is left to show that we can also locally compute the more involved construction
of displacement next to a Brouwer vertex.

We know ∥y − t∥M = 1/2 exactly, and we can estimate ∥s − y∥M from ∥s(a) − y(a)∥J(A,r) .
Now, we can locally compute z(s→y) and z(y→t) on the coordinates J(A,r) for which we

know the value of s,y, t; denote those partial vectors z
(a)
(s→y) and z

(a)
(y→t), respectively.

Recall that

Δ(s→y) (x) = (y − s)
∥s − y∥M

⋅ (x − s) − (1 −
√
h)

Δ(y→t) (x) =
√
h − (t − y)

∥y − t∥M
⋅ (x − y) .

We can use x(a), s(a),y(a), t(a) to locally compute estimates Δ
(a)
(s→y) (x) and Δ

(a)
(y→t) (x),

and therefore also α(a) ≈ α (x(B)) and z(a) ≜ α(a)z
(a)
(s→y) + (1 − α(a))z(a)(y→t).

Lemma 16.4.15. Let (A,B) be an (εNash, εNash)-Well-Supported-WeakNash, and let
∥x(B) − (Π (u) ,Π (v) ,1,0)∥M ≤ 2

√
h for u, v ∈ V local such that v = Slocal (u) and

u = P local (v). Then ∥f (a) − f (x(B))∥2M = O (εNash/h).

Proof. By Lemmata 16.4.11 and 16.4.10, we have that for a (1 −O (εNash))-fraction
of (A, r)’s and every strategy a in their supports, the game verifier recognizes that
x(a) is close to some Brouwer vertex y ≜(Π (u) ,Π (v) ,1,0). In particular, by the
Error-correction desideratum in Lemma 16.4.11, the game verifier can construct
y(a), s(a), t(a) ∈ {0,1,⊥}M that, for a (1 −O (εNash))-fraction of (A, r)’s and every
strategy a in their supports, are equal to y, s, t on J(A,r).

We also know ∥y − t∥M = 1/2 exactly, and by the Good Sample guarantee from
Proposition 16.3.1,

∣∥y(a) − t(a)∥
J(A,r) − ∥y − t∥M ∣2 = o (1) .

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 267

Furthermore, as we argue in the proof of Lemma 16.4.14,

∣β(a)(s→y) − β(s→y) (x(B))∣
2

= O (εNash)

∣β(a)(y→t) − β(y→t) (x(B))∣
2

= O (εNash) . (16.26)

Let Δ
(a)
(s→y) ≜ β

(a)
(s→y) − (1 −

√
h), and Δ

(a)
(y→t) ≜

√
h − β(y→t). If either quantity is

negative, continue with the displacement close to a line as in Subsection 16.4.7. Recall
that f is O (1)-Lipschitz on [−1,2]M , and in particular near the interface between
the line and vertex displacements (the hyperplanes defined by β(s→y) (x) = 0 and
β(y→t) (x) = 0). Therefore, whenever all the parameters are computed approximately
correctly, the displacement is also approximately correct - even if near the interface
we use the vertex displacement instead of the line displacement or vice versa. We
henceforth focus on Δ

(a)
(s→y),Δ

(a)
(y→t) ≥ 0.

Define

α(a) ≜
Δ

(a)
(y→t)

Δ
(a)
(y→t) +Δ

(a)
(s→y)

,

and finally also

z(B) ≜ α (x(B))z(s→y) + (1 − α (x(B)))z(y→t)

z(a) ≜ α(a)z
(a)
(s→y) + (1 − α(a))z(a)(y→t). (16.27)

We now consider two different cases depending on the value of ∥x(B) − z(B)∥M :

Case ∥x(B) − z(B)∥M > 10h:

The challenge is that when ∥x(B) − z(B)∥M is huge, Δ(y→t)+Δ(s→y) may be very small,
which could lead to α(a) being far from the true α (x(B)). Fortunately, in this case
the true ĝ (x(B)) is just the default displacement, δ (02m+1,1) - so we only have to
argue that f (a) also applies the default displacement (for most players (A, r)).

Observe that if α (x(B)) = 1/2, the point on Ly which is closest to x(B) is indeed
z(B). In general, this is not true, but ∥x(B) − z(B)∥M is at most

√
2-times larger

than the distance from x(B) to Ly. In particular, for any z(α
(a)) ≜ α(a)z(s→y) +

(1 − α(a))z(y→t), we have that ∥x(B) − z(α
(a))∥

M
> 7h.

Therefore by the Good Sample guarantee from Proposition 16.3.1 and Claim
16.4.5, for a (1 −O (εNash))-fraction of (A, r)’s and every strategy a in their supports,
we have

∥x(a) − z(a)∥
J(A,r) > 7h −O (εNash) ;

For all those a’s, f (a) correctly implements the default displacement.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 268

Case ∥x(B) − z(B)∥M ≤ 10h:

From (16.26),

∣Δ(a)
(s→y) −Δ(s→y) (x(B))∣

2

= O (εNash)

∣Δ(a)
(y→t) −Δ(y→t) (x(B))∣

2

= O (εNash) .

Plugging into (4.5), we have that

Δ
(a)
(s→y) +Δ

(a)
(y→t) ≥

√
h −O (h) ,

and therefore also
∣α(a) − α (x(B))∣2 = O (εNash/h) .

Similarly, also6

∥z(a) − z(B)∥2
J(A,r) = O (εNash/h) .

Finally, whenever a is εNash-optimal and satisfies all the above, we have

∥f (a) − f (x(B))∥2
J(A,r) = O (εNash/h) .

16.5 From polymatrix to bimatrix

In this section we complete the proof of our main result, Theorem 1.3.1, by reducing
from multiplayer polymatrix games (a-la Theorem 16.4.1) to two-player games.

16.5.1 From (√ε + ε, δ)-Well-Supported-WeakNash to
(ε, δ)-WeakNash

Lemma 16.5.1. Consider a complete bipartite polymatrix game such that every two
adjacent vertices play a bimatrix subgame with payoffs in [0,1/nB], [0,1/nA], where
nA, nB are respective the numbers of players on the two sides of the bipartite game.
Given an (ε, δ)-WeakNash, we can construct in polynomial time a (

√
ε ⋅ (

√
ε + 5) , δ)-

Well-Supported-WeakNash.

6In fact, we actually have ∥z(a) − z(B)∥2
J(A,r) = O (εNash), because α interpolates between z(s→y)

and z(y→t), which are already at distance O (√h) from each other.

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 269

Proof. Let (VA;VB) be the sets of players, where each v ∈ VA ∪VB has utility U v and
action set Sv. Let x = (xv

s) ∈ Δ (×v∈VA∪VB
Sv) be an (ε, δ)-WeakNash. Finally, let

U v
max (x−v) =maxs∈Sv U v

s (x−v). Since this is a polymatrix game, we can write

∀v ∈ VA U v
s (x) = ∑

u∈VB

U v,u
s (xu) ,

∀v ∈ VB U v
s (x) = ∑

u∈VA

U v,u
s (xu) .

Let k = k (ε) > 0 be some large number do be specified later. We construct our
new approximate equilibrium as follows. For each of the (1 − δ) players who play
ε-optimally in x, we take only the strategies that are within εk of the optimum:

x̂v
s =

⎧⎪⎪⎨⎪⎪⎩

xv
s

1−zv ifU v
s (x−v) ≥ U v

max (x−v) − εk

0 otherwise

where zv is the total probability that player v assigns to strategies that are more
than εk away from the optimum.

The above division is well-defined because for k > 1 and v who plays ε-optimally,
zv is bounded away from 1. Moreover, the following claim from [DGP09] formalizes
the intuition that when k is sufficiently large, the total weight on actions removed is
small, so x̂v is close to xv:

Claim 16.5.2. ([DGP09, Claim 6])

∀v ∈ VA ∪ VB ∑
s∈Sv

∣x̂v
s − xv

s ∣ ≤
2

k − 1

Now, the total change to the expected payoff of player v for each action s, is
bounded by the total change in mixed strategies of its neighbors. In the following
let v ∈ VA; the analogous argument for the utility of players in VB follows with minor
modifications.

∣U v
s (x−v) −U v

s (x̂−v)∣ ≤ ∑
u∈VB

∣U v,u
s (xu) −U v,u

s (x̂u)∣

≤ 1

nB

⋅ ∑
u∈VB

∑
s∈Su

∣x̂u
s − xu

s ∣ ≤
2

k − 1

It follows that x̂ is a (kε + 2
k−1 , δ)-Well-Supported-WeakNash:

U v
s (x̂−v) ≥ U v

s (x−v) −
2

k − 1
≥ U v

max (x−v) − εk − 2

k − 1
≥ U v

max (x̂−v) − εk − 4

k − 1

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 270

Finally, take k = 1 + 1/
√
ε to get that

kε + 4

k − 1
≤
√
ε ⋅ (

√
ε + 5)

16.5.2 From (ε, δ)-WeakNash to Θ (ε ⋅ δ)-ANE in a bimatrix
game

Lemma 16.5.3. Suppose we are given a complete bipartite polymatrix game between
n1/2+o(1) vertices with 2n

1/2+o(1)
actions each; the payoffs in each bimatrix game are in

[0,1/nB] , [0,1/nA], where nA, nB denote the number of players on each side of the
bipartite graph. Then we can construct a bimatrix game of size 2n

1/2+o(1)
such that

every ε-ANE of the new bimatrix game corresponds to a (δ, εpolymatrix)-WeakNash of
the polymatrix game, for sufficiently small ε = Θ (δ2 ⋅ ε2polymatrix)

Proof. The two players play three games simultaneously: the main game, which is
the heart of the reduction; and two games based on a construction due to Althofer
[Alt94], which impose structural properties of any approximate Nash equilibrium.

