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Abstract

Computational Models of Learning and Hierarchy

by

Maria K. Eckstein

Doctor of Philosophy in Psychology

University of California, Berkeley

Assistant Professor Anne G. E. Collins, Chair

The aim of this thesis is to create precise computational models of how humans create and use
hierarchical representations when solving complex problems. In the process, the thesis aims to
understand human learning more generally, and investigates the method of computational model-
ing itself. The main result of the thesis is that hierarchical reinforcement learning –the layering
of multiple reinforcement-learning processes at different levels of abstraction– provides a precise
and comprehensive model of human behavior in complex tasks, and has the promise to explain
how hierarchical representation can be created when interacting with a problem. Our investiga-
tion of human learning shows that learning proceeds differently at different ages, and suggests
that different stages of life might be optimized to solve different problems. Our investigation of
computational modeling reveals that even though computational models are powerful tools for
compressing complex datasets into a small number of model parameters, these parameters are not
generic and task-independent, as commonly believed. Instead, model parameters should be inter-
preted as maximally-compact behavioral measures that are fundamentally tied to task context.
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Chapter 1

Introduction

This chapter motivates the study of hierarchical representations to understand complex human
thought, introduces computational modeling as the main method of this thesis, and lays out a
roadmap of the chapters ahead.

1.1 Seemingly Simple Abilities
Even though many things we as humans do in everyday life seem effortless to us, most of them
are not simple. In the early days of artificial intelligence, researchers started compiling “MABA-
MABA” lists, which stands for “Machines are better at - Men are better at” (Fitts, 1951). For
example, while machines surpassed humans in the game of chess several decades ago, humans are
still better at grasping and moving chess pieces. And while machines are better at storing numbers
and doing complex and precise calculations on them, it takes a human to decide which calculations
are meaningful, and to interpret the results.

Sometimes, observing phenomena from a different perspective helps appreciate their complex-
ity. Even though we take our cognitive abilities for granted because they seem easy to us, they
are in reality often breathtakingly complex (and still out of reach for artificial systems). For ex-
ample, consider our ability to recognize structure in the world. It might seem obvious that bears
have similar bone structures to moose, but might catch similar diseases as salmon, given that they
are biologically similar to moose, but they eat salmon. Which kind of mental representation is
necessary to make such inferences (Tenenbaum et al., 2011)? Then, consider how many different
contexts we encounter every day, and with which ease we select appropriate strategies for each,
reusing old strategies if useful, and otherwise creating new ones as needed. How do we represent
these strategies, how do we determine which one is appropriate, and how do we learn new ones
(Collins and Koechlin, 2012)? Lastly, consider how we act in situations whose complexity goes
beyond our cognitive abilities, for example because they offer too many choices over too many
time steps. How do we know how to break such problems into suitable sub-problems, and how do
we approximate steps that are too complex to solve (Huys et al., 2015)?
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1.2 Hierarchy
One answer to this question is: by employing structured, hierarchical representations. The term hi-
erarchy has been used in many ways, and two common ones include “processing hierarchies” and
“representational hierarchies”. In processing hierarchies, higher levels exert control over lower
levels, for example by controlling the flow of information or by setting the agenda for lower levels
(E. K. Miller and Cohen, 2001; Vezhnevets et al., 2017). In representational hierarchies, higher
levels form abstractions over lower levels, such that lower levels contain concrete, sensory, and
fine-grained information, whereas higher levels contain general, conceptual, and integrated infor-
mation (Badre, 2008; Sutton et al., 1999; Tenenbaum et al., 2011).

Both flavors of hierarchy have been invoked to explain complex cognition, oftentimes in con-
junction: long-term planning problems can be solved using hierarchy because higher levels have a
bird’s eye view of the problem and can identify appropriate sub-goals along the way, while lower
levels have a finer temporal resolution and are able to reach each sub-goal (Ribas Fernandes et al.,
2011; Sutton et al., 1999; Vezhnevets et al., 2017). Cognitive flexibility and task switching can be
achieved using a hierarchy over strategies: A high-level strategy is in charge of selecting one of
several low-level strategies, and low-level strategies guide actual behavior. Whereas the high-level
strategy is trained to identify the best low-level strategy for each context, the low-level strategies
are trained to optimize behavior within each context (Collins and Frank, 2013; Vezhnevets et al.,
2020). Lastly, inference in complex domains can be explained by using structured, hierarchical
representations of the world around us, which are combined with new evidence to yield conclu-
sions (Kemp and Tenenbaum, 2008).

Because of its potential to solve problems of extensive, real-world complexity, hierarchy is a
key component in many artificial intelligence algorithms that attempt to overcome problems such
as the combinatorial explosion of possibilities, sparseness of feedback, or extensively long plan-
ning horizons by using meta-learning, generalization, and abstraction (Duan et al., 2016; Finn et
al., 2017; Sutton et al., 1999; Vezhnevets et al., 2017; Wang et al., 2016). In psychology, hier-
archical representations in humans (and animals) have been the focus of many research programs
(Botvinick, 2012; Chase and Simon, 1973; Diuk, Schapiro, et al., 2013; Gershman and Niv, 2010),
and in neuroscience, the hierarchical organization of brain structures has guided and inspired the
investigation of brain function (Badre and D’Esposito, 2009; Geddes et al., 2018; E. K. Miller and
Cohen, 2001). In the spirit of interdisciplinary cognitive science, there has been a constant flow of
information between these three fields (Collins, 2019; Griffiths et al., 2019; Lake et al., 2017).

1.3 Learning
Nevertheless, hierarchical representations are only useful when they capture the essence of a prob-
lem, and what this essence is is seldomly clear from the outset. Most hierarchical representations
therefore arise from the interaction between agents and the problems they face, and are created
over time in a learning process. The human ability to learn (and teach) has been argued to be what
distinguishes humans from other species (Premack, 2007), and the ability to learn like a human
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child has been argued to be what will provide the break-through in creating artificial intelligence
(Turing, 1950). Unsurprisingly, the study of learning has been at forefront of psychological re-
search since the beginning, and has remained essential throughout methodological paradigm shifts
(Gopnik and Tenenbaum, 2007; Nussenbaum and Hartley, 2019; Tolman, 1948; Watson, 1913).

1.4 Computational Modeling
In order to study learning and hierarchy, many researchers have employed computational models.
Computational cognitive modeling dates back to the earliest days of artificial intelligence and the
birth of the cognitive sciences (Atkinson and Shiffrin, 1968; G. A. Miller, 1956; Newell et al.,
1959). The basic idea of cognitive modeling is to formalize a theory about cognitive processes suf-
ficiently to formulate it as a process model, a step-by-step algorithm or recipe of how quantitative
variables are combined together to give rise to cognition. This process model can be subjected to
statistical methods in order to determine how accurately it captures human behavior (Daw, 2011;
Palminteri et al., 2017; Wilson and Collins, 2019). Computational modeling has many advantages:
it allows –indeed forces– researchers to test very precise theories, avoiding overly broad or non-
falsifiable statements. In addition, models have the inherent ability to “run forward” and make
predictions outside the domain in which they were designed. Lastly, and most interestingly for
the study of hierarchy, computational models make it possible to test theories that are complex,
containing many moving parts with intricate relations.

Current learning research frequently employs cognitive modeling, oftentimes adapting algo-
rithms from artificial intelligence, such as reinforcement learning and Bayesian inference (Rus-
sell and Norvig, 2009). Reinforcement learning, a concept proposed by behaviorist psychologists
(Skinner, 1977; Watson, 1913) and formalized by computer scientists (Sutton and Barto, 2017),
states that biological / artificial agents learn through constant interaction with their world. Agents
produce actions and receive outcomes, and then adjust their actions based on the valence of the
outcome, be it rewarding or punishing. In order to do this efficiently, agents consolidate the en-
tire reward history of actions into “action values”, which represent the expected valence of action
outcomes, and can be stored and updated very quickly and efficiently. The framework of reinforce-
ment learning is mathematically precise, and abstract enough to be applied to a variety of possible
problems (e.g., training an animal, playing a computer game, picking a restaurant), with any kind
of action (e.g., motor movement, key press, strategy), or reward (e.g., praise, points won, good
food).

1.5 Aim of the Thesis
The aim of this thesis is to create precise computational models of how humans create and use
hierarchical representations when solving complex problems. In the process, the thesis aims to
understand human learning more generally, and investigates the method of computational model-
ing itself. The main result of the thesis is that hierarchical reinforcement learning –the layering
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of multiple reinforcement-learning processes at different levels of abstraction– provides a precise
and comprehensive model of human behavior in complex tasks, and has the promise to explain
how hierarchical representation can be created when interacting with a problem. Our investiga-
tion of human learning shows that learning proceeds differently at different ages, and suggests
that different stages of life might be optimized to solve different problems. Our investigation of
computational modeling reveals that even though computational models are powerful tools for
compressing complex datasets into a small number of model parameters, these parameters play
a different role than commonly assumed, and are not as generic as often believed. We suggest
a refined interpretation of learning models that potentially can help resolve discrepancies in the
previous computational modeling literature.

1.6 Thesis Outline
Chapters 2 and 3 investigate human learning and computational modeling, respectively, and lay
the foundation for chapters 4 and 5, which investigate the use and creation of hierarchical repre-
sentations. In chapter 2, we investigate how participants of different ages (8-35 years) perform
a task in which task contingencies can switch without notice, and in which not all feedback is
reliable (positive feedback is reliable, but negative feedback is not). We find that adolescents
aged 13-15 years performed better at this task than younger children and teenagers, but also better
than older teenagers and even adults. The reason for this unique advantage was that 13-to-15-
year-olds were better at overruling unreliable negative feedback. This behavior was captured by
smaller learning rates for negative outcomes in a computational reinforcement learning model.
When analyzed through the lens of Bayesian Inference rather than reinforcement learning, 13-to-
15-year-olds showed the most accurate mental models of the task. Analyzing the parameters of
the reinforcement learning and Bayesian Inference models jointly, 13-to-15-year-olds occupied a
developmental sweet spot, still showing child-like time scales of learning, but already showing
adult-like levels of task proficiency. In addition to these U-shaped developments, both models
also revealed monotonic age changes, such that decision noise decreased with age, whereas choice
persistence increased.

In chapter 3, we investigate a larger dataset that includes the task of chapter 2 as one of three
learning tasks that were given to the same group of more than 300 participants aged 8-35 years.
The goal of this project was to relate the results of different computational models between tasks,
challenging the common assumption that computational model parameters capture the same cog-
nitive processes across task, and that computational models of different tasks are directly compa-
rable. We show that one model parameter, the decision noise, captured similar cognitive processes
across tasks, and showed similar values across tasks for the same participant. Other model param-
eters, on the contrary, most notably learning rates, captured different cognitive processes across
tasks, and showed different values across tasks for the same participant. For example, two learning
rate parameters captured partially overlapping processes in two of the tasks; in two other tasks,
they captured orthogonal processes; and a different kind of learning rate captured overlapping
processes, but in the inverse way across two tasks. This shows that model parameters are not nec-
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essarily comparable between studies, and that computational models are very task-specific. Due to
their flexibility, computational model can capture a wide range of cognitive processes, and model
parameters seem to adapt flexibly to varying demands. This highlights the need for careful val-
idation of any possible interpretation of computational models in terms of underlying cognitive
mechanisms, as they do not appear to broadly generalize across even similar tasks.

In chapter 4, we investigate whether human behavior in a complex learning task can be de-
scribed using hierarchical reinforcement learning. Participants learned to make choices in several
different contexts, and we hypothesized that learning would proceed according to hierarchical re-
inforcement learning: participants should learn a low-level strategy for each context to encode the
choices, and additionally a high-level strategy that determines which low-level strategy to use in
each context. We compared this model to two competitors: a flat reinforcement learning model,
which used reinforcement learning but lacked hierarchy; and a hierarchical Bayesian model, which
was hierarchical but used inference instead of reinforcement learning to select low-level strate-
gies. We designed several tests within the task to examine whether participants’ behavior showed
signs of value learning at two levels of abstraction, and indeed, participants showed all the ex-
pected markers. Importantly, only the hierarchical reinforcement learning model, and not the flat
or the Bayesian model, were able to replicate these patterns. This suggests that human behavior
in a learning and generalization task usually considered complex enough to necessitate complex
inference processes, can instead be captured by comparatively simple and biologically realistic
computations, using hierarchical reinforcement learning.

In chapter 5, we investigate how humans create hierarchical representations of multi-step strate-
gies, which are particularly relevant to frequent, every-day efficient hierarchical decision making.
We designed a task in which participants had to discover complex action sequences to get reward.
Importantly, these complex sequences were composed of simpler action sequences, and in order
to learn the task, participants could learn simple action sequences and combine these into complex
actions, rather than attempting to learn complex action sequences directly. Participants’ behavior
supported this hypothesis, confirming that participants created a hierarchical structure composed
of basic actions, simple action sequences, and complex action sequences.
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Chapter 2

Developmental Changes in Learning

This chapter presents a research study in which adolescents aged 13-15 years performed better
than both children and adults. Two different computational models –reinforcement learning and
Bayesian inference– are fitted, compared, and interpreted jointly to understand how adolescents
achieved this. 1

Abstract
During adolescence, youth venture out, explore the wider world, and are challenged to learn how
to navigate novel and uncertain environments. We investigated whether adolescents are uniquely
adapted to this transition, compared to younger children and adults. In a stochastic, volatile learn-
ing task with a sample of 291 participants aged 8-30, we found that adolescents 13-15 years old
outperformed both younger and older participants. We developed two independent cognitive mod-
els, and used hierarchical Bayesian model fitting to assess developmental changes in underlying
cognitive mechanisms. Choice parameters in both models improved monotonously. By contrast,
update parameters peaked closest to optimal values in 13-15 year-olds. Combining both models us-
ing principal component analysis yielded new insights, revealing that three components contributed
to the early to mid-adolescent performance peak. This research highlights early to mid-adolescence
as a neurodevelopmental window that may be more optimal for behavioral adjustment in volatile
and uncertain environments. It also shows how detailed insights can be gleaned by combining
cognitive models.

2.1 Introduction
In mammals and other species with parental care, there is typically an adolescent stage of develop-
ment in which the young are no longer supported by parental care but are not yet adult. This ado-
lescent period can be identified in many species across the animal kingdom (Natterson-Horowitz

1This chapter has separately been submitted for publication, with the contributions of co-authors Sarah L. Master,
Ronald E. Dahl, Linda Wilbrecht, and Anne G.E. Collins.
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and Bowers, 2019) and is increasingly viewed as a critical epoch of development in which or-
ganisms explore the world, make critical decisions, and learn about important features of their
environment (DePasque and Galván, 2017; Laube et al., 2020; Piekarski, Johnson, et al., 2017;
Steinberg, 2005). All of these behaviors require learning and decision making that will likely have
critical short and long-term impact on survival of the organism (Frankenhuis and Walasek, 2020).
In humans, and likely many other species, the transition to independence almost always involves
environmental changes and increased exposure to stochastic, uncertain outcomes. It is therefore
possible that adolescent brains and cognitive capabilities are specifically adapted to succeed in
such situations (Dahl et al., 2018; Davidow et al., 2016; Johnson and Wilbrecht, 2011; Lourenco
and Casey, 2013; Sercombe, 2014).

To test this idea, we compared the behaviors of 291 participants, including 191 children and
adolescents aged 8-17, and 112 adults (55 adults from the community, aged 25-30; 57 university
undergraduates, aged 18-28; suppl. Fig. 2.6), on a task with volatile structure and stochastic out-
comes (Fig. 2.1A, B). The goal of the task was to collect rewards, which were hidden in one of two
locations (Fig. 2.1A). Which location was rewarding changed unpredictably several times (“task
switch”), and the rewarded location provided rewards only 75 percent of the time (Fig. 2.1A). The
task’s main challenge lay in discriminating chance outcomes during stable task periods from task
switches, and respond appropriately to each. It required the integration of stochastic feedback and
the adaptation to a volatile environment, and thus theoretically mirrored the challenges of the ado-
lescent period. We therefore hypothesized that adolescents would outperform both younger and
older participants. Our data supported this hypothesis.

We used computational modeling to understand the cognitive processes that underlie adoles-
cents’ superior performance, as well as the strategies employed by younger children and older
teenagers and adults. A variety of algorithms have been used to model human cognition, including
Reinforcement learning (RL) and Bayesian inference (BI). The basic idea of RL is that choice op-
tions have “values” (their expected long-term cumulative reward). The goal of RL—maximizing
long-term outcomes—can therefore be achieved by selecting options according to their values.
The core of RL lies in approximating values accurately and efficiently, which can be achieved by
performing small incremental updates every time an outcome is observed. This incremental pro-
cedure avoids overemphasizing any single outcome and allows RL to treat stochastic outcomes
appropriately. The size of the increment captures the integration time scale: the emphasis given
to recent vs. less recent outcomes. In volatile environments, RL adjusts to abrupt changes by
gradually unlearning and relearning values.

RL frames our task as a learning problem: Participants continuously learn and adjust the value
of each choice option based on trial-by-trial feedback (Fig. 2.3A, left). The same learning process
occurs during stable periods and after task switches, without an explicit concept of switching:
Behavioral change arises when enough updates have occurred for the values of one option to dip
below the other. Basic RL algorithms are suboptimal in volatile and structured environments like
ours, but can be augmented for more efficient performance (see Methods). In all cases, RL models
make the fundamental assumption that humans solve challenges through continuous, value-based
learning.

The most common approach in computational modeling studies is to select one type of cog-
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nitive model (e.g., RL), and compare different variants of this type to find the best-fitting one,
which is then interpreted as the cognitive process employed by participants, using quantitative cri-
teria of model fit such as Bayes factors (e.g. Wagenmakers 2007), minimum description length
(e.g. Grünwald 2007), or cross-validation (e.g. Browne 2000). The problem with this approach is
that it cannot rule out whether a model of a different type (e.g., BI) would fit the data better alto-
gether. The issue can be mitigated by verifying that the chosen model reproduces human behavior
adequately (Palminteri et al., 2017), such that the goal of explaining behavior is achieved, and
constructing additional models of a different type is unnecessary. However, a more troublesome
concern is that different types of models frame behavior in terms of different cognitive processes,
and one framing can be more informative, more interpretable, or summarize behavior in a more
meaningful way than another. This problem is more difficult to solve because conceptual model fit
is hard to quantify, and goes back to fundamental questions about the intended function of models
as “scientific” (providing explanations) or “technological” (being predictive; Bernardo and Smith,
2009; Navarro, 2019, p.238). Model selection always needs to find the balance between these more
qualitative (e.g., generality, explanatory adequacy) and more quantitative criteria (e.g., descriptive
adequacy, complexity; Jacobs and Grainger, 1994). In short, numerical model fit (e.g., BIC, AIC,
WAIC) is not the only descriptor of model quality - qualitative aspects such as model generality
and explanatory power play crucial roles as well.

To address these concerns, we fitted two families of models to the current task, RL and BI.
BI models combine “prior” knowledge with new observations to arrive at “posterior” conclusions
about unobservable features of the environment (“hidden states”; Perfors et al., 2011; Sarkka,
2013). BI models therefore employ a “predictive model”, which specifies how likely different
observations are to arise from different hidden states (“likelihood”). The BI inference cycle—
combining prior and likelihood to get a posterior—can continue infinitely, using each step’s pos-
terior as the prior for the subsequent step. Bayesian models deal well with stochastic outcomes
because extreme likelihoods are balanced by stable priors. Environmental volatility is modeled
explicitly as a change in hidden state.

BI models frame our task as an inference problem: Participants know that the task has two
hidden states (“Left choice is correct” and “Right choice is correct”; Fig. 2.3A, right), and use
trial-by-trial outcomes to determine which state is more likely. Having inferred the state, the
appropriate action (left or right) can be selected. In other words, participants entertain a mental
model of the task, which specifies how likely each outcome (reward, no reward) is in each hidden
state, and how likely state transitions occur. In summary, whereas RL claims that participants
adapt to task switches by continuously relearning choice values, BI claims that they represent state
transitions explicitly, changing their behavior after detecting a switch.

We used the BI model to assess how participants’ mental models developed with age. We hy-
pothesized that adolescents’ models would be better tuned for volatile and stochastic environments
than children’s and adults’. Because the BI model employed rational, Bayes-optimal behavior,
it also allowed us to evaluate whether and how participants deviated from it: We hypothesized
that adolescents would use the most accurate mental models. In addition, both RL and BI models
contained parameters that controlled choice: decision noise and persistence. We expected both
to decrease monotonously with age, as has been consistently observed (e.g., Master et al., 2020;
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for review, see Nussenbaum and Hartley, 2019). For RL learning-rate parameters, which control
integration time scales, we did not have a priori predictions because past studies differed in ex-
perimental context (Davidow et al., 2016; Master et al., 2020) and provided conflicting results
(Nussenbaum and Hartley, 2019).

Model-agnostic analyses revealed that adolescents (13-15 years) outperformed younger and
older participants in several measures of task performance, as predicted. We used state-of-the-
art hierarchical Bayesian methods to fit RL and BI models to participant behavior, assessing age
changes directly and in a statistically unbiased way (Methods; Katahira, 2016; M. D. Lee, 2011;
van den Bos et al., 2017). Both models qualitatively captured participants’ behavior, and choice-
related parameters showed the expected age trajectories. The BI model confirmed the unique
tuning of adolescents’ (13-15) mental model to the task, and the RL model revealed complex de-
velopmental trajectories of learning rates. Going beyond individual models, we then used Principal
Component Analysis (PCA) to expose the dimensions of largest variance in the shared parameter
space. Variance between participants was captured in just four dimensions, three of which showed
marked and separable developmental changes.

2.2 Results

Task
After completing a child-friendly tutorial (Methods), participants performed the following task:
On each trial, two identical green boxes appeared on the screen. Participants chose one, and either
received a reward (gold coin) or not (empty box; Fig. 2.1A). One box was rewarded in 75%
of the trials on which it was chosen, whereas the other was never rewarded (stochastic aspect).
After a variable number of trials, an unsignaled switch occurred, after which the opposite box was
rewarding. Several unpredictable switches occurred over 120 trials (volatility aspect; Fig. 2.1B).
Participants’ goal was to collect as many gold coins as possible. More task details are provided in
the Methods.

Task Behavior
Participants gradually adjusted their behavior after task switches, and on average started selecting
the correct action about 3 trials after a switch, reaching asymptotic performance thereafter (Fig.
2.1C). Participants almost always repeated actions (“stayed”) after receiving positive outcomes
(“- +” and “+ +”), and often switched actions after receiving two negative outcomes (“- -”). Be-
havior was ambivalent after receiving a positive followed by a negative outcome (“+ -”), i.e., on
“potential” switch trials (Fig. 2.1D; for age differences, see suppl. Fig. 2.15).
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Figure 2.1: (A) Task design. On each trial, participants chose one of two boxes, using the two
red buttons of the shown game controller. The chosen box either revealed a gold coin (left) or
was empty (right). The probability of coin reward was 75% on the rewarded side, and 0% on the
non-rewarded side. (B) The rewarded side changed multiple times, according to unpredictable task
switches. (C) Average human performance and standard errors, aligned to “true” task switches
(dotted line; trial 0). Switches only occurred after rewarded trials (Methods), resulting in per-
formance of 100% on trial -1. The red arrow shows the “switch trial”, grey bars show trials of
asymptotic performance. (D) Average probability of repeating a previous action (“stay”), as a
function of the two previous outcomes (t−2, t−1) for this action (“+”: reward; “-”: no reward).
Error bars indicate between-participant standard errors. Red arrow highlights “potential switch
trials”, i.e., when a rewarded trial is followed by a non-rewarded one, which—from participants’
perspective—is consistent with a task switch.

Focusing on age differences, adolescents 13-15 outperformed younger groups age 8-13 and
adults (18-30) on several measures of performance (Fig. 2.2, suppl. Fig. 2.13, Fig. 2.3C-F). We
tested age effects statistically with (logistic) mixed-effects regression (Methods). All measures of
performance showed positive linear effects of age, indicating improved performance with age, as
well as negative quadratic effects, consistent with a U-shaped relationship where adolescents 13-15
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perform the task more accurately than both younger or older participants (Table 2.1).

Table 2.1: Statistics of mixed-effects regression models predicting performance measures from sex
(male, female), age (years and months; “lin.”), and squared age (“qua.”). Overall accuracy, stay
after potential (pot.) switch, and asymptotic performance were modeled using logistic regression,
and z-scores are reported. Log-transformed response times on correct trials were modeled using
linear regression, and t-values are reported. * p < .05; ** p < .01, *** p < .001.

Performance measure (Figure) Predictor β z / t p sig.
Overall accuracy (2.2A) Age (lin.) 0.054 3.1 0.0017 **

Age (qua.) -0.0014 -3.0 0.0024 **
Sex 0.0074 0.2 0.82

Response times (2.2B) Age (lin.) -0.17 -8.4 < 0.001 ***
Age (qua.) -0.004 -7.4 < 0.001 ***
Sex 0.19 5.1 < 0.001 ***

Stay after (pot.) switch (2.2C) Age (lin.) 0.42 3.8 < 0.001 ***
Age (qua.) -0.010 -3.5 < 0.001 ***
Sex 0.27 1.3 0.19

Asymptotic performance (2.2D) Age (lin.) 0.19 4.2 < 0.001 ***
Age (qua.) -0.0048 -4.0 < 0.001 ***
Sex 0.025 0.3 0.77

To determine the age of peak performance, we binned participants into equal-sized groups
based on age (Methods; suppl. Fig. 2.13D-F; Fig. 2.3C-F). Overall task performance peaked in
13-15 year-olds (mid-adolescence), and declined steeply for both younger and older participants
(Fig. 2.3C). 13-15 year-olds were also more willing to repeat previous actions after single negative
outcomes, especially compared to younger children (“stay” on “(potential) switch trials”; Fig.
2.3E). This suggests that 13-15 year olds were most persistent in the face of negative feedback. 13-
15 year-olds also performed best during stable task periods without switches, showing the highest
accuracy on asymptotic trials, especially compared to younger participants (Fig. 2.3F).
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Figure 2.2: Task performance across age. Each dot shows one participant, color denotes sex.
Curves show the fits of linear regression models, with shaded standard errors. “Lin.”: significant
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values like before. (A) Percentage of correct choices across the entire task (120 trials). (B) Median
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Fraction of stay trials after (potential, “pot.”) switches (red arrows in Fig. 2.1C). (D) Accuracy on
asymptotic trials (grey bars in Fig. 2.1C).

Furthermore, 13-15 year-olds adapted their choices more optimally to previous outcomes than
younger or older participants. To show this, we used mixed-effects logistic regression to predict
actions on trial t from predictors encoding positive or negative outcomes on trials t− i, for delays
1 ≤ i ≤ 8 (Methods). The effects of positive outcomes were several times larger than the effects
of negative outcomes (suppl. Table 2.8; Fig. 2.13B-F), in accordance with task dynamics: Posi-
tive outcomes indicated with certainty that an action was correct, justifying their strong effect on
behavior, whereas negative outcomes were ambivalent as to whether a switch occurred or not, and
should have smaller effects. Crucially, this pattern differed between participants of different ages,
as revealed by interactions between age and previous outcomes (suppl. Fig. 2.13B, C, E, and F;
suppl. Table 2.8): On trials t− 1 and t− 2, both positive and negative outcomes interacted with
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age and squared age (all p′s < 0.014; suppl. Table 2.8), such that the effect of positive outcomes
increased with age and then slowly plateaued (suppl. Fig. 2.13C, F). For negative outcomes, the
sign of the interaction was opposite for trials t−1 versus t−2 (all p′s < 0.046; suppl. Table 2.8).
This shows that the effect of negative outcomes flipped, being weakest in 13-15 year olds for trial
t−1 (Fig. 2.13F), but strongest for trial t−2. In other words, 13-15 year-olds were best at ignoring
single, ambivalent negative outcomes (t−1), and most likely to integrate long-range, meaningful
negative outcomes (t−2), which potentially indicated task switches.

To summarize our model-agnostic results, 13-15 year-olds outperformed younger participants
8-13, older adolescents, and adults on a stochastic and volatile task, which was designed to mimic
environmental challenges specific to adolescence. We next used computational modeling to inves-
tigate what cognitive processes gave rise to 13-15 year old adolescents’ superior performance.
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that state. (B) Hierarchical Bayesian model fitting. Box on the left: Models had free parameters
θRL or θBI . Individual parameters θ j were based on group-level parameters θsd , θint , θlin, and θqua
(see below). For each model (RL and BI), all parameters were simultaneously fit to the observed
(shaded) sequence of actions a jt of all participants j, using MCMC sampling. Right: Priors for
group-level parameters were uninformative; the form of the prior differed based on parameter
ranges. For each participant j, each parameter θ was sampled according to a linear regression
model, based on group-wide standard deviation θsd , intercept θint , linear change with age θlin, and
quadratic change with age θqua. Each model (RL or BI) provided a choice likelihood p(a jt) for
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Cognitive Modeling
Models

We fitted two classes of cognitive models to the task, RL and BI. The winning RL model included
four parameters: persistence p, inverse decision temperature β, and positive and negative learn-
ing rates α+ and α− (Methods). Notably, this model updated the values of both the chosen and
unchosen action after each outcome, allowing for counterfactual learning (Boorman et al., 2011;
Palminteri et al., 2016). It also allowed learning rates to differ between positive (α+) and negative
outcomes (α−), an increasingly common idea in cognitive neuroscience (e.g., Cazé and van der
Meer, 2013; Frank et al., 2004; van den Bos et al., 2012; for review, see Nussenbaum and Hart-
ley, 2019) and AI (Dabney et al., 2020). Parameters p and β controlled the translation from RL
values into choices: persistence p increased the probability of repeating choices when p > 0, and
of alternating choices when p < 0; β induced decision noise (increased probability of exploratory
choices) when small, and allowed for reward-maximizing choices when large. The winning BI
model also had four parameters: choice-parameters p and β as in the RL model, as well as task
volatility pswitch and reward stochasticity preward , which characterized participants’ internal model
of the task (Fig. 2.3A; Methods). pswitch ranged from stable (pswitch = 0) to volatile (pswitch > 0),
and preward ranged from deterministic (preward = 1) to stochastic (preward < 1). The actual task was
based on pswitch = 0.05 and preward = 0.75.

We fitted each model to participant data using hierarchical Bayesian fitting (Fig. 2.3B; Meth-
ods). This approach recovered individual parameters reliably (suppl. Fig. 2.14), and allowed
us to estimate the effects of age on model parameters in a statistically unbiased way (Katahira,
2016; M. D. Lee, 2011; van den Bos et al., 2017). We compared different parameterizations of
each model using the WAIC (Watanabe, 2013) to identify a winning RL and a winning BI model
(Table 2.2). The winning RL model had the lowest score overall, revealing best quantitative fit.
Nevertheless, both RL and BI models validated equally well, closely reproducing human behavior
and age-related differences: Both models showed the performance peak in 13-15 year olds (Fig.
2.3C), the largest proportion of staying after (potential) switch trials (Fig. 2.3E), best asymptotic
performance on non-switch trials (Fig. 2.3F), and the most efficient use of previous outcomes to
adjust future actions (suppl. Fig. 2.13 D-F). Other tested models (Table 2.2) did not capture all
qualitative patters (suppl. Fig. 2.16. 2.17). To conclude, despite major differences in their theo-
retical framework, both RL and BI captured human behavior and age differences. This finding has
interesting implications, which we discuss in detail in the Discussion.
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Table 2.2: WAIC model fits and standard errors for all models, based on hierarchical Bayesian
fitting. Bold numbers highlight the winning model of each class. For the parameter-free BI model,
the Akaike Information Criterion (AIC) was calculated precisely. WAIC differences are relative
to next-best model of the same class, and include estimated standard errors of the difference as an
indicator of meaningful difference. In the RL model, “α” refers to the classic RL formulation in
which α+ = α−. “αc” refers to the counterfactual learning rate that guides updates of unchosen
actions, with α+c = α−c (Methods).

Free parameters (count) (W)AIC WAIC Difference
BI – (0) 31,959 2,668 ±0

β (1) 29,291±206 868±78
β, p (2) 28,423±201 4,769±132
β, p, preward (3) 23,654±203 51±10
β, p, preward , pswitch (4) 23,603 ± 200 0

RL α, β (2) 26,678±200 438±44
α, β, αc (3) 26,240±201 1,429±78
α, β, αc, p (4) 24,811±190 42±13
α+, β, α+c, p, α− (5) 24,769±213 1,260±73
α+, β, α+c, p, α−, α−c (6) 23,509±211 17±10
α+ = α+c, α− = α−c, β, p (4) 23,492 ± 201 0

Age Differences in Model Parameters

All model parameters showed age effects (Fig. 2.4; suppl. Tables 2.11 and 2.12). We tested
these effects statistically by modeling age explicitly in a hierarchical Bayesian model (Fig. 2.3B,
suppl. Table 2.11), and also by assessing age-group differences in the posteriors of an age-less
hierarchical Bayesian model (suppl. Table 2.12; Methods).

Choice-based parameters p and β were almost perfectly correlated between the winning RL
and BI models, even though they were fitted independently (Spearman ρ = 0.94; Fig. 2.5B).
This suggests that the parameters captured robust, update-independent aspects of decision making.
p and β both increased monotonically with age and plateaued in older participants (Fig. 2.4A,
B, E, F). This was reflected in linear and negative quadratic effects of age (suppl. Table 2.11):
Persistence p increased near-linearly from age 8 until 17, and then plateaued around age 18-30 (Fig.
2.4A, E). This shows that the willingness to repeat previous actions, independent of outcomes,
increased from childhood to adulthood, with steady growth during teen years.