Main game We let each of the two players “control” the vertices on one side
of the bipartite graphical game.

Alice’s actions correspond to a choice of vertex on her side of the polymatrix
game, and an action for that player. Similarly, Bob’s actions correspond to a a
choice of vertex on his side, and a choice of action for that vertex. The utility for
each player is the utility to the corresponding vertex from the induced subgame,
scaled by a factor of λ ⋅ nB or λ ⋅ nA for Alice or Bob, respectively. Here λ ≫ ε is a
small constant do be defined later.

Althofer games In addition to the main game, we use a construction due to
Althofer [Alt94] to introduce two auxiliary games that force the player to spread
their mixed strategies approximately evenly across all vertices. Althofer’s original
game is a one-sum game with payoffs in {0,1} and size k × (k

k/2). In each column,
exactly half of the entries are 1’s, and the rest are 0’s. For example for k = 4, the
payoff matrices are given by:

R = 1 −C =
⎛
⎜⎜⎜
⎝

1 1 1 0 0 0
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎞
⎟⎟⎟
⎠

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 271

The value of this game is 1/2.
For our purposes, we consider two instantiations of Althofer’s gadget: a “primal”

Althofer game of size nA × (nA

nA/2). and a “dual” Althofer game of size (nB

nB/2) × nB.

In any (approximate) Nash, both Alice and Bob must mix (approximately) evenly
among (almost) all of their actions.

The final construction Finally, we compose all three games together by iden-
tifying Alice’s choice of vertex in the main game with her choice of row in the primal
Althofer game, and Bob’s choice of vertex in the main game with his choice of column
in the dual Althofer game.

Analysis Alice’s and Bob’s respective mixed strategies induce a mixed strategy
profile (A,B) on their vertices: Alice’s vertex (A, i)’s action is drawn from Alice’s
action conditioned on picking (A, i), and analogously for Bob’s (B, j). For any vertex
that is never picked by its player, fix an arbitrary strategy. Our goal is to show that
(A,B) is a (δ, εpolymatrix)-WeakNash of the polymatrix game.

Let U (A,i) (A[(A, i)] ,B) denote (A, i)’s expected utility when all players draw
their strategies according to (A,B), and analogously for U (B,j) (B [(B, j)] ,A).

By Lemma 2.7.8, in every λ-ANE (and in particular in any ε-ANE), Alice’s and
Bob’s respective marginal distributions over their vertices are O (λ)-close to uniform.
Therefore, Alice’s expected utilities from the main game satisfy

∣UA
Main − λEi∈[nA]U

(A,i) (A[(A, i)] ,B)∣ = O (λ2) .

Suppose by contradiction that Alice and Bob are in an ε-ANE in the bimatrix game,
but a δ-fraction of Alice’s vertices have an εpolymatrix-deviating strategy in the poly-
matrix game. Let (Â,B) denote the deviating mixed strategy profile (notice that
the deviation of a player on Alice’s side does not affect the utilities of other player
on the same side). (Â,B) induces, without changing the marginal distributions over
vertices, a profile of mixed strategies for Alice and Bob; Alice’s new expected utility

from the main game, ÛA
Main, also satisfies

∣ÛA
Main − λEi∈[nA]U

(A,i) (Â [(A, i)] ,B)∣ = O (λ2)

Therefore,

ÛA
Main ≥ λEi∈[nA]U

(A,i) (Â [(A, i)] , B̂) −O (λ2)
≥ λEi∈[nA]U

(A,i) (A[(A, i)] ,B) + λδ ⋅ εpolymatrix −O (λ2)
≥ UA

Main + λδ ⋅ εpolymatrix −O (λ2) .

CHAPTER 16. 2-PLAYER APPROXIMATE NASH EQUILIBRIUM 272

Set λδ ⋅ εpolymatrix −O (λ2) > ε. Since Alice and Bob have not changed their marginal
vertex utilities, this is an ε-deviating strategy.

273

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009. isbn: 978-0-521-42426-4.
url: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

[ABC13] Per Austrin, Mark Braverman, and Eden Chlamtac. “Inapproximability
of NP-Complete Variants of Nash Equilibrium”. In: Theory of Comput-
ing 9 (2013), pp. 117–142. doi: 10.4086/toc.2013.v009a003. url:
http://dx.doi.org/10.4086/toc.2013.v009a003.

[ABI86] Noga Alon, László Babai, and Alon Itai. “A Fast and Simple Random-
ized Parallel Algorithm for the Maximal Independent Set Problem”. In:
J. Algorithms 7.4 (1986), pp. 567–583. doi: 10.1016/0196-6774(86)
90019-2. url: http://dx.doi.org/10.1016/0196-6774(86)90019-
2.

[AIM14] Scott Aaronson, Russell Impagliazzo, and Dana Moshkovitz. “AM with
Multiple Merlins”. In: IEEE 29th Conference on Computational Com-
plexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014. 2014,
pp. 44–55. doi: 10.1109/CCC.2014.13. url: http://dx.doi.org/10.
1109/CCC.2014.13.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. “Finding a Large
Hidden Clique in a Random Graph”. In: SODA. 1998, pp. 594–598.

[Alo+07] Noga Alon et al. “Testing k-wise and almost k-wise independence”. In:
STOC. 2007, pp. 496–505.

[Alo+11] Noga Alon et al. “Inapproximability of densest κ-subgraph from average
case hardness”. In: Unpublished manuscript (2011).

BIBLIOGRAPHY 274

[Alo+13] Noga Alon et al. “The approximate rank of a matrix and its algorithmic
applications: approximate rank”. In: Symposium on Theory of Comput-
ing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 2013,
pp. 675–684. doi: 10.1145/2488608.2488694. url: http://doi.acm.
org/10.1145/2488608.2488694.

[Alo+92] Noga Alon et al. “Simple Construction of Almost k-wise Independent
Random Variables”. In: Random Struct. Algorithms 3.3 (1992), pp. 289–
304. doi: 10.1002/rsa.3240030308. url: http://dx.doi.org/10.
1002/rsa.3240030308.

[Alt94] Ingo Althofer. “On sparse approximations to randomized strategies and
convex combinations”. In: Linear Algebra and its Applications 199 (1994),
pp. 339 –355.

[AMN98] Yossi Azar, Rajeev Motwani, and Joseph Naor. “Approximating Prob-
ability Distributions Using Small Sample Spaces”. In: Combinatorica
18.2 (1998), pp. 151–171. doi: 10.1007/PL00009813. url: http://dx.
doi.org/10.1007/PL00009813.

[Anb+13] Yogesh Anbalagan et al. “Polylogarithmic Supports Are Required for
Approximate Well-Supported Nash Equilibria below 2/3”. In: Web and
Internet Economics - 9th International Conference, WINE 2013, Cam-
bridge, MA, USA, December 11-14, 2013, Proceedings. 2013, pp. 15–23.
doi: 10.1007/978-3-642-45046-4_2. url: http://dx.doi.org/10.
1007/978-3-642-45046-4_2.

[Anb+15] Yogesh Anbalagan et al. “Large Supports are Required for Well-Supported
Nash Equilibria”. In: Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, APPROX/RANDOM
2015, August 24-26, 2015, Princeton, NJ, USA. 2015, pp. 78–84. doi:
10.4230/LIPIcs.APPROX-RANDOM.2015.78. url: http://dx.doi.
org/10.4230/LIPIcs.APPROX-RANDOM.2015.78.

[Ans+17] Anurag Anshu et al. “Lifting randomized query complexity to random-
ized communication complexity”. In: arXiv preprint arXiv:1703.07521
(2017).

[Aro+12] Sanjeev Arora et al. “Finding overlapping communities in social net-
works: toward a rigorous approach”. In: ACM Conference on Electronic
Commerce, EC ’12, Valencia, Spain, June 4-8, 2012. 2012, pp. 37–54.
doi: 10.1145/2229012.2229020. url: http://doi.acm.org/10.
1145/2229012.2229020.

BIBLIOGRAPHY 275

[Aro+98] Sanjeev Arora et al. “Proof Verification and the Hardness of Approxi-
mation Problems”. In: J. ACM 45.3 (1998), pp. 501–555. doi: 10.1145/
278298.278306. url: http://doi.acm.org/10.1145/278298.278306.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A
New Characterization of NP”. In: J. ACM 45.1 (1998), pp. 70–122.
doi: 10.1145/273865.273901. url: http://doi.acm.org/10.1145/
273865.273901.

[Ast+15] Megasthenis Asteris et al. “Sparse PCA via Bipartite Matchings”. In:
Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada. 2015, pp. 766–774. url: http:
//papers.nips.cc/paper/5901- sparse- pca- via- bipartite-

matchings.

[Aum87] Robert J. Aumann. “game theory”. In: The New Palgrave: A Dictio-
nary of Economics. Ed. by John Eatwell, Murray Milgate, and Peter
Newman. Basingstoke: Palgrave Macmillan, 1987.

[AUY83] Alfred V. Aho, Jeffrey D. Ullman, and Mihalis Yannakakis. “On Notions
of Information Transfer in VLSI Circuits”. In: Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA. 1983, pp. 133–139. doi: 10.1145/800061.
808742. url: http://doi.acm.org/10.1145/800061.808742.

[BA08] Shai Ben-David and Margareta Ackerman. “Measures of Clustering
Quality: A Working Set of Axioms for Clustering”. In: Advances in
Neural Information Processing Systems 21, Proceedings of the Twenty-
Second Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 8-11, 2008. 2008, pp. 121–
128. url: http://papers.nips.cc/paper/3491- measures- of-
clustering-quality-a-working-set-of-axioms-for-clustering.

[Bab+91] László Babai et al. “Checking Computations in Polylogarithmic Time”.
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Com-
puting, May 5-8, 1991, New Orleans, Louisiana, USA. 1991, pp. 21–31.
doi: 10.1145/103418.103428. url: http://doi.acm.org/10.1145/
103418.103428.

[Bab12] Yakov Babichenko. “Completely uncoupled dynamics and Nash equi-
libria”. In: Games and Economic Behavior 76.1 (2012), pp. 1–14. doi:
10.1016/j.geb.2012.06.004. url: http://dx.doi.org/10.1016/j.
geb.2012.06.004.

BIBLIOGRAPHY 276

[Bab16] Yakov Babichenko. “Query Complexity of Approximate Nash Equilib-
ria”. In: vol. 63. 4. 2016, 36:1–36:24. doi: 10.1145/2908734. url:
http://doi.acm.org/10.1145/2908734.

[Bad+16] Ashwinkumar Badanidiyuru et al. “Locally Adaptive Optimization: Adap-
tive Seeding for Monotone Submodular Functions”. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. 2016,
pp. 414–429. doi: 10.1137/1.9781611974331.ch31. url: http://dx.
doi.org/10.1137/1.9781611974331.ch31.

[Bal+13] Maria-Florina Balcan et al. “Finding Endogenously Formed Communi-
ties”. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013. 2013, pp. 767–783. doi: 10.1137/1.9781611973105.
55. url: http://dx.doi.org/10.1137/1.9781611973105.55.

[Ban+16] Jess Banks et al. “Information-theoretic thresholds for community de-
tection in sparse networks”. In: Proceedings of the 29th Conference on
Learning Theory, COLT 2016, New York, USA, June 23-26, 2016. 2016,
pp. 383–416. url: http://jmlr.org/proceedings/papers/v49/
banks16.html.

[Bar+16] Boaz Barak et al. “A Nearly Tight Sum-of-Squares Lower Bound for
the Planted Clique Problem”. In: FOCS. 2016.

[Bar04] Boaz Barak. “Non-Black-Box Techniques in Cryptography”. PhD thesis.
Weizmann Institute of Science, 2004.

[Bar15] Siddharth Barman. “Approximating Nash Equilibria and Dense Bipar-
tite Subgraphs via an Approximate Version of Caratheodory’s Theo-
rem”. In: Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-
17, 2015. 2015, pp. 361–369. doi: 10.1145/2746539.2746566. url:
http://doi.acm.org/10.1145/2746539.2746566.

[BB15] Yakov Babichenko and Siddharth Barman. “Query Complexity of Corre-
lated Equilibrium”. In: ACM Trans. Economics and Comput. 3.4 (2015),
p. 22. doi: 10.1145/2785668. url: http://doi.acm.org/10.1145/
2785668.

BIBLIOGRAPHY 277

[BBM10] Hartwig Bosse, Jaroslaw Byrka, and Evangelos Markakis. “New algo-
rithms for approximate Nash equilibria in bimatrix games”. In: Theor.
Comput. Sci. 411.1 (2010), pp. 164–173. doi: 10.1016/j.tcs.2009.
09.023. url: http://dx.doi.org/10.1016/j.tcs.2009.09.023.

[BBV16] Afonso S. Bandeira, Nicolas Boumal, and Vladislav Voroninski. “On the
low-rank approach for semidefinite programs arising in synchronization
and community detection”. In: Proceedings of the 29th Conference on
Learning Theory, COLT 2016, New York, USA, June 23-26, 2016. 2016,
pp. 361–382. url: http://jmlr.org/proceedings/papers/v49/
bandeira16.html.

[BDX11] Benjamin E. Birnbaum, Nikhil R. Devanur, and Lin Xiao. “Distributed
algorithms via gradient descent for fisher markets”. In: Proceedings 12th
ACM Conference on Electronic Commerce (EC-2011), San Jose, CA,
USA, June 5-9, 2011. 2011, pp. 127–136. doi: 10.1145/1993574.
1993594. url: http://doi.acm.org/10.1145/1993574.1993594.

[Bea+98] Paul Beame et al. “The Relative Complexity of NP Search Problems”.
In: J. Comput. Syst. Sci. 57.1 (1998), pp. 3–19. doi: 10.1006/jcss.
1998.1575. url: http://dx.doi.org/10.1006/jcss.1998.1575.

[Ben+03] Eli Ben-Sasson et al. “Randomness-efficient low degree tests and short
PCPs via epsilon-biased sets”. In: Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA,
USA. 2003, pp. 612–621. doi: 10.1145/780542.780631. url: http:
//doi.acm.org/10.1145/780542.780631.

[Ben+06] Eli Ben-Sasson et al. “Robust PCPs of Proximity, Shorter PCPs, and
Applications to Coding”. In: SIAM J. Comput. 36.4 (2006), pp. 889–
974. doi: 10.1137/S0097539705446810. url: http://dx.doi.org/
10.1137/S0097539705446810.

[BF91] László Babai and Lance Fortnow. “Arithmetization: A New Method
in Structural Complexity Theory”. In: Computational Complexity 1
(1991), pp. 41–66. doi: 10.1007/BF01200057. url: http://dx.doi.
org/10.1007/BF01200057.

[BFS16] Cristina Bazgan, Florent Foucaud, and Florian Sikora. “On the Ap-
proximability of Partial VC Dimension”. In: Combinatorial Optimiza-
tion and Applications - 10th International Conference, COCOA 2016,
Hong Kong, China, December 16-18, 2016, Proceedings. 2016, pp. 92–
106. doi: 10.1007/978-3-319-48749-6_7. url: http://dx.doi.org/
10.1007/978-3-319-48749-6_7.

BIBLIOGRAPHY 278

[Bha+10] Aditya Bhaskara et al. “Detecting high log-densities: an O(n1/4) ap-
proximation for densest k -subgraph”. In: Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Mas-
sachusetts, USA, 5-8 June 2010. 2010, pp. 201–210. doi: 10.1145/
1806689.1806718. url: http://doi.acm.org/10.1145/1806689.
1806718.

[Bha+12] Aditya Bhaskara et al. “Polynomial Integrality Gaps for Strong SDP
Relaxations of Densest K-subgraph”. In: Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms. SODA
’12. Kyoto, Japan: SIAM, 2012, pp. 388–405. url: http://dl.acm.
org/citation.cfm?id=2095116.2095150.

[Bha+16] Umang Bhaskar et al. “Hardness Results for Signaling in Bayesian
Zero-Sum and Network Routing Games”. In: Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16, Maastricht,
The Netherlands, July 24-28, 2016. 2016, pp. 479–496. doi: 10.1145/
2940716.2940753. url: http://doi.acm.org/10.1145/2940716.
2940753.

[BKK91] Raymond C. Battalio, John H. Kagel, and Carl A. Kogut. “Experimen-
tal Confirmation of the Existence of a Giffen Good”. In: The American
Economic Review 81.4 (1991), pp. 961–970.

[BKW15] Mark Braverman, Young Kun-Ko, and Omri Weinstein. “Approximat-

ing the best Nash Equilibrium in no(log n)-time breaks the Exponential
Time Hypothesis”. In: Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015. 2015, pp. 970–982. doi: 10.1137/1.
9781611973730.66. url: http://dx.doi.org/10.1137/1.9781611973730.
66.

[BLP15] Siddharth Barman, Katrina Ligett, and Georgios Piliouras. “Approx-
imating Nash Equilibria in Tree Polymatrix Games”. In: Algorithmic
Game Theory - 8th International Symposium, SAGT 2015, Saarbrücken,
Germany, September 28-30, 2015, Proceedings. 2015, pp. 285–296. doi:
10.1007/978-3-662-48433-3_22. url: http://dx.doi.org/10.
1007/978-3-662-48433-3_22.

[Blu94] Avrim Blum. “Separating Distribution-Free and Mistake-Bound Learn-
ing Models over the Boolean Domain”. In: SIAM J. Comput. 23.5 (1994),
pp. 990–1000. doi: 10.1137/S009753979223455X. url: http://dx.
doi.org/10.1137/S009753979223455X.