Other parameters showed non-monotonic age trajectories. α−, preward , and pswitch declined
drastically from age 8 to 13-15, but then reversed their trajectory and increased again, reaching
a plateau that lasted from 15-30 years (Fig. 2.4C, G-H). For α− and preward , these changes were
captured in significant pairwise differences between children (8-10) and 13-15 year-olds, as well as
between 13-15 year-olds and adults (25-30; for statistics, see suppl. Table 2.12; also see Methods).
For pswitch, age differences were captured in a significant quadratic effect of age (suppl. Table
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2.11). Parameters preward and pswitch, reflecting participants’ mental model of the task, were closest
to their true values (preward = 0.75; pswitch = 0.05) in 13-15 year-olds. 8-10 year-old children and
adults (18-30) overestimated task volatility (pswitch) and underestimated the reward stochasticity
(preward) to a larger degree. Parameter α− also was lowest in 13-15 year-olds, allowing them to
avoid premature switching based on single negative outcomes while allowing for slow integration
of outcomes and adaptive switching after multiple negative outcomes. Parameter α+ showed a
unique age trajectory with relatively stable values during childhood and adolescence (8-17), and a
sudden increase in adults (18-30; Fig. 2.4D), captured in a linear effect of age (suppl. Table 2.11).
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Differences between RL and BI
Having obtained two independent sets of parameters for each participant from two computational
models based on different cognitive mechanisms, we aimed to clarify how both models were re-
lated. We first asked whether each model captured different aspects of behavior, or whether both
models captured the same behaviors and merely differed in form. To test this, we simulated arti-
ficial behavior from each model and assessed how well these data were captured by the opposite
model. Each model was fitted worse by the opposite model than by itself (Fig. 2.5A), which
reveals that each model captured unique aspects of behavior. (This difference was smaller when
fitting the RL model, suggesting that it was more versatile and captured more aspects of the BI
model than the other way around.)

We next asked how closely individual parameters were related between models, assessing pair-
wise Spearman correlations. As mentioned before, choice parameters p and β were almost per-
fectly correlated between models (p: ρ = 0.97; β: ρ = 0.94; Fig. 2.5B). In addition, parameter
preward (BI) was strongly correlated with α− (RL), suggesting that negative learning rate (α−)
and beliefs about task stochasticity (preward) played similar roles in the integration of negative
outcomes. Parameter pswitch (BI) was strongly negatively correlated with β (RL), suggesting that
decision noise (β) in the RL model captured aspects that were explained by beliefs about task
volatility (pswitch) in the BI model. The only parameter that showed no large correlations with
other parameters was α+ (RL), suggesting a unique role.

Lastly, we investigated how much information each model provided about the other, using lin-
ear regression to predict each parameter from the parameters and one-way parameter interactions
of the other model. Seven out of eight parameters were predicted almost perfectly (Fig. 2.5C),
showing that the parameters of one model captured almost all variance in the opposite model. In
other words, fitting the RL model on participants’ data allowed us to nearly perfectly predict par-
ticipants’ BI parameters, without fitting the BI model. Note that α+ (RL) was again an exception
in that its variance was not fully captured by BI parameters. α+ might thus account for the better fit
of the RL model to human (Table 2.2) and simulated data (Fig. 2.5A), compared to the BI model.

In summary, RL and BI models captured similar aspects of behavior, as shown by large inter-
model parameter correlations and amounts of explained variance; nevertheless, both models were
not redundant, as evident in the fact that each was unable to perfectly fit the other.
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Figure 2.5: Relating RL and BI models. (A) Model recovery. WAIC scores were worse (larger;
lighter colors) when recovering behavior that was simulated from one model (row) using the other
model (column), than when using the same model (diagonal), revealing that the models were dis-
criminable. The difference in fit was smaller for BI simulations (bottom row), suggesting that the
RL model captured BI behavior better than the other way around (top row). (B) Spearman pairwise
correlations between model parameters. Red (blue) hue indicates negative (positive) correlation,
saturation indicates correlation strength. Non-significant correlations are crossed out (Bonferroni-
corrected at p = 0.00089). Light-blue (teal) letters refer to RL (BI) model parameters. Light-blue
/ teal-colored triangles show correlations within each model, remaining cells show correlations
between models. (C) Variance of each parameter explained by parameters and interactions of the
other model (“R2”), estimated through linear regression. All four BI parameters (green) were pre-
dicted almost perfectly by the RL parameters, and all RL parameters except for α+ (RL) were
predicted by the BI parameters. (D)-(E) Results of PCA on model parameters. (D) Cumulative
variance explained by all principal components PC1-8. The first four components captured 96.5%
of total parameter variance. (E) Age-related differences in PC1-4: PC1 reflected overall task pro-
ficiency and showed rapid development between ages 8-13, which were captured by linear (“lin”)
and quadratic (“qua”) effects in a regression model. PC2 captured a step-like transition from
shorter to longer updating time scales at age 15, as revealed by PC-based model simulations (Sup-
plements). PC3 showed no significant age effects. PC4 captured the variance in α+ and differed
between adolescents 15-17 and both 8-13 year olds and adults. PC2 and PC4 were analyzed using
t-tests. * p < .05; ** p < .01, *** p < .001.
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Combining RL and BI using PCA
We next asked whether both models in conjunction provided a even better explanation of unique
adolescent decision making than either model on its own, using PCA to unveil the lower-dimensional
structure embedded in the shared 8-dimensional parameter space. Indeed, only four dimensions
were necessary to capture 96.5% of the parameter variance (Fig. 2.5D), suggesting that individual
differences between participants could be explained by variation on just these four, rather than
eight different model parameters.

To identify the role of each PC, we assessed parameter loadings and gained additional insight
by simulating behavior with parameter sets defined by each PC. This approach is similar to simu-
lating behavior based on different parameter values in order to investigate the effects of parameters
(e.g., simulating big versus small values of β produces high versus low task performance). We
similarly simulated behavior based on small versus large values of each PC, and compared the
resulting behaviors to identify the exact function of each PC (Methods). Principal component
1 (PC1), the dimension capturing the largest proportion of variance, reflected general task profi-
ciency (suppl. Fig. 2.18A; suppl. Text). Low proficiency was caused by larger-than-average values
of α− (RL), which led to premature switching, and preward and pswitch (BI), reflecting overly deter-
ministic but volatile mental models of the task (suppl. Fig. 2.18A, left). High proficiency, on the
other hand, was caused by larger-than-average values of α+ (RL), p (RL and BI), and β (RL and
BI), which facilitated quick integration of positive outcomes, choice persistence, and low decision
noise, respectively (suppl. Fig. 2.18A, right). PC1 was lowest in the youngest participants (8-10),
but increased rapidly until age 13, at which age it reached a stable plateau that lasted throughout
adulthood (Fig. 2.5E, top-left). Age differences in PC1 were characterized by linear and quadratic
effects of age (Methods). Taken together, PC1 explained one side of the inverse U-shape in overall
task performance (Fig. 2.2; suppl. Fig. 2.13; Fig. 2.3C-F): 13-15 year olds outperformed 8-13
year olds because younger participants had not yet mastered task proficiency.

PC1 did not explain, however, how participants aged 13-15 outperformed older participants.
PC2, the dimension that captured the second-most variance after PC1, played this role by capturing
the tension between updates with short versus long time scales (suppl. Fig. 2.18E). Short time
scales were driven by larger-than-average values of α+ and α− (RL), i.e., rapid updates based on
recent outcomes, which led to pronounced win-stay lose-shift behavior (suppl. Fig. 2.18B, left).
In the BI model, short time scales were driven by increasingly volatile (pswitch) and especially
deterministic (preward) mental models. Short time scales were complemented by persistence, driven
by larger-than-average values of p (RL and BI). Long-term updates were the result of lower-than-
average values on all parameters (suppl. Fig. 2.18B, left), allowing for gradual and slow, but
precise value updates, with choice unbiased by persistence. PC2 showed a step function of age.
Whereas younger participants persisted and acted on short times scales, after age 15, participants
showed unbiased long-term updates (suppl. Fig. 2.5E, top-right). Differences between 13-15 year
olds and older participants were therefore captured by PC2, suggesting that better performance was
the result of shorter updating time scales. This is conditioned on high task proficiency (PC1), which
includes slower time scales for negative outcomes, but faster time scales for positive outcomes.

PC3 captured the tension between noise-less choice (larger-than-average β) combined with a
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deterministic mental model (larger-than-average preward) on one side, and persistent choice (larger-
than-average p) combined with an overly volatile mental model (larger-than-average pswitch) on the
other (suppl. Fig. 2.18C). PC3 showed no significant age-related differences (Fig. 2.5E, bottom-
left). PC4 captured the unique variance of α+ (RL), with a tension between slow and fast updates
from positive outcomes (suppl. Fig. 2.18D). PC4 was lower in 13-17 year olds than both 8-13 year
olds and adults (18-30; Fig. 2.5E, bottom-right), revealing that after accounting for variance in
PC1-3, the remaining variance was explained by adolescents’ relatively longer updating timescales
for positive outcomes. In other words, positive outcomes had weaker immediate, but stronger long-
lasting effects in 13-17 year olds, setting them apart from both younger and older participants.

2.3 Discussion
Across species, the adolescent transition from childhood to adulthood brings great challenges for
learning and exploration. From an evolutionary perspective, these challenges may have caused
the adolescent brain to evolve behavioral tendencies that promote adaptive learning in rapidly
changing, uncertain environments. To test this idea, we examined choice behavior in a stochastic
and volatile task adapted from rodent studies (Tai et al., 2012).

Indeed, we found that 13-15 year olds performed better than both younger (8-13) and older
participants, including adults (15-30): 13-15 year olds achieved the highest overall accuracy, were
most willing to wait out negative feedback (potential switch), and made the best choices during
stable periods (asymptotic performance). Overall, 13-15 year olds used negative feedback most
optimally to guide future choices, being least affected by proximal, but most sensitive to distal
outcomes. This shows an ability to ignore ambivalent information while responding appropriately
to meaningful patterns. Indeed, such inverted-U or U-shaped developmental trajectories are not
unique in the development of human cognition. Evidence is accumulating that adolescents outper-
form adults in various domains, including probabilistic learning (Davidow et al., 2016) and reversal
(van der Schaaf et al., 2011), creativity (Kleibeuker et al., 2013), and social learning (Gopnik et al.,
2017). Prowess in flexibility has also been reported in studies of developing rodents (Guskjolen
et al., 2017; Johnson and Wilbrecht, 2011; Simon et al., 2013).

One aspect of adolescent behavior, 13-15 year old’s increased willingness to wait out negative
feedback, deserves specific attention: It means that in the context of this task, 13-15 year olds were
less impulsive than other age groups. This finding seems inconsistent with past research that often
described the mid-adolescent period in terms of increased risk taking and higher risk of negative
life outcomes. To explain why, studies of adolescent development have separated impulsivity
and sensation seeking. Studies using self reports and experimental tasks showed that impulse
control grows through the teen years, while sensation seeking peaks in mid to late adolescence
(Albert et al., 2013; Harden and Tucker-Drob, 2011; Romer and Hennessy, 2007; Steinberg et al.,
2009). The combination of not-yet-mature impulse control and high sensation seeking in mid-
adolescence has been used to explain why this period is associated with higher risks (Harden and
Tucker-Drob, 2011; Steinberg, 2013). Our findings do not fit into this narrative of adolescents
as risk takers. There are several potential reasons for this discrepancy: (1) Our task may not tap
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into sensation seeking, a process separate from impulsivity. (2) We use a behavioral task and not
self-report methods, which each have different benefits and limitations. (3) Our task may elicit
different learning and decision-making strategies than other tasks because it creates a stochastic
and volatile environment. Individuals likely do not apply the same learning and decision rules
in all contexts. This suggests that the interplay between brain development and the statistics of
specific environments may be more important than previously realized (Nussenbaum and Hartley,
2019). In accordance with our findings, van den Bos and colleagues have found that adolescents
displayed distinctive tolerance to ambiguity and to uncertainty during risky decision making (van
den Bos and Hertwig, 2017).

To understand which cognitive and neural processes supported 13-15 year-olds’ superior per-
formance within our specific task, we employed two types of cognitive models, RL and BI. To fit
human behavior, the RL model required the ability to learn from counterfactual outcomes (updat-
ing values of non-chosen actions), and to apply different learning rates to positive versus negative
outcomes (learning parameters α+ and α−). It also required persistence, i.e., a tendency to repeat
previous actions independent of outcomes, in addition to decision noise, i.e., the ability to explore
non-maximizing actions (choice parameters p and β). RL models have been used extensively to
shed light on neural mechanisms, and a specialized network of brain regions—including basal gan-
glia, cortical, and limbic regions—is thought to implement key RL computations (for reviews, see
Frank and Claus, 2006; D. Lee et al., 2012; Niv, 2009; O’Doherty et al., 2015). Fitting RL mod-
els to developmental samples is thought to inform our understanding of brain development (e.g.,
Christakou et al., 2013; Davidow et al., 2016; Javadi et al., 2014; Master et al., 2020; for reviews,
see Nussenbaum and Hartley, 2019; van den Bos et al., 2017). Using RL models, we found that
choice parameters (β, p) in our study grew monotonically throughout childhood and adolescence,
and only matured in late adolescence / early adulthood. This is consistent with previous devel-
opmental modeling studies (Nussenbaum and Hartley, 2019), and with a role for late-developing
brain circuits in choice behavior (Giedd et al., 1999; Gogtay et al., 2004; Nussenbaum and Hartley,
2019; Sowell et al., 2003; Toga et al., 2006).

While the developmental trajectories of choice parameters have been highly consistent in the
developmental modeling literature, the development of learning-rate parameters has been ambiva-
lent and even contradictory (Nussenbaum and Hartley, 2019). One problem might be that many
learning studies that are fit with RL models likely involve a variety of different learning pro-
cesses, which do not only include striatal incremental learning (Yagishita et al., 2014), based on
direct and/or indirect pathways (Hauser et al., 2015), but also hippocampal-based episodic memory
(Bornstein and Norman, 2017; Wimmer et al., 2014), and frontal-cortical cognitive control (Badre
et al., 2010; Collins and Frank, 2012; Daw et al., 2011). Differences in task contexts and task
statistics likely elicit different learning strategies, and recruit different neural processes (Nussen-
baum and Hartley, 2019). This potentially explains the diversity of previous findings with regard to
learning parameters and limits our ability to make inferences about brain development from behav-
ioral modeling studies. It is a future challenge to disentangle the development of multiple systems
and context-based responses, for example by studying the same individuals across multiple tasks
and computational models.

Another potential reason for the observed discrepancies in learning rates is that between stud-
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ies, models often differ in the number and type of learning-rate parameters (e.g., positive, negative,
factual, counter-factual). For example, the standard learning rate parameter α controls updates
to the values of chosen actions after both positive and negative outcomes, whereas a more spe-
cialized parameter αc − controls updates to values of unchosen actions, but only after negative
outcomes. Given the likely differences in neural substrate that underlie these different mecha-
nisms, they likely differ in their developmental trajectory. Another reason for the discrepancies in
the literature might therefore be study-by-study differences in parameterizations of computational
models. In our study, learning rates from negative feedback (α−) showed a pronounced U pattern
with minimum in 13-15 year olds, whereas learning rates from positive feedback (α+) were stable
throughout childhood and adolescence, then suddenly increased in adults. These patterns likely re-
flect the combination of different cognitive and neural processes, which matured at different times.
Indeed, the developmental trajectory of α− was almost identical to the stochasticity parameter
preward of the BI model (ρ = 0.95), suggesting that α− played a role in switching behavior after
negative feedback, rather than learning. As a whole, the RL model might have approximated in-
ferential reasoning rather than performing pure incremental learning, an issue we discuss in more
detail below.

To place our RL results in a broader context, we also applied Bayesian Inference (BI) models
to our task data. Using BI models, we found that choice parameters β and p showed almost
identical trajectories as in the RL model, strong independent support for our hypothesis that these
factors increased through the second decade of life. BI model fits also provided novel results.
We found that BI mental model parameters, task stochasticity preward and volatility pswitch, were
most accurate in 13-15 year-olds. By definition, this means that 13-15 year-olds possessed the
best mental model with respect to actual task statistics, whereas both younger (8-13) and older
participants (15-30) demonstrated less accurate models. We had also hypothesized that children
and adults would expect less volatility and stochasticity than adolescents, but only stochasticity
showed this pattern. Volatility, on the other hand, appeared to be perceived as larger in younger
(8-13) and older (15-30) participants compared to 13-15 year-olds. Interestingly, the BI model
revealed that participants of all ages deviated markedly from Bayes-optimal behavior, employing
mental models that were both too volatile and too deterministic (pswitch: 8-13 year-olds behaved
as if they expected switches every 6.5 trials, 13-15 year-olds every 10 trials, whereas the task
switched every 20 trials on average; preward: 8-13 year-olds behaved as if they expected rewards
for 92% of correct responses, 13-15 year-olds for 89%, the task rewarded 75%). In summary, 13-15
year-olds exhibited mental models that were most in line with task parameters, expecting the most
stochasticity and least volatility of all age groups. This is in accordance with the differentiation
between “adaptation” and “settings” in Nussenbaum and Hartley, 2019, and suggests that 13-
15 year-olds showed the largest ability to adjust and adapt to specific task statistics, rather than
reflecting a particular, developmentally-fixed setting of any specific parameter. A similar argument
about parameter optimality rather than a developmentally-specific parameter setting was made in
Davidow et al., 2016.

Fitting two separate model classes led to several benefits in the understanding of the underly-
ing cognitive processes: (1) Both models provided converging (choice parameters) and additive
evidence (RL: learning parameters; BI: mental-model parameters). Converging results showed
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surprisingly strong, direct replication (βRL ↔ βBI , pRL ↔ pBI), and parallelism between model
parameters helped clarify the role of ambiguous parameters (preward → α−). Independent compo-
nents led to additive insights (e.g., unique parameter α+), (2) Each model’s conceptual framework
and interpretation of the cognitive process became more distinctive in direct comparison with each
other. The contrast helped sharpen claims about incremental learning (RL) versus mental-model
based inferential reasoning (BI). Whereas the RL model achieved better numerical fit, the BI model
provided advantages in terms of interpretability: Our concepts of interest (stochasticity, volatility)
were explicitly modeled within the BI framework, potentially allowing insight into how they were
processed by each participant. On the technical side, all BI parameters occupied meaningful and
interpretable ranges. In the RL model, on the other hand, learning rates showed values substan-
tially larger than 0.5. This made their interpretation difficult, as it is unlikely that high learning
rates reflect the type of RL processes implemented in the brain’s RL network, and suggests the
model approximated some other dynamic adaptation process. This highlights the fact that numeri-
cal model fit (RL) and interpretability (BI) can sometimes be at odds. Future research is necessary
to explore this topic in more depth.

A final advantage of fitting both models was the possibility to investigate patterns that go be-
yond model-specific parameters, using PCA on the shared parameter space. This analysis exposed
a different set of factors, which differentiated 13-15 year-olds from younger participants (PC1),
from older participants (PC2), or from both (PC4). PC1 reflected overall task proficiency and
showed steep improvement until age 13, plateauing thereafter. This suggests that 13-15 year-olds
outperformed younger participants because the younger group was too exploratory for the task,
was less persistent, and possessed less accurate mental models, leading to weighing negative out-
comes too much relative to positive ones. PC2 reflected participants’ updating time scales and
showed a step function with transition around 15 years of age. This PC suggests that 13-15 year-
olds outperformed older participants because the 15-30 year-olds operated on longer time scales,
i.e., were more sensitive to distant outcomes and perceived the task as less stochastic and volatile.
PC4 reflected the variance in α+ that was not captured by previous PCs, and showed an inverse-
U trajectory with minimum in 13-17 year-olds. PC4 therefore showed that 13-17 year-olds used
the longest time scales when processing positive outcomes, compared to both younger (8-13) and
older participants (18-30). Taken together, adolescents aged 13-15 may be at a “sweet spot” for
stochastic and volatile environments because they combine mature levels of task proficiency (PC1)
with youthful short updating times scales for all outcomes (PC2), but uniquely long updating time
scales for positive outcomes (PC4). This combination would not be optimal in all environments,
but in a stochastic and volatile environment, it led to more rewards earned. In this sense, perfor-
mance in this task supports the idea that the adolescent human brain may pass through stages that
have evolved to enhance success in uncertain and volatile environments.

This study shows that age played a crucial role for reward-based decision making and learn-
ing in a volatile, stochastic environment. Nevertheless, the question remains which mechanisms
underlie these age effects. There is growing evidence that gonadal hormones affect inhibitory neu-
rotransmission, spine pruning, and other variables in the prefrontal cortex of rodents (Delevich
et al., 2019; Delevich et al., 2018; Drzewiecki et al., 2016; Juraska and Willing, 2017; Piekarski,
Boivin, et al., 2017; Piekarski, Johnson, et al., 2017), suggesting that puberty-related changes in
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brain chemistry might be the mechanism behind the observed differences. To answer this question,
we investigated the trajectories of behavioral performance and model parameters over pubertal
development, observing qualitatively similar patterns compared to age (suppl. Fig. 2.7, 2.8, 2.9;
suppl. Tables 2.4, 2.5; for a discussion of differences, see suppl. Text). Nevertheless, pubertal
measures were so highly correlated with age (suppl. Fig. 2.6) that it was difficult to interpret these
findings. We therefore investigated the effects of puberty controlling for age, testing puberty effects
separately within each age bin. Puberty effects in this analysis did not reach statistical significance
(suppl. Fig. 2.10, 2.11, 2.12). Thus, we were unable to identify a biological mechanism underly-
ing age besides accumulated experience over time. A related question pertains to the underlying
cognitive mechanism. Future research is required to investigate whether performance in this task
was related to measures of fluid intelligence, directed exploration, and impulsivity, for example.

In conclusion, we used a simple task based on volatility and stochasticity to show that adoles-
cents outperformed adults in a task that represented the kind of learning challenge that may have
ecological validity to the transitions and challenges of adolescence. In our community sample,
behavior was most optimal at age 13-15. We used two models to examine the underlying cogni-
tive processes. The results suggest that adolescent brains achieved better performance for several
reasons: (1) 13-15 year-olds lay on the right spot in a monotonic trajectory between childhood and
adulthood (p and β). (2) 13-15 year-olds were outliers in terms of their ability to accurately assess
the volatility and stochasticity of their environment, and in terms of their integration of negative
outcomes (preward , pswitch, and α−). (3) 13-15 year-olds combined adult-like (PC1), child-like
(PC2), and developmentally unique (PC4) strategies. These data suggest that multiple neural sys-
tems underlie developmental changes in brain function, at staggered time scales. Pubertal devel-
opment and steroid hormones may impact a subset of these processes, yet causality is difficult to
determine without manipulation or longitudinal designs (Kraemer et al., 2000).

For purposes of translation from the lab to the ’real’ world, our study indicates that how youth
learn and decide changes in a nonlinear fashion as they grow. This underscores the importance of
youth-serving programs that are developmentally informed and avoid a one-size-fits-all approach.
Finally, these data support a positive view of adolescence and the idea that the adolescent brain
exhibits remarkable learning capacities that should be celebrated.

2.4 Methods

Participants
All procedures were approved by the Committee for the Protection of Human Subjects at the Uni-
versity of California, Berkeley. We tested 312 participants: 191 children and adolescents (ages
8-17) and 55 adults (ages 25-30) were recruited from the community and completed a battery of
computerized tasks, questionnaires, and saliva samples; 66 university undergraduate students (aged
18-50) completed the four tasks as well, but not the questionnaires or saliva sample. Community
participants were prescreened for the absence of present or past psychological and neurological
disorders; the undergraduate sample indicated the absence of these. Compensation for commu-
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nity participants consisted in 25$ for the 1-2 hour in-lab portion of the experiment and 25$ for
completing optional take-home saliva samples; undergraduate students received course credit for
participation in the 1-hour study.

Exclusion Criteria Out of the 191 participants under 18, 184 completed the stochastic switching
task; reasons for not completing the task included getting tired, running out of time, and technical
issues. Five participants (mean age 10.0 years) were excluded because their mean accuracy was
below 58% (chance: 50%), an elbow point in accuracy, which suggests that they did not pay
attention to the task. This led to a sample of 179 participants under 18 (male: 96, female: 83).
Two participants from the undergraduate sample were excluded because they were older than 30,
leading to a sample aged 18-28; 7 were excluded because they failed to indicate their age. This led
to a final sample of 57 undergraduate participants (male: 19, female: 38). All 55 adult community
participants (male: 26, female: 29) completed the task and were included in the analyses, leading
to a sample size of 179 participants below 18, and 291 in total (suppl. Fig. 2.6). For some analyses,
we split participants into quantiles based on age. Quantiles were calculated separately within each
sex.

Testing Procedure
After entering the testing room, participants under 18 years and their guardians provided informed
assent and permission; participants over 18 provided informed consent. Guardians and participants
over 18 filled out a demographic form. Participants were led into a quiet testing room in view of
their guardians, where they used a video game controller to complete four computerized tasks.
At the conclusion of the tasks, participants between 11 and 18 completed the PDS questionnaire
themselves and were measured in height and weight. Participants were then compensated with $25
Amazon gift cards.

Experimental Design
The task described in this work was the last of the four tasks, a stochastic switching task. The other
tasks will be or have been reported elsewhere (Master et al., 2020; Xia et al., 2020). The goal of
the stochastic switching task was to collect golden coins, which were hidden in one of two green
boxes. On each trial, participants decided which box to open, and task contingencies switched
unpredictably throughout the task (Fig. 2.1B). Before the main task, participants completed a 3-
step tutorial: A first prompt explained that one of the two boxes contained a coin (was “magical”),
whereas the other one did not. Ten practice trials followed on which one box revealed a coin when
selected, whereas the other was empty (deterministic tutorial). The second prompt stated that the
magical box would sometimes switch sides. Participants then received eight trials on which the
second box contained the coin (but not the first), followed by eight more trials on which the first
box contained the coin (but not the second; switching tutorial). The third and last prompt explained
that even the magical box did not always contain a coin. This prompt directly led into the main
task (stochastic switching), with 120 trials.
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In the main task, the correct box was rewarded in 75% of trials; the incorrect box was never
rewarded. After participants reached a performance criterion (see below), it became possible for
contingencies to switch (without notice), such that the previously incorrect box was now the correct
one. The performance criterion was to collect 7-15 rewards, whereby the specific number was pre-
randomized for each block. Any number of non-rewarded trials was allowed in-between rewarded
trials. Due to this design, switches only occurred after rewarded trials. For consistency with the
rodent version of the task (Tai et al., 2012), the first correct choice after a switch was always
rewarded (not just in %75).

Behavioral Analyses
We assessed the effects of age on behavioral outcomes (Fig. 2.2), using (logistic) mixed-effects
regression models with the package lme4 (Bates et al., 2015) in R (RCoreTeam, 2016). All mod-
els included the following set of regressors to predict outcomes of interest (e.g., overall accuracy,
response times): Age, to assess the linear effect of age on the outcome; squared age, to assess
the quadratic effect of age; and sex; furthermore all models specified random effects of partici-
pants, allowing participants’ intercepts and slopes to vary independently. When models included
additional predictors, this is noted in the main text.

We assessed the effects of previous outcomes on participants’ choices (suppl. Fig. 2.13B, C,
E, F) using a logistic mixed-effects regression model, which predicted actions (left, right) from
previous outcomes (details below), while testing for effects of and interactions with sex, z-scored
age, and z-scored quadratic age, specifying participants as mixed effects. We included one predic-
tor for positive and one for negative outcomes at each delay i with respect to the predicted action
(e.g., i = 1 trial ago). Outcome predictors were coded -1 for left and +1 for right choices, and 0
otherwise. Including predictors of trials 1≤ i≤ 8 provided the best model fit (suppl. Table 2.8). To
visualize the results of this grand regression model (including all participants), we ran a separate
model for each participant with the same structure, and show individual fits in suppl. Fig. 2.13B,
C, E, F.

Computational Models
Reinforcement Learning (RL) Models

In RL, decisions are made based on action values, which are continuously updated based on out-
comes (Sutton and Barto, 2017). A simple RL model has two parameters, learning rate α and
decision temperature β. On each trial t, the value Qt(a) of action a is updated based on the ob-
served outcome ot ∈ [0,1] (reward, no reward), in the following way:

Qt+1(a) = Qt(a)+α(ot−Qt(a))

I.e., previous action values are updated in proportion to the difference between the estimated value
and the actual reward, scaled by the learning rate α. The difference itself, ot −Qt(a), is called
“reward prediction error”.
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Over time, action values approximate the true underlying reward probabilities. Decisions are
based on these values by calculating action probabilities using a softmax transform:

pt(a) =
exp(β Qt(a))

exp(β Qt(a))+ exp(β Qt(ans))

Here, a is the selected, and ans the non-selected action.
The best-fit 4-parameter RL model was based on this 2-parameter model, with additional pa-

rameters learning rate for negative outcomes α−, persistence p, as well as counterfactual reason-
ing (see below). Adding α− allowed for separate updates of rewarded (ot = 1) and non-rewarded
(ot = 0) trials: Qt(a) = Qt(a)+α+(ot−Qt(a)) iff ot = 1, and Qt(a) = Qt(a)+α−(ot−Qt(a)) iff
ot = 0, with independent α− and α+. Choice persistence or “stickiness” p changed the value of the
previously-selected action at on the subsequent trial, biasing toward staying (p > 0) or switching
(p < 0): Q(at) = Q(at)+ p iff at = at−1.

Counterfactual reasoning was implemented through updates to the values of non-selected ac-
tions, using counterfactual outcomes 1−ot : Qt+1(ans)=Qt(ans)+α+((1−ot)−Qt(ans)) iff o= 1,
and Qt+1(ans) = Qt(ans)+α−((1− ot)−Qt(ans)) iff o = 0. Initially, we used separate parame-
ters α+c and α−n for counterfactual updates, which were independent from α+ and α− for factual
updates. Nevertheless, collapsing α+ = α+c and α− = α−n improved model fit (Table 2.2). This
shows that outcomes triggered equal-sized updates to chosen and unchosen actions. Explained dif-
ferently, the final model based decisions on a single value estimate—the value difference between
the two available actions—, rather than on an independent value estimates for each. Chosen and
unchosen actions were updated to the same degree and in opposite directions on each trial.

Action values were initialized at 0.5 for all models, reflecting equal initial values for the two
actions.

Bayesian Inference (BI) Models

The BI model assumes that participants know that the task has two latent states: “Left action is
correct” (ale f t = cor) and “Right action is correct” (aright = cor), where cor stands for correct (inc:
incorrect). Participants assume that on each trial, the latent state switches with probability pswitch,
and that in each state, the probability of receiving a reward for the correct action is preward (Fig.
2.3A). On each trial, participants select an action in two phases, using the Bayesian Filter algorithm
(Sarkka, 2013): (1) In the estimation phase, participants infer the hidden state of the previous trial
t−1, based on the outcome ot−1 they received for their action at−1, using Bayes rule:

p(at−1 = cor | ot−1) =
p(ot−1|at−1 = cor) p(at−1 = cor)

p(ot−1|at−1 = cor) p(at−1 = cor)+ p(ot−1|at−1 = inc) p(at−1 = inc)

p(at−1 = cor) is the prior probability that at−1 was correct (on the first trial, p(a = cor) = 0.5 for
both actions), and p(ot−1|at−1) is the likelihood of the observed outcome ot−1 given action at−1.
According to the mental model, likelihoods are (dropping underscripts for clarity): p(o = 1|a =
cor) = preward , p(o= 0|a= cor) = 1− preward , p(o= 1|a= inc) = ε, and p(o= 0|a= cor) = 1−ε,
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where ε is the probability of receiving a reward for an incorrect action, which was 0 in reality, but
we set ε = 0.0001 to avoid model degeneracy. (2) In the prediction phase, participants integrate
the possibility of state switches by propagating the inferred knowledge about the hidden state at
t−1 forward to trial t:

p(at = cor) = (1− pswitch) p(at−1 = cor)+ pswitch p(at−1 = inc)

We first assessed a parameter-free version of the BI model, truthfully setting preward = 0.75, and
pswitch = 0.05. Lacking free parameters, this model was unable to capture individual differences
and led to poor qualitative (suppl. Fig. 2.17A) and quantitative model fit (Table 2.2). The best-fit
BI model had four free parameters: preward and pswitch, as well as the choice parameters β and
p, like the winning RL model. β and p were introduced by applying a softmax to p(at = cor) to
calculate p(at), the probability of selecting action a on trial t: p(at) =

1
(1+exp(β(0.5−p−p(at=cor))) .

When both actions had the same probability p(a) and persistence p > 0, then staying was more
likely; when p < 0, then switching was more likely.

Model Fitting and Comparison

We fitted parameters using hierarchical Bayesian methods (M. D. Lee, 2011; Fig. 2.3B), and
found that the obtained results clearly superseded those of classical maximum-likelihood fitting in
terms of parameter recovery (suppl. Fig. 2.14). Hierarchical Bayesian model fitting estimates the
parameters of an entire population data jointly, using Bayes formula:

p(θ|data) ∝ p(data|θ)p(θ)

Individual parameters are embedded in a hierarchical structure, which helps resolve uncertainty at
the individual level. Because we were interested in age-related differences in model parameters, we
used a hierarchical structure in which parameters θRL

j = [p,β,α−,α+] or θBI
j = [p,β, pswitch, preward]

of participant j were embedded in linear regressions:

θ j ∼ Normal(µ = θint +age θlin +age2
θqua, σ = θsd)

Each parameter θ was characterized by group-level intercept θint , slope θlin, and quadratic change
with age θqua. Individual parameters θ j were drawn from a normal distribution with standard
deviation θsd around this regression line (Fig. 2.3B).