BIBLIOGRAPHY 279

[Bor+16] Christian Borgs et al. “An Axiomatic Approach to Community Detec-
tion”. In: Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, Cambridge, MA, USA, January 14-16,
2016. 2016, pp. 135–146. doi: 10.1145/2840728.2840748. url: http:
//doi.acm.org/10.1145/2840728.2840748.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. “On the Cryptographic
Hardness of Finding a Nash Equilibrium”. In: IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015. 2015, pp. 1480–1498. doi: 10.1109/
FOCS.2015.94. url: https://doi.org/10.1109/FOCS.2015.94.

[BPR16] Yakov Babichenko, Christos H. Papadimitriou, and Aviad Rubinstein.
“Can Almost Everybody be Almost Happy?” In: Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, January 14-16, 2016. 2016, pp. 1–9. doi:
10.1145/2840728.2840731. url: http://doi.acm.org/10.1145/
2840728.2840731.

[BPS09] Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. “Agnostic Online
Learning”. In: COLT 2009 - The 22nd Conference on Learning Theory,
Montreal, Quebec, Canada, June 18-21, 2009. 2009. url: http://www.
cs.mcgill.ca/~colt2009/papers/032.pdf#page=1.

[BR13] Quentin Berthet and Philippe Rigollet. “Complexity theoretic lower
bounds for sparse principal component detection”. In: Conference on
Learning Theory. 2013, pp. 1046–1066.

[Bra+17] Mark Braverman et al. “ETH Hardness for Densest-k -Subgraph with
Perfect Completeness”. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19. 2017, pp. 1326–1341. doi: 10.
1137/1.9781611974782.86. url: http://dx.doi.org/10.1137/1.
9781611974782.86.

[Bro51] George W. Brown. “Iterative Solutions of Games by Fictitious Play”.
In: Activity Analysis of Production and Allocation (1951).

[BS00] William C. Brainard and Herbet Scarf. How to Compute Equilibrium
Prices in 1891. Cowles Foundation Discussion Papers 1272. Cowles
Foundation for Research in Economics, Yale University, 2000.

BIBLIOGRAPHY 280

[Bud+14] Eric Budish et al. “Course Match: A Large-Scale Implementation of
Approximate Competitive Equilibrium from Equal Incomes for Combi-
natorial Allocation”. Working paper. 2014.

[Bud11] Eric Budish. “The Combinatorial Assignment Problem: Approximate
Competitive Equilibrium from Equal Incomes”. In: Journal of Political
Economy 119.6 (2011), pp. 1061 –1103. url: http://EconPapers.
repec.org/RePEc:ucp:jpolec:doi:10.1086/664613.

[Car+16] Marco L. Carmosino et al. “Nondeterministic Extensions of the Strong
Exponential Time Hypothesis and Consequences for Non-reducibility”.
In: Proceedings of the 2016 ACM Conference on Innovations in Theo-
retical Computer Science, Cambridge, MA, USA, January 14-16, 2016.
2016, pp. 261–270. doi: 10.1145/2840728.2840746. url: http://
doi.acm.org/10.1145/2840728.2840746.

[CCT17] Xi Chen, Yu Cheng, and Bo Tang. “Well-Supported versus Approximate
Nash Equilibria: Query Complexity of Large Games”. In: To appear in
ITCS. 2017.

[CD09] Xi Chen and Xiaotie Deng. “On the complexity of 2D discrete fixed
point problem”. In: Theor. Comput. Sci. 410.44 (2009), pp. 4448–4456.
doi: 10.1016/j.tcs.2009.07.052. url: https://doi.org/10.1016/
j.tcs.2009.07.052.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. “Settling the complexity
of computing two-player Nash equilibria”. In: J. ACM 56.3 (2009).

[CF08] Richard Cole and Lisa Fleischer. “Fast-converging tatonnement algo-
rithms for one-time and ongoing market problems”. In: STOC. 2008,
pp. 315–324.

[Che+09] Xi Chen et al. “Settling the Complexity of Arrow-Debreu Equilibria in
Markets with Additively Separable Utilities”. In: FOCS. 2009, pp. 273–
282.

[Che+15a] Wei Chen et al. “Combining Traditional Marketing and Viral Mar-
keting with Amphibious Influence Maximization”. In: Proceedings of
the Sixteenth ACM Conference on Economics and Computation, EC
’15, Portland, OR, USA, June 15-19, 2015. 2015, pp. 779–796. doi:
10.1145/2764468.2764480. url: http://doi.acm.org/10.1145/
2764468.2764480.

BIBLIOGRAPHY 281

[Che+15b] Yu Cheng et al. “Mixture Selection, Mechanism Design, and Signaling”.
In: IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 2015, pp. 1426–
1445. doi: 10.1109/FOCS.2015.91. url: http://dx.doi.org/10.
1109/FOCS.2015.91.

[Che+16] Yuxin Chen et al. “Community Recovery in Graphs with Locality”. In:
Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016. 2016, pp. 689–
698. url: http://jmlr.org/proceedings/papers/v48/chena16.
html.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “The Com-
plexity of Satisfiability of Small Depth Circuits”. In: Parameterized and
Exact Computation, 4th International Workshop, IWPEC 2009, Copen-
hagen, Denmark, September 10-11, 2009, Revised Selected Papers. 2009,
pp. 75–85. doi: 10.1007/978-3-642-11269-0_6. url: http://dx.
doi.org/10.1007/978-3-642-11269-0_6.

[CMV05] Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. “Mar-
ket Equilibrium via the Excess Demand Function”. In: Proceedings of
the Thirty-seventh Annual ACM Symposium on Theory of Computing.
STOC ’05. Baltimore, MD, USA: ACM, 2005, pp. 74–83. isbn: 1-58113-
960-8. doi: 10.1145/1060590.1060601. url: http://doi.acm.org/
10.1145/1060590.1060601.

[CPP16] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. “Known Al-
gorithms for Edge Clique Cover are Probably Optimal”. In: SIAM J.
Comput. 45.1 (2016), pp. 67–83. doi: 10.1137/130947076. url: http:
//dx.doi.org/10.1137/130947076.

[CPR16] Siu On Chan, Dimitris Papailliopoulos, and Aviad Rubinstein. “On the
Approximability of Sparse PCA”. In: Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016.
2016, pp. 623–646. url: http://jmlr.org/proceedings/papers/v49/
chan16.html.

[CPY13] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. “The complexity of
non-monotone markets”. In: STOC. Preprint of full version is available
at http://arxiv.org/abs/1211.4918v1. 2013, pp. 181–190.

[CS04] Vincent Conitzer and Tuomas Sandholm. “Communication complexity
as a lower bound for learning in games”. In: Proceedings of the twenty-
first international conference on Machine learning. ACM. 2004, p. 24.

BIBLIOGRAPHY 282

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory.
John Wiley & Sons, 2012.

[Czu+15] Artur Czumaj et al. “Distributed Methods for Computing Approximate
Equilibria”. In: CoRR abs/1512.03315 (2015). url: http://arxiv.
org/abs/1512.03315.

[DA54] Gerard Debreu and Kenneth J. Arrow. “Existence of an Equilibrium for
a Competitive Economy”. In: Econometrica 22.3 (1954), pp. 265–90.

[Dan16] Amit Daniely. “Complexity theoretic limitations on learning halfspaces”.
In: Proceedings of the 48th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016. 2016, pp. 105–117. doi: 10.1145/2897518.2897520. url: http:
//doi.acm.org/10.1145/2897518.2897520.

[Das08] Constantinos Daskalakis. “The Complexity of Nash Equilibria”. PhD
thesis. University of California, Berkeley, 2008.

[Das13] Constantinos Daskalakis. “On the Complexity of Approximating a Nash
Equilibrium”. In: ACM Transactions on Algorithms 9.3 (2013), p. 23.

[DD08] Xiaotie Deng and Ye Du. “The computation of approximate competitive
equilibrium is PPAD-hard”. In: Inf. Process. Lett. 108.6 (2008), pp. 369–
373. doi: 10.1016/j.ipl.2008.07.011. url: https://doi.org/10.
1016/j.ipl.2008.07.011.

[Del+14] Holger Dell et al. “Exponential Time Complexity of the Permanent and
the Tutte Polynomial”. In: ACM Trans. Algorithms 10.4 (2014), 21:1–
21:32. doi: 10.1145/2635812. url: http://doi.acm.org/10.1145/
2635812.

[Del+17] Argyrios Deligkas et al. “Computing Approximate Nash Equilibria in
Polymatrix Games”. In: vol. 77. 2. 2017, pp. 487–514. doi: 10.1007/
s00453-015-0078-7. url: http://dx.doi.org/10.1007/s00453-
015-0078-7.

[Dev+08] Nikhil R. Devanur et al. “Market Equilibrium via a Primal–dual Al-
gorithm for a Convex Program”. In: J. ACM 55.5 (Nov. 2008), 22:1–
22:18. issn: 0004-5411. doi: 10.1145/1411509.1411512. url: http:
//doi.acm.org/10.1145/1411509.1411512.

[DGGP10] Yael Dekel, Ori Gurel-Gurevich, and Yuval Peres. “Finding Hidden
Cliques in Linear Time with High Probability”. In: CoRR abs/1010.2997
(2010).