Because posteriors p(θ|data) were analytically intractable, we approximated them using Markov-
Chain Monte Carlo sampling (no-U-Turn sampler), using the PyMC3 package in python (Salvatier
et al., 2016). We ran 2 chains per model with 6,000 samples per chain, discarding the first 1,000 as
burn-in. All models converged with small MC errors, sufficient effective sample sizes, and R̂ close
to 1 (suppl. Table 2.10). Point estimates for individual parameters θ j were calculated as the mean
over all posterior samples. For model comparison, we used the Watanabe-Akaike information cri-
terion (WAIC), which estimates the expected out-of-sample prediction error using a bias-corrected
adjustment of within-sample error (Watanabe, 2013).
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To statistically test the hypothesis that parameter θ differed between age groups, we fitted a
separate hierarchical Bayesian model, which did not have access to participants’ age, called the
“age-free” model. Instead of lying on an age-based regression line, all individual parameters were
drawn from the same group-wide Normal distribution with mean θmean and standard deviation
θsd . To test for differences between groups a1 and a2 without the danger of double-dipping. we
assessed θa1 < θa2 in each posterior sample of this model, and then calculated p(θa1 < θa1) across
all samples. The age-less model was also used to visualize individual parameters in suppl. Figures
2.15, 2.17, and 2.16, and to calculate group means in Fig. 2.4. Using the age-less model avoided
double-dipping on age effects, which would occur if we plotted parameters across age that were
fitted in an age-dependent model.

Integrating RL and BI Models

Model Recovery between RL and BI (Fig. 2.5A) We simulated one dataset per participant
from each model, using parameters fitted by the age-free model. We then fitted the simulated data
with both models using age-free hierarchical Bayesian fitting. We finally calculated WAIC scores
and standard errors using PyMC3 (Salvatier et al., 2016).

Correlations between Model Parameters (Fig. 2.5B) We used Spearman correlation, the non-
parametric version of the Pearson product-moment correlation, because parameters followed dif-
ferent, not necessarily normal, distributions. Results were similar when using Pearson correlation.
p-values were corrected for multiple comparisons using the Bonferroni method.

Predicting Parameters from Parameters of the Other Model (Fig. 2.5C) We ran eight differ-
ent regression models, predicting each parameter from the four parameters of the opposite models
as well as their one-way interactions, using linear regression in R (RCoreTeam, 2016). Fig. 2.5C
shows the explained variance (R2) of each model.

Principal Component Analysis (PCA)

To extract components that covary across parameters, we ran PCA on the fitted parameters data
(8 parameters per participant). PCA can be understood as a method that rotates the coordinate
system to align the first axis with the dimension of largest variation in the dataset (first principle
component; PC), the second axis with the dimension of second-largest variance (second PC), while
being orthogonal to the first, and so on. In this way, all resulting PCs are orthogonal to each
other, and explain subsequently less variance. We conducted a PCA after centering and scaling
(z-scoring) the data, using the statistical programming language R (RCoreTeam, 2016).

Age Differences in PCs (Fig. 2.5E) For each PC, we ran similar regression models as for our be-
havioral measures of performance, predicting participants’ PCs from age (linear), age (quadratic),
and sex. When significant, effects were noted in Fig. 2.5E. For PC2 and PC4, we also conducted
post-hoc t-tests, correcting for multiple comparison using the Bonferroni method (Table 2.3).
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Table 2.3: Results of t-tests on PC2 and PC4. df: Welch-adjusted degrees of freedom.

Comparison t df p Sig.
PC2 (8-15 vs. 15-30) 3.44 266.2 < 0.001 ***
PC4 (8-13 vs. 13-17) 2.28 176.8 0.047 *
PC4 (13-17 vs. 18-30) 2.49 176.6 0.028 *

2.5 Supplemental Material

Pubertal Development
Participants aged 8-17 completed the pubertal developmental scale (PDS), a questionnaire that de-
termines pubertal status based on questions about physical development (Petersen et al., 1988). In
addition, an hour after the start of the experiment and in-between tasks, participants provided a 1.8
ml saliva sample, which was analyzed for testosterone levels as a marker of pubertal development.
The procedure is described in detail in Master et al., 2020. PDS scores and testosterone levels
were highly correlated with age for both males and females (suppl. Fig. 2.6B), making it difficult
to assess them separately. We created quantile groups for pubertal measurements similar to age:
For PDS scores, we assigned all participants with score 1 to the pre-pubertal group, and divided
the remaining participants into tertiles based on score, which we termed “early”, “middle”, and
“late” puberty. Tertiles were defined separately for males and females to assure sex balance within
each group (suppl. Fig. 2.6A, middle row). For testosterone levels, we created quartiles based on
testosterone levels, again defining quartiles separately for males and females.

Developmental patterns were similar for pubertal development (PDS, testosterone) and age
(suppl. Fig. 2.7, 2.8, 2.9). The main difference was at which time peak performance occurred:
in the third quantile based on age (13-15 years), but the fourth quantile based on puberty (suppl.
Fig. 2.7). Parameter trajectories also differed slightly: most notably, p and β showed more abrupt
changes based on PDS, with steps between mid and late puberty. α− and preward showed a drastic
step at puberty onset (between “pre” and “early”; suppl. Fig. 2.8B). In terms of testosterone,
parameters α−, preward , and pswitch showed U-shaped functions similar to age, but minima occurred
in the fourth rather than the third quartile (suppl. Fig. 2.8C). In terms of parameter PCs as well,
trajectories were largely similar between pubertal measures and age. Slight differences included
a more unique role of pre-pubertal participants, especially for PC2 in terms of PDS and PC3 for
testosterone (suppl. Fig. 2.9).
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Figure 2.6: Participant sample and pubertal development. A) Number of participants in each bin,
separately for each sex. Top: Age quantiles, which are the basis of Figures 2.2, 2.3, 2.4, and 2.5,
and suppl. Figures 2.13, 2.15, 2.16, and 2.17. Numbers on the x-axis indicate the age ranges that
went into each quantile bin, which differed slightly between males and females. The legend shows
the names of the bins used throughout the paper. Middle: Bins based on the pubertal development
questionnaire (PDS), which was available only for participants aged 8-17. The numbers on the x-
axis show the ranges of each bins, which differed substantially between sexes. The legend shows
the bin names after combining males and females. Bottom: Bins based on salivary testosterone
levels, using the same conventions as above. B) Correlations between age, testosterone levels
(Test.), and PDS questionnaire, for male and female participants aged 8-17. Stars refer to p-values,
using the same convention as in main text figures.
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Figure 2.7: Behavior broken up by age / PDS / Testosterone bins. Significance bars and stars show
the results of planned t-tests. A) Same data as in Fig. 2.3. Planned t-tests compared 8-10 year olds
to 13-15 year olds. B) Same measures, but broken up by PDS bins. T-tests compared pre-pubertal
to late-pubertal participants. C) Same measures, broken up by testosterone bins. T-tests compared
participants in the first quartile in terms of testosterone levels to participants in the fourth quartile.
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Table 2.4: Statistics of mixed-effects regression models predicting performance measures from sex
(male, female) and puberty measures (PDS questionnaire / salivary testosterone). Only participants
who had these measures were included in the model, restricting it to participants under the age of
18. Overall accuracy, stay after potential (pot.) switch, and asymptotic performance were modeled
using logistic regression, and z-scores are reported. Log-transformed response times on correct
trials were modeled using linear regression, and t-values are reported. * p < .05; ** p < .01, ***
p < .001.

Performance measure (Figure) Predictor β z / t p sig.
Overall accuracy (2.7B, left) PDS 0.069 2.9 0.0038 **

Sex 0.017 0.37 0.71
Response times (2.7B, 2nd-to-left) PDS -0.13 -4.9 < 0.001 ***

Sex 0.25 4.8 < 0.001 ***
Stay after (pot.) switch (2.7B, 2nd-to-right) PDS 0.48 3.5 < 0.001 ***

Sex 0.76 2.9 0.0036 **
Asymptotic performance (2.7B, right) PDS 0.25 4.2 < 0.001 ***

Sex 0.098 0.9 0.39
Overall accuracy (2.7C, left) Test. < 0.0001 1.2 0.24

Sex 0.032 0.69 0.49
Response times (2.7C, 2nd-to-left) Test. -0.0034 -5.1 < 0.001 ***

Sex 0.010 1.9 0.049 *
Stay after (pot.) switch (2.7C, 2nd-to-right) Test. 0.012 3.5 < 0.001 ***

Sex 0.27 1.0 0.29
Asymptotic performance (2.7C, right) Test. 0.0034 2.2 0.029 *

Sex 0.12 1.0 0.34
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Figure 2.8: Model parameters broken up by age / PDS / Testosterone bins. A) Participants younger
than 18 years of age, reproduced from Fig. 2.4. B)-C) Same data, broken up by PDS / testosterone
bins. “lin.” indicates whether a linear effect of the measure of interest (PDS / testosterone) reached
significance in a linear regression model.



CHAPTER 2. DEVELOPMENTAL CHANGES IN LEARNING 37

Table 2.5: Parameter estimates and statistics from hierarchical model fitting, for pubertal predictors
(PDS questionnaire, salivary testosterone), for participants under the age of 18. Significance tests
against 0 for parameters whose range includes 0, NA otherwise.

Model Parameter µ± sd 95% CI p-value sig.
PDS
4-param. BI pint 0.11±0.013 [0.082,0.13] < 0.001 ***

psd 0.089±0.0085 [0.073,0.11] 0 NA
plin 0.022±0.0096 [0.0039,0.041] 0.0086 **
βint 3.81±0.26 [3.31,4.34] 0 NA
βsd 1.25±0.14 [0.98,1.53] 0 NA
βlin 0.31±0.16 [−0.018,0.62] 0.028 *
preward int 0.88±0.019 [0.84,0.92] 0 NA
preward sd 0.060±0.011 [0.038,0.082] 0 NA
preward lin < 0.001±0.010 [−0.019,0.020] 0.48 –
pswitch int 0.16±0.016 [0.13,0.20] 0 NA
pswitch sd 0.067±0.0070 [0.053,0.080] 0 NA
pswitch lin −0.0098±0.0099 [−0.029,0.0099] 0.16 –

4-param. RL pint 0.25±0.026 [0.20,0.30] < 0.001 ***
psd 0.24±0.019 [0.20,0.28] 0 NA
plin 0.039±0.024 [−0.0093,0.087] 0.054 –
βint 3.15±0.13 [2.90,3.41] 0 NA
βsd 1.37±0.13 [1.12,1.62] 0 NA
βlin 0.41±0.13 [0.17,0.66] < 0.001 ***
α− int 0.60±0.016 [0.56,0.62] 0 NA
α− sd 0.16±0.013 [0.14,0.18] 0 NA
α− lin −0.0155±0.017 [−0.048,0.019] 0.18 –
α+ int 0.66±0.028 [0.61,0.72] 0 NA
α+ sd 0.35±0.034 [0.023,0.15] 0 NA
α+ lin 0.0085±0.027 [−0.048,0.059] 0.38 –

Testosterone
4-param. BI pint 0.11±0.013 [0.081,0.13] < 0.001 ***

psd 0.089±0.0084 [0.073,0.11] 0 NA
plin 0.02±0.010 [0.0023,0.040] 0.015 *
βint 3.78±0.26 [3.29,4.31] 0 NA
βsd 1.28±0.14 [1.00,1.55] 0 NA
βlin 0.12±0.17 [−0.20,0.45] 0.22 –
preward int 0.88±0.019 [0.85,0.92] 0 NA
preward sd 0.056±0.011 [0.035,0.077] 0 NA
preward lin −0.0135±0.010 [−0.033,0.0081] 0.90 –
pswitch int 0.16±0.016 [0.13,0.19] 0 NA
pswitch sd 0.067±0.0069 [0.054,0.081] 0 NA
pswitch lin −0.0082±0.010 [−0.029,0.012] 0.22 –

4-param. RL pint 0.24±0.025 [0.20,0.29] < 0.001 ***
psd 0.24±0.0195 [0.20,0.28] 0 NA
plin 0.038±0.025 [−0.0091,0.190] 0.066 –
βint 3.16±0.14 [2.89,3.43] 0 NA
βsd 1.42±0.13 [1.17,1.69] 0 NA
βlin 0.28±0.13 [0.037,0.54] 0.013 *
α− int 0.60±0.017 [0.55,0.62] 0 NA
α− sd 0.16±0.013 [0.13,0.18] 0 NA
α− lin −0.035±0.018 [−0.070,−0.0016] 0.24 –
α+ int 0.66±0.028 [0.61,0.72] 0 NA
α+ sd 0.10±0.030 [0.045,0.16] 0 NA
α+ lin −0.017±0.026 [−0.066,0.036] 0.015 *
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Figure 2.9: Model parameter PCs broken up by age / PDS / Testosterone bins. Left row: Partici-
pants younger than 18 years of age, reproduced from Fig. 2.5. Middle (right) row: same data, but
broken up by PDS (testosterone) bins.

Effects of Puberty After Controlling for Age
We next sought to control for age and examine the effect of puberty alone. To this end, we in-
vestigated the continuous effects of puberty within each age bin, to eliminate confounds with age
(Master et al., 2020). In concordance with the finding that behavior peaked in the third age bin
(13-15 years), but in the fourth PDS bin (75-100th percentile), all measures of behavior increased
qualitatively with respect to PDS in the third and fourth age bins (suppl. Fig. 2.10A, right-most
column). Nevertheless, this pattern is difficult to interpret because pubertal status was heavily con-
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founded with sex in the fourth age bin, such that girls scored higher on the PDS questionnaire than
boys of the same age, in concordance with typical age differences in pubertal maturation. Within
the age bins that contained participants across the entire range of pubertal status (10-13, 13-15,
and 15-17 years), few significant effects of PDS (suppl. Fig. 2.10A) or salivary testosterone levels
(suppl. Fig. 2.10B) were observed, possibly including some that occurred by chance. In our data,
stay after (pot.) switch trials showed a qualitative decrease with PDS score in 10-13 year olds,
was constant in 13-15 year olds, and showed a qualitative increase in 15-17 year olds. This could
indicate a weak U-shaped effect or simply experimental noise.

In the case of fit model parameters, pubertal development did not show significant positive
relationships with choice parameters p and β, which we might predict if pubertal development
was a driving mechanism in growth for these parameters between ages 8-18 (suppl. Table 2.6;
suppl. Fig. 2.11, 2.12). In terms of learning parameters, pubertal development also did not show
significant negative relationships with α− and α+ (RL), or preward and pswitch (BI), which we
might predict if pubertal onset was driving the decrease of these parameters between ages 8-15.
If anything, we saw the opposite pattern in males: α−, preward , and pswitch showed a qualitatively
positive relationship with PDS scores (suppl. Fig. 2.11) and testosterone (suppl. Fig. 2.12) in the
10-13 year old age group, and a qualitatively negative relationship with PDS in the 13-15 year old
age group. Overwhelmingly, these relationships were not statistically significant.

Trend relationships found within the 13-15 year-old group included a marginal effect of PDS
on α+ (β=0.075, p=0.092), a marginal effect of sex on pswitch in the testosterone model (β=0.047,
p=0.078), and a significant interaction between sex and testosterone on pswitch (β=0.00097, p=0.015;
suppl. Table 2.6). Note that these statistical tests were not corrected for multiple comparisons,
making it possible that these results were observed by chance, and should thus be interpreted care-
fully. The cross-sectional design of our experiment may limit our ability to detect pubertal effects
(Kraemer et al., 2000). It is possible that experiments with greater power, longitudinal studies, and
studies of hormone manipulation may further inform these largely negative results.
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Table 2.6: Statistics of regression models testing effects of puberty within the age bin 13-15 years.
This bin was chosen because it contained participants across the full range of pubertal development.

Outcome Predictor β p Sig.
Testosterone
p (RL) Test. -0.00096 0.57

Sex 0.062 0.65
Interaction 0.0011 0.58

β (RL) Test. -0.022 0.23
Sex 1.86 0.22
Interaction 0.034 0.13

α− Test. -0.00033 0.69
Sex 0.047 0.48
Interaction 0.0014 0.16

α+ Test. -0.00074 0.47
Sex 0.0026 0.97
Interaction 0.00055 0.65

p (BF) Test. -0.00052 0.43
Sex 0.045 0.40
Interaction 0.00083 0.30

β (BF) Test. -0.018 0.12
Sex 1.12 0.21
Interaction 0.021 0.12

preward Test. -0.00038 0.31
Sex 0.0012 0.97
Interaction 0.00027 0.54

pswitch Test. 0.00053 0.10
Sex 0.047 0.078 ’
Interaction 0.00097 0.015 *

PDS
p (RL) PDS 0.0044 0.95

Sex 0.18 0.52
Interaction 0.079 0.43

β (RL) PDS 0.87 0.30
Sex 2.37 0.45
Interaction 0.67 0.55

α− PDS -0.024 0.52
Sex 0.071 0.61
Interaction 0.063 0.21

α+ PDS 0.075 0.092 ’
Sex 0.21 0.21
Interaction 0.051 0.39

p (BF) PDS 0.011 0.69
Sex 0.084 0.45
Interaction 0.032 0.43

β (BF) PDS 0.62 0.21
Sex 1.96 0.30
Interaction 0.64 0.34

preward PDS -0.0080 0.63
Sex 0.023 0.72
Interaction 0.022 0.33

pswitch PDS -0.010 0.51
Sex 0.010 0.86
Interaction 0.0057 0.82
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Figure 2.10: Effects of pubertal status on performance, controlling for age. Each column shows
one age group, colors denote sex. Pubertal status was determined by (A) PDS questionnaire, or
(B) salivary testosterone.
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Figure 2.11: Effects of pubertal status (PDS questionnaire) on model parameters, controlling for
age. Each column shows one age group, and colors denote sex.
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Figure 2.12: Effects of pubertal status (salivary testosterone levels) on parameters, controlling for
age. Each columns shows one parameter. each row one age group, and colors denote sex.
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Additional Behavioral Analyses
The youngest children showed the lowest overall and asymptotic accuracy (Fig. 2.3C, F) and
were the most likely to switch after a single negative outcome (Fig. 2.3E, suppl. Fig. 2.15B,
middle). This explains why they were also fastest at switching (suppl. Fig. 2.13A, D; suppl.
Table 2.7). Response times were the only performance measure in which 13-15 year olds were
outperformed by another age group, university undergraduates (age 18-28; Fig. 2.2B, 2.3D)).
Potential reasons for undergraduates’ faster responses include greater familiarity with lab-based
psychological experiments, more experience with computers, and increased motivation to finish
the task quickly.
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Figure 2.13: Human behavior (A-C) and model validation (D-F) for additional behavioral mea-
sures. (A, D): Number of trials after task switch until participants reached performance criterion
(2 correct responses). (B-F): Effect of previous negative (B, E) and positive (C, F) outcomes on
choices. “t − 1”: Outcome occurred 1 trial before choice, i.e., delay i = 1. Regression weights
were tanh transformed for visualization.
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Table 2.7: Statistics of mixed-effects regression model predicting switch criterion from sex (male,
female), age (years and months; “lin.”), and squared age (“qua.”). * p < .05; ** p < .01, ***
p < .001.

Behavioral measure (Figure) Predictor β t p sig.
Switch criterion (2.13A) Age (lin.) 0.067 2.0 0.048 *

Age (qua.) -0.0014 -1.6 0.11
Trial 0.0059 10.0 < 0.001 ***
Sex 0.0022 0.04 0.97

Statistics for Regression Models
We conducted regression models predicting future choice from past choice and outcomes. The full
statistics of these models are shown in Table 2.8.

Meta-Priors for Hierarchical Bayesian Models
When specifying the hierarchical Bayesian models (Fig. 2.3B and age-less version) for parameter
fitting, we chose uninformative priors, as detailed in Table 2.9.

Statistics for Hierarchical Bayesian Models
We verified convergence of the Hierarchical Bayesian Model (Fig. 2.3B) using the Markov-Chain
error, effective sample size (n), and the R-hat statistic (R̂), using the functions provided by the
PyMC3 toolbox (suppl. Table 2.10; Salvatier et al., 2016).

Table 2.10: Statistics for hierarchical Bayesian models. We report the average and the range (min
and max over all model parameters) for the two winning models.

Model MC error Effective n R̂
4-param. RL mean < 0.001 2,517 1.001

range [< 0.001;0.002] [155;4,261] [1.000;1.015]
4-param. BI mean 0.002 816 1.001

range [< 0.001;0.01] [281;1,576] [1.000;1.004]

Assessing Model Identifiability using Generate and Recover
All model fits are relative. In other words, when model A fits data better than model B, there is
no guarantee that model A fits the data “well”. Both models could fit the data poorly, with model
B being even worse than model A. To ensure that our models fit well, we validated our parameter
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Table 2.8: Logistic mixed-effect regression, predicting future actions from past actions and out-
comes (methods). The number of predictors (i ≤ 8) was chosen as to provide the best model
fit: AICi≤3: 31.046; AICi≤4: 31.013; AICi≤5: 31.001; AICi≤6: 30.981; AICi≤7: 30.963; AICi≤8:
30.962; AICi≤9: 30.966; AICi≤10: 30.964.

Predictor delay i β z p Sig.
Intercept -0.01 -0.74 0.46
Main effects
Age (lin.) -0.13 -1.40 0.16
Age (qua.) 0.12 1.30 0.19
Pos. outcome 1 2.19 68.09 < 0.001 ***

2 0.84 27.36 < 0.001 ***
3 0.24 7.87 < 0.001 ***
4 0.13 4.30 < 0.001 ***
5 -0.017 -0.54 0.58725
6 -0.017 -0.56 0.57548
7 -0.0035 -0.12 0.90613
8 -0.077 -2.77 0.0057 **

Neg. outcome 1 -0.73 -37.09 < 0.001 ***
2 -0.24 -10.64 < 0.001 ***
3 0.0055 0.22 0.82278
4 0.13 5.39 < 0.001 ***
5 0.12 4.87 < 0.001 ***
6 0.12 4.73 < 0.001 ***
7 0.13 5.32 < 0.001 ***
8 0.016 0.71 0.47857

Interaction age (lin.)
Pos. outcome 1 0.90 4.50 < 0.001 ***

2 0.84 4.19 < 0.001 ***
3 0.50 2.52 0.012 *
4 -0.069 -0.35 0.73
5 0.088 0.44 0.66
6 -0.38 -1.94 0.052
7 -0.18 -0.94 0.35
8 -0.27 -1.49 0.14

Neg. outcome 1 0.67 5.27 < 0.001 ***
2 -0.37 -2.48 0.013 *
3 0.16 1.03 0.30
4 -0.089 -0.55 0.58
5 0.012 0.07 0.94
6 0.066 0.41 0.68
7 0.011 0.07 0.94
8 -0.068 -0.47 0.63

Interaction age (qua.)
Pos. outcome 1 -0.64 -3.14 0.0017 **

2 -0.89 -4.41 < 0.001 ***
3 -0.38 -1.90 0.057
4 0.0020 0.01 0.99
5 -0.066 -0.33 0.74
6 0.36 1.80 0.072
7 0.15 0.75 0.456
8 0.29 1.62 0.11

Neg. outcome 1 -0.56 -4.34 < 0.001 ***
2 0.30 2.00 0.046 *
3 -0.16 -0.97 0.33
4 0.092 0.57 0.57
5 -0.0070 -0.04 0.97
6 -0.092 -0.57 0.57
7 -0.057 -0.35 0.72
8 0.064 0.44 0.66
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Table 2.9: Hyper-priors and priors used in hierarchical Bayesian model fitting. In the age-
based model, individuals’ parameters were drawn from a Normal distribution around a parameter-
specific, age-specific mean θm, with parameter-specific standard deviation θsd (top row of the
table; see Fig. 2.3B for details). In the age-free model, individuals’ parameters were drawn from
parameter-specific group-level prior distributions (subsequent rows in the table). The shapes of
these distributions were based on allowed parameter ranges (e.g., Gamma distribution for parame-
ters with range [0, ∞], Beta distribution for parameters with range [0, 1]). The same prior distribu-
tion was used for all individuals, i.e., no age information was present in the age-free model. The
distributions of individuals’ parameters were themselves parameterized by prior parameters. In the
age-based model, prior parameter θsd was distributed according to a HalfNormal (Normal, trun-
cated at 0; middle section of the table), and parameterized by hyper-parameter sd = 10 to allow for
a wide, non-informative shape (bottom section). Group-level prior θm was defined as an age-based
regression function, parameterized by θint , θlin, and θqua for each parameter θ (middle section).
The prior on the intercept θint of each parameter in the age-based model (middle section) had the
same shape as the group-level prior distribution in the age-free model (top section), and was pa-
rameterized by the same hyper-priors (bottom section). In the age-less model, prior parameters
parameterized the distributions of individual model parameters (middle section).

Level Parameter Distribution / Value Explanation
Indiv. param.
Age-based

θ Normal(µ = θm, σ = θsd) See Fig. 2.3B
Age-less

β Gamma(α = aβ, β = bβ) Range [0,∞[
p Normal(µ = mp, σ = sdp) Wide Normal
α+ Beta(α = aα+, β = bα+)
α− Beta(α = aα−, β = bα−)
preward Beta(α = a reward , β = b reward)
pswitch Beta(α = a switch, β = b switch)

Prior
Age-based

θsd HalfNormal(µ = m, = sd) Truncated Normal, [0,∞[
θm θint +θlin age+θqua age2 Age-based regression
θint ,θ = β Gamma(α = a, β = b)
θint ,θ = p Normal(µ = m, σ = sd)
θint ,θ ∈ [α+, α−, preward , pswitch] Beta(α = a, β = b) Uniform, range [0, 1]
θlin, θqua Normal(µ = m, σ = sd)

Age-less
aβ, bβ, aα+, bα+, aα−, bα−, Gamma(α = a, β = b)
ap reward , bp reward , ap switch, bp switch
mp Normal(µ = m, σ = sd)
sdp HalfNormal(µ = m, = sd)

Hyper-prior
a 1
b 1
m 0
sd 10
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fitting and model comparison method by first simulating and then recovering parameters from each
model (Wilson and Collins, 2019). An identifiable model will recover the simulated parameters
well during fitting, whereas an unidentifiable model will not. We also compared the results of
maximum likelihood and hierarchical Bayesian model fitting using this procedure. Both BF and
RL model parameters were recovered well when using hierarchical Bayesian model fitting (age-
free model), but recovery was much worse when using maximum likelihood (suppl. Fig. 2.14A), a
well-known fact (Katahira, 2016). Hierarchical Bayesian model fitting also led to more consistent
estimates of parameters β and p between both models (suppl. Fig. 2.14B), showing that this
method was especially suited in our case. These results lend credence to the superior fit that can be
achieved using Hierarchical Bayesian methods, and to the precision with which model parameter
can be estimated.
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Figure 2.14: Model validation using hierarchical Bayesian model fitting (top, unshaded), as well as
classical Maximum likelihood fitting (bottom, shaded). The results of hierarchical Bayesian fitting
are presented in the main text. A) Simulate-and-recover procedure. The x-axes of all graphs show
the parameter values of simulated datasets; the y-axes show the recovered parameters obtained
by fitting these datasets using the same models. Recovered parameters should be as close to the
simulated ones as possible, i.e., lie on the identity line. Black lines and shaded areas indicate
best-fit regression lines. The left half presents simulate-and-recover results for the BI model, the
right for the RL model. The top half shows the results of hierarchical Bayesian model fitting (our
method), the bottom of the standard maximum likelihood method. This figure shows the well-
established finding that hierarchical Bayesian model fitting outperformed maximum likelihood.
B) Consistency in the estimation of parameters β and p. Human data was fit using RL and BI
models to compare the estimates of β (left row) and p (right row) between models. When both
(independent) models lead to the same estimates, dots lie on the identity line. This was indeed the
case for hierarchical Bayesian fitting (top row), but not for maximum likelihood fitting (bottom
row).

Qualitative Fit of RL and BI Models
To test the qualitative fit of our models, we simulated behavior using fitted parameters (from the
age-free model; Methods), and checked whether the simulated behavior was able to reproduce
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the patterns of interest in the human data (Palminteri et al., 2017). Indeed, both the winning RL
and BI models captured human learning curves, as well as sex and age differences, very closely
(suppl. Fig. 2.15). Simpler, non-winning models, on the other hand, failed to capture human
characteristics (suppl. Fig. 2.17, 2.16).

Raw fitted parameters, obtained from the age-free model (Methods; suppl. Fig. 2.17, 2.16),
show that age differences are evident even when age slopes were not part of the fitting model, i.e.,
when individual parameters were not biased by age effects at the group level. To evaluate age
effects in a statistically sound way, we used a hierarchical Bayesian model that explicitly modeled
age effects (Fig. 2.3B). Significant effects (suppl. Table 2.11) are shown as lines in suppl. Figures
2.17 and 2.16. To asses effects of age groups, we tested differences in posterior samples of the
age-free model (Methods). Statistics are shown in suppl. Table 2.12.



CHAPTER 2. DEVELOPMENTAL CHANGES IN LEARNING 51

Figure 2.15: Human and model behavior, showing that models closely reproduced human patterns,
A) Behavior in response to switch trials. Colors refer to age groups, red arrows show switch
trials, grey bars trials of asymptotic performance. Both models captured quicker switching on
switch trials in younger (light green) compared to older participants (blue and grey), and best
performance on asymptotic trials in adolescents (green-blue). B) Stay probability in response to
outcomes 2 trials back. Both RL and BI replicated human behavior and age differences, including
linear increase in staying after positive outcomes (“+ +” and “- +”), and the inverse-U shape on
potential switch trials (red arrow; “+ -” condition). Qualitative (non-significant) sex differences
were also captured.
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Figure 2.16: Qualitative fit of different versions of the RL model. Model behavior is shown in
the same way as human behavior in suppl. Fig. 2.15. A-B) Behavior of simulations from the ba-
sic, 2-parameter version, with free parameters α and β. Lacking counter-factual updating and the
ability to differentiate positive and negative outcomes, the model was unable to capture the shape
of human learning curves and age differences. C-D) Behavior of simulations from the winning,
4-parameter version of the RL model, in which free parameters β, p, α+, and α− were fitted to par-
ticipants using hierarchical Bayesian model fitting. To avoid double-dipping into age differences
when visualizing the model, we fitted the model without access to participants’ age (Methods). E)
Fitted parameters of each individual, based on the same model. Dashed lines show age differences
when significant (Table 2.10), based on the model with access to participants’ age (Fig. 2.3B). This
is the same data as summarized in Fig. 2.4A-D. Colors denote age groups, red arrow (potential)
switch trials, and grey bars asymptotic trials, as in suppl. Fig. 2.15.
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Figure 2.17: Qualitative fit of different versions of the BI model. Model behavior is shown in the
same way as human behavior in suppl. Fig. 2.15. A-B) Behavior of simulations from the basic,
0-parameter version, in which truthfully preward = 0.75 and pswitch = 0.05. Lacking free param-
eters, the model predicted the same behavior for all participants, and was unable to capture age
differences. C-D) Behavior of simulations from the winning, 4-parameter version of the BI model,
in which free parameters β, p, preward , and pswitch were fitted to participants using hierarchical
Bayesian model fitting. To avoid double-dipping into age differences when visualizing the model,
we fitted the model without access to participants’ age (Methods). E) Fitted parameters of each
individual, based on the same model. Dashed lines show age differences when significant (Table
2.10), based on the model with access to participants’ age (Fig. 2.3B). This is the same data as
summarized in Fig. 2.4E-H.
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Table 2.11: Parameter estimates and statistics from hierarchical model fitting. Significance tests
against 0 for parameters whose ranges include 0, NA otherwise.

Model Parameter µ± sd 95% CI p-value sig.
4-param. RL pint 0.34±0.027 [0.29,0.39] < 0.001 ***

psd 0.24±0.015 [0.21,0.26] 0 NA
plin 0.11±0.020 [0.075,0.15] < 0.01 **
pqua −0.050±0.020 [−0.089,−0.012] 0.0051 **
βint 3.48±0.15 [3.18,3.79] 0 NA
βsd 1.48±0.10 [1.29,1.69] 0 NA
βlin 0.36±0.11 [0.14,0.57] < 0.001 ***
βqua −0.22±0.11 [−0.42,−0.015] 0.020 *
α− int 0.60±0.018 [0.56,0.63] 0 NA
α− sd 0.16±0.0093 [0.14,0.18] 0 NA
α− lin 0.011±0.015 [−0.017,0.040] 0.77
α− qua 0.013±0.014 [−0.013,0.040] 0.84
α+ int 0.73±0.034 [0.66,0.79] 0 NA
α+ sd 0.081±0.021 [0.042,0.12] 0 NA
α+ lin 0.055±0.024 [0.0045,0.10] 0.015 *
α+ qua −0.015±0.021 [−0.055,0.027] 0.25

4-param. BI pint 0.13±0.013 [0.11,0.16] < 0.001 ***
psd 0.081±0.0061 [0.069,0.093] 0 NA
plin 0.04±0.008 [0.023,0.054] < 0.001 ***
pqua −0.02±0.007 [−0.038,−0.010] < 0.001 ***
βint 4.27±0.27 [3.76,4.83] 0 NA
βsd 1.39±0.12 [1.16,1.64] 0 NA
βlin 0.39±0.17 [0.054,0.72] 0.011 *
βqua < 0.001±0.16 [−0.32,0.30] 0.49
preward int 0.87±0.016 [0.84,0.91] 0 NA
preward sd 0.064±0.0087 [0.046,0.081] 0 NA
preward lin 0.0045±0.0096 [−0.014,0.024] 0.68
preward qua −0.0017±0.0085 [−0.018,0.015] 0.43
pswitch int 0.16±0.014 [0.14,0.19] 0 NA
pswitch sd 0.071±0.0053 [0.062,0.083] 0 NA
pswitch lin −0.0066±0.0095 [−0.025,0.012] 0.24
pswitch qua 0.014±0.0082 [−0.0013,0.030] 0.042 *
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Table 2.12: Parameter differences between specific age groups. p-values were obtained by assess-
ing means for each parameter for three age groups (8-10, 13-15, and 18-30) and show in how many
MCMC samples the group mean of 8-10 year olds (18-30 year olds) was smaller than the group
mean of 13-15 year-olds.

Parameter Compared groups p-value sig.
α− 8-10 vs 13-15 0 ***

13-15 vs Adult 0.0045 **
preward 8-10 vs 13-15 0.019 *

13-15 vs Adult 0.078 ’
pswitch 8-10 vs 13-15 0.023 *

13-15 vs Adult 0.13

Using Model Simulations to Elucidate the Role of each PC
We simulated data from our computational models based on the obtained principal components
(PCs) in order to visualize the role of each PC. It is common practice to simulate data based on
small or large values of a parameter (e.g., small or large decision noise β) to assess the role of
this parameter for model behavior (e.g., better or worse performance). We similarly simulated
data based on small or large values of each PC to clarify the precise of each PC: We calculated
two sets of parameters for each PC, one that represented high levels of this PC (“plus”), and one
that represented low values (“minus”). Low levels were determined by subtracting 4 times the
inverse-z-scored factor loading of a PC (suppl. Fig. 2.18, center) from the population mean of
each parameter, low levels were determined by adding it. (For PC2 of the BI model, we added and
subtracted 2 times the factor loading instead, to ensure preward < 1.) We then simulated behavior
based on the resulting parameters to assess the effect of low versus high values of each PC (suppl.
Fig. 2.18).
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Figure 2.18: Role of each PC, assessed by simulating behavior at the extremes of each PC. A-D)
PC1-4.
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Chapter 3

What can we Learn from Computational
Modeling?

This chapter proposes a refined interpretation of computational model parameters. We show that
some parameters are consistent across tasks (e.g., decision noise), but others are not (e.g., learning
rates), and suggest that model parameters can capture different cognitive processes depending on
the task in which they were measured. We recommend that model parameters always be interpreted
with regard to task context. 1

Abstract
Computational cognitive modeling has revolutionized the cognitive and brain sciences in many
ways over the past decades. Computational studies create cognitive models that distill entire
datasets of individuals’ behavior into a small number of model parameters, which explain be-
havior succinctly, but without losing the ability to simulate original behavioral patterns in their full
complexity. Parameters are often interpreted to reflect intrinsic individual characteristics that lay
the foundation for more complex cognition, and to correspond to isolatable elements of brain func-
tion that underlies real-world behavior. To examine this assumption, we invited 291 participants
between the ages of 8-30 years to complete three classic learning tasks in a single session, and
fitted high-quality reinforcement learning (RL) models to each task. When we compared model
parameters of the same individuals between tasks, some parameters (e.g., decision temperature β),
but not others (e.g., learning rate α). were comparable between similar tasks. When we compared
parameters across dissimilar tasks, no parameters were comparable, suggesting a lack of parameter
generalizability when task context was not taken into account. Further analyses suggested the same
parameters captured different cognitive processes in different tasks, suggesting a lack of parameter
interpretability. Together, these results question basic assumptions of computational neuroscience
–that model parameters are generalizable and interpretable across tasks– and highlight that indi-

1Research in this chapter was conducted together with co-authors Sarah L. Master, Liyu Xia, Ronald E. Dahl,
Linda Wilbrecht, and Anne G.E. Collins.
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vidual characteristics depend on specific contexts. Future work in computational neuroscience and
the science of learning needs to take into account both short and also possibly long terms effects
of subject/agent context.

3.1 Introduction
In the last decades, the cognitive neurosciences have made major strides in computational model-
ing, and demonstrated how central reinforcement learning (RL) may be in human behavior. RL
models were first used to study relatively simple cognitive processes, including stimulus-outcome
and stimulus-response learning (Gläscher et al., 2009; O’Doherty et al., 2004; Schultz et al., 1997),
which were originally studied by behaviorists (Skinner, 1977; Watson, 1913). Strikingly, RL mod-
els have since also successfully explained far-reaching, goal-directed behavior with rich temporal
structure (Daw et al., 2011; Momennejad et al., 2017; Ribas Fernandes et al., 2011). RL is even
thought to lie at the heart of complex, abstract thinking that requires mental models with hierar-
chical structure (Botvinick, 2012; Collins and Koechlin, 2012; Eckstein and Collins, 2018), even
during infancy (Werchan et al., 2015, 2016).

The current boom of RL research in machine learning and artificial intelligence (AI) has pro-
vided cognitive researchers with powerful algorithms and a strong mathematical foundation for the
computational modeling of cognition, and many ideas have been transferred from AI to the cogni-
tive sciences, and vice versa (e.g., Daw et al., 2011; Hassabis et al., 2017; Momennejad et al., 2017;
Wang et al., 2018, for reviews, see Collins, 2019; Griffiths et al., 2019; Lake et al., 2017). The
cognitive sciences have integrated many ideas from AI into models of human and animal cogni-
tion, including model-free and model-based algorithms, hierarchies over time scales, state spaces,
and learning itself (i.e., meta-learning), temporal-difference algorithms, successor representation,
etc. These RL models were fitted to human behavior across a wide range of tasks, including classic
and operant conditioning, learning, decision making, problem solving, etc. In this sense, RL has
emerged as a potentially unifying model of human cognition, explaining both basic cognitive pro-
cesses and sophisticated problem solving, based on a compelling theoretical foundation, and with
the promise to elucidate brain function: An extensive number of studies has provided evidence
that a specialized network of brain regions, including the basal ganglia and prefrontal cortex, im-
plements computations similar to those of RL algorithms, guiding choices based on action values,
and updating action values based on reward prediction errors (for reviews, see Frank and Claus,
2006; Glimcher, 2011; D. Lee et al., 2012; Niv, 2009; O’Doherty et al., 2015; for a focus on
development, see Bolenz et al., 2017; Nussenbaum and Hartley, 2019; van den Bos et al., 2017).

Despite this stunning progress, the precise meaning of RL models and their components (e.g.,
model parameters, reward prediction errors) often remains elusive. In the standard modeling ap-
proach, entire datasets of individuals’ behavior are condensed into a small number of model pa-
rameters, using model fitting. The assumption is that computational models carve cognition at its
joints, dissecting participants’ mental processes into a small number of meaningful components,
such as learning and decision making, and that the individually-fitted model parameters fully char-
acterize the cognitive process using a few components relevant to brain and mind. Summariz-
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ing complex behaviors using computational models is thought to provide a rigorous and succinct
explanation of the behavior, while retaining the ability to reproduce the original behavior in its
complexity. In other words, models are expected to divide the cognitive process in a way that
isolates its fundamental elements and explains their intricate interplay, and to provide the few free
parameters that thereby differentiate individuals from each other. Much of the appeal of cognitive
modeling rests on the assumption that model parameters thereby reflect stable, interpretable, and
generalizable individual characteristics: Generalizability, for our purposes, means that an indi-
vidual’s parameters measured in one context provide information that goes beyond that specific
context. In other words, measuring an individual’s parameters on one task is expected to provide
information about their behavior in a (related but) different task, or –optimally– in the real world.
Interpretability means that parameters reflect fundamental elements of cognition or neural pro-
cessing that are intrinsic to a subject and stable across tasks, computational models, and real-world
behavior. In other words, parameters are expected to reflect the same cognitive or neural variables
when measured using different tasks, and these variables are expected to be intrinsic to participants.
This study will focus on the question whether parameters generalize between tasks and capture the
same cognitive processes across tasks.

Even though rarely stated explicitly, parameter generalizability and interpretability are at the
heart of most computational (neuro)science research. The belief in parameter generalizability, for
example, is evident in efforts to determine the fixed means and distributions of model parameters
in a human population, with the goal of identifying generic parameter priors that can be used to
jump start parameter estimation in future studies (Gershman, 2016). Using these empirical priors
improved model fitting in similar tasks, and the hope is that “empirical priors can be potentially
applied to a wide range of models and tasks that share similar parameterizations.” Indeed, “the
priors are robust across parameterizations, suggesting that they are fairly transferable”. This con-
viction that parameters are stable individual traits that generalize across models and tasks is shared
by many, if not most researchers in the field. Another example is the approach of computational
neuropsychology, whose goal is an “understanding of the neural processes underlying decision-
making in the normal and abnormal brain” (Niv, 2009), or more concretely, “how the brain learns
to select actions to maximize future reward” (O’Doherty et al., 2015). “Fundamental for under-
standing brain function is to determine what computations are performed in neuronal populations
that support a particular cognitive process”, and the hope is that computational models succeed
at “parcellating the computational mechanisms underlying cognition” (Hauser et al., 2019). A
main focus of computational neuropsychology has been to locate specific RL computations within
the brain, and one of its major successes is the association of reward-prediction errors with the
midbrain-dopamine system (Schultz et al., 1997; Watabe-Uchida et al., 2017; for reviews, see
Frank and Claus, 2006; Glimcher, 2011; D. Lee et al., 2012; Niv, 2009; O’Doherty et al., 2015).
A specific network of brain regions, forming loops between the basal ganglia and the cortex, with
inputs from midbrain dopamine, is assumed to implement neural processes that resemble RL com-
putations (Frank and Claus, 2006; Glimcher, 2011; D. Lee et al., 2012; Niv, 2009; O’Doherty et al.,
2015). Within this system, phasic dopamine signaling has been shown to relate to learning based
on reward prediction errors (Frank et al., 2004; Steinberg, 2013), and the differential roles carried
out by positive and negative learning rates in RL models are often ascribed to the characteristics
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of striatum D1 and D2 dopamine receptors, expressed in the direct and indirect pathways, respec-
tively (Collins and Frank, 2014; Tai et al., 2012; Verharen et al., 2019; for review, see Cox and
Witten, 2019). These findings have thus linked model components to cognitive and brain processes
in a specific task context. However, often implicit in this approach is the interpretability and gener-
alizability of RL models: Generic model variables (e.g., reward-prediction error; positive learning
rate) are taken to map precisely onto specific neural substrates (e.g., basal ganglia; D1 receptors),
independent of the task in which they were measured.

Two more domains have focused on individual differences: computational psychiatry and de-
velopmental psychology. In computational psychiatry, “models are particularly useful as tools
for measuring hidden variables and processes that are difficult or impossible to measure directly”
(Huys et al., 2016), and they “show great promise in mapping latent decision-making processes
onto dissociable neural substrates and clinical phenotypes” (Brown et al., 2020). Measuring hid-
den variables and mapping onto neural substrates and clinical phenotypes is what we define as
interpretability, and the standard approach of comparing model parameters between studies relies
on their between-task generalizability. Computational psychiatry has advanced our understanding
of mental illnesses most notably including depression, schizophrenia, and Parkinson’s (for reviews,
see Adams et al., 2016; Hauser et al., 2019; Huys et al., 2016). However, results of different stud-
ies are often inconclusive, and many questions remain. In computational developmental research,
the hope of modeling is to identify a small number of neurally-interpretable variables whose in-
terplay can explain complex, and often non-linear trajectories of cognitive development: “Models
can help to illuminate developmental change in cognitive processes or neural representations that
are otherwise difficult to tease apart” (Nussenbaum and Hartley, 2019). Model parameters are of-
ten interpreted as characteristics of individuals that are short-time stable (weeks or months), but
change gradually to explain development (years). Nevertheless, developmental studies so far have
not been able to identify consistent age trajectories of model parameters. On the contrary, depend-
ing on the study, learning rate parameters have been found to increase (e.g., Davidow et al., 2016;
Master et al., 2020), decrease (e.g., Decker et al., 2015), show U-shaped trajectories (Eckstein et
al., 2020), or stay stable over a given age range (e.g., Palminteri et al., 2016; for a comprehensive
review focused on these differences, see Nussenbaum and Hartley, 2019; for other reviews, see
Bolenz et al., 2017; van den Bos and Hertwig, 2017). This apparent inconsistency contradicts the
predominant view that generic RL parameters reflect what Nussenbaum and Hartley, 2019, call
“static learning biases”, i.e., that the same parameter reflects the same learning bias across studies,
being unaffected by task demands. Similar inconsistencies in parameters have become apparent
in the non-developmental modeling literature: Fitted parameter values often differ widely across
studies, even when participant samples and tasks are comparable, suggesting that different tasks
elicit different parameter values. Parameters also do not seem to be stable over time: Within the
same task, participants exhibited different learning rates depending on whether the current context
was stable or volatile (Behrens et al., 2007), and learning rates have even been shown to contin-
uously adapt to task statistics (Cazé and van der Meer, 2013; Daw et al., 2006), suggesting that
individuals’ parameter values, as specified in simple RL models, are not fixed. This lack in param-
eter consistency, especially between differing tasks or task contexts, could be the consequence of
a lack in parameter generalizability and interpretability.
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The goal of the current project was to systematically investigate this possibility, assessing pa-
rameter generalizability and interpretability using three different tasks within the same participants,
and employing state-of-the-art RL modeling. We hope to explain why previous research has of-
ten led to contradictory results, and offer an updated interpretation of model parameters that can
resolve these inconsistencies. To achieve this, we asked 291 participants between the ages of 8
and 30 years to perform three different learning tasks. We fitted separate RL models to each task,
conducting extensive model comparison and validation. The wide age range of participants led to
a wide range in fitted parameter values, which allowed us to precisely characterize similarities and
differences of parameters between tasks. The within-participant design allowed us to test directly
whether the same participants showed the same parameters across tasks (generalizability), and the
combination of multiple tasks allowed us to assess whether the same parameters captured the same
cognitive processes (interpretability).

Before showing our results, we briefly introduce the RL models we used to fit human data (see
section Computational Models for details). RL explains how agents (e.g., human, animal, artificial)
adapt their behavior to their environment in order to maximize rewards and minimize punishment
(Sutton and Barto, 2017). In a nutshell, agents learn a policy π(a|s) that determines which action
a to take in each state s of the world. In our models, this policy is based on the values of each
action in each state Q(a|s) (Fig. 3.1A). Agents learn values by paying attention to the outcomes
of their actions at each time step t –desired, positive outcomes are called “rewards” r, and unde-
sired, negative outcomes are called negative rewards. One simple learning method is to average
past value estimates with new outcomes, so that over time, value estimates reflect the true reward
contingencies: Qt+1(a|s) = Qt(a|s)+α× (rt −Qt(a|s)). How much a learner weighs past esti-
mates compared to new outcomes is determined by parameter α, the learning rate. Small learning
rates favor past experience and lead to stable learning over long time horizons, while large learning
rates favor new outcomes and allow for faster and more flexible changes focusing on shorter time
horizons. Different learning rates α+ and α− were used to distinguish learning from positive and
negative rewards (e.g., Eckstein et al., 2020; Frank et al., 2004; Palminteri et al., 2016; van den Bos
et al., 2012) Policy choices were made by translating action values Q(a|s) into action probabilities
p(a|s) (see Fig. 3.1A and section Computational Models). How deterministically versus noisily
this translation is executed was determined by exploration parameters β, also called inverse de-
cision temperature, and/or ε, also called decision noise. Small decision temperatures 1

β
favor the

selection of only the highest-valued actions, enabling exploitation, whereas large decision temper-
atures select actions of all values equally likely, enabling exploration. Other model parameters
included Forgetting, a decay of action values over time, and Persistence, a tendency to repeat the
same action independent of outcomes (see section Computational Models for details). This way of
constructing RL models is fairly standard and commonly-used in psychology and neuroscience.

In the following section, we will detail our experimental procedures and then answer two ques-
tions. Part I: Generalizability - Are parameters consistent within individuals? Part II: Interpretabil-
ity - Do parameters reflect the same cognitive processes across tasks, and what are these processes?
To foreshadow our results, Part I revealed that generalization differed between parameters: Deci-
sion noise parameters generalized well, especially between similar tasks, whereas positive learn-
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ing rates showed some discrepancies, especially between dissimilar tasks. Negative learning rates
failed to generalize in every way. Part II revealed that the cognitive processes captured by decision
noise parameters were more consistent across tasks than those captured by learning rates. Learning
rates captured overlapping, orthogonal, or even opposite processes, depending on the tasks. Nev-
ertheless, even though cognitive processes differed, both decision noise parameters and learning
rates captured consistent behavioral patterns across tasks. This suggests that computational models
are consistent in a different way than commonly assumed: Rather than capturing the same cogni-
tive process in each task, parameters might capture the same behavioral patterns, and behavioral
patterns heavily depend on task demands. Just like we would not compare accuracy between a per-
ception and a language task, we might not be able to compare learning rates between a stochastic
and a deterministic task.

3.2 Results

Study Design
Our sample of 291 participants was balanced between females and males across the age range (8-30
years), and all ages were similarly represented (Fig. 3.1B, left). To reduce noise, we excluded par-
ticipants based on performance criteria specific to each task (see section Participant Sample). Due
to worse performance, more younger than older participants were excluded, which is an important
caveat for the interpretation of age effects (Fig. 3.1B, right). Participants completed four comput-
erized tasks, questionnaires, as well as a saliva sample during the 1-2 hour lab visit (Fig. 3.1C). Our
tasks –called “Butterfly” (BF), “Probabilistic-Switching” (PS), and “Reinforcement learning and
Working memory” (RL-WM)– were all classic reinforcement learning tasks: Participants made
choices and received binary feedback in the form of point/win or no point/lose.

The tasks varied on several common experimental dimensions, including feedback stochastic-
ity, number of available actions, memory demands (number of stimuli to learn about), and en-
vironmental volatility (Fig. 3.1D). For example, in two tasks (PS and BF), negative feedback
was stochastic, such that most but not all incorrect actions led to negative outcomes, whereas in
the third (RL-WM), negative feedback was deterministic, such that every incorrect action led to
a negative outcome. A different set of two tasks (PS and RL-WM) provided diagnostic positive
feedback, such that every positive outcome indicated a correct action, whereas in the third (BF),
positive feedback was non-diagnostic, such that positive outcomes could indicate both correct and
incorrect actions. Two tasks (BF and RL-WM) had larger memory demands, presenting several
different stimuli/states for which correct actions had to be learned, whereas the third (PS) only
presented a single state. More similarities and differences are summarized in Fig. 3.1D, and each
task is described in more detail below, and in section Task Design. Overall, the BF task shared
more similarities with both PS and RL-WM than either of these shared with each other. This
allowed us to investigate whether task similarity played a role in parameter generalizability and
interpretability.
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Figure 3.1: (A) Visual summary of the RL algorithm. An agent interacts with an environment by
taking actions a in state s and receiving rewards r in return. The agent learns values Q(s|a) for its
actions based on the reward prediction error (RPE), and uses these values to calculate probabilities
p(a|s) for action selection. (B) Participant sample. Left: Final participant sample, broken up by
age group (quartiles within each sex). Right: Histogram of age and sex of excluded participants.
(C) Experimental procedure. Participants took part in a single 60-120 minute lab visit, during
which they completed four experimental tasks, a saliva sample, and questionnaires. One task was
excluded because too many participants failed to reach criteria. (D) The three remaining tasks
shared similarities with each other, but also differed in important ways. Similarities between each
pair of tasks are shown on the edges connecting the tasks. (E) Procedure of the Butterfly (BF) task.
Participants saw one of four butterflies on each trial, and selected one of two flowers in response.
Each butterfly had a stable preference for a specific flower throughout the task, but rewards were
delivered stochastically (70% for correct responses, 30% for incorrect). (G) Procedure of the
probabilistic switching (PS) task. Participants saw two boxes on each trial and selected one with
the goal of finding gold coins. At each point in time, one box was correct and had a high (75%)
probability of delivering a coin, whereas the other was incorrect (0%). At unpredictable intervals,
the correct box switched sides. (G) Procedure of the “RL-WM” task. Participants saw one stimulus
at a time and selected one of three responses. All correct responses and no incorrect responses were
rewarded. Stimuli were presented in blocks containing 2-5 different stimuli. The number of stimuli
in a block (“ns”) is called set size . The task was designed to disentangle set-size sensitive working
memory processes from set-size insensitive reinforcement learning processes.
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PS task

BF task

RL-WM task

Figure 3.2: (A) Performance in the PS task increased markedly from early childhood (8-10 years)
to mid-adolescence (13-15), and then decreased in late adolescence (15-17) and adulthood (18-30)
(for details, refer to Eckstein et al., 2020). (B) Performance in the BF task increased with age
and plateaued in early adulthood, as captured in decreases in decision temperature 1

β
and increases

in learning rate α (Xia et al., 2020). (C) The RL-WM task showed that the effect of set size on
performance (regression coefficient) decreased with age, which was captured by increases in RL
learning rate, but stable WM limitations (Master et al., 2020).

Each task was first analyzed independently, and detailed results have been published or submit-
ted elsewhere (Eckstein et al., 2020; Master et al., 2020; Xia et al., 2020). We summarize here the
key results. In the BF task, participants saw one of four butterflies on each trial, and aimed to pick
the one of two flowers that was preferred by this butterfly. Each butterfly had a stable preference
for one flower, and participants received a stochastic reward (80% probability) when they chose
this flower. Nevertheless, sometimes the butterfly liked the opposite flower, and participants got a
reward with 20% when they chose the opposite flower (Fig. 3.1E; see section Testing Procedure
for details). The BF task has been used previously to investigate the role reward sensitivity and its
interplay with episodic memory, shedding light on the neural substrate of these processes, notably
the striatum and hippocampus, and revealing a unique role of adolescence in stochastic learning
(Davidow et al., 2016). In our sample, performance on the BF task increased with age through the
early-twenties and then stabilized (Xia et al., 2020; Fig. 3.2B). Using hierarchical Bayesian meth-
ods to fit RL models, we showed that this performance increase was driven by increasing positive
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learning rate α+ and decreasing decision noise 1
β

. Forgetting rates decreased very slightly with
age, and negative learning rate α− was 0, suggesting that participants ignored negative outcomes
(see Fig. 3.3A and 3.3C for model parameters).

In the PS task, participants saw two boxes and selected one on each trial, with the goal of col-
lecting gold coins. For some period of time, one box was correct and led to a stochastic reward
(75% probability), while the other was unrewarded (0% probability). Then, the contingencies
switched unpredictably and unsignaled, and the opposite box became the correct one. A 120-
trials session contained 2-7 switches (Fig. 3.1F; see section Testing Procedure). The PS task was
adapted from the rodent literature, where it has been used to show a causal link between stimu-
lation of striatal spiny projection neurons and subsequent choices (Tai et al., 2012). Probabilistic
switching tasks are also very common in the human literature (e.g., Cools et al., 2002; Cools
et al., 2009; Dickstein et al., 2010; Peterson et al., 2009; Swainson et al., 2000; van der Schaaf
et al., 2011; Waltz and Gold, 2007; for reviews, see Izquierdo et al., 2017; Lourenco and Casey,
2013) In our study, we found that human youth age 13-15 years markedly outperformed younger
youth (8-12), older youth (16-17), and even young adults (18-30) on the PS task, suggesting that
adolescent brains might be specifically adapted to perform well in stochastic and volatile environ-
ments. Computational modeling, using hierarchical Bayesian fitting, revealed that some model
parameters (e.g,. decision temperature 1

β
, Persistence) increased monotonically from childhood to

adulthood, whereas others (e.g., negative learning rate α−, Bayesian inference parameters) showed
pronounced U-shapes with peaks in 13-15 year-olds, similar to performance. Blending RL and a
Bayesian inference models using principle component analysis (PCA) revealed that adolescents
operated at a sweet spot that combined mature levels of task performance with child-like, short
time scales of learning, and provided an explanation for adolescents’ superior performance (Eck-
stein et al., 2020).

The RL-WM task was designed to dissociate the effects of RL and working memory, and
has been used in diverse samples of adult participants (Collins, 2018; Collins, Albrecht, et al.,
2017; Collins, Brown, et al., 2014; Collins, Ciullo, et al., 2017; Collins and Frank, 2012, 2017;
McDougle and Collins, 2019). In the RL-WM task, participants see one stimulus at a time (e.g.,
bee) and choose one of three actions in response (left, up, right; Fig. 3.1G, right). Feedback
is deterministic, i.e., reliably identifies each action as correct or incorrect. The goal of the RL-
WM task is to learn the correct response for each stimulus. The key feature of the task is that
stimuli appear in independent blocks of different sizes, ranging from 2-5 stimuli (e.g., the bee
could be embedded in a block containing just 1 other animal, or up to 4 other animals). As set sizes
increase, participants have been shown to shift the balance between using their capacity-limited,
but reliable working memory system, to using their unlimited, but slower RL system (Collins and
Frank, 2012). The RL-WM task estimates both memory systems, RL as well as working memory.
The current study was the first to use the RL-WM task in youth. We found that participants aged
8-12 learned slower than participants aged 13-17, and were more sensitive to set size (Fig. 3.2C).
Computational modeling revealed that developmental changes in RL were more protracted than
changes in working memory: RL learning rate α+ increased until age 18, whereas WM parameters
showed weaker and more subtle changes early in adolescence (Master et al., 2020).
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When fitting computational models to each task, we carefully verified that they captured par-
ticipant behavior satisfactorily (see section Computational Models): For each task, we compared
a large number of competing models, based on different parameters and cognitive mechanisms,
and selected the best using model fit; we used hierarchical Bayesian methods for model fitting
and comparison when possible, obtaining state-of-the-art parameter estimates for each individual
(M. D. Lee, 2011). Crucially, we validated all models by simulating synthetic behavior based on
the best model and human-fitted parameters to ensure that each model accurately reproduced hu-
man behavior and age differences in each task, and that parameters were identifiable (Wilson and
Collins, 2019; refer to individual publications for details).

Part I: Parameter Generalizability
With the data of each task stemming from the same participants, we were now able to investigate
how the computational models were related, and whether parameters reflected individual charac-
teristics that were generalizable and interpretable across tasks. To investigate parameter gener-
alizability, we first tested whether different tasks showed similar parameter values and whether
parameters showed similar age trajectories across tasks.

Absolute Parameter Values

On the contrary, participants showed markedly different parameter values across tasks (Fig. 3.3A).
In RL-WM, learning rates α+ and α− were close to 0, the lowest allowed value (mean α+: 0.07;
α−: 0.03), whereas in PS, they were closer to 1, the highest allowed value (mean α+: 0.77;
α−: 0.62). In BF, they were in the low-intermediate range (mean α+: 0.22; α− was best fitted
at 0). To test these differences statistically, we conducted repeated-measures analyses of vari-
ance (ANOVA), conducting a separate model for each parameter, and predicting parameter values
from task identity (PS, BF, or RL-WM). When the ANOVA showed a significant effect of task,
we followed up with post-hoc repeated-measures t-tests, using the Bonferroni correction, to test
differences between each pair of tasks.

For α+, the ANOVA showed a significant effect of task on parameter values (F(2) = 2.018,
p < 0.001), and t-tests revealed significant differences between all pairs of tasks (PS vs BF:
t(246) = 66, p < 0.001; BF vs RL-WM: t(246) = 12, p < 0.001; RL-WM vs PS: t(246) = 51,
p < 0.001). For α−, both ANOVA (F(1) = 2.357, p < 0.001) and follow-up t-test were significant
(RL-WM vs PS: t(246) = 49, p < 0.001). Suppl. Table 3.4 shows similar results when these anal-
yses were controlled for age, using mixed-effects regression. These results confirm that the three
learning tasks produced significantly different learning rate estimates for the same participants.
Whereas RL-WM and BF estimated low learning rates, suggesting slow but consistent learning
on long time scales, PS estimated high learning rates, suggesting fast learning and quick changes,
with more weight on the most recent outcomes than on trial history, and a focus on short time
scales. Interestingly, these patterns echo task differences: Whereas RL-WM and BF presented
stable environments in which perfect performance can be obtained through slow, but consistent
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updating, PS presented a volatile environment with frequent switches that required quick updating
and increased flexibility.

For noise parameters ( 1
β

and ε), an ANOVA revealed a significant main effect of task (F(2) =
830, p < 0.001), and t-tests revealed that all pairwise differences were significant (PS vs BF:
t(246) = 25, p < 0.001; BF vs RL-WM: t(246) = 35, p < 0.001; RL-WM vs PS: t(246) = 32,
p < 0.001). Whereas PS suggested intermediate decision noise ( 1

β
= 0.33, corresponding to 3.7-

fold multiplication of action value differences), BF ( 1
β
= 0.095, 10.6-fold multiplication of value

differences) and RL-WM (ε = 0.025, corresponding to random choice on just 2.5% of all trials)
suggested lower decision noise. One potential reason for differences in decision noise is the inter-
dependence between learning rate and decision noise in typical RL models. According to this view,
the observed differences in decision noise are epiphenomenon of differences in learning rates. Even
though our model parameters were identifiable (see primary papers), making this explanation less
likely, significant correlations were still present between learning rates and decision noise in some
tasks (see suppl. Fig. 3.6). Another explanation are differing task demands: Volatile tasks like PS
might require more exploration (decision noise) than stable tasks like BF and RL-WM, because
they necessitate discovering a new and different correct response after task switches. Similarly, a
task with deterministic feedback (RL-WM) necessitates less exploration than BF.

For the Forgetting parameter, task differences were significant in the ANOVA model (F(1) =
161, p < 0.001) and follow-up t-test (RL-WM vs BF: t(246) = 49, p < 0.001), revealing that
more forgetting occurred in RL-WM than in BF. This might reflect the fact that participants were
able to rely more on short-term working memory in RLWM, where associations were determinis-
tic. Unlike previous research, these differences in parameters cannot be explained by differences
in participant samples, testing procedures, or research labs, nor by a lack in modeling quality
(Palminteri et al., 2017; Wilson and Collins, 2019). These results prove that the same participants
can show different model parameters in different tasks.
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Figure 3.3: (A) Fitted parameters of each task (red: BF, green: PS, blue: RL-WM), plotted over
participant age, averaged within quartile-based age groups. Dots indicate means, error bars specify
the confidence level (0-1) for interval estimation of the population mean. Parameters differed
substantially between tasks, with some parameters (e.g,. α+, α−) occupying opposite ends of the
allowed spectrum of values. (B) and (C) Same as (A), but for within-task z-scored parameters, and
within-task z-scored measures of behavior, respectively. (B) Age trajectories were consistent for
decision-noise parameters, but not learning-rate parameters. (C) Some behavioral measures were
consistent, while others were not.
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Parameter Age Trajectories

Table 3.1: Statistics of mixed-effects regression models predicting z-scored parameter values from
task (BF, PS, RL-WM), age, and squared age (months). The task-less grand model is reported when
it had the best model fit ( 1

β
and Forgetting). Otherwise, pairwise follow-up models are shown (α+

and α−), whose p-values are corrected for multiple comparison using the Bonferroni correction. *
p < .05; ** p < .01, *** p < .001.

Parameter Tasks Predictor β p (Bonf.) sig.
α+ PS & BF Task (main effect) 2.75 0.003 **

Task * linear age (interaction) -0.28 0.006 **
Task * quadratic age (interaction) 0.006 0.024 *

PS & RL-WM Task (main effect) 1.67 0.174
Task * linear age (interaction) 0.17 0.279
Task * quadratic age (interaction) 0.004 0.45

BF & RL-WM Task (main effect) 1.08 0.51
Task * linear age (interaction) -0.14 0.60
Task * quadratic age (interaction) 0.003 0.75

1
β
/ε — Intercept 1.86 < 0.001 ***

Age (linear) -0.17 0.003 **
Age (quadratic) 0.004 < 0.001 ***

α− PS & RL-WM Task (main effect) 4.15 < 0.001 ***
Task * linear age (interaction) 0.43 < 0.001 ***
Task * quadratic age (interaction) -0.010 < 0.001 ***

Forgetting — Intercept 0.37 0.44
Age (linear) -0.034 0.53
Age (quadratic) 0.001 0.63

Comparing absolute parameter values between tasks, as we just did, has important shortcomings.
For example, if varying task demands lead to major differences in absolute values (as our results
suggest), these differences could overshadow aspects of the parameters that were similar between
tasks, such as the shapes of parameters’ age trajectories, independent of absolute values. Indeed,
a recent review compared not absolute parameter values, but parameter age trajectories between
tasks when assessing the consistency of the developmental modeling literature to date (Nussen-
baum and Hartley, 2019). We identified parameters’ age trajectories by z-scoring each parameter
within each task, such that means and variances were equated (Fig. 3.3B). Z-scored parameters
(age trajectories; Fig. 3.3B) showed more consistent patterns than absolute values (Fig. 3.3A).

We tested for task differences in age trajectories using mixed-effects regression models that
predicted z-scored parameter values from two age predictors (linear age and squared age), and
with and without task as a predictor. When the model including task fit better than the model
without task, then taking task differences into account increased the amount of explained vari-
ance beyond the increased complexity of adding task as a predictor, suggesting significant task
differences. When this was the case, we conducted post-hoc comparisons between each pair of
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tasks to determine which age trajectories differed, using regression models that predicted z-scored
parameters from age (linear and squared) and task (focusing on two tasks at a time).