BIBLIOGRAPHY 283

[DGP09] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadim-
itriou. “The complexity of computing a Nash equilibrium”. In: SIAM
Journal on Computing 39.1 (2009), pp. 195–259.

[DH13] Irit Dinur and Prahladh Harsha. “Composition of Low-Error 2-Query
PCPs Using Decodable PCPs”. In: SIAM J. Comput. 42.6 (2013), pp. 2452–
2486. doi: 10.1137/100788161. url: http://dx.doi.org/10.1137/
100788161.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: J. ACM 54.3
(2007), p. 12. doi: 10.1145/1236457.1236459. url: http://doi.acm.
org/10.1145/1236457.1236459.

[DIR13] Shaddin Dughmi, Nicole Immorlica, and Aaron Roth. “Constrained sig-
naling for welfare and revenue maximization”. In: SIGecom Exchanges
12.1 (2013), pp. 53–56. doi: 10.1145/2509013.2509022. url: http:
//doi.acm.org/10.1145/2509013.2509022.

[DM15] Yash Deshpande and Andrea Montanari. “Improved Sum-of-Squares
Lower Bounds for Hidden Clique and Hidden Submatrix Problems”.
In: CoRR abs/1502.06590 (2015). url: http://arxiv.org/abs/1502.
06590.

[DMP07] Constantinos Daskalakis, Aranyak Mehta, and Christos H. Papadim-
itriou. “Progress in approximate nash equilibria”. In: Proceedings 8th
ACM Conference on Electronic Commerce (EC-2007), San Diego, Cal-
ifornia, USA, June 11-15, 2007. 2007, pp. 355–358. doi: 10.1145/
1250910.1250962. url: http://doi.acm.org/10.1145/1250910.
1250962.

[DMP09] Constantinos Daskalakis, Aranyak Mehta, and Christos H. Papadim-
itriou. “A note on approximate Nash equilibria”. In: Theor. Comput.
Sci. 410.17 (2009), pp. 1581–1588. doi: 10.1016/j.tcs.2008.12.031.
url: https://doi.org/10.1016/j.tcs.2008.12.031.

[DP09] Constantinos Daskalakis and Christos H. Papadimitriou. “On oblivious
PTAS’s for nash equilibrium”. In: Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009. Full version available at http://arxiv.org/abs/1102.2280.
2009, pp. 75–84. doi: 10.1145/1536414.1536427. url: http://doi.
acm.org/10.1145/1536414.1536427.

BIBLIOGRAPHY 284

[DP15] Constantinos Daskalakis and Christos H. Papadimitriou. “Approximate
Nash equilibria in anonymous games”. In: J. Economic Theory 156
(2015), pp. 207–245. doi: 10.1016/j.jet.2014.02.002. url: http:
//dx.doi.org/10.1016/j.jet.2014.02.002.

[DS16] Amit Daniely and Shai Shalev-Shwartz. “Complexity Theoretic Lim-
itations on Learning DNF’s”. In: Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016.
2016, pp. 815–830. url: http://jmlr.org/proceedings/papers/v49/
daniely16.html.

[Dug14] Shaddin Dughmi. “On the Hardness of Signaling”. In: 55th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014. 2014, pp. 354–363. doi:
10.1109/FOCS.2014.45. url: http://dx.doi.org/10.1109/FOCS.
2014.45.

[Edg09] Francis Ysidro Edgeworth. “Review of Free Trade in Being”. In: Eco-
nomic Journal 19 (1909), pp. 104–5.

[Eme+14] Yuval Emek et al. “Signaling Schemes for Revenue Maximization”. In:
ACM Trans. Economics and Comput. 2.2 (2014), p. 5. doi: 10.1145/
2594564. url: http://doi.acm.org/10.1145/2594564.

[EY10] Kousha Etessami and Mihalis Yannakakis. “On the Complexity of Nash
Equilibria and Other Fixed Points”. In: SIAM J. Comput. 39.6 (2010),
pp. 2531–2597. doi: 10.1137/080720826. url: https://doi.org/10.
1137/080720826.

[Fea+13] John Fearnley et al. “Learning equilibria of games via payoff queries.”
In: EC. 2013, pp. 397–414.

[Fei+96] Uriel Feige et al. “Interactive proofs and the hardness of approximating
cliques”. In: Journal of the ACM (JACM) 43.2 (1996), pp. 268–292.

[Fei02] Uriel Feige. “Relations between average case complexity and approxima-
tion complexity”. In: STOC. Montreal, Quebec, Canada: ACM Press,
2002, pp. 534–543. isbn: 1-58113-495-9. doi: http://doi.acm.org/
10.1145/509907.509985.

[Fel+06] Vitaly Feldman et al. “New Results for Learning Noisy Parities and
Halfspaces”. In: 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2006), 21-24 October 2006, Berkeley, California,
USA, Proceedings. 2006, pp. 563–574. doi: 10.1109/FOCS.2006.51.
url: http://dx.doi.org/10.1109/FOCS.2006.51.

BIBLIOGRAPHY 285

[Fel+13] Vitaly Feldman et al. “Statistical algorithms and a lower bound for de-
tecting planted cliques”. In: Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 2013, pp. 655–
664. doi: 10.1145/2488608.2488692. url: http://doi.acm.org/10.
1145/2488608.2488692.

[FK00] Uriel Feige and Robert Krauthgamer. “Finding and certifying a large
hidden clique in a semirandom graph”. In: Random Struct. Algorithms
16.2 (2000), pp. 195–208.

[FKP01] Uriel Feige, Guy Kortsarz, and David Peleg. “The Dense k -Subgraph
Problem”. In: Algorithmica 29.3 (2001), pp. 410–421. doi: 10.1007/
s004530010050. url: http://dx.doi.org/10.1007/s004530010050.

[FKS95] Joan Feigenbaum, Daphne Koller, and Peter W. Shor. “A Game-Theoretic
Classification of Interactive Complexity Classes”. In: Structure in Com-
plexity Theory Conference. 1995, pp. 227–237.

[FL98] Moti Frances and Ami Litman. “Optimal Mistake Bound Learning is
Hard”. In: Inf. Comput. 144.1 (1998), pp. 66–82. doi: 10.1006/inco.
1998.2709. url: http://dx.doi.org/10.1006/inco.1998.2709.

[FNS07] Tomás Feder, Hamid Nazerzadeh, and Amin Saberi. “Approximating
nash equilibria using small-support strategies”. In: Proceedings 8th ACM
Conference on Electronic Commerce (EC-2007), San Diego, California,
USA, June 11-15, 2007. 2007, pp. 352–354. doi: 10.1145/1250910.
1250961. url: http://doi.acm.org/10.1145/1250910.1250961.

[Fol67] D.K. Foley. “Resource Allocation and the Public Sector”. In: Yale Eco-
nomic Essays 7.1 (1967), pp. 45–98.

[For+08] Lance Fortnow et al. “On the Complexity of Succinct Zero-Sum Games”.
In: Computational Complexity 17.3 (2008), pp. 353–376.

[For10] Santo Fortunato. “Community detection in graphs”. In: Physics Reports
486 (2010), pp. 75–174.

[FP16] Laura Florescu and Will Perkins. “Spectral thresholds in the bipar-
tite stochastic block model”. In: Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016.
2016, pp. 943–959. url: http://jmlr.org/proceedings/papers/v49/
florescu16.html.

[FS97] Uriel Feige and Michael Seltser. On the densest k-subgraph problem.
Citeseer, 1997.

BIBLIOGRAPHY 286

[FY06] Dean P. Foster and H. Peyton Young. “Regret testing: learning to play
Nash equilibrium without knowing you have an opponent”. In: Theoreti-
cal Economics 1.3 (Sept. 2006), pp. 341–367. url: http://econtheory.
org/ojs/index.php/te/article/view/20060341.

[Gar+15] Jugal Garg et al. “A Complementary Pivot Algorithm for Market Equi-
librium under Separable, Piecewise-Linear Concave Utilities”. In: SIAM
J. Comput. 44.6 (2015), pp. 1820–1847. doi: 10.1137/140971002. url:
https://doi.org/10.1137/140971002.

[Gar+17] Jugal Garg et al. “Settling the complexity of Leontief and PLC exchange
markets under exact and approximate equilibria”. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017. 2017, pp. 890–
901. doi: 10.1145/3055399.3055474. url: http://doi.acm.org/10.
1145/3055399.3055474.

[Gho+11] Ali Ghodsi et al. “Dominant Resource Fairness: Fair Allocation of Mul-
tiple Resource Types”. In: Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation. NSDI’11. Boston,
MA: USENIX Association, 2011, pp. 323–336. url: http://dl.acm.
org/citation.cfm?id=1972457.1972490.

[GK06] Rahul Garg and Sanjiv Kapoor. “Auction Algorithms for Market Equi-
librium”. In: Math. Oper. Res. 31.4 (2006), pp. 714–729. doi: 10.1287/
moor.1060.0216. url: https://doi.org/10.1287/moor.1060.0216.

[GL07] Fabrizio Germano and Gabor Lugosi. “Global Nash convergence of Fos-
ter and Young’s regret testing”. In: Games and Economic Behavior 60.1
(2007), pp. 135–154.

[Gol10] Oded Goldreich, ed. Property Testing - Current Research and Surveys
[outgrow of a workshop at the Institute for Computer Science (ITCS) at
Tsinghua University, January 2010]. Vol. 6390. Lecture Notes in Com-
puter Science. Springer, 2010. isbn: 978-3-642-16366-1. doi: 10.1007/
978-3-642-16367-8. url: http://dx.doi.org/10.1007/978-3-
642-16367-8.

[GP14] Paul W Goldberg and Arnoud Pastink. “On the communication com-
plexity of approximate Nash equilibria”. In: Games and Economic Be-
havior 85 (2014), pp. 19–31.

BIBLIOGRAPHY 287

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. “Revisit-
ing the Cryptographic Hardness of Finding a Nash Equilibrium”. In:
Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II. 2016, pp. 579–604. doi: 10.1007/978-3-662-
53008-5_20. url: https://doi.org/10.1007/978-3-662-53008-
5_20.

[GPW17] Mika Göös, Toniann Pitassi, and ThomasWatson. “Query-to-communication
lifting for BPP”. In: arXiv preprint arXiv:1703.07666 (2017).

[GR05] Venkatesan Guruswami and Atri Rudra. “Tolerant Locally Testable
Codes”. In: Approximation, Randomization and Combinatorial Opti-
mization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems,
APPROX 2005 and 9th InternationalWorkshop on Randomization and
Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005,
Proceedings. 2005, pp. 306–317. doi: 10 . 1007 / 11538462 _ 26. url:
http://dx.doi.org/10.1007/11538462_26.

[GR16] Paul W. Goldberg and Aaron Roth. “Bounds for the Query Complexity
of Approximate Equilibria”. In: ACM Trans. Economics and Comput.
4.4 (2016), 24:1–24:25. doi: 10.1145/2956582. url: http://doi.acm.
org/10.1145/2956582.

[GS17] Anat Ganor and Karthik C. Srikanta. “Communication complexity of
correlated equilibrium in two-player games”. In: arXiv preprint arXiv:1704.01104
(2017).

[GZ89] I. Gilboa and E. Zemel. “Nash and correlated equilibria: Some complex-
ity considerations.” In: Games and Economic Behavior, 1989.

[HK11] Elad Hazan and Robert Krauthgamer. “How Hard Is It to Approximate
the Best Nash Equilibrium?” In: SIAM J. Comput. 40.1 (2011), pp. 79–
91.

[HLL83] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
“Stochastic blockmodels: First steps”. In: Social Networks 5 (1983),
pp. 109–137.

[HM10] Sergiu Hart and Yishay Mansour. “How long to equilibrium? The com-
munication complexity of uncoupled equilibrium procedures”. In:Games
and Economic Behavior 69.1 (2010), pp. 107–126.

BIBLIOGRAPHY 288

[HMC03] Sergiu Hart and Andreu Mas-Colell. “Uncoupled dynamics do not lead
to Nash equilibrium”. In: American Economic Review 93.5 (2003), pp. 1830–
1836.

[HMC06] Sergiu Hart and Andreu Mas-Colell. “Stochastic uncoupled dynamics
and Nash equilibrium”. In: Games and Economic Behavior 57.2 (2006),
pp. 286–303.

[HMC13] Sergiu Hart and Andreu Mas-Colell. Simple adaptive strategies: from
regret-matching to uncoupled dynamics. Vol. 4. World Scientific, 2013.

[HN13] Sergiu Hart and Noam Nisan. “The Query Complexity of Correlated
Equilibria”. In: CoRR abs/1305.4874 (2013).

[Hop+16] Samuel B. Hopkins et al. “On the Integrality Gap of Degree-4 Sum
of Squares for Planted Clique”. In: Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016. 2016, pp. 1079–1095. doi:
10.1137/1.9781611974331.ch76. url: http://dx.doi.org/10.
1137/1.9781611974331.ch76.

[HPV89] Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vava-
sis. “Exponential lower bounds for finding Brouwer fix points”. In: J.
Complexity 5.4 (1989), pp. 379–416.

[HWX16] Bruce E. Hajek, Yihong Wu, and Jiaming Xu. “Semidefinite Programs
for Exact Recovery of a Hidden Community”. In: Proceedings of the 29th
Conference on Learning Theory, COLT 2016, New York, USA, June 23-
26, 2016. 2016, pp. 1051–1095. url: http://jmlr.org/proceedings/
papers/v49/hajek16.html.

[HY17] Pavel Hubácek and Eylon Yogev. “Hardness of Continuous Local Search:
Query Complexity and Cryptographic Lower Bounds”. In: Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19. 2017, pp. 1352–1371. doi: 10.1137/1.9781611974782.88. url:
https://doi.org/10.1137/1.9781611974782.88.

[H̊as99] Johan H̊astad. “Clique is Hard to Approximate Within n1-epsilon”. In:
Acta Mathematica 182.1 (1999), pp. 105–142.

[Iem16] Rosalie Iemhoff. “Intuitionism in the Philosophy of Mathematics”. In:
The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Win-
ter 2016. Metaphysics Research Lab, Stanford University, 2016.

BIBLIOGRAPHY 289

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of
k-SAT”. In: J. Comput. Syst. Sci. 62.2 (2001), pp. 367–375.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which
Problems Have Strongly Exponential Complexity?” In: J. Comput. Syst.
Sci. 63.4 (2001), pp. 512–530. doi: 10.1006/jcss.2001.1774. url:
http://dx.doi.org/10.1006/jcss.2001.1774.

[Jai04] Kamal Jain. “A Polynomial Time Algorithm for Computing the Arrow-
Debreu Market Equilibrium for Linear Utilities”. In: 45th Symposium on
Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings. 2004, pp. 286–294. doi: 10.1109/FOCS.2004.
6. url: http://dx.doi.org/10.1109/FOCS.2004.6.

[Jer92] Mark Jerrum. “Large Cliques Elude the Metropolis Process”. In: Ran-
dom Struct. Algorithms 3.4 (1992), pp. 347–360.

[Jev66] William Stanley Jevons. “Brief Account of a General Mathematical The-
ory of Political Economy”. In: History of Economic Thought Articles
29 (1866), pp. 282–287. url: http://EconPapers.repec.org/RePEc:
hay:hetart:jevons1866.

[JLB15] Albert Xin Jiang and Kevin Leyton-Brown. “Polynomial-time compu-
tation of exact correlated equilibrium in compact games”. In: Games
and Economic Behavior 91 (2015), pp. 347–359.

[JV10] Kamal Jain and Vijay V. Vazirani. “Eisenberg-Gale markets: Algo-
rithms and game-theoretic properties”. In: Games and Economic Be-
havior 70.1 (2010), pp. 84–106. doi: 10.1016/j.geb.2008.11.011.
url: https://doi.org/10.1016/j.geb.2008.11.011.

[Kal+08] Adam Tauman Kalai et al. “Agnostically Learning Halfspaces”. In:
SIAM J. Comput. 37.6 (2008), pp. 1777–1805. doi: 10.1137/060649057.
url: http://dx.doi.org/10.1137/060649057.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In:
Proceedings of a symposium on the Complexity of Computer Computa-
tions, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York. 1972, pp. 85–103. url: http:
//www.cs.berkeley.edu/~luca/cs172/karp.pdf.

[Kea07] Michael Kearns. “Graphical games”. In: Algorithmic Game Theory. Ed.
by Noam Nisan et al. Cambridge University Press, 2007. Chap. 7, pp. 159–
180.

BIBLIOGRAPHY 290

[Kha93] Michael Kharitonov. “Cryptographic hardness of distribution-specific
learning”. In: Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing, May 16-18, 1993, San Diego, CA, USA. 1993,
pp. 372–381. doi: 10.1145/167088.167197. url: http://doi.acm.
org/10.1145/167088.167197.

[Kha95] Michael Kharitonov. “Cryptographic Lower Bounds for Learnability of
Boolean Functions on the Uniform Distribution”. In: J. Comput. Syst.
Sci. 50.3 (1995), pp. 600–610. doi: 10.1006/jcss.1995.1046. url:
http://dx.doi.org/10.1006/jcss.1995.1046.

[Kho01] Subhash Khot. “Improved Inaproximability Results for MaxClique, Chro-
matic Number and Approximate Graph Coloring”. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA. 2001, pp. 600–609. doi: 10.
1109/SFCS.2001.959936. url: http://dx.doi.org/10.1109/SFCS.
2001.959936.

[Kho06] Subhash Khot. “Ruling out PTAS for graph min-bisection, dense k-
subgraph, and bipartite clique”. In: SIAM Journal on Computing 36.4
(2006), pp. 1025–1071.

[KL93] Ehud Kalai and Ehud Lehrer. “Rational Learning Leads to Nash Equi-
librium”. In: Econometrica 61.5 (1993), pp. 1019–1045.

[Kle02] Jon M. Kleinberg. “An Impossibility Theorem for Clustering”. In: Ad-
vances in Neural Information Processing Systems 15 [Neural Informa-
tion Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver,
British Columbia, Canada]. 2002, pp. 446–453. url: http://papers.
nips.cc/paper/2340-an-impossibility-theorem-for-clustering.