For α+, the regression including task showed a slightly lower AIC score, indicating better
model fit (AICwith task = 2,042, AICwithout task = 2,044). Follow-up pairwise comparisons showed
that z-scored values differed between PS and the other two tasks (RL-WM marginally; Fig. 3.3B;
Table 3.1), even though overall age trajectories were qualitatively similar (linear effect of age: BF
β = 0.33, p < 0.001, RL-WM β = 0.28, p < 0.001, PS β = 0.052, p < 0.001; quadratic effect:
BF β =−0.007, p < 0.001, RL-WM β =−0.006, p < 0.001, PS β =−0.001, p < 0.001). Taken
together, differences in α+ age trajectories were more nuanced (Fig. 3.3B) than differences in
absolute values (Fig. 3.3A), with similar trajectories for BF and RL-WM, but a differing trajectory
for PS.

For α−, including task as a predictor improved model fit (AICwith task = 1,373, AICwithout task =
1,395), and z-scored parameter values differed significantly between PS and RL-WM in the follow-
up regression (Table 3.1): In RL-WM, α− showed a linear increase and inverse-U-shaped curvature
(linear effect of age: β= 0.32, p< 0.001; quadratic: β=−0.07, p< 0.001). In PS, α− showed the
inverse pattern, a linear decrease and U-shaped curvature (linear: β=−0.11, p< 0.001; quadratic:
β = 0.003, p < 0.001). Taken together, differences in α− age trajectories (Fig. 3.3B) were as strik-
ing as differences in absolute values (Fig. 3.3A). RL-WM α− increased monotonically, whereas
PS α− showed a U-shape with lowest point in 13-to-15-year-olds, two qualitatively different tra-
jectories. Note that in BF, the best fitting model included a fixed α− = 0, again differing from the
other two tasks.

For noise parameters, on the other hand, adding task as a predictor did not improve model
fit (AICwith task = 2,054, AICwithout task = 2,044), suggesting that age trajectories did not differ
between tasks. The winning grand regression model revealed a linear decrease in decision noise
across tasks, with a quadratic modulation that reflected slowing of the change with age (Fig. 3.3B;
Table 3.1). This confirms that differences in scale (mean and variance; Fig. 3.3A) obscured similar
age trajectories (Fig. 3.3B): a monotonic decrease over age, consistent with the previous literature
(Nussenbaum and Hartley, 2019).

For parameter Forgetting, adding task (BF vs. RL-WM) as a predictor did not improve regres-
sion fit (AICwith task = 1,411, AICwithout task = 1,406). The grand model did not reveal significant
age effects (Fig. 3.3B; Table 3.1). Note that in PS, forgetting did not improve model fit, or equiv-
alently, all participants had forgetting= 0, differing from the other two tasks. Together, age trajec-
tories, which signify the conservation of participants’ parameter values relative to each other, were
similar for decision noise parameters and for positive learning rates in BF and RL-WM, but differ-
ent for positive learning rates in PS, and strikingly different for negative learning rates (RL-WM
and PS).
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Predicting Age Trajectories

Table 3.2: Statistics of regression models predicting each z-scored parameter of one task (BF, PS,
RL-WM) from the corresponding parameter of each of the other tasks. Because statistics were
identical when predicting task A’s parameter from task B’s parameter and when doing the inverse,
only one test is reported below.

Parameter Tasks β p sig.
α+ BF, RL-WM 0.23 < 0.001 ***

BF, PS 0.13 0.035 *
RL-WM, PS -0.073 0.25

1
β

, ε BF, RL-WM 0.19 0.0022 **
BF, PS 0.28 < 0.001 ***
RL-WM, PS 0.039 0.54

α− RL-WM, PS -0.12 0.058 $
Forgetting BF, RL-WM 0.097 0.13

While parameter differences, assessed in sections Absolute Parameter Values and Parameter Age
Trajectories, can reveal a lack of similarity, they cannot reveal its presence. We next tested directly
whether parameters generalized between tasks, assessing how well age trajectories in one task
predicted age trajectories of the same parameter in the other tasks.

For α−, RL-WM and PS showed a marginal negative relationship (Table 3.2), suggesting that
predicting this parameter in one task from the other would lead to below-chance predictions. For
Forgetting, BF and RL-WM were not predictive of each other (Table 3.2). For both α+ and noise
parameters ( 1

β
and ε), z-scored parameters in BF predicted z-scored parameters in PS and RL-WM,

and z-scored parameters in PS and RL-WM predicted z-scored parameters in BF. Nevertheless, z-
scored parameters in PS and RL-WM did not predict each other (Table 3.2). This shows that
predicting age trajectories across participants was only possible when task BF was involved. A
potential explanation for this finding is that the BF task was more similar to both RL-WM and
PS than they were to each other (Fig. 3.1D; see also section Relating Parameters and Behaviors
Using Principal Component Analysis). In other words, similarity in task characteristics might
be a determining factor in parameter generalization (see section Conclusion for a more detailed
discussion of this exploratory result).

Summary Part I

In summary, Part I revealed that (1) participants showed strikingly different absolute values of
noise parameters ( 1

β
and ε) and learning rates (α+, α−) across three learning tasks. Intriguingly,

parameter values were in tune with task demands. (2) After equating parameter means and vari-
ances, age trajectories of noise parameters lacked differences, age trajectories of positive learning
rates α+ differed between one task and the two others, and age trajectories of negative learning
rates α− showed large qualitative differences. This suggests that differences in absolute parameter
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values and parameter age trajectories are relatively independent from each other. (3) Age trajec-
tories in noise parameters and α+ were predictable from one task to another, as long as either the
predicting or the predicted task was BF, the task that shared most similarity with each of the other
tasks. This suggests that task similarity played a role in parameter consistency.

Part II: Parameter Interpretability
Part II investigates parameter interpretability, i.e., whether the same parameters captured the same
cognitive processes in each task. This question is crucial for the interpretation of parameters and
cognitive models. For example, when the same parameters capture different cognitive processes
depending on the task, findings from different tasks cannot be compared easily, and without a map-
ping between parameters and cognitive processes, it is more difficult to relate findings to previous
work.

Relating Parameters and Behaviors Using Principal Component Analysis

Principal component analysis (PCA) is a statistical tool that decomposes the variance of a dataset
into so-called “principal components” (PCs). PCs are linear combinations of a dataset’s original
features (e.g., response times, accuracy, learning rate), and explain the same variance in the dataset
as these original features. The advantage of PCs compared to original features is that they are
orthogonal to each other and therefore capture independent aspects of the data. In addition, subse-
quent PCs explain subsequently less variance, such that the top PCs explain the bulk of a dataset’s
variance and are able to reconstruct the entire dataset, up to small details and random noise. The
goal is then to understand what the top PCs capture, and “factor loadings” contain this information,
the original features’ weights on each PC (see section Principal Component Analysis (PCA) for
details).

Having focused on individual parameters in Part I, Part II integrates different parameters as well
as behavioral measures. First, we conducted a PCA on all 54 features of our dataset (39 behav-
ioral and 15 model parameters). For more information about each behavioral feature, see section
Understanding Parameters Based On Behaviors The first principal component (PC0), capturing
the largest proportion of variance in the dataset (25.1%; Fig. 3.4A), reflected task performance,
broadly defined: Behaviors that indicated poor task performance loaded negatively (e.g., number
of missed trials, response time, response time variability), whereas behaviors that indicated good
task performance loaded positively (e.g., mean accuracy, win-stay choices; Fig. 3.4B, top row).
This shows that the largest source of variation in our dataset were individual differences in task
performance.

To facilitate the interpretation of subsequent PCs, we first equated the role of each feature with
respect to task performance, by flipping the signs of all features that played a negative role for task
performance, as indicated by a negative weight on PC0. This step ensured that the directions of
factor loadings on PC1 and PC2 were interpretable in the same way for all features, irrespective
of their role for task performance in PC0. Thus preprocessed, loadings showed that the next two
principal components (PC1: 8.9% explained variance; PC2: 6.2%) encoded task contrasts: PC1



CHAPTER 3. WHAT CAN WE LEARN FROM COMPUTATIONAL MODELING? 73

contrasted PS to RL-WM, with positive factor loadings on PS features, and negative ones on the
corresponding RL-WM features, while BF features had near-zero loadings (Fig. 3.4B, middle
row). PC2 contrasted BF to PS and RL-WM, with positive loadings on BF features and negative
ones on the corresponding RL-WM and BF features (Fig. 3.4B, bottom row). This shows that, after
accounting for individual differences in performance (PC0), the next-most variance in our dataset
arose from differences between tasks. PS and RL-WM showed the greatest differences, followed
by differences between BF and both other tasks. This pattern is in accordance with similarities in
terms of task features (Fig. 3.1D; note that missed trials and response times did not follow the task
contrasts in PC1-PC2, suggesting that these features did not differentiate tasks.)

Aiming to elucidate the roles of parameters, we next assessed parameters’ factor loadings. In
PC0, all noise and Forgetting parameters loaded negatively and all α+’s loaded positively, suggest-
ing that across tasks, noise and Forgetting parameters affected performance negatively, whereas α+

affected performance positively (Fig. 3.4B, top row), in accordance with these parameters’ general
roles in RL models (Sutton and Barto, 2017).

α−, on the other hand, loaded positively on RL-WM but negatively on PS, suggesting that
increased learning from negative feedback improved performance in RL-WM, but reduced perfor-
mance in PS (Fig. 3.4B, top row). Like in Part I, this opposing pattern is in accordance with tasks
demands: In RL-WM, negative feedback was diagnostic, such that an optimal strategy would use a
maximum negative learning rate α− to learn from every feedback. In PS, on the other hand, nega-
tive feedback was non-diagnostic, such that an optimal strategy needs to integrate several outcomes
over a longer time horizon, using a lower negative learning rate. This result confirms patterns in
Part I that suggested that α− played very different roles in RL-WM compared to PS, reflecting
each task’s unique demands.

On PC1 and PC2, noise parameters, α+, and α− encoded the task contrasts described above,
loading positively on PS but negatively on RL-WM (PC1), and positively on BF but negatively
on RL-WM and PS (PC2; Fig. 3.4B, middle and bottom rows). This shows that these parameters
differed sufficiently between tasks to be discriminable (as opposed to, e.g., response times and
the number of missed trials, which did not show task contrasts). It also reveals that parameters
contained sufficient task-specific characteristics to make it possible to associate them with the
correct task. This degree of dissociation would not be expected if parameters captured the same
cognitive mechanisms in each task.

Taken together, (1) The largest amount of variance arose from individual differences in task
performance, broadly defined. (2) the contrast between PS and RL-WM explained more variance
than the contrast between BF and both other tasks, confirming the BF task was more similar to
both PS and RL-WM than these were to each other, in accordance with similarities in task charac-
teristics (Fig. 3.1D). (3) Decision noise and Forgetting parameters were negatively associated with
task performance, whereas learning rate α+ was associated positively. Learning rate α− showed
opposite signs in both task, positive in RL-WM but negative in PS, in accordance with which
setting was optimal for each. (4) Decision noise parameters and learning rates contained enough
task-specific variance to be identified with each task, suggesting that the same parameters captured
different aspects of cognition across tasks.
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Figure 3.4: PCA of all 54 features of the dataset (39 behavioral; 15 model parameters). Factor
loadings (y-axis) of each feature (x-axis) for the first three PCs (rows) of our dataset. PC0 (top
row) captured broadly-defined task performance. PC1 and PC2 were re-oriented according to each
feature’s role for task performance to make loading directions comparable between features with
opposing effects on performance. PC1 encoded a contrast between PS and RL-WM, and PC2
between BF and both other tasks.

Do Parameters Capture Overlapping Cognitive Processes?

Differences between the three learning tasks (Fig. 3.1D) likely led to the recruitment of different
cognitive processes. The BF task was the most classic RL task, requiring the gradual integration
of stochastic feedback over time in order to learn the correct responses for multiple stimuli (Fig.
3.1E). Similarly, the PS task required the gradual integration of stochastic negative feedback, but
it not require gradual integration of positive feedback because it was diagnostic. The PS task’s
main challenge was to infer when a switch occurred, introducing a component of inference that
was not central in the BF task (Fig. 3.1F; Eckstein et al., 2020). In the RL-WM task, each block
was structurally similar to the BF task and likely relied on similar RL processes. Nevertheless, the
RL-WM task also motivated the use of working memory because (1) feedback was deterministic,
i.e., perfectly diagnostic, and (2) some blocks had very small set sizes, which favors the use of
working memory (Fig. 3.1G; Master et al., 2020). A commonality between all tasks was the need
for choice randomness or exploration to find the correct responses. Taken together, all three tasks
likely required the integration of feedback over time as well as exploration, but only BF relied on
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these processes principally, whereas PS and RL-WM likely also relied on inference and working
memory, respectively.

To interpret model parameters in the same way in each task, they need to represent the same
cognitive mechanism in each (e.g., α+ could capture integration of positive feedback over time in
each task). An alternative hypothesis is that parameters represented different processes depending
on the task (e.g., α+ could capture integration over time in BF, but reasoning/inference in PS).
To test these possibilities, we first investigated whether models of different tasks captured similar
variance, suggesting overlapping cognitive mechanisms. Specifically, we probed how much of
each parameter’s variance was explained by the parameters of a different model, using regression.
When significant amounts of variance were explained, we next asked which parameters played the
largest role in explaining that variance. If parameters reflected similar cognitive mechanisms across
tasks, then corresponding parameters should show the largest regression coefficients (e.g., PS 1

β

could show a significant coefficient when predicting BF 1
β

), but if parameters reflected different
mechanisms, then different parameters should show significant weights (e.g., RL-WM ρ could
show a significant coefficient when predicting BF α+).

Because models contained several predicting features, regular regression models led to over-
fitting and were not interpretable. To avoid overfitting, we therefore used repeated, k-fold cross-
validated Ridge regression (see section Ridge Regression). This method provides unbiased esti-
mates for explained variance R2 and regression coefficients w, and allows for statistical comparison
based on bootstrapping. Indeed, for each parameter, similar variance was explained when using
fitted parameters for prediction as when using raw behavioral features, confirming that computa-
tional models compressed behavior with minimal information loss (compare Fig. 3.5A and suppl.
Fig. 3.8).

We found that of all parameters, most variance was predicted for two BF parameters: α+

(using PS parameters for prediction: mean R2 = 18.1%, sd = 0.3%, p = 0; RL-WM parameters:
mean R2 = 12.8%, sd = 0.3%, p = 0) and 1

β
(PS: mean R2 = 10.2%, sd = 0.2%, p = 0; RL-WM:

mean R2 = 6.5%, sd = 0.2%, p = 0; Fig. 3.5A, left panel). Mean R2, standard deviations sd, and
p-values representing p(R2 < 0), are based on 1,000 bootstrapping iterations (see section Ridge
Regression for details). The fact that of all parameters, BF α+ and BF 1

β
were predicted best

is in accordance with the BF task being most similar to each of the other two tasks, with more
differences between these two (Fig. 3.1D). It is also in accordance with roles of BF 1

β
and BF α+

in cognitive processes that are shared between tasks, likely including exploration and integration
of feedback over time, respectively. Combining PS and RL-WM parameters in a single regression
model explained more variance than each task did on its own (α+: mean R2 = 24.3%, sd = 0.2%,
p = 0; 1

β
: mean R2 = 14.6%, sd = 0.2%, p = 0; Fig. 3.5A, left panel), indicating that the PS and

RL-WM models captured partly non-overlapping cognitive processes: If both tasks captured the
exact same processes, combining them would not explain more variance than using just one.

We next focused on noise parameters, examining whether they captured the same cognitive
processes across tasks, by analyzing regression weights. When predicting BF 1

β
, both PS 1

β
and RL-

WM ε showed significant regression coefficients, revealing consistency (PS: w = 0.14, p = 0.031;
RL-WM: w = 0.12, p = 0.038; Fig. 3.5B, top). Nevertheless, the inverse was not true, and BF 1

β
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did not show significant weights when predicting PS 1
β

or RL-WM ε (PS 1
β

: w = 0.09, p = 0.27;
RL-WM ε: w = 0.04, p = 0.63; Fig. 3.5B, bottom left and bottom right). The first result suggests
that PS and RL-WM noise parameters captured cognitive processes that were also captured by
BF 1

β
, and the second suggests that PS and RL-WM noise parameters also captured cognitive

processes that were not captured by BF 1
β

. In addition, when predicting BF 1
β

, significant regression
coefficients were obtained by PS parameters Persistence (w = −0.19, p = 0.0029) and α− (w =
0.14, p = 0.032), and by RL-WM parameters α− (w = −0.18, p = 0.045) and working-memory
weight ρ (w = −0.19, p = 0.023; Fig. 3.5B, top). This shows that the matching between noise
parameters was not perfect between tasks, and suggests that non-noise parameters PS Persistence,
PS α−, RL-WM α−, and RL-WM ρ captured aspects of noise, and/or that BF 1

β
captured non-noise

processes.
We next focused on learning rates and found that several parameters, including learning-rate

and non-learning rate parameters, captured overlapping variance. BF α+ predicted RL-WM pa-
rameters α+ (w = 0.20, p = 0.013) and α− (w = 0.24, p = 0.0022), revealing consistency within
learning-rate parameters. In the inverse model, however, BF α+ was predicted by both RL-WM α−
(w = 0.22, p = 0.011) and working-memory weight ρ (w = 0.16, p = 0.050) and working-memory
capacity κ (w = 0.15, p = 0.020; Fig. 3.5B, top right). In other words, the variance captured by
RL-WM’s RL parameters (α+, α−) was only captured by BF α+, but the variance captured by BF
α+ was captured by both RL-WM’s RL (α−) and working-memory parameters (ρ, κ). This sug-
gests that RL-WM’s RL parameters captured only RL processes, while BF’s α+ captured both RL
and working-memory processes, in accordance with previous research (Collins and Frank, 2012).

BF α+ was furthermore predicted by most PS parameters ( 1
β

: w = −0.19, p = 0.0026; α−:
w =−0.21, p < 0.001; Persistence: w = 0.23, p < 0.001), with the notable exception of its direct
counterpart PS α+ (w= 0.0042, p= 0.94, n.s.; Fig. 3.5B, top left). Similarly in the inverse models,
PS α− was predicted by BF α+ (w =−0.25, p = 0.0018), showing a notable negative relationship,
and PS α+ was not predicted by any BF parameter ( 1

β
: w = −0.077, p = 0.37; α+: w = 0.058,

p = 0.48; Forgetting: w = 0.015, p = 0.82). Taken together, this suggests that the processes
reflected by BF α+ were captured by an interplay between multiple PS parameters, rather than any
single one. Notably, PS α+ shared no overlap with BF α+, being completely orthogonal, and PS
α− was negatively related to BF α+.

Highlighting further differences, BF α− was 0 for all participants, as opposed to PS α− and RL-
WM α−, which showed pronounced age trajectories (Fig. 3.3A). Variance in PS α− was thereby
unexplained by RL-WM parameters (mean R2 = −0.0205, sd = 0.0024, p = 1), suggesting that
there was no overlap in the cognitive processes captured by PS α− and the entire RL-WM model,
including RL-WM’s own α−. Even though PS α− and RL-WM α− were similar in that they both
significantly predicted BF α+, they exhibited opposite signs (PS: w =−0.19, p < 0.001; RL-WM:
w = 0.22, p = 0.011; similar pattern for BF 1

β
, PS: w = 0.13, p = 0.023; RL-WM: w = −0.18,

p = 0.045). This confirms that α− played opposing roles in PS compared to RL-WM, as suggested
by previous analyses. The unique role of PS α+ was highlighted by the fact that it was impossible
to predict significant variance in this parameter using any other parameters (BF: R2 = −0.0080,
sd = 0.0037, p = 1; RL-WM: R2 =−0.019, sd = 0.0027, p = 1; Fig. 3.5A, middle). This shows
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that PS α+ reflected unique cognitive processes, which were not captured by RL-WM or BF,
potentially inference.

We next focused on parameters that were not shared between tasks, notably RL-WM’s working-
memory parameters. No variance in these parameters was explained by any other task (working-
memory weight ρ: PS mean R2 = −0.017, sd = 0.0028, p = 1; BF mean R2 = −0.014, sd =
0.0031, p = 1; capacity κ: PS mean R2 = −0.015, sd = 0.0015, p = 1; BF mean R2 = −0.020,
sd = 0.0015, p= 1; Forgetting: PS mean R2 =−0.017, sd = 0.0024, p= 1; BF mean R2 =−0.010,
sd = 0.0015, p = 1). Significant variance, on the other hand, was explained in RL-WM’s RL
parameters (α+: PS mean R2 = 0.014, sd = 0.0033, p = 0; BF mean R2 = 0.020, sd = 0.0020, p =
0; α−: PS mean R2 = 0.057, sd = 0.0036, p = 0; BF mean R2 = 0.076, sd = 0.0045, p = 0). This
suggests that the RL-WM model’s working-memory parameters captured largely unique cognitive
processes, while its RL parameters captured overlapping processes, and supports the notion that the
RL-WM model successfully disentangled working-memory and reinforcement-learning processes.

Summarizing this section, noise parameters showed many similarities across tasks, learning-
rate parameters showed fewer similarities, and working-memory parameters appeared relatively
unique. PS and RL-WM noise parameters captured much of the cognitive processes captured by
BF 1

β
, but they also captured additional processes beyond BF 1

β
, and of the processes shared with BF

1
β

, both captured different aspects. This reveals substantial overlap in the noise parameters between
tasks, but also highlights important differences. Learning-rate parameters showed some consisten-
cies and many differences between tasks, and revealed substantial overlap with non-learning rate
parameters, most notably RL-WM’s working-memory parameters. BF α+ shared variance with
both RL-WM’s RL (α+ and α−) and working-memory parameters (ρ, κ), and also with all PS
parameters except its counterpart PS α+. PS α+ was entirely orthogonal to all other model param-
eters, and α− showed inverse roles in RL-WM compared to PS. In sum, learning-rate parameters
did not capture unitary variance across tasks, but showed marked differences.
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Figure 3.5: (A) Percentage of explained variance (R2) when predicting each model parameter (x-
axis) from the parameters of the other models. Each parameter was predicted using three different
regression models: One containing the parameters of both other tasks (red), and two containing
the parameters of just one other task (green: PS parameters; blue: RL-WM parameters; purple: BF
parameters). (B) Summary of regression coefficients of the models in part A. Each arrow denotes a
significant regression coefficient (p< 0.05). Arrow direction indicates direction of prediction (e.g.,
an arrow pointing from a PS parameter to a BF parameter denotes a significant coefficient when
predicting the BF parameter using the PS model). Colored fat arrows show the only cases in which
corresponding parameters predict each other, i.e., in which predicting and predicted parameters are
identical. Dashed lines indicate negative and full lines positive coefficients. (C) Explained variance
(R2) when predicting model parameters by behavioral features of all three tasks. (D) Summary
of regression coefficients of the models in part B. Each arrow signifies a significant regression
coefficient (p < 0.05) when predicting a model parameter (bottom row) from behaviors (top row)
of all three tasks. All significant within-task relationships are shown; arrow color indicates the task
of the behavior and parameter it connects. Fat arrows indicate that arrows are duplicated across
tasks, i.e., task-based consistency.

Understanding Parameters Based On Behaviors

Our final set of analyses focuses on why parameters showed different developmental trajectories
(Fig. 3.3A and B) and captured different cognitive processes (Fig. 3.5A and B) depending on the
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task. One possibility is that computational modeling failed at isolating specific cognitive processes,
for example due to model misspecification (Nussenbaum and Hartley, 2019). In this interpretation,
model parameters did not capture the meaningful patterns intended by modelers, and the promise
of RL fell short of its high expectations (Sutton and Barto, 2017). Another explanation is that
parameters captured intended patterns of behavior, but these patterns relied on different cognitive
processes depending on the task. For example, learning rates might always capture the behavioral
response to feedback, but what this response looks like relies on different cognitive mechanisms in
different tasks (e.g., depending on whether feedback is diagnostic or not).

To investigate these possibilities, we assessed the relationships between model parameters and
participant behavior. Using regularized Ridge regression like above, we predicted each model pa-
rameter from five selected behavioral features of each task (features are detailed below). When
two parameters capture identical cognitive processes, they will be predicted by the exact same be-
havioral features in this analysis (e.g., all noise parameters might be predicted by BF accuracy).
We will call this case “absolute consistency”. When two parameters capture orthogonal processes,
they will be predicted by different, non-overlapping features (e.g., Forget might be predicted by
accuracy in one task, but by Delay in another). We will call this “absolute inconsistency”. Cru-
cially, there also is a third case: When two parameters capture the same behavioral patterns in
each task, but these patterns differ between tasks, then the parameters will be predicted by corre-
sponding features in both tasks (e.g., each learning rate would be predicted by accuracy in its own
task). We will call this case “task-based consistency”, which means that parameters capture the
same behavioral patterns in each task, and differences between parameters arise from differences
in behavioral patterns between tasks.
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Table 3.3: Statistics of mixed-effects regression models predicting z-scored behavioral features
from task (BF, PS, RL-WM), age, and squared age (months). The task-less grand model is re-
ported when it had the best model fit (win-stay, Delay). Otherwise, pairwise follow-up models are
shown (RT, ACC, lose-stay), with p-values corrected for multiple comparison using the Bonferroni
correction. * p < .05; ** p < .01, *** p < .001.

Parameter Tasks Predictor β p (Bonf.) sig.
RT PS & BF Task (main effect) 2.15 0.006 **

Linear age -0.23 0.003 **
Task * linear age (interaction) -0.25 0.003 **
Task * quadratic age (interaction) 0.007 0.003 **

PS & RL-WM Task (main effect) -0.76 0.69
Linear age -0.48 < 0.001 ***
Task * linear age (interaction) 0.10 0.45
Task * quadratic age (interaction) -0.003 0.288

BF & RL-WM Task (main effect) 1.40 0.63
Linear age -0.23 0.003 **
Task * linear age (interaction) -0.15 0.084
Task * quadratic age (interaction) 0.004 0.129

ACC PS & BF Task (main effect) 1.27 0.36
Linear age 0.27 < 0.001 ***
Task * linear age (interaction) -0.10 0.87
Task * quadratic age (interaction) 0.001 1

PS & RL-WM Task (main effect) -2.15 0.033 *
Linear age 0.17 0.036 *
Task * linear age (interaction) 0.20 0.118
Task * quadratic age (interaction) -0.004 0.33

BF & RL-WM Task (main effect) -0.88 0.60
Linear age 0.27 < 0.001 ***
Task * linear age (interaction) 0.10 0.57
Task * quadratic age (interaction) -0.003 0.57

WS — Intercept -3.05 < 0.001 ***
Age (linear) 0.31 < 0.001 ***
Age (quadratic) -0.007 < 0.001 ***

LS PS & BF Task (main effect) -0.90 0.42
Linear age 0.075 0.87
Task * linear age (interaction) 0.12 0.42
Task * quadratic age (interaction) -0.004 0.29

PS & RL-WM Task (main effect) 4.84 < 0.001 ***
Linear age 0.20 0.015 *
Task * linear age (interaction) -0.51 < 0.001 ***
Task * quadratic age (interaction) 0.012 < 0.001 ***

BF & RL-WM Task (main effect) 3.94 < 0.001 ***
Linear age 0.075 0.54
Task * linear age (interaction) -0.39 < 0.001 ***
Task * quadratic age (interaction) 0.008 0.003 **

Delay — Intercept 0.95 0.035 *
Age (linear) -0.09 0.07
Age (quadratic) 0.002 0.14
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Age Trajectories of Behavioral Features Before presenting the results of the regression analy-
sis, we discuss the behavioral features and their age trajectories, using similar regression models
as in section Parameter Age Trajectories. Response times, reflecting choice fluidity and task en-
gagement, sped up with age in all tasks, whereby age trajectories differed significantly between
PS and BF in pairwise follow-up models (grand model AICwith task = 1.868, AICno task = 1.871;
for detailed statistics, see Table 3.3; Fig. 3.3C). Accuracy, reflecting subjective ease and task
engagement, showed a significant increase with age, and no significant pairwise differences in
age trajectories after correcting for multiple comparisons, despite the better fit of the model in-
cluding task compared to the model without task (AICwith task = 2.015, AICno task = 2.024; Fig.
3.3C; Table 3.3). Win-stay (WS) behavior reflects participants’ tendency to repeat rewarded ac-
tions; specifically, it is the proportion of rewarded actions that are repeated on the next trial rel-
ative to all rewarded actions. Similarly, lose-stay (LS) behavior reflects participants’ tendency
to repeat non-rewarded actions. Win-stay behavior increased with age, without task differences
(AICwith task = 1.961, AICno task = 1.959; Fig. 3.3C; Table 3.3). Lose-stay behavior showed marked
task differences (AICwith task = 2.075, AICno task = 2.109), with inverse trajectories in RL-WM
compared to the other tasks: In RL-WM, lose-stay behavior decreased monotonically until mid-
adolescence (linear effect of age: w =−0.31, p < 0.001; quadratic effect: w = 0.007, p < 0.001),
whereas in BF, it increased slightly (linear effect of age: w = 0.075, p < 0.001; quadratic effect:
w = −0.001, p < 0.001). In PS, lose-stay behavior showed an inverse-U trajectory (linear effect:
w = 0.20, p < 0.001; quadratic: w = −0.005, p < 0.001; Fig. 3.3C). Lastly, the Delay pattern
measured the decrease in accuracy with increasing delay between presentations of the same stim-
ulus (only present for RL-WM and BF because only these presented several stimuli; see section
??). Delay did not show significant age changes (Table 3.3), and did not differ between tasks
(AICwith task = 1.405, AICno task = 1.402).

Regression Results We investigated the consistency in behavioral features captured by noise
parameters and learning rates. Showing a high degree of task-based consistency, both BF 1

β
and PS

1
β

were predicted by task accuracy (BF 1
β

: w =−0.19, p = 0.0076; PS 1
β

: w =−0.36, p < 0.001;

Fig. 3.5D) and win-stay behavior of the respective task (BF 1
β

: w = −0.30, p < 0.001; PS 1
β

:
w=−0.58, p< 0.001), and the relationship with loose-stay behavior depended on the adaptivity of
loose-stay behavior for the task (BF; PS). Showing absolute consistency, both were also predicted
by BF win-stay behavior (PS 1

β
: w = −0.12, p = 0.032). RL-WM ε was not predicted by any

behavioral feature, neither within the RL-WM task (all |w|’s < 0.16, all p’s > 0.14), nor from
other tasks (all |w|’s < 0.023, all p’s > 0.85). Taken together, BF and PS decision noise parameters
showed strong task-based consistency some absolute consistency, whereby reduced decision noise
was related to improved task accuracy and increased repetition of rewarded choices, as expected.
Noise in RL-WM was not captured by behavioral features.

Both PS α+ and BF α+ were predicted by win-stay behavior in the respective task (PS α+:
w = 0.27, p < 0.001; BF α+: w = 0.74, p < 0.001; Fig. 3.5D), revealing task-based consistency.
RL-WM α+ was predicted by RL-WM task accuracy (w = 0.24, p = 0.033). Furthermore, both
PS α− and RL-WM α− were negatively predicted by lose-stay behavior of the respective task (PS
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α−: w =−0.71, p < 0.001; BF α−: w =−0.41, p < 0.001), and positively predicted by win-stay
behavior (PS α−: w = 0.29, p < 0.001; RL-WM α−: w = 0.16, p = 0.009), revealing strong
task-based consistency. PS α− was also negatively predicted by PS task accuracy (w = −0.28,
p < 0.001). In summary, learning-rate parameters showed high levels of task-based consistency,
being related to win-stay behavior, lose-stay behavior, and task accuracy, as intended.

Taken together, these results suggest that both noise parameters and learning-rate parameters
were quite consistent across tasks in terms of which behavioral patterns they captured. Differences
in developmental time courses (Fig. 3.3A and B) and cognitive processes (Fig. 3.5A and B)
occurred in conjunction with stark differences in behavior between tasks (Fig. 3.3C).

3.3 Conclusion
The past decades have seen a surge in computational modeling, and many studies have fitted model
parameters to individual participants in the hope of distilling complex behaviors into a small num-
ber of meaningful individual characteristics. Parameters are usually interpreted to be both gener-
alizable –making predictions about individuals that extend to other tasks and real-life situations–
and interpretable –identifying the fundamental elements of cognitive and/or neural processing that
are at the core of laboratory tasks and real-world problem solving. Though rarely stated explicitly,
these assumptions underlie conclusions that have been drawn across all major fields of computa-
tional psychology and neuroscience. For example, associating model parameters with neural sub-
strates (e.g., learning rates with dopamine receptors), identifying parameters that differ between
healthy participants and those with psychiatric conditions (e.g., “blunted” positive learning rates
in depression), determining humans’ generic parameter settings (e.g., learning rates from negative
outcomes; relationships between learning from negative versus positive outcomes), or assessing the
development of parameters (e.g., learning rates across age), all rely on the assumption that model
parameters capture the same (neuro)cognitive processes across studies and across paradigms, i.e.,
that model parameters are generalizable and interpretable in a generic, task-independent sense.
Our results challenge this assumption, and show that a more nuanced understanding of model pa-
rameters is required to help resolve major discrepancies in the literature (e.g., Adams et al., 2016;
Hauser et al., 2019; Nussenbaum and Hartley, 2019).