[Kli16] Adam R. Klivans. “Cryptographic Hardness of Learning”. In: Encyclo-
pedia of Algorithms. 2016, pp. 475–477. doi: 10.1007/978-1-4939-
2864-4_96. url: http://dx.doi.org/10.1007/978-1-4939-2864-
4_96.

[KPS09] Spyros C. Kontogiannis, Panagiota N. Panagopoulou, and Paul G. Spi-
rakis. “Polynomial algorithms for approximating Nash equilibria of bi-
matrix games”. In: Theor. Comput. Sci. 410.17 (2009), pp. 1599–1606.
doi: 10.1016/j.tcs.2008.12.033. url: http://dx.doi.org/10.
1016/j.tcs.2008.12.033.

BIBLIOGRAPHY 291

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. “Super-logarithmic
depth lower bounds via the direct sum in communication complexity”.
In: Computational Complexity 5.3-4 (1995), pp. 191–204.

[KS09] Adam R. Klivans and Alexander A. Sherstov. “Cryptographic hardness
for learning intersections of halfspaces”. In: J. Comput. Syst. Sci. 75.1
(2009), pp. 2–12. doi: 10.1016/j.jcss.2008.07.008. url: http:
//dx.doi.org/10.1016/j.jcss.2008.07.008.

[KS10] Marek Karpinski and Warren Schudy. “Faster Algorithms for Feed-
back Arc Set Tournament, Kemeny Rank Aggregation and Between-
ness Tournament”. In: Algorithms and Computation - 21st International
Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17, 2010,
Proceedings, Part I. 2010, pp. 3–14. doi: 10.1007/978-3-642-17517-
6_3. url: http://dx.doi.org/10.1007/978-3-642-17517-6_3.

[KT07] Ravi Kannan and Thorsten Theobald. “Games of fixed rank: a hierarchy
of bimatrix games”. In: Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans,
Louisiana, USA, January 7-9, 2007. 2007, pp. 1124–1132. url: http:
//dl.acm.org/citation.cfm?id=1283383.1283504.

[Kuc95] Ludek Kucera. “Expected Complexity of Graph Partitioning Problems”.
In: Discrete Applied Mathematics 57.2-3 (1995), pp. 193–212.

[KV94] Michael J. Kearns and Leslie G. Valiant. “Cryptographic Limitations
on Learning Boolean Formulae and Finite Automata”. In: J. ACM 41.1
(1994), pp. 67–95. doi: 10.1145/174644.174647. url: http://doi.
acm.org/10.1145/174644.174647.

[KZ11] Pascal Koiran and Anastasios Zouzias. “On the Certification of the
Restricted Isometry Property”. In: CoRR abs/1103.4984 (2011). url:
http://arxiv.org/abs/1103.4984.

[Lei92] F. Thomson Leighton. Introduction to Parallel Algorithms and Archi-
tectures: Array, Trees, Hypercubes. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1992. isbn: 1-55860-117-1.

[LH64] C. E. Lemke and J. T. Howson. “Equilibrium Points of Bimatrix Games”.
In: Journal of the Society for Industrial and Applied Mathematics 12.2
(1964), pp. 413–423. issn: 03684245. url: http://www.jstor.org/
stable/2946376.

BIBLIOGRAPHY 292

[Lit87] Nick Littlestone. “Learning Quickly When Irrelevant Attributes Abound:
A New Linear-threshold Algorithm”. In: Machine Learning 2.4 (1987),
pp. 285–318. doi: 10.1007/BF00116827. url: http://dx.doi.org/
10.1007/BF00116827.

[LM14] Twan van Laarhoven and Elena Marchiori. “Axioms for graph cluster-
ing quality functions”. In: Journal of Machine Learning Research 15.1
(2014), pp. 193–215. url: http://dl.acm.org/citation.cfm?id=
2627441.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. “Playing
Large Games Using Simple Strategies”. In: Proceedings of the 4th ACM
Conference on Electronic Commerce. EC ’03. San Diego, CA, USA:
ACM, 2003, pp. 36–41. isbn: 1-58113-679-X. doi: 10.1145/779928.
779933. url: http://doi.acm.org/10.1145/779928.779933.

[LMR91] Nathan Linial, Yishay Mansour, and Ronald L. Rivest. “Results on
Learnability and the Vapnik-Chervonenkis Dimension”. In: Inf. Com-
put. 90.1 (1991), pp. 33–49. doi: 10.1016/0890-5401(91)90058-A.
url: http://dx.doi.org/10.1016/0890-5401(91)90058-A.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. “Lower bounds
based on the Exponential Time Hypothesis”. In: Bulletin of the EATCS
105 (2011), pp. 41–72. url: http://albcom.lsi.upc.edu/ojs/index.
php/beatcs/article/view/96.

[Man17] Pasin Manurangsi. “Almost-Polynomial Ratio ETH-Hardness of Ap-
proximating Densest k-Subgraph”. In: Proceedings of the Fortieth-ninth
Annual ACM Symposium on Theory of Computing. STOC ’17. To ap-
pear. 2017.

[Mar95] Alfred Marshall. Principles of Economics. III. Macmillan, 1895.

[Max97] R. R. Maxfield. “General equilibrium and the theory of directed graphs”.
In: Journal of Mathematical Economics 27.1 (1997), pp. 23–51.

[Men71] Carl Menger. Principles of Economics. Ludwig von Mises Institute,
1871.

[Mis+08] Nina Mishra et al. “Finding Strongly Knit Clusters in Social Networks”.
In: vol. 5. 1. 2008, pp. 155–174. doi: 10.1080/15427951.2008.10129299.
url: http://dx.doi.org/10.1080/15427951.2008.10129299.

BIBLIOGRAPHY 293

[MMV16] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaragha-
van. “Learning Communities in the Presence of Errors”. In: Proceedings
of the 29th Conference on Learning Theory, COLT 2016, New York,
USA, June 23-26, 2016. 2016, pp. 1258–1291. url: http://jmlr.org/
proceedings/papers/v49/makarychev16.html.

[Mor03] Tsuyoshi Morioka. “The Relative Complexity of Local Search Heuris-
tics and the Iteration Principle”. In: Electronic Colloquium on Com-
putational Complexity (ECCC) 051 (2003). url: http://eccc.hpi-
web.de/eccc-reports/2003/TR03-051/index.html.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. “On Total Functions,
Existence Theorems and Computational Complexity”. In: Theor. Com-
put. Sci. 81.2 (1991), pp. 317–324. doi: 10 . 1016 / 0304 - 3975(91)

90200-L. url: https://doi.org/10.1016/0304-3975(91)90200-L.

[MPW15] Raghu Meka, Aaron Potechin, and Avi Wigderson. “Sum-of-squares
Lower Bounds for Planted Clique”. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015. 2015, pp. 87–96. doi: 10.1145/
2746539.2746600. url: http://doi.acm.org/10.1145/2746539.
2746600.

[MPW16] Ankur Moitra, William Perry, and Alexander S. Wein. “How robust are
reconstruction thresholds for community detection?” In: Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 2016, pp. 828–
841. doi: 10.1145/2897518.2897573. url: http://doi.acm.org/10.
1145/2897518.2897573.

[MR10] Dana Moshkovitz and Ran Raz. “Two-query PCP with subconstant
error”. In: J. ACM 57.5 (2010), 29:1–29:29. doi: 10.1145/1754399.
1754402. url: http://doi.acm.org/10.1145/1754399.1754402.

[MR16] Pasin Manurangsi and Prasad Raghavendra. “A Birthday Repetition
Theorem and Complexity of Approximating Dense CSPs”. In: CoRR
abs/1607.02986 (2016). url: http://arxiv.org/abs/1607.02986.

[MS12] Peter Bro Miltersen and Or Sheffet. “Send mixed signals: earn more,
work less”. In: ACM Conference on Electronic Commerce, EC ’12, Va-
lencia, Spain, June 4-8, 2012. 2012, pp. 234–247. doi: 10.1145/2229012.
2229033. url: http://doi.acm.org/10.1145/2229012.2229033.

BIBLIOGRAPHY 294

[MT05] Andrew McLennan and Rabee Tourky. “From imitation games to Kaku-
tani”. In: Manuscript, available at http://www.econ.umn.edu/ mclen-
nan/Papers/papers.html (2005).

[MU02] Elchanan Mossel and Christopher Umans. “On the complexity of ap-
proximating the VC dimension”. In: J. Comput. Syst. Sci. 65.4 (2002),
pp. 660–671. doi: 10.1016/S0022- 0000(02)00022- 3. url: http:
//dx.doi.org/10.1016/S0022-0000(02)00022-3.

[MX16] Elchanan Mossel and Jiaming Xu. “Density Evolution in the Degree-
correlated Stochastic Block Model”. In: Proceedings of the 29th Confer-
ence on Learning Theory, COLT 2016, New York, USA, June 23-26,
2016. 2016, pp. 1319–1356. url: http://jmlr.org/proceedings/
papers/v49/mossel16.html.

[Nas51] John Nash. “Non-Cooperative Games”. In: The Annals of Mathematics
54 (1951), pp. 286–295.

[Nis09a] Noam Nisan. Communication Complexity of Mixed-Nash Equilibria. https://agtb.wordpress.co
complexity-of-mixed-nash-equilibria/. Blog. 2009.

[Nis09b] Noam Nisan. Economists and Complexity. https://agtb.wordpress.com/2009/11/27/economist
and-complexity/. Blog. 2009.

[OSB10] Abraham Othman, Tuomas Sandholm, and Eric Budish. “Finding ap-
proximate competitive equilibria: efficient and fair course allocation”.
In: 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010), Toronto, Canada, May 10-14, 2010, Volume
1-3. 2010, pp. 873–880. doi: 10.1145/1838206.1838323. url: http:
//doi.acm.org/10.1145/1838206.1838323.

[Pap94] Christos H. Papadimitriou. “On the Complexity of the Parity Argument
and Other Inefficient Proofs of Existence”. In: J. Comput. Syst. Sci. 48.3
(1994), pp. 498–532.

[PR08] Christos H. Papadimitriou and Tim Roughgarden. “Computing corre-
lated equilibria in multi-player games”. In: J. ACM 55.3 (2008).

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. “Tolerant property
testing and distance approximation”. In: J. Comput. Syst. Sci. 72.6
(2006), pp. 1012–1042. doi: 10.1016/j.jcss.2006.03.002. url:
http://dx.doi.org/10.1016/j.jcss.2006.03.002.

BIBLIOGRAPHY 295

[PS94] Alexander Polishchuk and Daniel A. Spielman. “Nearly-linear size holo-
graphic proofs”. In: Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada. 1994, pp. 194–203. doi: 10.1145/195058.195132. url: http:
//doi.acm.org/10.1145/195058.195132.

[PY86] Christos H. Papadimitriou and Mihalis Yannakakis. “A note on succinct
representations of graphs”. In: Information and Control 71.3 (1986),
pp. 181 –185. issn: 0019-9958. doi: http://dx.doi.org/10.1016/
S0019-9958(86)80009-2. url: http://www.sciencedirect.com/
science/article/pii/S0019995886800092.

[PY96] Christos H. Papadimitriou and Mihalis Yannakakis. “On Limited Non-
determinism and the Complexity of the V-C Dimension”. In: J. Comput.
Syst. Sci. 53.2 (1996), pp. 161–170. doi: 10.1006/jcss.1996.0058.
url: http://dx.doi.org/10.1006/jcss.1996.0058.

[RM99] Ran Raz and Pierre McKenzie. “Separation of the Monotone NC Hier-
archy”. In: vol. 19. 3. 1999, pp. 403–435. doi: 10.1007/s004930050062.
url: http://dx.doi.org/10.1007/s004930050062.

[Rob51] Julia Robinson. “An Iterative Method of Solving a Game”. In: Annals
of Mathematics 54 (1951), pp. 296–301.

[Rou14] Tim Roughgarden. “Barriers to Near-Optimal Equilibria”. In: (2014),
pp. 71–80. doi: 10.1109/FOCS.2014.16. url: http://dx.doi.org/
10.1109/FOCS.2014.16.

[RS10] Prasad Raghavendra and David Steurer. “Graph expansion and the
unique games conjecture”. In: Proceedings of the forty-second ACM sym-
posium on Theory of computing. ACM. 2010, pp. 755–764.

[Rub15] Aviad Rubinstein. “ETH-Hardness for Signaling in Symmetric Zero-
Sum Games”. In: CoRR abs/1510.04991 (2015). url: http://arxiv.
org/abs/1510.04991.

[Rub16] Aviad Rubinstein. “Settling the Complexity of Computing Approxi-
mate Two-Player Nash Equilibria”. In: IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA. 2016, pp. 258–265.
doi: 10.1109/FOCS.2016.35. url: http://dx.doi.org/10.1109/
FOCS.2016.35.

BIBLIOGRAPHY 296

[RW16] Tim Roughgarden and Omri Weinstein. “On the Communication Com-
plexity of Approximate Fixed Points.” In: Electronic Colloquium on
Computational Complexity (ECCC). Vol. 23. 2016, p. 55.

[RW90] Ran Raz and Avi Wigderson. “Monotone Circuits for Matching Require
Linear Depth”. In: Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA.
1990, pp. 287–292. doi: 10.1145/100216.100253. url: http://doi.
acm.org/10.1145/100216.100253.

[Sca67] Herbet Scarf. “The approximation of fixed points of a continuous map-
ping”. In: SIAM Journal of Applied Mathematics 15 (1967), pp. 1328–
1343.

[Sch00] Marcus Schaefer. “Deciding the K-Dimension is PSPACE-Complete”.
In: Proceedings of the 15th Annual IEEE Conference on Computational
Complexity, Florence, Italy, July 4-7, 2000. 2000, pp. 198–203. doi:
10.1109/CCC.2000.856750. url: http://dx.doi.org/10.1109/CCC.
2000.856750.

[Sch99] Marcus Schaefer. “Deciding the Vapnik-Cervonenkis Dimension in Sigmap3-
Complete”. In: J. Comput. Syst. Sci. 58.1 (1999), pp. 177–182. doi:
10.1006/jcss.1998.1602. url: http://dx.doi.org/10.1006/jcss.
1998.1602.

[Sha64] Lloyd Stowell Shapley. “Some Topics in Two-Person Games”. In: Annals
of Mathematical Studies 52 (1964), pp. 1–28.

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (1992), pp. 869–877.
doi: 10.1145/146585.146609. url: http://doi.acm.org/10.1145/
146585.146609.

[Shm12] Eran Shmaya. Brouwer Implies Nash Implies Brouwer. http://theoryclass.wordpress.com/2012
implies-nash-implies-brouwer/. Blog. 2012.

[Spi95] Daniel A. Spielman. “Computationally Efficient Error-Correcting Codes
and Holographic Proofs”. PhD thesis. Massachusetts Institute of Tech-
nology, 1995.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. “Chernoff-
Hoeffding Bounds for Applications with Limited Independence”. In:
SIAM J. Discrete Math. 8.2 (1995), pp. 223–250. doi: 10.1137/S089548019223872X.
url: http://dx.doi.org/10.1137/S089548019223872X.

BIBLIOGRAPHY 297

[SSW04] Satinder P. Singh, Vishal Soni, and Michael P. Wellman. “Computing
approximate bayes-nash equilibria in tree-games of incomplete informa-
tion.” In: EC. 2004, pp. 81–90.

[Sti47] George J. Stigler. “Notes on the History of the Giffen Paradox”. In:
Journal of Political Economy 55.2 (1947), pp. 152–156.

[SV12] Grant Schoenebeck and Salil P. Vadhan. “The Computational Complex-
ity of Nash Equilibria in Concisely Represented Games”. In: TOCT 4.2
(2012), p. 4.

[Tre+16] Nicolas Tremblay et al. “Compressive Spectral Clustering”. In: Proceed-
ings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016. 2016, pp. 1002–1011.
url: http://jmlr.org/proceedings/papers/v48/tremblay16.html.

[TS08] Haralampos Tsaknakis and Paul G. Spirakis. “An Optimization Ap-
proach for Approximate Nash Equilibria”. In: Internet Mathematics 5.4
(2008), pp. 365–382. doi: 10.1080/15427951.2008.10129172. url:
https://doi.org/10.1080/15427951.2008.10129172.

[TV85] W. Thomson and H.R. Varian. “Theories of justice based on symmetry”.
In: Social Goals and Social Organizations: Essays in Memory of Elisha
Pazner (1985).

[Var74] H. Varian. “Equity, envy, and efficiency”. In: Journal of Economic The-
ory 9.1 (1974), pp. 63–91.

[VC71] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. “On the Uniform
Convergence of Relative Frequencies of Events to Their Probabilities”.
In: Theory of Probability & Its Applications 16.2 (1971), pp. 264–280.
doi: 10 . 1137 / 1116025. eprint: http : / / dx . doi . org / 10 . 1137 /

1116025. url: http://dx.doi.org/10.1137/1116025.

[Vid15] Michael Viderman. “A combination of testability and decodability by
tensor products”. In: Random Struct. Algorithms 46.3 (2015), pp. 572–
598. doi: 10.1002/rsa.20498. url: http://dx.doi.org/10.1002/
rsa.20498.

[VY11] Vijay V. Vazirani and Mihalis Yannakakis. “Market equilibrium under
separable, piecewise-linear, concave utilities”. In: J. ACM 58.3 (2011),
p. 10.

[Wal74] Léon Walras. Éléments d’économie politique pure, ou, Théorie de la
richesse sociale. L. Corbaz Lausanne, 1874.

BIBLIOGRAPHY 298

[Yan68] Elena B. Yanovskaya. “Equilibrium points in polymatrix games,” in:
Litovskii Matematicheskii Sbornik 8 (1968), pp. 381–384.

[You04] H Peyton Young. Strategic learning and its limits. OUP Oxford, 2004.

[You09] H Peyton Young. “Learning by trial and error”. In: Games and economic
behavior 65.2 (2009), pp. 626–643.

[Zuc07] David Zuckerman. “Linear Degree Extractors and the Inapproximability
of Max Clique and Chromatic Number”. In: Theory of Computing 3.1
(2007), pp. 103–128. doi: 10.4086/toc.2007.v003a006. url: http:
//dx.doi.org/10.4086/toc.2007.v003a006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