In a within-participant design and using state-of-the-art model fitting techniques –avoiding po-
tential discrepancies caused by technical issues–, RL learning rates still showed wide discrepancies
between tasks, revealing a lack of parameter generalizability. Discrepancies were evident in both
absolute values and age trajectories, and, revealing a lack of parameter interpretability, learning
rates also captured orthogonal or even opposite cognitive processes across tasks. Decision noise
parameters, on the other hand, showed consistent age trajectories and cognitive processes. Both
this consistency of decision noise parameters and the inconsistency of learning rates confirm pat-
terns that have started to emerge in the literature (Nussenbaum and Hartley, 2019). Interestingly,
both decision noise and learning rates were consistent across tasks in terms of the behavioral pat-
terns they captured. Taken together, these findings clearly demonstrate that fitted values of learning
rates should not be assumed to generalize between tasks, or even to capture similar cognitive pro-
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cesses across studies, while these assumptions can likely be made for decision noise parameters.
The lack of generalizability in learning rates, however, does not suggest a failure of cognitive mod-
eling, but the need for an adapted interpretation of model parameters, given that parameters were
consistent across tasks in terms of behavioral patterns. Instead of equating model parameters to
(neuro)cognitive processes, we suggest they should be interpreted as maximally-compact behav-
ioral summaries: In the same way behaviors differ between tasks due to task differences, so do
model parameters.

Results Summary
Part I of this study focused on parameter generalizability, testing whether the same participants
showed the same parameter values in different tasks. The evidence was positive for decision noise
parameters ( 1

β
and ε), and negative for negative learning rates (α−), with intermediate general-

izability for positive learning rates (α+): Decision noise parameters showed different absolute
values across tasks, but they displayed the same age trajectories, and these age trajectories could
be predicted from one task to another, as long as the two tasks were sufficiently similar. This
demonstrates that a participant’s relative decision noise, compared to other participants, was stable
and generalized between tasks.

Learning rates, on the other hand, differed strikingly between tasks, especially in terms of ab-
solute values. Interestingly, the observed differences were in accordance with task demands: In the
volatile PS task, which required rapid switching and adaption, participants showed large positive
and negative learning rates, whereas in the stable BF and RL-WM tasks, which required continu-
ous incremental learning, participants showed small learning rates. In other words, participants’
learning rates were of the general magnitude that was most appropriate for each task. Parameter
adaptivity was also evident in the age trajectories of negative learning rates: A monotonic increase
occurred in the RL-WM task, which provided diagnostic negative feedback, but a quadratically-
modulated decrease occurred in the PS task, which had non-diagnostic negative feedback. In other
words, both tasks showed a general increase in parameter optimality, a tendency that has been
observed before (Nussenbaum and Hartley, 2019). Nevertheless, the shapes of the developmental
trajectories differed profoundly between tasks (monotonic increase vs U-shape), highlighting the
lack of generalization of learning rates between tasks. Positive learning rates revealed intermediate
generalizability between decision noise and negative learning rates, showing qualitatively similar
trajectories, but the inability to predict trajectories between tasks.

Part II examined parameter interpretability, i.e., whether parameters captured the same cogni-
tive processes across tasks. All decision noise parameters showed a negative relationship with task
performance, and all positive learning rates showed a positive relationship, whereas negative learn-
ing rates showed opposite relationships depending on the task. This highlights that with respect
to their roles for performance, decision noise parameters and positive learning rates could be in-
terpreted consistently across tasks, while negative learning rates could not. Regularized regression
showed that variance in BF noise parameters was captured by both PS and RL-WM noise parame-
ters, and that both captured slightly different aspects. Indeed, the BF task was the most prototypical
RL task of the three, suggesting that parameters in more similar tasks potentially capture more sim-
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ilar cognitive processes. Negative learning rates, on the other hand, showed large discrepancies: PS
and RL-WM negative learning rates predicted the same parameter, but inversely, suggesting oppos-
ing cognitive processes; and RL-WM negative learning rate –indeed, the entire RL-WM model–
failed to predict PS negative learning rate, suggesting a lack in overlap. Negative learning rates
therefore could not be interpreted in terms of the same cognitive processes across these tasks. For
positive learning rates, BF learning rates predicted RL-WM learning rates, revealing shared pro-
cesses; in the inverse model, RL-WM working-memory and RL parameters predicted BF learning
rates, suggesting that BF learning rates captured both RL and working-memory processes. (No
variance in RL-WM working-memory parameters was captured by PS or BF parameters, suggest-
ing that they successfully isolated working-memory processes.) PS positive learning rates were
not predicted by any other parameter, suggesting an orthogonal, independent cognitive process,
but PS Persistence was related to other the tasks’ learning rates. In sum, learning-related cognitive
processes were captured by a different interplay of positive and negative learning rates, working-
memory, and other parameters (e.g., Persistence) in each task; learning rates therefore should not
be interpreted as the entirety of learning processes captured by a cognitive model.

Lastly, the relation between model parameters and task behavior was strikingly consistent
across tasks for both decision noise and learning rates. When decision noise decreased, accu-
racy and win-stay behavior increased, and loose-stay behavior increased when adaptive (PS) and
decreased when not (BF). Similarly, when positive learning rates increased, win-stay behavior in-
creased, and when negative learning rates increased, loose-stay behavior decreased. This shows
that even learning rates, sometimes capturing widely different cognitive processes across tasks,
consistently summarized the same behavioral patterns in each task: Decision noise was related
to task accuracy and adaptive stay behavior, and positive and negative learning rates captured
win-stay and loose-stay behavior, respectively. In sum, our recommendation for future research
is to shift the interpretation of model parameters from a notion of task-independent measures of
(neuro)cognitive processing, to a notion of maximally-compact behavioral summaries with the
ability to highlight task differences. Specific task characteristics need to be the foundation for in-
terpreting model parameters. For example, stochastic feedback might elicit incremental updating,
whereas volatile tasks might elicit state inference, and many stimuli might elicit working-memory
processing. The use of different cognitive processes results in differences in win-stay and loose-
stay behavior, which will be reflected in differences between model parameters.

Potential Neural Substrates
Can computational modeling still inform brain science? We answer this question in the positive.
Assuming that model parameters capture meaningful patterns, they are just as likely to relate to
brain processes as any other meaningful behavioral pattern that has been used in fMRI studies, and
our results provide no argument against using computational modeling in brain science. The only
caveat is that parameter-associated brain areas are expected to generalize between tasks that rely
on similar cognitive processes, and not as a general rule. More specifically, the generalizability of
decision noise parameters across tasks is compatible with a single underlying neural system. The
cognitive process likely relates to broad, non-specific motivation, task engagement, and overall



CHAPTER 3. WHAT CAN WE LEARN FROM COMPUTATIONAL MODELING? 85

attention, and is potentially based in the evolutionary-old basal ganglia system, which plays a
fundamental role for motivated behavior (Linda citations?). Another possibility is that decision
noise is modulated by cortical maturation (with ‘sparsification’ of representations due to spine
pruning, and maturation of inhibition and neuromodulation; Linda citations).

The lack of generalizability of learning rate parameters is compatible with different neural
interpretations: Similar to decision noise, learning rates might reflect the same neural system in
each task, most likely the midbrain-dopamine system (Niv, 2009; O’Doherty et al., 2015). Task
differences might be caused by modulation of this system by environmental factors, including un-
certainty (Gershman, 2017a; Gershman and Uchida, 2019; Starkweather et al., 2018), potentially
through development (Lin et al., 2020). An alternative interpretation is that unlike decision noise,
learning rates are not tied to a specific neural system, but capture different systems depending on
task demands. For example, learning rates might reflect midbrain-dopamine activity when incre-
mental, stochastic learning is required (Bayer and Glimcher, 2005), but hippocampal processing
when episodic memory is required (Davidow et al., 2016), and yet another set of brain structures
for working memory (Collins, Ciullo, et al., 2017). Future research is necessary to discriminate
between these alternatives, using brain imaging in tasks with differing demands.

Reconciling Discrepancies in the Previous Literature
Discrepancies in the literature can point to a replication crisis and the existence of fundamental
problems, but our results show that this does not need to be the case for cognitive modeling. Dis-
crepancies in the computational modeling literature have been ascribed to a range of methodolog-
ical issues, including model misspecification, lack of model comparison and validation, and inap-
propriate fitting methods (Daw, 2011; M. D. Lee, 2011; Nussenbaum and Hartley, 2019; Palminteri
et al., 2017; Wilson and Collins, 2019), as well as the lack of parameter reliability and validity,
even though this seems to be a smaller issue when model fitting is done appropriately (Brown et
al., 2020). Our results show that this is not the only possible explanation, and that discrepancies
can arise –and are even expected– when different studies use tasks that recruit different cognitive
processes and elicit different behaviors.

We recommend that previous modeling studies be reinterpreted in this light to reconcile dis-
crepancies. Nussenbaum and Hartley, 2019, for example, suggested a reinterpretation based on
parameter optimality. In this view, instead of treating model parameters as stable individual char-
acteristics (e.g., 10-year olds have a learning rate of 20%; 12-year olds of 40%), they should be
interpreted in terms of their optimality for a specific task (e.g., adults’ parameters are more op-
timal than children’s). In this interpretation, parameter differences arise from differences in the
ability to identify optimal parameters, or in the flexibility of adjusting parameters to task demands.
Reinterpretation needs to specifically focus on task characteristics. Parameter commonalities and
differences need to be mapped onto task factors including volatility (Behrens et al., 2007), un-
certainty (Gershman and Uchida, 2019), feedback diagnosticity (Eckstein et al., 2020), response
type (go no-go, binary, several options), and working-memory load (Collins and Frank, 2012).
Future research will be crucial to fully understand the effects of all these factors, and investigate
their interplay. A larger number of tasks, systematically varying several axes of interest, is needed
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to verify our exploratory hypotheses about the mapping between model parameters and cognitive
processes (e.g., stochastic feedback ↔ incremental updating). This research is also necessary to
determine the extent of parameter consistency and inconsistency between tasks. In our study, noise
parameters were more consistent than learning rates, and positive learning rates were more con-
sistent that negative ones. Even though these results are consistent with patterns in the literature
(Nussenbaum and Hartley, 2019), a larger pool of tasks is needed to understand their full extent.
Furthermore, our results suggested that parameters generalized better between similar tasks, and
a larger number of tasks will be able to confirm or disprove this pattern. Future research is also
needed to investigate the relationships between cognitive constructs measured using computational
models, and traditional cognitive constructs from psychology, including cristalline and fluid intel-
ligence (Wechsler and Matarazzo, 1972), risk taking (Gullone et al., 2000), and memory span
(Conway et al., 2005). Understanding the interplay between these constructs is necessary to con-
nect computational modeling to previous research. Lastly, future research should systematically
investigate model similarity. While our results suggest that parameters generalized more between
similar tasks, this could also be a function of model similarity because similar tasks were modeled
using similar models. De-correlating cognitive models from experimental tasks will improve our
understanding. Relatedly, previous research has shown that not all individual differences can be
captured in parameter differences, and that participants might instead employ entirely different
computational models (e.g., Palminteri et al., 2016). Future research is needed to understand the
relationship between computational models, model parameters, and task demands.

Why Parameters Capture Different Processes in Different Tasks:
Parameters are Specific not Generic
What features of RL models lead to their capturing different cognitive processes in different tasks?
RL is a general framework that has been applied to a variety of tasks in the cognitive literature,
spanning from simple conditioning paradigms all the way to complex, goal-directed, temporally-
extended, and hierarchical decision making. Nevertheless, the computational models used in each
case are strikingly similar. For example, the same learning rate parameter is used when a) slowly
acquiring a preference for one option over another through hundreds of repetitions, based on un-
reliable and noisy feedback; b) quickly recognizing whether underlying task contingencies have
switched, requiring an abrupt switch in response patterns; and c) deciding which general strategy
to try out in a new context, based on experience in other contexts. Furthermore, the same learning
rates also account for choice (i.e., which action is selected in each trial) and meta-learning (i.e.,
slow improvement at a specific task over time), an issue that a small number of studies has ad-
dressed using learning rates at different levels of hierarchy (Botvinick, 2012; Eckstein and Collins,
2018; Ribas Fernandes et al., 2011; Wang et al., 2018). Nevertheless, often generic RL models
with a single learning rate are used, which are unable to reflect these differences. In sum, because
RL models are so compact, the same parameters need to capture different cognitive processes when
used in different domains, a fact that is facilitated by their flexibility. In many ways, model param-
eters are more similar to task-specific measures (e.g., accuracy reflects different things in a learning
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task versus language test), than to stable individual characteristics (e.g., intelligence, which can be
measured using different tasks). This means that it is increasingly important to understand what
parameters measure in each task; relating model parameters to other cognitive constructs and real-
world behavior might be a task-by-task endeavor. Fundamentally, model parameters seem to be
task-specific rather than task-independent and generic.

Outlook
This discovery reflects a larger pattern of realization in psychology that we cannot assume that we
can assess individuals’ function outside of a subjective context. IQ tests for example are not neutral
assessments of an individual’s function and scores are mediated by the familiarity with the context
of the test questions and even testing itself. Task skin and parameters may operate in a similar
way and shift the system settings within an individual. Knowledge about these processes could be
valuable to develop individualized learning plans. This may be valuable as we better appreciate
and seek to accommodate diversity in cognitive function.

3.4 Methods

Participant Sample
Sample Overview

All procedures were approved by the Committee for the Protection of Human Subjects at the
University of California, Berkeley. We tested 312 participants: 191 children and adolescents (ages
8-17) and 55 adults (ages 25-30) were recruited from the community and completed a battery of
computerized tasks, questionnaires, and saliva samples; 66 university undergraduate students (aged
18-50) completed the four tasks as well, but not the questionnaires or saliva sample. Community
participants of all ages were prescreened for the absence of present or past psychological and
neurological disorders; the undergraduate sample indicated the absence of these. Compensation
for community participants consisted in $25 for the 1-2 hour in-lab portion of the experiment and
$25 for completing optional take-home saliva samples; undergraduate students received course
credit for participation in the 1-hour study.

Participant Exclusion

Two participants from the undergraduate sample were excluded because they were older than 30,
and 7 were excluded because they failed to indicate their age. This led to a sample of 191 com-
munity participants under 18, 57 undergraduate participants between the ages of 18-28, and 55
community participants between the ages of 25-30. Of the 191 participants under 18, 184 com-
pleted the PS task, and 187 completed the BF and RL-WM task. Reasons for not completing a
task included getting tired, running out of time, and technical issues. All 57 undergraduate par-
ticipants completed the PS task, 55 completed the BF task, and 55 completed the RL-WM task.
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All 55 community adults completed the PS and BF task, and 45 completed RL-WM. Appropriate
exclusion criteria were implemented separately for each task to exclude participants who failed to
pay attention and who performed critically worse than the remaining sample (for PS, see Eckstein
et al., 2020; BF: Xia et al., 2020; RL-WM: Master et al., 2020). Based on these criteria, 5 partici-
pants under the age of 18 were excluded from the PS task, 10 from the BF task, and none from the
RL-WM task. One more community adult participant was excluded from the BF task, but no adult
undergraduates or community participants were excluded for PS or RL-WM.

The performance criterion led to the exclusion of the majority of our developmental sample in
the fourth task of our study, which was modeled after a rodent task and used in humans for the first
time (Johnson and Wilbrecht, 2011). We therefore excluded this task from the current analysis.
For some analyses, we split participants into quantiles based on age. Quantiles were calculated
separately within each sex.

Testing Procedure
After entering the testing room, participants under 18 years and their guardians provided informed
assent and permission; participants over 18 provided informed consent. Guardians and participants
over 18 filled out a demographic form. Participants were led into a quiet testing room in view of
their guardians, where they used a video game controller to complete four computerized tasks,
in the order shown in Fig. 3.1C. At the conclusion of the tasks, participants between 11 and 18
completed the PDS questionnaire (Petersen et al., 1988) and were measured in height and weight.
Participants were then compensated with $25 Amazon gift cards.

Task Design
Probabilistic Switching (PS)

The goal of the task was to collect golden coins, which were hidden in two green boxes. The
task could be in one of two states: “Left box is correct” or “Right box is correct”. In the former,
selecting the left box led to reward in 75% of trials, while selecting the right box never led to a
reward (0%). Several times throughout the task, and unpredictably, task contingencies changed
without notice (after participants had reached a performance criterion indicating they had learned
the current state), and the task switched states, which led to a reversal of the task contingencies.
Participants completed 120 trials of this task (2-9 reversals), which took approximately 5-15 min-
utes. For more information about additional task details, the employed tutorial, exact instructions,
and switching rules; as well as a full analysis of this data set, please refer to Eckstein et al., 2020.

Butterfly (BF)

The goal of the task was to collect as many points as possible, by guessing correctly which of
two flowers was associated with each of four butterflies. Correct guesses were rewarded with 70%
probability, and incorrect guesses with 30%. The task contained 120 trials (30 for each butterfly)
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that were split into 4 equal-sized blocks, and took between 10-20 minutes to complete. More
detailed information about methods and results in this data set can be found in Xia et al., 2020.

Reinforcement Learning-Working Memory (RL-WM)

The goal of the task was to collect as many points as possible by pressing the correct key for each
stimulus. Pressing the correct key always led to reward deterministically, and the correct key for a
stimulus never changed. Stimuli appeared in blocks that varied in the number of different stimuli,
with stimulus set sizes ranging from 2-5. In each block, each stimulus was presented 12-14 times,
for a total of 13 * set size trials per block. Three blocks were presented for set sizes 2-3, and 2
blocks were presented for set sizes 4-5, for a total of 10 blocks. The task took between 14-25
minutes to complete. For more details, as well as a full analysis of this data set, please refer to
Master et al., 2020.

Pubertal Measures
We administered the pubertal development scale (Petersen et al., 1988) and collected saliva samples
to investigate the role of pubertal maturation on learning and decision making. Pubertal analyses
are not the focus of the current study and will be or have reported elsewhere (e.g., Master et al.,
2020; Xia et al., 2020). For details about how we assessed pubertal measures, refer to Master et al.,
2020.

Computational Models
We fitted a separate RL model to each task, using state-of-the-art methods for model construction,
fitting, and validation (Palminteri et al., 2017; Wilson and Collins, 2019). The PS and BF mod-
els were fitted using hierarchical Bayesian methods with Markov-Chain Monte-Carlos sampling,
which is an improved method compared to maximum likelihood that leads to better parameter re-
covery, amongst other advantages (Gelman et al., 2013; Katahira, 2016; Watanabe, 2013). The
RL-WM model was fitted using the classic non-hierarchical maximum-likelihood method because
model parameter K is discrete, which renders hierarchical sampling less tractable. In all cases, we
verified that the model parameters were recoverable by the selected model-fitting procedure, and
that the models were identifiable. Details of model-fitting procedures can be found in Eckstein
et al., 2020; Master et al., 2020; Xia et al., 2020

For the PS task, we fitted two separate models, one based on RL, and the other based on
Bayesian Inference (Eckstein et al., 2020). For the other two tasks, we fitted a single, RL-based
model. As explained in Introduction, RL proceeds in two steps: value-learning and action selec-
tion. During learning, action values are updated based on new outcomes r:

Qt+1(a|s) = Qt(a|s)+α(rt−Qt(a|s)

Qt(a|s) indicates the value of action a in state s on trial t, for example the estimated reward prob-
ability of selecting the red flower (a) in response to the purple butterfly (s) on the BF task. The
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learning rate 0 < α < 1 determines the weight of new information compared to old value estimates,
and the differences between the estimated value and actual received reward is called the “reward
prediction error” (rt −Qt(a|s)). For action selection, learned action values Q(a|s) are translated
into action probabilities p(a|s), using the softmax function:

p(ai|s) =
exp(β Q(ai|s))

∑a j∈A exp(β Q(a j|s))

where A refers to the set of all available actions (PS and BF have two actions, RL-WM has three),
and ai and a j to individual actions within the set. The free parameter 0 < β is the inverse deci-
sion temperature, or exploration: higher values of beta lead to more deterministic selection of the
higher-valued action.

In PS and BF, positive and negative learning rates are differentiated in the following way:

Qt+1(a|s) = Qt(a|s)+α+(rt−Qt(a|s) ⇐⇒ rt = 1

Qt+1(a|s) = Qt(a|s)+α−(rt−Qt(a|s) ⇐⇒ rt = 0

(In BF, the best model only treated α+ as a free parameter, and α− was set to 0 for all partici-
pants.) In RL-WM, α− is a function of α+, such that α− = b ∗α+, where b is the neglect bias
parameter that determines how much negative feedback is neglected compared to positive feed-
back. Throughout the paper, we report α−.

In PS, an additional free parameter p captured choice Persistence (also called “sticky choice”
or “choice perseverance”), which biased choices toward staying (p > 0) or switching (p < 0) on
the subsequent trial. p worked by creating modified action values Q′(a|s), which were submitted
to the softmax function instead of Q(a|s):

Q′t(a|s) = Qt(a|s)+ p ⇐⇒ at = at−1

Q′t(a|s) = Qt(a|s) ⇐⇒ at 6= at−1

In addition, the PS model included counter-factual learning parameters αC+ and αC−, which added
counter-factual updates based on the inverse outcome and affecting the non-chosen action. For
example, after receiving a positive outcome (r = 1) for choosing left (a), counter-factual updating
would lead to an “imaginary” negative outcome (r̄ = 0) for choosing right (ā).

Qt+1(ā|s) = Qt(ā|s)+αC+(r̄−Qt(ā|s)) ⇐⇒ r = 1

Qt+1(ā|s) = Qt(ā|s)+αC−(r̄−Qt(ā|s)) ⇐⇒ r = 0

ā indicates the non-chosen action, and r̄ indicates the inverse of the received outcome, r̄ = 1− r.
The best model fits were achieved with αC+ = α+ and αC− = α−, so counter-factual learning rates
are not reported in this paper.

In BF, the best fitting model included a forgetting mechanism, which was implemented as a
decay in Q-values applied to all action values of the three stimuli (butterflies) that were not shown
on the current trial:

Qt+1(a|s) = (1− f )∗Qt+1(a|s)+ f ∗0.5.
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The free parameter 0 < f < 1 reflects the individual tendency to forget.
In addition to an RL module, the RL-WM model also included a working-memory module with

perfect recall of recent outcomes, but subject to forgetting and capacity limitations. Perfect recall
was modeled as an RL process on working-memory weights W (a|s) with learning rate αWM+ = 1.
On trials with positive outcomes (r = 1), the model reduces to:

Wt+1(a|s) = rt

On trials with negative outcomes (r = 0), multiplying αWM+ = 1 with the neglect bias b leads to
potentially less-than perfect memory:

Wt+1(a|s) =Wt(a|s)+b∗ (rt−Wt(a|s))

Working-memory weights W (a|s) were transformed into action policies pWM(a|s) in a similar
way as RL weights Q(a|s) were transformed into action probabilities pRL(a|s), using a softmax
transform, but combined with undirected noise:

p(ai|s) = (1− ε)∗ exp(β Q(ai|s))
∑a j∈a exp(β Q(a j|s))

+ ε∗ 1
|a|

|a|= 3 is the number of available actions, and 1
|a| is the uniform policy over these actions. Forget-

ting is implemented as a decay in working-memory weights W (a|s) (but not RL Q-values):

Wt+1(a|s)t+1 = (1− f )∗Wt(a|s)t + f ∗ 1
3

Capacity limitations of working memory were modeled as an adjustment in the weight w of
pWM(a|s) compared to pRL(a|s) in the final calculation of action probabilities p(a|s):

w = ρ∗ (min(1,
K
ns
))

p(a|s) = w∗ pWM(a|s)+(1−w)∗ pRL(a|s)

The free parameter ρ is the individual weight of working memory compared to RL, ns stands for a
block’s set size, and K captures individual differences in working-memory capacity.

In addition to the RL model, we also fit a Bayesian Inference model to the PS task. This
model contained a mental model of the task, which was based on two states “Left is correct”
and “Right is correct”, and used Bayesian inference to infer the current state based on recent
outcomes. The free parameters of this model were the parameters of the task (switch probability
on each trial pswitch, and probability of reward for a correct choice preward), in addition to choice
parameters Persistence p and inverse decision temperature β. Detailed information about this
model is provided in Eckstein et al., 2020. For additional details on any of these models, as well
as detailed model comparison and validation, the reader is referred to the original publications
(RL-WM: Master et al., 2020; BF: Xia et al., 2020; PS: Eckstein et al., 2020).
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Ridge Regression
In section “Do Parameters Capture Overlapping Cognitive Processes?”, we use regularized, cross-
validated Ridge regression to determine whether parameters captured overlapping variance, which
would point to capturing similar cognitive processes. Ridge regression is used to avoid problems
caused by overfitting, regularizing regression weight parameters w based on their L2-norm. Reg-
ular regression works by identifying a vector of regression weights w that minimizes the linear

least squares ||y−wX ||22. ||a||22 =
√

∑ai∈x a2
i is the L2-norm of a vector, vector y represents the

outcome variable (in our case, a parameter fitted to each participant), matrix X represents the pre-
dictor variables (in our case, parameters of a different task fitted to each participant), and vector
w represents the weight assigned to each feature in X (in our case, the weight assigned to each
predicting parameter).

When datasets are small compared to the number of predictors in a regression model, overfitting
can lead to “exploding” regressions weights w. Ridge regression avoids this issue by not only
minimizing the linear least squares like regular regression, but also the L2 norm of weights w,
minimizing ||y−wX ||22+α∗||w||22. Parameter α is a meta-parameter of Ridge regression and needs
to be chosen by the experimenter. To avoid bias in the selection of α, we used a repeated cross-
validation procedure. At each iteration of the procedure, we split the dataset into a predetermined
number s of equal-sized splits, fitted Ridge regression to each of the splits independently using a
different value for α, and then determined the best value of α based on cross-validation between
the splits, using the amount of explained variance, R2, as the selection criterion. Based on a coarse
pre-analysis, we determined the search space α∈ [0, 10, 30, 50, 100, 300, 500, 1,000, 3,000, 5,000,
10,000, 100,000, 1,000,000]. To avoid biases based on the random assignment of participants into
data splits, this procedure was repeated n = 100 times for each value of α. To avoid biases caused
by s, the entire process was repeated for s ∈ [2,3,4,5,6,7,8]. The final value of s was selected
based on model fit (explained variance R2).

This process was conducted separately for each model, i.e., each combination of an outcome
parameter (e.g., PS α+) and a predicting task (BF or RL-WM). Meta-parameters s and α were
allowed to differ (and differed) between models (see supplements). The final values of R2 (Fig.
3.5A) and the final regression weights w (Fig. 3.5B) were determined by running 1,000 Ridge re-
gression models based on the best meta-parameters identified using this procedure, and calculating
means and standard deviations sd of R2 and w over the repetitions. Statistical tests were conducted
by assessing the proportion p of repetitions in which a null hypothesis (e.g., R2 < 0) was accepted.
Values of p < 0.05 were deemed significant.

Principal Component Analysis (PCA)
PCA performs a “change of basis”: Instead of describing the dataset using the original features (in
our case, 54 behaviors and model parameters), it creates new features –called Principal Compo-
nents (PCs)– that are linear combinations of the original features and capture the same variance,
but are orthogonal to each other. PCs are created by eigendecomposition of the covariance matrix
of the dataset: the eigenvector with the largest eigenvalue shows the direction in the dataset in
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which most variance occurs, and represents the first PC. Eigenvectors with subsequently smaller
eigenvalues form subsequent PCs.

PCs can be interpreted by evaluating their “factor loadings”, the linear weight of each original
feature on the PC. PCA is related to Factor analysis, and often used for dimensionality reduction.
In this case, only a small number of PCs is retained whereas the majority is discarded, in an effort
to retain most variance with a reduced number of features.

Our dataset consisted of 54 features, 39 behavioral measures and 15 model parameters. For
an explanation of the model parameters, refer to section “Computational Models” above, or the
original publications of each model (RL-WM: Master et al., 2020; BF: Xia et al., 2020; PS: Eck-
stein et al., 2020). For each task, behavioral measures include: number of missed trials, average
response times, response time variability (standard deviation of response times), accuracy (overall
percentage of correct trials), win-stay strategy (percentage of trials in which a rewarded choice
was repeated), and loose-stay tendency (percentage of trials in which a non-rewarded choice was
repeated). For PS, we additionally included win-loose-stay tendencies, which is the proportion of
trials in which participants stay after a winning trial that is followed by a losing trial. This is an
important measure for this task because the optimal strategy required staying after single losses.

We also included behavioral persistence measures in all tasks. In BF and RL-WM, these in-
cluded a measure of action repetition (percentage of trials in which the previous key was pressed
again, irrespective of the stimulus and feedback) and choice repetition (percentage of trials in
which the action was repeated that was previously selected for the same stimulus, irrespective of
feedback). In PS, both measures are identical because it does not have different stimuli, so we only
included one of them.

Last, we included task-specific measures of performance. In BF, the average accuracy for the
first three presentations of each stimulus, reflected early learning speed; and the asymptote, inter-
cept, and slope of the learning progress in a regression model predicting performance (for details
about these measures, see Xia et al., 2020). In PS, the number of reversals (because reversal was
contingent on performance; and the average trial-to-criterion after a switch (number of trials until
2 correct choices have been made after a task switch) offered additional measures of performance.
In BF and RL-WM, we also included a model-independent measure of forgetting. In BF, this was
the effect of delay on performance in the regression model mentioned above. In RL-WM, this
was the effect of delay in a similar regression model, which also included set size, the number of
previous correct choices, and the number of previous incorrect choices, whose effects were also
included. Lastly for RL-WM, we included the slope of accuracy and response times over set sizes,
as a measure of the effect of set size on performance. For PS, we also included the difference
between early (first third of trials) and late (last third) performance as a measure of learning.
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3.5 Supplemental Material

Table 3.4: Statistics of mixed-effects regression models predicting parameter values from task (BF,
PS, RL-WM), age, and squared age (months). Only effects including task are reported. * p < .05;
** p < .01, *** p < .001.

Parameter Tasks Predictor β p sig.
α+ PS & BF Task (main effect) 0.79 < 0.001 ***

Task * linear age (interaction) -0.025 0.009 **
Task * quadratic age (interaction) 0.001 0.021 *

PS & RL-WM Task (main effect) 0.84 < 0.001 ***
Task * linear age (interaction) -0.012 0.41
Task * quadratic age (interaction) < 0.001 0.55

BF & RL-WM Task (main effect) 0.048 0.70
Task * linear age (interaction) -0.12 0.37
Task * quadratic age (interaction) < 0.001 0.36

1
β

PS & BF Task (main effect) 0.49 < 0.001 ***
Task * linear age (interaction) -0.026 0.046 *
Task * quadratic age (interaction) 0.001 < 0.001 ***

α− PS & RL-WM Task (main effect) 11.70 < 0.001 ***
Task * linear age (interaction) 0.58 < 0.001 ***
Task * quadratic age (interaction) -0.013 < 0.001 ***

Forgetting PS & RL-WM Task (main effect) 0.10 0.36
Task * linear age (interaction) 0.005 0.70
Task * quadratic age (interaction) < 0.001 0.67
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Figure 3.6: Scatter plots and Spearman correlations. Each dot is one participant, colors indicate
age.
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Chapter 4

Hierarchically-Structured Reinforcement
Learning in Humans

This chapter presents a computational model that captures hierarchical learning and choice in hu-
mans. The model executes reinforcement learning processes at two levels of abstraction, inspired
by the hierarchical organization of the brain’s reinforcement learning system. 1

Abstract
Humans have the fascinating ability to achieve goals in a complex and constantly changing world,
still surpassing modern machine learning algorithms in terms of flexibility and learning speed. It
is generally accepted that a crucial factor for this ability is the use of abstract, hierarchical rep-
resentations, which employ structure in the environment to guide learning and decision making.
Nevertheless, how we create and use these hierarchical representations is poorly understood. This
study presents evidence that human behavior can be characterized as hierarchical reinforcement
learning (RL). We designed an experiment to test specific predictions of hierarchical RL using a
series of subtasks in the realm of context-based learning, and observed several behavioral mark-
ers of hierarchical RL, such as asymmetric switch costs between changes in higher-level versus
lower-level features, faster learning in higher-valued compared to lower-valued contexts, and pref-
erence for higher-valued compared to lower-valued contexts. We replicated these results across
three independent samples. We simulated three models: a classic RL, a hierarchical RL, and a
hierarchical Bayesian model, and compared their behavior to human results. While the flat RL
model captured some aspects of participants’ sensitivity to outcome values, and the hierarchical
Bayesian model some markers of transfer, only hierarchical RL accounted for all patterns observed
in human behavior. This work shows that hierarchical RL, a biologically-inspired and computa-
tionally simple algorithm, can capture human behavior in complex, hierarchical environments, and
opens the avenue for future research in this field.

1This chapter has been published separately (Eckstein and Collins, 2018), co-authored with my thesis advisor
Anne G.E. Collins, and with the contributions of Lucy Whitmore and Sarah L. Master to data collection.
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4.1 Introduction
Research in the cognitive sciences has long highlighted the importance of hierarchical represen-
tations for intelligent behavior, in domains including perception (T. S. Lee & Mumford, 2003),
learning and decision making (Botvinick et al., 2009; Botvinick et al., 2015), planning and prob-
lem solving (Chase & Simon, 1973), cognitive control (E. K. Miller & Cohen, 2001), and creativity
(Collins & Koechlin, 2012), among many others (Griffiths et al., 2019; Tenenbaum et al., 2011).
The common thread across all these domains is the insight that hierarchical representations—i.e.,
the simultaneous representation of information at different levels of abstraction—allow humans
to behave adaptively and flexibly in complex, high-dimensional, and ever-changing environments.
Exhaustive non-hierarchical (flat) representations, in contrast, are insufficient to achieve human-
like behaviors.

To illustrate, consider the following situation. Mornings in your office, your colleagues are
working silently, or quietly discussing work-related topics. After work, they are laughing and
chatting loudly at their favorite bar. In this example, a context change induced a drastic change
in behavior, despite the same interaction partners (i.e., “stimuli”). Hierarchical theories of cog-
nition capture this behavior by positing that we learn strategies hierarchically, activating different
behavioral strategies (or “task-sets”) in different contexts. Although hierarchical representations
can incur additional cognitive cost (Collins, 2017), they provide a range of advantages compared
to exhaustive flat representations: Once a task-set has been selected (e.g., office), attention can be
focused on a subset of environmental features (e.g., just the interaction partner) (Frank & Badre,
2012; Leong et al., 2017; Niv et al., 2015; Wilson & Niv, 2012). When new contexts are encoun-
tered (e.g., new workplace, new bar), entire task-sets can be reused, allowing for generalization
(Collins & Koechlin, 2012; Donoso et al., 2014; Taatgen, 2013). Old skills are not catastrophically
forgotten (Flesch et al., 2018). In addition, hierarchical representations deal elegantly with incom-
plete information, for example when contexts are unobservable (Collins & Frank, 2013; Collins &
Koechlin, 2012). All these advantages are evident in the current study.

Although we know that hierarchical representations are essential for flexible behavior, how hu-
mans create these representations and how they learn to use them is still poorly understood. Here,
we hypothesize that learning and using hierarchical representations can be explained under a hier-
archical reinforcement learning (RL) framework, in which simple RL computations are combined
to simultaneously operate at different levels of abstraction. RL theory (Sutton & Barto, 2017)
formalizes how to adjust behavior based on feedback in order to maximize rewards. Standard RL
algorithms estimate how much reward to expect when selecting actions in response to stimuli, and
use these “action-value” estimates to select actions. Old action-values are updated in proportion
to the “reward prediction error”, the discrepancy between action-values and received reward, to
produce increasingly accurate estimates. Such “flat” RL algorithms operate over unstructured,
exhaustive representations (SI Appendix, Fig. 3A), converge to optimal behavior, are computa-
tionally inexpensive, and have led to recent breakthroughs in artificial intelligence (AI) (Sutton &
Barto, 2017).

Broad evidence suggests that the brain implements computations similar to RL: Dopamine
neurons generate reward prediction errors (Bayer & Glimcher, 2005; Schultz et al., 1997), and a
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wide-spread network of frontal cortical regions (D. Lee et al., 2012) and basal ganglia (Abler et al.,
2006; Tai et al., 2012) represents action values. Specific brain circuits thereby form “RL loops”
(G. Alexander et al., 1986; Collins & Frank, 2013), in which learning is implemented through the
continuous updating of action values (Niv et al., 2015; Schultz, 2013). In this sense, estimating
action-values via RL is an algorithm of special interest to cognition: There is strong evidence that
the brain implements a simple mechanism to perform the necessary computations. Nevertheless,
RL algorithms have important shortcomings: They suffer from the curse of dimensionality (an
exponential drop in learning speed with increasing problem complexity); they lack flexibility for
behavioral change; and they cannot easily generalize or transfer old knowledge to new situations.
Hierarchical RL (Konidaris, 2019) mitigates these shortcomings by nesting RL processes at differ-
ent levels of temporal (Botvinick, 2012; Momennejad et al., 2017; Ribas Fernandes et al., 2011)
or state abstraction (Farashahi et al., 2017; Leong et al., 2017).

Recent research has provided support for a plausible implementation of hierarchical RL in the
brain: The neural circuit that implements RL is multiplexed, such that distinct RL loops operate at
different levels of abstraction along the rostro-caudal axis (G. Alexander et al., 1986; W. H. Alexan-
der & Brown, 2015; Badre, 2008; Badre & D’Esposito, 2009; Badre & Frank, 2012; Balleine et al.,
2015; Frank & Badre, 2012; Haruno & Kawato, 2006; Koechlin, 2016). Consistent with this archi-
tecture, recent studies have shown signatures of RL values and reward prediction errors at different
levels of abstraction in the human brain (Diuk, Tsai, et al., 2013; Ribas Fernandes et al., 2011).
However, previous studies did not provide evidence that neural signatures of hierarchical value
support learning and generalizing hierarchically structured behavior. Thus, it remains unknown
whether hierarchical RL indeed supports hierarchical behavior. The goal of this study is to fill this
gap. We investigate hierarchical RL in a novel paradigm that promotes the creation and reuse of
hierarchical structure. We provide a fully-fledged computational model that accounts for behavior
across a variety of relevant situations: context-dependent learning, context switches, generaliza-
tion to new contexts, partially-observable problems, and choices at different levels of abstraction.
To our knowledge, this is the first study that tests all predictions of hierarchical RL in a single
paradigm. Because hierarchical RL makes specific behavioral predictions in each situation, we
are able to test the model qualitatively against human behavior (Palminteri et al., 2017). We then
compare our hierarchical RL model quantitatively to the two most relevant competing models, flat
RL and hierarchical Bayes. The former employs RL, but without hierarchical structure. The latter
assumes that high-level decisions are based on Bayesian inference of task-set reliability, rather than
RL using task-set values (Donoso et al., 2014).

In the following, we first introduce our hierarchical RL model and experimental paradigm.
We then test whether humans show qualitative behaviors that are predicted by the hierarchical RL
model, as well as the two competing models. We first show evidence for hierarchical representa-
tions in humans, as predicted by both hierarchical RL and hierarchical Bayes, but not flat RL. We
employ multiple independent analyses, including switch cost measures and positive and negative
transfer. We then provide evidence for human hierarchical value learning, which is only consistent
with the hierarchical RL model. We next provide quantitative support for these qualitative results,
and show that model comparison supports the hierarchical RL model over flat RL and hierarchical
Bayes. The majority of results replicates across three independent participant samples.
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Figure 4.1: A) Schematic of the hierarchical RL model. A high-level RL loop (green) selects a
task-set T S in response to the observed context, using TS values. The chosen task-set provides
action-values, based on which the low-level RL loop (blue) selects an action in response to the
observed stimulus. Task-set and action-values are both learned based on action feedback. B)
Human learning curves during the initial learning phase, averaged over blocks. Colors denote
underlying action-values (left) and task-set values (right), respectively. Stars show that both affect
performance (main text), consistent with hierarchical RL. *** indicates p < 0.001.

4.2 Results

Computational Models
Our hierarchical RL model is composed of two hierarchically-structured RL processes. The high-
level process manages behavior at the abstract level by acquiring a “policy over policies”: It learns
which task-set to choose in each context, using “task-set values” (the estimated expected reward
of selecting a task-set in a given context). The low-level process acquires these task-sets: it learns
which actions to choose in response to each stimulus by estimating “action values” (the estimated
expected reward of selecting an action for a given stimulus, within a specific task-set; Fig. 4.1A).

At the beginning of the task, task-sets and actions are picked randomly, but over time, trial-
and-error learning leads to the formation of meaningful task-sets, which represent policies that are
specialized for particular contexts. Trial-and-error learning also underlies the policy over task-sets
that determines which task-set is selected in each context. Thus, our hierarchical RL model is based
on two nested processes, which create an interplay between learning stimulus-action associations
(low level) and context-task-set associations (high level). SI Appendix, (Fig. 4) shows a step-by-
step visualisation of this model.

Formally, to select an action a in response to stimulus s in context c, hierarchical RL goes
through a two-step process: (1) It selects a task-set T S based task-set values in the current con-
text, Q(T S|c), using p(T S|c) = exp(Q(T S|c))

∑T Si exp(βT S Q(T Si|c)) . The inverse temperature βT S captures task-set

choice stochasticity (Fig. 4.1A). The chosen task-set T S provides a set of action-values Q(a|s,T S),
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which are used to (2) select an action a, according to p(a|s,T S) = exp(Q(a|s,T S))
∑ai exp(βa Q(ai|s,T S)) , where

βa captures action choice stochasticity (Fig. 4.1A; for trial-by-trial behavior, see SI Appendix,
Fig. 4B). After executing action a on trial t, feedback rt reflects the continuous amount of re-
ward received, which guides learning at both levels of abstraction, i.e., to update the values of
the selected task-set and action: Qt+1(T S|c) = Qt(T S|c)+αT S (rt −Qt(T S|c)) Qt+1(a|s,T S) =
Qt(a|s,T S) +αa (rt −Qt(a|s,T S)) αT S and αa are learning rates at the levels of task-sets and
actions (Fig. 4.1A; SI Appendix, Fig. 4C).

The flat RL model uses the same mechanism for value learning and action selection, but lacks
hierarchical structure: It treats each combination of context and stimulus as a unique state (meth-
ods). The hierarchical Bayesian model creates a task-set structure like hierarchical RL, but selects
task-sets according to their inferred reliability, rather than task-set values (methods).

Task Design
We designed a task in which participants learned to select the correct actions for different stimuli
(Fig. 4.2A). The mapping between stimuli and actions varied across three contexts, creating three
distinct task-sets (Fig. 4.2B). Each context appeared in three blocks of 52 trials, for a total of 9
blocks. Contexts differed in average rewards, allowing us to test for RL values at the level of task-
sets. After an initial-learning phase of this task (Fig. 4.2A), participants completed four test phases
(Fig. 4.2C) to hone in on specific predictions of hierarchical RL. Detailed information about the
task is provided in Fig. 4.2, the methods, and SI Appendix.

Learning Curves and Effects of Reward
As expected, participants’ performance increased within a block, showing adaptation to context
changes (Fig. 4.1B). We also verified that participants were sensitive to continuous differences in
reward magnitudes (tape length). RL predicts better performance for larger rewards because these
lead to larger action-values, which make correct actions more distinguishable from incorrect ones
(see suppl. Fig. 4B for details). Participants indeed showed better performance for high-reward
stimuli (Fig. 4.1B, left). This effect was predicted by both hierarchical and flat RL. Hierarchical
RL additionally predicts better performance for high-valued contexts: Larger rewards create larger
reward-prediction errors at the task-set level, which allow for better discrimination between correct
and incorrect task-sets, and lead to better task-set selection and performance (see SI Appendix, Fig.
4A for details). As predicted, participants also showed an effect of task-set values on performance
(Fig. 4.1B, right).

To quantify both effects, we conducted a mixed-effects logistic regression model predicting
trialwise accuracy from action-values, task-set values, and their interaction (fixed effects), speci-
fying participants, trial, and block as random effects. We approximated action-values as average
stimulus-action rewards, and task-set values as average context-task-set rewards, as shown in Fig.
4.2B. The model revealed significant effects of both action-values, β = 0.38, p < 0.001, and task-
set values, β = 0.20, p < 0.001, on performance (for complete statistics and results in other sam-
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and error. Each context had a different mapping between stimuli and correct actions, and con-
texts were presented blockwise. Feedback indicated correctness deterministically, but different
context-stimulus-action combinations lead to different rewards (with Gaussian noise). B) Exam-
ple mapping between stimuli and actions for each context, defining three task-set TS1-3. Average
rewards (task-set values) differed between contexts. All actions and stimuli had equal average re-
wards. C) Additional test phases. The hidden-context phase, presented after initial learning, was
identical except that contexts were unobservable (season hidden by clouds). This allowed us to
test whether participants reactivated previously-learned task-sets. In the comparison phase, par-
ticipants saw either two contexts (“Cont.”) or two stimuli (“Stim.”) on each trial, and selected
their preferred one. We used subjective preferences to assess task-set values (contexts) and action-
values (stimuli). The novel-context phase was similar to initial learning, but had a new context
and no feedback, to test how participants generalized previous knowledge to new situations. The
final mixed phase was similar to initial learning, but not blocked, i.e., both stimuli and contexts
could change on every trial, to test for asymmetric switch costs. All test phases were separated by
“refresher blocks” similar to initial learning, to alleviate carry-over effects and forgetting.
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ples, see SI Appendix, table 1). This provides initial evidence that human choices were sensitive to
RL values at two levels of abstraction—actions and task-sets—, as predicted by hierarchical RL.

Hierarchical Representation
We tested participants’ abstractions in more detail using three independent analyses: switch costs
in the mixed phase of the task, reactivation of task-sets in the hidden-context phase, and task-set
selection errors during initial learning.

Asymmetric Switch Costs

Asymmetric switch costs can be evidence for hierarchical representations because changes across
trials are more challenging at higher than lower levels of abstraction (Collins, Cavanagh, et al.,
2014; Monsell, 2003). For example, switching contexts is more cognitively costly than switching
stimuli within a context. To test for such asymmetries in our paradigm, we compared trials on
which a different stimulus was presented than on the previous trial (but the same context) to those
on which a different context was presented (but the same stimulus), using the mixed phase (Fig.
4.2C). As expected, participants responded significantly slower after context switches than after
stimulus switches, t(25) = 3.47, p = 0.002. This was not due to participants’ initial surprise
about the interleaved presentation of contexts in the mixed phase, as the result held throughout
the phase (see SI Appendix). Asymmetric switch costs therefore suggest that participants created
hierarchical representations, nesting stimuli within contexts, as predicted by hierarchical RL and
hierarchical Bayes.

Reactivating Task-Sets

Did representing the task hierarchically benefit performance, e.g., did it support positive transfer?
In the hidden-context phase of our task, contexts were not observable, such that participants could
either relearn old stimulus-action mappings from scratch (no transfer), or reactivate previous task-
sets, with the correct mappings already in place (transfer). By enabling reactivation of old task-sets,
hierarchy has been shown previously to enable better performance and faster learning (Collins &
Koechlin, 2012; Donoso et al., 2014; Koechlin, 2016).

If participants reactivated task-sets, we expect a specific pattern of performance in the hidden-
context phase, specifically on the first few trials after a context switch, before any stimulus is
repeated: Because every trial provides feedback about the appropriateness of the chosen task-set,
task-set selection should become more accurate on each trial, and consequently, accuracy should
improve. If, on the other hand, participants did not use task-sets and instead re-learned stimulus-
response associations from scratch, as predicted by flat RL, performance can only increase after
a stimulus is repeated. Because no stimuli are repeated until the 5th trial in our task, the first
four trials provide the perfect testing ground to pitch these two predictions against each other, as
illustrated in Fig. 4.3A: Hierarchical RL simulations show increasing performance, whereas flat
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Figure 4.3: A)-B) Participants reactivated task-sets in the hidden-context phase. A) Human perfor-
mance (left, red) increased over the first four trials following a context switch, even though different
stimuli were presented on each trial. The “best” (methods) simulation based on the hierarchical
RL model showed qualitatively similar behavior (blue). The effect was absent in the flat RL model
(orange), and present but weaker in the Bayesian hierarchical model (green). B) Slopes of the
performance increase in part A), as densities over 50,000 simulations per model, with parameters
sampled uniformly at random. These densities approximate marginal model likelihoods for the
calculation of Bayes factors. The densities of hierarchical RL and hierarchical Bayes were shifted
toward larger slopes, making human-like performance slopes more likely. Dotted line indicates
chance. C)-D) Task-set perseveration errors in the initial-learning phase. C) Percent correct tri-
als (“Acc”) and percent task-set perseveration errors (“Per”) on the first trial after a context switch.
Humans (left, red): Star denotes significance in repeated-measures t-test. Models: Hierarchical RL
and hierarchical Bayes, but not flat RL, qualitatively reproduced human behavior. D) Accuracy and
task-set perseveration errors for all simulations, as densities.
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RL simulations show no change (simulation details in methods and section “Modeling Behavioral
Patterns Jointly”).

Human behavior qualitatively matched the predictions of hierarchical RL: Performance in-
creased steadily over the first four trials after a context switch (Fig. 4.3A), evident in the signif-
icant correlation between item position (1-4) and performance, r = 0.19, p = 0.048. This shows
that participants recalled previously-learned stimulus-action mappings rather than relearning them,
a signature of task-set transfer.

We next assessed quantitatively which of our three candidate models captured this behavior
best. We compared the models using Bayes Factors (BF), which we estimated using a method
related to Approximate Bayesian Computation (ABC; see methods and SI Appendix; (Sunnaker
et al., 2013)). Our method involved simulating synthetic data from each model and estimating the
likelihood of human behavior under the simulated data, as illustrated in Fig. 4.3B. Hierarchical RL
surpassed both flat RL, BF = 5.12, and also hierarchical Bayes, BF = 1.96, in model comparison
(SI Appendix, table 3). This confirms the qualitative result, showing that human performance in
the hidden-context phase was better captured by hierarchical than flat models.

Task-set Perseveration Errors

We showed that hierarchy allowed for positive transfer, enabling participants to reactivate old
task-sets. However, hierarchy can also lead to negative transfer: When participants select the
wrong task-set, the “correct” action according to that task-set is likely to be incorrect in the current
context. We call such errors “task-set selection errors”, and focus on a specific subtype, task-
set perseveration errors. Here, actions are chosen that would have been correct in the previous
context, but are incorrect in the current one. Contrary to flat RL, hierarchical models predict task-
set perseveration (methods and example in SI Appendix, Fig. 4A), reflected in high proportions of
task-set perseveration errors and low initial accuracy (Fig. 4.3C and D).

We tested this prediction on the first trial after each context switch during initial learning, and
found that participants were more likely to make task-set perseveration errors than to select correct
actions, t(25) = 2.1, p = 0.046, in accordance with hierarchical model simulations (Fig. 4.3D).
Task-set perseveration persisted several trials into the new block, as evident in a logistic regression
predicting task-set perseveration errors from trial index (β = −6.83%, z = −9.31, p < 0.001),
task-set values (β=−2.43%, z=−1.00, p< 0.001), and action-values (β=−14.03%, z=−8.45,
p < 0.001), controlling for block, and specifying random effects of participants.

In summary, the presence of task-set perseveration errors in humans is qualitative evidence for
hierarchical processing. Quantitative model comparison supports this conclusion, showing that
hierarchical models fit human error patterns better than flat RL (hierarchical vs flat RL: BF =
14.99; hierarchical Bayes vs flat RL: BF = 10.32; hierarchical RL vs Bayes BF = 1.40).

RL Values at Different Levels of Abstraction
Our results so far focused on hierarchical representations in general, showing that participants cre-
ated, reactivated, and transferred task-sets. We now test predictions that are unique to hierarchical
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Figure 4.4: Effects of task-set values on behavior. A)-B) Comparison phase. A) Humans (red)
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cal RL simulation showed the same qualitative pattern, whereas flat RL showed the opposite. B)
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frame): Overlaid numbers show actions-values in TS3, the highest-valued task-set, which was
chosen frequently. Red stars indicate actions that were correct in multiple task-sets, also selected
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affected performance more in the RL models.
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RL, assessing whether participants acquired RL values at the level of task-sets as well as actions.

Task-Set Values Affect Subjective Preference

A classic approach to assess RL values in humans is to investigate subjective preferences (Jocham
et al., 2011). To investigate whether participants acquired values at both levels, we thus used
a comparison phase, where participants selected their preferred out of two items on each trial.
Items were either two contexts or two stimuli—testing task-set and action values, respectively
(Fig. 4.2C).

The hierarchical RL model selected contexts based on the task-set values acquired during initial
learning, and showed a strong preference for high-valued over low-valued contexts (SI Appendix,
Fig. 7A). The flat RL model selected contexts based on average action-values in this context,
and showed a much weaker preference (SI Appendix, Fig. 7A). The hierarchical Bayesian model
did not track values over contexts and was thus not simulated in this phase. As predicted by
hierarchical RL, participants preferred high-valued over low-valued contexts, t(25) = 2.56, p =
0.017, indicating RL values at the level of contexts. Quantitative model comparison (Fig. 4.4B)
strongly favored hierarchical over flat RL, BF = 1171.65. For completeness, we also confirmed
participants’ RL values at the level of stimuli, as predicted by both flat and hierarchical RL, and
evident in the preference for high-valued over low-valued stimuli, t(25) = 2.11, p = 0.045. In
conclusion, participants’ preferences were best accounted for by the hierarchical RL model.

We next investigated a different model prediction in the comparison phase: The hierarchical
RL model takes two steps to retrieve action-values, but only one to retrieve task-set values. This
suggests stimulus selection should be slower and noisier than context selection. Flat RL, on the
contrary, takes one step to retrieve action-values, but multiple steps to calculate context-values,
suggesting the inverse pattern. Humans showed the patterns predicted by hierarchical RL: RTs
were numerically slower and performance was significantly worse for contexts than for stimuli
(mixed-effects regression, RTs: β = 148.21, t(25) = 1.63, p = 0.12, Acc.: β = 0.28, z = 2.0,
p = 0.048; Fig. 4.4B). Though the effect on RTs did not reach significance here, it was strongly
significant in the replication (see SI Appendix, table 1). Quantitative model comparison strongly
favored hierarchical over flat RL in terms of accuracy, BF = 39.64.

Task-set Values Affect Performance

As explained above, human initial learning was affected by both action-values and task-set val-
ues (Fig. 4.1B), in accordance with hierarchical RL. To compare our models in this regard, we
calculated the effects of task-set values on performance, using a simplified regression model (see
SI Appendix). Supporting our qualitative findings, the hierarchical RL model provided a better fit
than value-less hierarchical Bayes, BF = 6.62, and crucially, than flat RL, BF = 1.49 (Fig. 4.4F).

Task-set Values Affect Generalization

We showed above that participants preferred high-valued over low-valued contexts (SI Appendix,
Fig. 7A). We now test whether participants showed similar task-set preferences in the novel-
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context phase, that is, when generalizing old knowledge to a new context. For simulations, our
hierarchical RL model applied its highest-valued task-set throughout the novel-context phase. The
hierarchical Bayes model applied its most reliable task-set. The flat RL model chose actions based
on average values (methods).

We labeled each action in the novel-context phase as one of the following: correct in task-set
TS3, TS2, TS1, both TS3 and TS1, both TS2 and TS1, or not correct in any task-set (NoTS). De-
spite the lack of feedback, human participants showed consistent preferences for certain stimulus-
action combinations over others (Fig. 4.4C; see SI Appendix, Fig. 2 for heatmaps of task-set
values). They chose NoTS actions less often than other actions, controlling for the frequency of
each category, t(25) = 2.24, p = 0.034. Mappings shared between multiple task-sets (TS2 and
TS1; TS3 and TS1) were more frequent than mappings that only occurred in one task-set (TS1,
TS2, TS3), controlling for chance level, t(25) = 2.83, p = 0.0091. This confirms that participants
reused old task-sets for new contexts, in accordance with our findings in the hidden-context phase,
and prior literature (Collins & Frank, 2013). Quantitative model comparison confirmed that the
number of NoTS choices was captured better by hierarchical RL than by flat RL, BF = 1.78, or
hierarchical Bayes, BF = 45.60.

Highlighting the role of task-set values, hierarchical RL predicted more actions from the highest-
valued TS3 than from the lowest-valued TS1, and a greater difference between the two than flat
RL or hierarchical Bayes (Fig. 4.4E). Humans showed the same pattern, selecting more TS3 than
TS1 actions, t(25) = 2.58, p = 0.016. Bayes Factors confirmed that this difference was captured
better by hierarchical RL than flat RL, BF = 1.59, or hierarchical Bayes, BF = 32.01. Taken to-
gether, our hierarchical RL model captured both the reuse of old task-sets in new contexts, and the
preference for high-valued over low-valued task-sets.

Modeling Behavioral Patterns Jointly
Human behavior followed predictions of hierarchical RL qualitatively, and Bayes Factors con-
firmed quantitatively that this model fit better than the competing ones. However, we treated each
behavioral measure independently. We next sought to confirm that it was possible to obtain all
behavioral results simultaneously based on a single set of parameters. To this end, we chose one
“best” set of parameters for each model (methods), and showed the behavior of this simulation side-
by-side with humans, for each behavioral measure. As expected, neither flat RL nor hierarchical
Bayes, replicated all qualitative patterns in Figs. 4.3A, 4.3C, 4.4A, and 4.4C. But importantly, a
single set of parameters could capture all qualitative patterns in the hierarchical model. Note that
because parameters were not obtained through model fitting, behavior can deviate quantitatively
from human data.

4.3 Discussion
The goal of the current study was to assess whether human flexible behavior could be explained
by hierarchical reinforcement learning (RL), i.e., the concurrent use of RL at different levels of
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abstraction (Botvinick et al., 2009; Diuk, Schapiro, et al., 2013). We proposed a hierarchical
RL model that acquires low-level strategies—or “task-sets”—using RL, and also learns to choose
between these task-sets using RL. We contrasted this model with a flat RL model to highlight the
unique contribution of hierarchy, and to a hierarchical Bayesian model to highlight the contribution
of a hierarchical value representation.

Our hierarchical RL model predicted unique patterns of behavior in a variety of situations.
To assess whether humans employed hierarchical RL, we designed a context-based learning task
in which multiple subtasks tested these predictions. Indeed, participants’ behavior followed the
predictions in all subtasks. The first prediction was that participants would create hierarchical
representations. Several independent results supported this claim, including asymmetric switch
costs, task-set perseveration errors, and task-set reactivation. These results could not be accounted
for by the flat RL model, but were also compatible with the hierarchical Bayesian model.

To address the unique predictions of hierarchical RL, we sought evidence of hierarchical val-
ues. Hierarchical RL predicts value-based (1) context preferences, (2) performance differences
between contexts, and (3) generalization in new contexts. Human behavior showed the predicted
patterns: (1) When asked to pick their preferred contexts, participants selected higher-valued ones
more often. This suggests that they had formed abstract task-set values, in addition to low-level
action-values. Participants also performed better when choosing between high-level contexts than
low-level stimuli, in accordance with the “blessing of abstraction” (Gershman, 2017b; Goodman et
al., 2011; Kemp et al., 2007). (2) Task-set values affected performance, with better performance of
higher-valued task-sets. This shows that hierarchical representation can explain performance dif-
ferences between contexts. (3) When faced with a new context, participants reused previous task-
sets, preferring higher-valued over lower-valued ones. This suggests that task-set values guided
generalization of old knowledge to new situations.

In summary, human behavior showed all qualitative patterns predicted by hierarchical RL. To
quantify the differences with hierarchical Bayes and flat RL, we conducted formal model compar-
ison using Bayes Factors. Because marginal model likelihoods were intractable, we approximated
them using simulations, similar to (M. D. Lee, 2011; Steingroever et al., 2016; Sunnaker et al.,
2013). Bayes Factors instantiate an implicit Occam’s razor that accounts for differences in model
complexity, such as the larger number of parameters in the hierarchical models compared to flat RL,
differences in the functional form of each model, and differences in parameter spaces (MacKay,
1992; Steingroever et al., 2016). In this way, Bayes Factors implement a more comprehensive
tradeoff between parsimony and goodness-of-fit than traditional methods.

In our paradigm, Bayes Factors showed that hierarchical RL and hierarchical Bayes captured
behavioral aspects of hierarchy better than flat RL (e.g., task-set reactivation, task-set persevera-
tion), whereas flat RL and hierarchical RL captured value-based aspects better (e.g., value-based
generalization, effects of values on performance). Furthermore, hierarchical RL uniquely captured
the influence of two sets of values on behavior. Overall, Bayes Factors favored the hierarchical RL
model over flat RL and hierarchical Bayes. Based on this quantitative confirmation, we next asked
whether all results could be jointly observed when simulating the hierarchical RL model with a
single set of parameters, to confirm that different parameters were not responsible for different
behaviors. We used simulation summary statistics to identify a “best” set of parameters for each
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model. Only the hierarchical RL simulation qualitatively replicated all human behaviors, but not
flat RL or hierarchical Bayes. This shows that seemingly different behaviors, including trial-and-
error learning (initial-learning phase), “inference” of missing information (hidden-context phase),
subjective preferences (comparison phase), and generalization (novel-context phase), can all be
explained in the same overarching hierarchical RL framework.

Note that we have not explored the full space of possible models. In particular, it would be
possible to construct a hierarchical Bayesian model that tracks task-set and action-values rather
than their reliability, but uses Bayesian inference rather than RL to perform updates. This model
might capture the behavioral patterns we observed here. Indeed, our results show evidence for
humans’ ability to track values at multiple levels of hierarchy in support of generalizable behavior,
but do not speak directly to the exact update process. However, we favor the hierarchical RL
formulation of such updates because it is inspired by a rich literature on brain circuits that makes
its implementation plausible, and because it is algorithmically simple, with the ability to account
for complex cognitive processes.

Many computational models have addressed cognitive hierarchy. How are they related to our
model? One important class of hierarchical models is purely Bayesian (Solway et al., 2014; Tenen-
baum et al., 2011; Tomov et al., 2019). These models aim to explain, on a computational level of
analysis (Marr, 1982), the fundamental purpose of hierarchy for cognitive agents. Our model, on
the other hand, is algorithmic, like many pure-RL models: It aims to describe dynamically which
cognitive steps humans take when they make decisions in complex environments. Our model is
also inspired by the structure of human neural learning circuits (G. Alexander et al., 1986; W. H.
Alexander & Brown, 2015; Badre, 2008), thereby extending to the implementational level of anal-
ysis.

Some models of hierarchical cognition are method hybrids: Some combine Bayesian inference
at the abstract level with RL at the lower level (Collins & Koechlin, 2012; Frank & Badre, 2012).
Other, resource-rational models, combine Bayesian principles of rationality with cognitive con-
strains (Lieder & Griffiths, 2019). Frank and Badre (Badre & Frank, 2012; Frank & Badre, 2012)
proposed a hybrid model that uses Bayesian inference to arbitrate between multiple types of hier-
archy and flat RL. In general, hybrid models assume a role for Bayesian inference at higher levels
of hierarchy, contrary to our hierarchical RL model. This is an important difference: Hierarchical
RL mimics a form of inference (for example, identifying the latent task-set at the beginning of a
block; SI Appendix, results 2.1), but cannot do it optimally. It is an important direction for future
research to identify whether human behavior is suboptimal in the same way.

Computational models at different levels of analysis (Marr, 1982) are not mutually exclusive.
Bayesian inference offers a perspective based on optimality, but it is often intractable and ap-
proximations are computationally expensive. RL, on the other hand, uses values to approximate
expectations instead of calculating them exactly. Because of its relative computational simplic-
ity, and because it is biologically well supported, RL has often been used as an algorithmic and
implementational model. Recent research showed that a neural network implementing hierarchi-
cal RL approximated the results of Bayesian inference (Collins & Frank, 2013). In other words,
hierarchical RL might allow for optimal behavior using simpler computations.

Hierarchical RL was initially proposed in AI (Konidaris, 2019; Vezhnevets et al., 2017). A
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number of AI algorithms has recently been used to model human cognition as well (Momennejad
et al., 2017; Ribas Fernandes et al., 2011; Sutton et al., 1999; Wang et al., 2018), showcasing how
intertwined the two fields have become (Collins, 2019; Lake et al., 2017; Sutton & Barto, 2017).
Nevertheless, most hierarchical RL algorithms in AI focus on hierarchy over the time scale of
choices (temporal abstraction, e.g., breaking up long-term goals into sub-goals). Our hierarchical
model, in contrast, focuses on choice abstraction (i.e., allowing choice at the level of task-sets and
motor actions), a still rare approach in AI (Vezhnevets et al., 2020).

To conclude, classic RL has been a powerful model for simple decision making in animals and
humans, but it cannot explain hallmarks of intelligence like flexible behavioral change, continual
learning, generalization, and inference of missing information. Recent advances in AI have pro-
posed hierarchical RL as a solution to a number of such shortcomings, and we found that human
behavior showed many signs of hierarchical RL, which were captured better by our hierarchical
RL model than competing ones.

There is no debate that achieving goals and receiving punishment are some of the most funda-
mental motivators that shape our learning and decision making. Nevertheless, almost all decisions
humans face pose more complex problems than what can be achieved by flat RL. Structured hierar-
chical representations have long been proposed as a solution to this problem, and our hierarchical
RL model uses only simple RL computations, known to be implemented in our brains, to solve
complex problems that have traditionally been tackled with intractable Bayesian inference. This
research aims to model complex behaviors using neurally plausible algorithms, and provides a step
toward modeling human-level, everyday-life intelligence.

4.4 Methods

Participants
We tested three independent groups of participants, with approval from UC Berkeley’s institutional
review board. All were university students, gave written informed consent, and received course
credit for participation.

The pilot sample had 51 participants (26 women; mean age±sd: 22.1±1.5), 3 of whom were
excluded due to past or present psychological or neurological disorders. Due to a technical error,
data were not recorded in the comparison phase for this sample. The second and main sample had
31 participants (22 women; mean age±sd: 20.9± 2.1), 4 of whom were excluded due to disor-
ders, and one of whom was excluded because average performance in the initial-learning phase
was below 35% (chance is 33%). We added the mixed testing phase for this sample. The third
sample had 32 participants (15 women; mean age±sd = 20.8± 5.0), 2 of whom were excluded
due to disorders. Five participants did not complete the experiment and were excluded when data
was missing. The task was minimally adapted for EEG data collection. All statistical tests were
conducted in all samples (SI Appendix, table 1 and Fig. 1), and the SI Appendix discusses sample
differences in detail.
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Task Design
Participants first received instructions and underwent the initial-learning phase of the task. The
purpose of initial learning was for participants to acquire distinct task-sets, i.e., specific stimulus-
action mappings for each context. We also used the initial-learning phase to test for the effects of
action-values and task-set values on performance, and to assess errors types predicted by hierar-
chical RL.

In the beginning, participants were instructed to “feed aliens to help them grow as much as
possible”. A tutorial with instructed trials followed, then participants practiced a simplified task
without contexts: On each trial, participants saw one of four stimuli and selected one of three
actions by pressing J, K, or L on the keyboard (Fig. 4.2A). Feedback was given in form of a
measuring tape whose length indicated the amount of reward. Correct actions produced consistent
long (mean=5.0) and incorrect actions short tapes (mean=1.0, Fig. 4.2). When no action was
selected, participants were reminded to respond faster next time, and the trial was counted as
missed. Participants received 10 training trials per stimulus (40 total), with a maximum response
time of 3,000 msec. Order was pseudo-randomized such that each stimulus appeared once in four
trials, and the same stimulus never appeared twice in a row.

The initial-learning phase had the same structure as training, but stimuli were presented in
one of three contexts, each with a unique mapping between stimuli and actions (Fig. 4.2B). The
context remained the same for a block of 52 trials. At the end of a block, a context change was
explicitly signaled, before the next block began with a new context. Participants went through
9 blocks (3 per context) for a total of 468 trials. Participants needed to respond within 1.5s,
then received reward. Rewards varied between 2-10 for correct actions (Fig. 4.2B); rewards for
incorrect actions remained 1. We chose these numbers to maximize differences between contexts,
while controlling for differences between stimuli and actions. The hidden-context phase was
identical to initial learning and participants knew they would encounter the same contexts as before,
but this time, they were “hidden” (Fig. 4.2C). There were 9 blocks with 10 trials per stimulus per
block (360 total). Context switches were signaled. The purpose of the comparison phase was to
assess participants’ subjective preferences for contexts and stimuli, as estimates of their task-set
and action-values. Participants were shown two contexts (context condition), or two stimuli in
the same context (stimulus condition), and selected their preferred one (Fig. 4.2C). Participants
saw each of three pairs of contexts 5 times, and each of 18 pairs of stimuli 3 times, for a total of
15+198 = 213 trials. Participants had 3 sec to respond.

The purpose of the novel-context phase was to probe generalization, specifically the reuse
of old task-sets in a new context. This phase was identical to the initial-learning phase, except
that it introduced a new context in extinction, i.e., without feedback (Fig. 4.2C). Participants
received 3 trials per stimulus (12 total). The purpose of the final mixed phase was to probe switch
costs, assessing whether switching contexts was more costly than switching stimuli, indicating
hierarchical representation. The mixed phase was identical to the initial-learning phase, except
that contexts as well as stimuli could change on every trial. Participants received 3 blocks of 84
trials (252 total), each with 7 repetitions per stimulus-context combination. To alleviate carry-over
effects and forgetting between test phases, we interleaved them with refresher blocks, shorter
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120-trial versions of the initial-learning phase. More details on task design are provided in the SI
Appendix,.

Computational Models
We will address in turn how each model behaves in each phase. During initial learning, the
flat RL model implemented classic model-free (delta-rule) RL (Sutton & Barto, 2017): It treated
every combination of a context and a stimulus as a unique state, and learned one RL value for each
state and action, as visualized in SI Appendix, Fig. 3A. Using main text notations, values were
updated based on Qt+1(a|s,c) = Qt(a|s,c)+α (r−Qt(a|s,c)), and actions were selected based on
p(a|s,c) = exp(Q(a|s,c))

∑ai exp(β Q(ai|s,c)) .

The flat RL model acquired 36 action-values, based on three parameters α, β, and f , whereas
the hierarchical RL model acquired 9 task-set-values and 36 action-values (45 total), with six
free parameters αa, αT S, βa, βT S, fa, and fT S (equations in main text). SI Appendix, (Fig. 3)
visualizes the difference between both models, and SI Appendix, Fig. 4 explains hierarchical RL
behavior trial-by-trial. The forgetting parameters f ∈ [ fa, fT S] captured value decay in both models:
Qt+1 = (1− f ) Qt + f Qinit .

The hierarchical Bayes model also learned task-sets, but acquired their action-values based
on correct-incorrect rather than continuous feedback: Qt+1(a|s,T S) = Qt(a|s,T S)+α (correct−
Qt(a|s,T S)). The main difference to hierarchical RL was the selection of task-sets: The Bayesian
model chose task-sets based on estimated reliability rather than task-set values, using Bayes theo-
rem to obtain task-set reliabilities: pt+1(T S|c) = p(r|s,T S,a)pt(T S|c)

p(r|s,a) , with p(r|s,T S,a) = Q(a|s,T S).
Another difference was that hierarchical RL updated Q(T S|c) only for the chosen task-set, whereas
hierarchical Bayes kept p(T S|c) up-to-date at all times for all task-sets (Collins & Koechlin, 2012;
Donoso et al., 2014).

Q-values for both models were initialized at the expected reward of chance performance,
Qinit = 1.67. The subsequent testing phases started from the Q-values obtained at the end of initial
learning.

In the hidden-context phase, contexts were not shown, such that models could not directly
reuse acquired values that depended on contexts (flat RL: Q(a|c,s); hierarchical RL: Q(T S|c);
Bayes: p(T S|c)). All models instead initialized these values at Qinit after each context switch,
and then relearned them using the same update equations as before. For flat RL, this resulted
in learning an entire new policy Q(a|c,s). For hierarchical models, only high-level information
(Q(T S|c) for RL, p(T S|c) for Bayes) had to be relearned, but not action values Q(a|s,T S). This
ability to transfer learned values is one of the main advantages of hierarchy.

For the comparison phase, we only simulated RL models because the Bayesian model does
not provide values at the level of contexts. To select between two stimuli, RL models first computed
the “state value” (Sutton & Barto, 2017) of each, based on action-values: V (c,s) = maxa Q(a|c,s)
(flat RL) and V (c,s) = maxa Q(a|s,T S) p(T S|c), where p(T S|c) = so f tmax(Q(T S|c)) (hierar-
chical RL). Models then selected one stimulus based on a softmax over the two state values. To
select between contexts, the hierarchical model repeated the same computation for task-set values:



CHAPTER 4. HIERARCHICALLY-STRUCTURED REINFORCEMENT LEARNING IN
HUMANS 115

V (c) = maxT S Q(T S|c). The flat model, lacking task-set values, used averages over action-values
to estimate context preferences on-the-fly: V (c) = means V (c,s).

In the novel-context phase, models were faced with a context for which they had not learned
values. Flat RL used averages over previous action-values to choose: Q(a|cnew,s)=meanc Q(a|c,s).
Hierarchical RL [Bayes] applied the previously highest-valued [most reliable] task-set: Q(T S|cnew)=
maxc Q(T S|c) [p(T S|cnew) = maxc p(T S|c)].

Model Comparison
The Bayes Factor BF quantifies the support for one model M1 over another model M2 by assessing
the ratio between their marginal likelihoods, BF = p(data|M1)

p(data|M2)
. BF > 1 provides evidence for M1.

Marginal model likelihoods represent the probability of the data under the model, marginalizing
over model parameters θ: p(data|M) =

∫
p(data|M,θ) p(θ) dθ.

For each model, we simulated datasets by drawing model parameters θ uniformly at random.
Due to uniform sampling, p(θ) is equal for all θ, such that the empirical distribution over sim-
ulations approximates the marginal likelihood. To obtain Bayes Factors, we computed the same
summary statistics sm as for humans for each individual simulation (e.g., performance slope in
hidden-context phase). We estimated model densities ŝm based on a large number of simulations.
We obtained marginal model likelihoods as the probability of the human summary statistic sh under
the model, p(sh|ŝm). Bayes Factors are given by BF = p(sh|ŝm1)

p(sh|ŝm2)
.

We drew parameters uniformly at random in a range allowing as broad coverage of possible
behavior as possible: 0 < αa,αT S, fa, fT S < 1 and 1 < βa,βT S < 20. Each synthetic dataset con-
sisted of 26 agents simulated on the exact same inputs received by the 26 participants, such that the
noise in the synthetic statistics was identical to the one in the human dataset. We simulated 50,000
datasets for each model to assure convergence of the density estimates.

We presented one example datasets for each model in the bar graphs of figures 4.3A, 4.3C,
4.4A. These datasets were obtained by first selecting all of the 50,000 model simulations that
fell within a certain range of human behavior for all summary statistics (50%-150% for flat and
hierarchical RL; 10%-190% for hierarchical Bayes). We then simulated one new dataset per model
based on the median parameter values of the selected models. The supplementary methods provide
a detailed discussion of our model comparison method and selection of the example datasets.

4.5 Data Availability
All data for this study will be made available for researchers only through the NIMH NDA data
base. Analysis and modeling code is available on github: https://github.com/MariaEckstein/TaskSets.

https://github.com/MariaEckstein/TaskSets
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4.6 Supplementary Methods

Participants
We tested our paradigm in three independent samples of participants, replicating most of our major
findings. The three versions of the task differed in a few ways: The first sample did not receive
the mixed test, and an error in data collection led to the loss of the comparison test data. The
second sample received the same task as the first, expect for the addition of the mixed phase.
The largest changes—though overall still minor—were necessary for the third sample to enable
EEG data collection. The changes concerned mostly timing parameters. Inter-trial intervals were
drawn uniformly between 500 and 1.000 milliseconds, in 50 millisecond increments (fixed at 250
milliseconds in previous versions). Intervals before feedback presentation were drawn uniformly
between 400 and 800 milliseconds. Testing took place under different conditions, notably in an
EEG lab with dimmed light and using a different computer and monitor. Lastly, experimental
sessions lasted for 2 hours to accommodate for setting up EEG electrodes on participants’ scalps.
We chose sample 2 to present in the main text because it is the first sample that includes data from
all phases.

Learning curves were qualitatively similar across the samples (suppl. Fig. 4.5). Overall perfor-
mance differed slightly, albeit non-significantly, and the large majority of statistical tests replicated
across samples (suppl. table 4.6). In other words, the results reported in the main text were mostly
robust to small changes in task design.

The most notable difference concerned overall task performance of the three samples. EEG par-
ticipants performed slightly, albeit non-significantly, better, showing qualitatively steeper learning
curves (suppl. Fig. 4.5), numerically better performance and fewer initial selection errors in the
initial-learning phase, larger performance increases in the hidden-context phase, and better overall
performance in the comparison phase (supple. table 4.6). It is unclear why performance seemed
slightly better in the EEG sample than in the other samples. The most likely reasons include in-
creased attention due to the more involved EEG procedure and changes in timing parameters that
slowed the task down slightly.

Table 4.6 also suggests that task-set values might have had slightly larger effects in the EEG
sample than in the other two: In the mixed phase, the effect size of RT switch costs was numerically
twice as large, as were the effect size of correlation in the novel-context phase, and differences
between stimulus and context condition in the comparison phase, for both accuracy and response
times.

Based on these exploratory findings, future research could explore links between task perfor-
mance and task-set structure.

One test in specific differed between samples: “More initial selection errors than accurate tri-
als” was statistically significant in the main (second) sample, but not in the first and third (EEG).
The most likely explanation were overall performance differences. It is only possible to conduct
more mistakes than correct actions when many mistakes are committed. We do not think that this
difference in outcomes between samples invalidates any of our claims about hierarchical process-
ing and RL.
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Figure 4.5: Learning curves of all three samples.

Statistical tests in the three samples.

Sample 1 Sample 2 Sample 3
No comparison /

mixed Main sample Adapted for EEG

Final sample size
(excluded, number and

reason)

48
(3 disorder)

26
(4 dis., 1 chance

perform.)

30
(2 dis., up to 5 stop

early)
Mean accuracy during

initial learning (sd) 59.8% (9.3%) 55.8% (9.3%) 63.2% (11.5%)

Hierarchical
Representation

Initial-learning phase

Effect action-val. on perf.
β = 0.28(std =

0.04),z = 8.02, p <
0.001

β = 0.38(std =
0.05),z = 7.65, p <

0.001

β = 0.40(std =
0.05),z = 8.34, p <

0.001
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Effect task-set val. on perf.
β = 0.11(std =

0.04),z = 3.05, p =
0.002

β = 0.20(std =
0.05),z = 4.00, p <

0.001

β = 0.16(std =
0.05),z = 3.31, p <

0.001

Interaction between both
β =−0.02(std =

0.01),z =
−2.80, p = 0.005

β =−0.04(std =
0.01),z =

−3.70, p < 0.001

β =−0.03(std =
0.01),z =

−3.49, p < 0.001
Mixed phase

Asymmetric RT switch
costs NA t(25) = 3.47, p =

0.002, d = 0.30
t(24) = 4.46, p <
0.001, d = 0.65

Hidden-context phase

Reactivating task-sets r = 0.12, t =
1.72, p = 0.087

r = 0.19, t = 2.0, p =
0.048

r = 0.34, t =
3.92, p < 0.001

Initial-learning phase
Task-set perseverance errors

> accurate actions
t(47) = 0.73, p =

0.47, d = 0.19
t(25) = 2.1, p =
0.046, d = 0.71

t(29) = 0.44, p =
0.67, d = 0.15

RL values at different
levels of abstraction

Comparison phase

Stimulus accuracy > 0.5 NA t(25) = 2.11, p =
0.045, d = 0.83

t(28) = 2.58, p =
0.009, d = 0.96

Context accuracy > 0.5 NA t(25) = 2.56, p =
0.017, d = 1.00

t(28) = 5.61, p <
0.001, d = 2.08

Context > stimulus acc. NA
β = 0.28

(std = 0.14),
z = 1.98, p = 0.048

β = 0.60
(std = 0.11),

z = 5.43, p < 0.001

Context < stimulus RT NA

β = 148.21
(se = 91.14),
t(25) = 1.63,

p = 0.12

β = 384.90
(se = 55.90),
t(27) = 6.89,

p < 0.001
Novel-context phase

TS3 > TS1 t(47) = 3.81, p <
0.001, d = 0.96

t(25) = 2.58, p =
0.016, d = 0.87

t(26) = 2.04, p =
0.052, d = 0.71

TS2 > TS1 t(47) = 3.19, p =
0.003, d = 0.37

t(25) = 1.93, p =
0.065, d = 0.59

t(26) = 1.18, p =
0.25, d = 0.38

TS3and1 > TS2and1 t(47) = 3.14, p =
0.003, d = 0.59

t(25) = 1.37, p =
0.18, d = 0.30

t(26) = 3.82, p <
0.001, d = 1.07

Task Design
Additional Task Information, Including Randomization

The association between task-sets and contexts was randomized between participants; for exam-
ple, the winter context might be associated with the highest-valued TS3 for participant 1, but with
the lowest-valued TS1 for participant 2. Similarly, the association between stimuli and alien char-
acters, and between actions and items was randomized. The position of actions, i.e., the keyboard
key associated with it, were not randomized between trails. In other word, the bed, umbrella,
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and backpack always appeared in the same position on the screen within one participant, but they
differed between participants.

We randomized the mapping between contexts (e.g., winter) and their role (e.g., highest-valued
task-set) to avoid systematic biases in participant response, e.g., due to the semantics of different
objects. We also conducted basic analyses to confirm that specific objects did not lead to systematic
response biases.

Trial order was randomized in the following way for the initial-learning phase and hidden-
context phase: Each phase consisted of several blocks. Each block included a single context
(season), but all stimuli (aliens). The order of context blocks within each phase was pseudo-
randomized such that each context block appeared once within a macro-block of three blocks, and
the same context never appeared twice in a row. Context changes were signaled explicitly, even
though changes in the context were visually very salient. This was done to avoid mistakes based
on uncertainty about the current context. Both the initial-learning phase and the hidden-context
phase consisted of three macro-blocks (nine blocks total).

Stimulus order within each block was pseudo-randomized in a similar way: A mini-block
consisted of the four stimuli randomized in order, and mini-blocks were combined such that the
same stimulus never appeared twice in a row. This randomization ensured that each stimulus was
presented equally often in each position across a block. Thirteen mini-blocks formed one block
for the initial-learning phase, and ten for the hidden-context phase, for a total of 9 (blocks) * 13
(mini-blocks) * 4 (stimuli) = 468 trials in the initial-learning phase, and 9 * 10 * 4 = 360 trials in
the hidden-context phase.

The novel-context phase only contained a single block because it introduced a single new
context (rainbow). This block consisted of 3 mini-blocks, with stimuli randomized as before, for a
total of 3 (mini-blocks) * 4 (stimuli) = 12 trials. No feedback was given. The low number of trials
was chosen to limit the risk of participants disengaging in the absence of feedback.

The mixed phase was structured slightly differently. It consisted of mini-blocks of 12 trials
(one for each combination of stimuli [4] and contexts [3]). Trial order was randomized within each
mini-block. Seven mini-blocks were combined into one block, and self-paced breaks separated
three blocks in total, for a total of 3 (blocks) * 7 (mini-blocks) * 12 (items per mini-block) =
252 trials. The correct mappings between contexts, stimuli, and actions were the same in the
mixed phase as before during initial learning and in the hidden-context phase, and participants
received the same kind of feedback as before. The only difference was that contexts were no
longer presented blockwise, and both stimuli and contexts were allowed to switch on every trial.

The comparison phase reused the same objects as before, but presented participants with a
different task: Instead of selecting an action for a given stimulus (and context), participants saw
two different stimuli (and a context) on the screen and had to select their preferred one, via button
press (“stimulus condition”). The context was always the same for two stimuli that were presented
together, to facilitate the task for participants as well as choice analysis.

We counted a trial as correct in this test when participants chose the stimulus that had led to
larger reward during initial learning (larger action-value). For example, presented with the red and
the purple alien in the rainy season, a correct choice would be to pick the red alien because it had
led to a reward of 7, and not the purple alien, which had led to a reward of 2 (Fig. 2B).
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The context condition was similar to the stimulus condition, except that participants saw just
two contexts without any stimuli, and selected their preferred one. We counted an action as correct
in this condition when participants selected the context with the larger average reward (task-set
value), as shown in 1B). We used the stimulus condition of this phase to test for the formation of
action-values in our participants, and the context condition to test for task-set values.

Trial order in the comparison phase was randomized using a block structure like before. Each
block in the context condition consisted of all pairs of two contexts, i.e., 2 choose 3 [contexts] =
three trials. Each block in the stimulus condition consisted of 2 choose 2 [stimuli] = six trials for
each context, i.e., 6 (pairs) * 3 (contexts) = 18 trials in total. Trials were randomized within each
block, and blocks were combined such that the same trial did not repeat twice in a row. The context
condition had five blocks (5 * 3 = 15 trials total) and the stimulus condition 3 (3 * 18 = 54 trials
total).

In addition to the context and stimulus condition just described, we also tested an item condition
(presenting each pair of two items together), a “pure” stimulus condition (only stimuli, without
contexts), and a “mixed” stimulus condition (two different stimuli, with two different contexts).
These conditions were not of interest and presented after the context and stimulus condition.

Task Timing

We limited response times to 1.5 seconds. Multiple considerations went into this decision. First,
this is a usual task timing for most reinforcement learning experiments, and keeping the timing
similar allows for comparison between them. Another, more pragmatic, reason was to keep the
experiment within 60 minutes to limit participant fatigue, while ensuring a sufficient number of
trials in each phase. Last, we aimed to motivate participants to employ reinforcement learning
rather than cognitive control or effortful strategizing, which require more time.

Details about Task-Sets

The task-sets were constructed such that there was only one correct action for each stimulus in
each context, but the same action could be correct for multiple stimuli. E.g., the bed was the only
correct action for the yellow alien in the rainy context in the example shown in 2B. Selecting the
bed for the yellow alien in this context led to a measuring tape of length 3. The backpack and the
umbrella were both incorrect, and selecting either of these led to a tape of length 1. In the same
context, the bed was also the correct response for the purple alien, for which the reward was a tape
of length 2.

To obtain action-values and task-set values in Fig. 2B, we assessed the average rewards for
a correct response. For example, choosing the backpack for the red alien in the rainy context
was rewarded with measuring tapes of length 7±noise, averaging out to an expected reward of 7.
Similarly for task-set values, we averaged the rewards of correct actions in each task-set (Fig. 2B).
When we indicate “higher-valued” task-sets, we refer to task-sets that have larger task-set values
thus calculated.
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The heatmaps in suppl. Fig. 4.6 show the three task-sets visually. The information is iden-
tical to what is presented in 2B. Task-set values are shown side-by-side with human raw action
frequencies in the novel-context phase (replicated from Fig. 4C).

Figure 4.6: A) Raw human action probabilities in the novel-context phase. B)-D) Action-values of
the three task-sets.

Regression Models in Humans and Simulations
To assess the effects of action-values and task-set values on performance, we calculated regression
models predicting performance from both, and assessed their respective regression weights. To
analyze human data (Fig. 1B), we ran a mixed-effects regression model that controlled for a range
of other factors as well (e.g., block, item position), as explained in the main text. To estimate model
likelihoods, we had to get a similar measure from our computational models. Nevertheless, running
the mixed-effects model we used for humans in all 150,000 model simulations was infeasible due to
the computational demands. We therefore ran a simpler regression model in simulations, predicting
performance from just action-values and task-set values. We present the regression weights of task-
set values obtained from these models in the model distributions (Fig. 4F). For model comparison
only, we re-ran the simplified regression model on human data as well; the results of the simplified
model are shown in Fig. 4F (red line), and were used to calculate the model likelihoods for this
measure.

Computational Models
Values in Flat and Hierarchical RL

The hierarchical RL model had nine task-set values, which specify the value of each task-set (3)
for each context (3). The number of three task-sets was chosen to accommodate for the three
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contexts, and is consistent with previous research on how many task-sets humans entertain in
parallel (Donoso et al., 2014).

In addition, the hierarchical RL model contains 3 (task-sets) * 4 (stimuli) * 3 (actions) = 36
action-values, specifying the value of each action for each stimulus, in each task-set. The flat RL
model only contains 3 (contexts) * 4 (stimuli) * 3 (actions) = 36 values in total.

Visualization of Flat and Hierarchical RL

Flat RL learned independent action-values for each context-stimulus-action combination, which
can be visualized in a single “flat” value table (suppl. Fig. 4.7, left). Hierarchical RL learned
values for each context-task-set combination and for each task-set-stimulus-action combination,
therefore requiring two separate value tables (suppl. Fig. 4.7, right).

Figure 4.7: Visualization of learning in flat and hierarchical RL. A) Flat RL learns an “exhaustive”
value table, treating each combination of context and stimulus independently from each other.
B) Hierarchical RL learns distinct “task-sets”, which contain stimulus-action values or “low-level
values” (bottom). Task-sets are associated with contexts using a table of task-set or “high-level”
values (top).

Trial-By-Trial Behavior of a Hierarchical RL Agent

To shed light on the processes that underlie trial-by-trial choices, we zoomed in on the behavior of a
hierarchical RL agent in the initial-learning phase (suppl. Fig. 4.8). Agent behavior showed several
interesting patterns, for example better performance in high-valued than low-valued contexts, just
like humans. Unlike in human participants, we were able to assess the RL process directly in the
simulated agent, allowing us to investigate the precise dynamics that gave rise to this pattern.
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The most striking behavioral differences between contexts arose for task-set selection: While
the highest-valued context was in place (suppl. Fig. 4.8A, red), the agent selected the same (red)
task-set throughout. During the lowest-valued context (green), on the other hand, the agent circled
through all three task-sets inconsistently. An intermediate amount of task-set switching occurred in
the middle-valued context (blue). Consistent task-set selection therefore went hand-in-hand with
better performance. The reason for this was that consistent task-set selection allowed the agent
to use feedback maximally efficiently: Consistent task-set selection means that every feedback
is used to update the action-values of the same task-set, which therefore quickly turns into an
optimal strategy for this context (suppl. Fig. 4.8B, action-values inside the red box). In contrast,
inconsistent task-set selection was related to poor performance because it led to suboptimal use
of feedback: Action-value updates were applied to all task-sets, which impeded the creation of
a single optimized task-set (green box), and perturbed action-values of other, already-optimized,
task-sets.

Differences in task-set switching ultimately arose from differences in reward sizes between
contexts (Fig. 2B). Mechanistically, large rewards quickly led to large task-set values and consis-
tent task-set selection. Consistent task-set selection allowed for more efficient use of feedback and
the formation of optimized action-values. Optimized action-values, in turn, enabled correct action
selection and led to rewards, which further increased task-set values, etc. Small rewards had the
opposite effect, leading to small task-set values, frequent task-set switching (suppl. Fig. 4.8D),
suboptimal action-values, lack of rewards, etc.

The performance differences exemplified by this agent are a general feature of hierarchical RL.
Hierarchical RL also showed the other behaviors observed in humans, such as task-set persevera-
tion errors (suppl. Fig. 4.8A), quick task-set reactivation after context switches (in initial learning
and hidden-context phase), and effects of reward size on performance (suppl. Fig. 4.8).
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Figure 4.8: Trial-by-trial behavior a hierarchical RL agent from the population shown in Figures
3 and 4. A) RL at task-set level. Top: Sequence of contexts and agent’s selected task-sets. There
was no imposed mapping between contexts and task-sets; identical colors highlight which task-
sets became specialized for each context during training. Bottom: Evolution of task-set values. B)
RL at action level. Top: Sequence of stimuli (represented by correct actions) and agent’s selected
actions. Bottom: Action-values over time. Only the specialized task-set is shown for each context,
indicted by box color. Task-sets contain action-values for all four stimuli (Stim1, Stim2, etc.). C)
Top (bottom): Task-set (action) values were affected by reward (increase), no reward (decrease),
and non-selection (slow decay, i.e., forgetting). D) Probability of task-set selection was based
on relative task-set values. Agents circled through task-sets when no task-set was optimized and
rewards were rare. E) Feedback reflects the validity of action selection, not of task-set selection.
Task-set values arise from an indirect process mediated through action-values.
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Model Comparison

Model Comparison is Relative The goal of model comparison is to test which one of two (or
more) models explains a given dataset better. As such, model comparison is always relative, and
does not provide an “absolute” measure of model fit. The quality of model comparison depends on
the models included in the comparison, and on the supporting analyses that are performed exter-
nally to model comparison. We compared our hierarchical RL model to a flat RL and a hierarchical
Bayesian model to test both of its unique aspects, aiming to provide as meaningful a model com-
parison as possible. We also supported our modeling analyses with qualitative behavioral analyses,
and show that human behavior exhibited specific patterns that were only predicted by hierarchical
RL, but not the other models.

Model Comparison Method Established approaches for model fitting and comparison such as
maximum likelihood and sampling-based hierarchical Bayesian methods (Daw, 2011; M. D. Lee,
2011; Wilson & Collins, 2019) were not applicable in our case, because the model likelihood
was intractable. Approximate Bayesian Computation (ABC) and other likelihood-free methods
(Sunnaker et al., 2013; Turner & Sederberg, 2014; Turner & Van Zandt, 2012) were also infeasible
in our setting. We therefore chose an alternative method for model comparison, namely simulation-
based Bayes Factors, similar to (M. D. Lee, 2011; Steingroever et al., 2016; Sunnaker et al., 2013).

We took great care to ensure that our results were not based on our chosen hyper-parameters.
Specifically, we explored different ranges of β parameters, the only parameters whose range was
not given naturally. Changing these ranges had slight effects on the distributions of the models,
but did not affect Bayes Factors in a meaningful way, and therefore did not affect our conclusions.
We also explored different numbers of simulations per model, and found that this number had
no noticeable effects beyond a reasonably high number of a few thousands. We also explored
different values of the range parameter when selecting human-like simulations (suppl. Fig. 4.9A).
The results were highly consistent for different ranges.

An overview of the results of model comparison for all measures is provided in table 4.3.
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Table 4.2: Bayes factors. Numbers greater than 1 support the model mentioned first (usually
hierarchical RL), numbers smaller than 1 support the model mentioned second.

HRL vs flat
HRL vs
Bayes

Bayes vs
flat

Hierarchical representation
Hidden-context phase, slope (Fig. 3B) 5.12 1.96 2.61
Initial-learning phase, accuracy 1st trial

(Fig. 3c)
2.88 1.31 2.21

Initial-learning phase, task-set
perseverance 1st trial (Fig. 3c)

14.49 1.40 10.32

RL values at two levels of abstraction
Comparison phase, stimulus accuracy

(suppl. Fig. 4.11B)
0.48 NA NA

Comparison phase, context accuracy
(suppl. Fig. 4.11A)

1171.65 NA NA

Comparison phase, cont. minus stim.
acc. (Fig. 4B)

39.64 NA NA

Initial learning, regr. TS values on perf.
(Fig. 4F)

1.49 6.62 0.22

Novel-context phase, frequency NoTS
choices (Fig. 4D)

1.78 45.60 25.55

Novel-context phase, TS3 minus TS1
chocies (Fig. 4E)

1.59 32.01 20.14

Selection of Example Model Simulations

We presented one example simulation from each model in the bar graphs of figures 3A, 3C, and
4A. We obtained these simulation results in two steps: We first defined performance criteria around
human behavior (see below) and selected a small subset of the 50,000 simulations that we had
created for each model that matched these criteria. We then calculated the median parameter values
across the selected simulations for each model, which are shown in table 4.3. We used the obtained
parameters to create a new simulation for each model. The re-simulation of an independent dataset
avoids problems of double-dipping and biased selection that would arise if an already-simulated
dataset was presented based on its preferable performance.
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Table 4.3: Median parameters of all models selected for similarity to human behavior. These
parameter values were used to simulate a single new dataset to show side-by-side with humans

αa βa fa αT S βT S fT S

Hierarchical RL 0.49 9.74 0.47 0.29 13.77 0.17
Flat RL 0.49 10.11 0.31 NA NA NA

Hierarchical Bayes 0.79 13.28 0.21 NA 12.08 0.44

We defined the following criteria to select model subsets. We took note of human behavior for
each of our summary measures (e.g., amount of NoTS choices in novel-context phase, accuracy
in the context condition of the comparison phase, etc.). We then calculated a range around human
performance for each summary measure, and selected all simulated datasets that fell within the
ranges of all measures simultaneously. Fig. 4.9A shows how many simulations were selected from
each model based on the range around human performance.

Figure 4.9: A) Number of selected simulations for each model, dependent on the chosen range
around human performance. B)-D) Box plots and correlation matrices for the parameters of the
selected datasets. Parameter values of βa and betaT S are scaled down by a factor of 20 for easier
comparison. All other parameters naturally lie in the range between 0 and 1. B) Hierarchical RL,
C) Flat RL, D) Hierarchical Bayes.

We chose a window width of 100 around human measurement to select hierarchical and flat RL
simulations, and width 180 to choose hierarchical Bayesian simulations. At width 100 (50%-150%
of human performance), 314 / 50,000 (0.63%) hierarchical RL simulations were selected, and 434
/ 50,000 (0.87%) flat RL ones (0 hierarchical Bayes datasets). At width 180 (10%-190% of human
performance), 65 (0.13%) hierarchical Bayes simulations were selected.

We next inspected the parameters of the selected simulations in each model. Parameters were
no longer distributed uniformly (suppl. Fig. 4.9B-D) like in the source distribution of the initial
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50,000 simulations per model. This shows that for each model, human-like behavior was more
likely under some parameters than others. For example, human-like performance in the hierarchi-
cal RL model was more likely to arise with low forgetting of task-set values - this can be interpreted
as relating to participants’ ability to reuse task-sets, which would not be the case if task-set values
were fully forgotten.

Simulating new datasets in this way avoids problems of double-dipping when presenting ex-
ample model behavior. But despite its conceptual similarity to ABC rejection sampling (Sunnaker
et al., 2013), this method is not a parameter fitting procedure, i.e., the parameters in table 4.3
should not be interpreted as “best fits to the human data”. One aspect that is lost by this procedure,
for example, is the strong interdependence between parameters, for example relationships between
βa and fa in hierarchical RL (suppl. Fig. 4.9B-D, bottom). The parameters obtained in this way
were a basic estimate of reasonable parameter settings at the group level, and were merely meant
to highlight the qualitative patterns that can arise from each model.

4.7 Supplementary Analyses

Additional Analysis of Initial Learning
Most of our analyses in the main paper followed the same logic: We made a behavioral predic-
tion based on the hierarchical RL model, revealed the predicted pattern in human behavior, and
concluded that hierarchical RL captured human behavior in qualitative terms. Here, we report an
analysis that tests a prediction based on the hierarchical Bayesian model, to provides an inverse
test.

Some problems can only be solved by Bayesian inference, but not through RL (in its basic
form). For example, a Bayesian model is able to switch to correct behavior immediately after
receiving a single diagnostic feedback, whereas RL needs to try out many actions to achieve this
(in the right set-up). We therefore tested for markers of immediate switching in human data, as
evidence for the hierarchical Bayesian model, and against hierarchical RL.

Nevertheless, we found no evidence for such behavior in our task. To test this, we first selected
diagnostic and non-diagnostic trials in the hidden-context phase, and then compared participants’
performance in the trials immediately following these trials. We defined diagnostic trials as trials
in which feedback (correct vs. incorrect) indicated the correct task-set with certainty, such as
receiving a reward after selecting the umbrella for the blue alien, which is only correct in TS1.
Non-diagnostic trials were defined as trials in which the was not the case, e.g., receiving a reward
after selecting the backpack for the red alien is correct in both TS1 and TS2 (even though reward
amounts differ; see below). Most correct trials were diagnostic, whereas all incorrect trials were
non-diagnostic in this sense (e.g., not receiving a reward after selecting the umbrella for the green
aliens still leaves both TS1 and TS3 as possible candidates). We therefore restricted our analysis
to correct trials only.

We found no difference in performance between dignostic and non-diagnostic trials (hidden-
context phase, performance on trials immediately following diagnostic trials: 68.0%; perfor-
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mance on trials immediately following non-diagnostic trials: 66.6%; difference between the two in
repeated-measures t-test: t(25)=0.60, p=0.56). This shows that we were unable to find the behav-
ior predicted by the hierarchical Bayesian model in our task, consistent with our hypothesis that
human cognition employs hierarchical RL rather than Bayes.

Nevertheless, our task was not designed to test this prediction specifically, and the test just
described had one potential confound, so we defer from drawing definite conclusions from it. The
potential confound is that all correct feedback in our task indicates the correct task-set with cer-
tainty, not just the trials we termed diagnostic above: Even though some stimulus-action mappings
are shared between task-sets, their rewards always differ. For example, action 3 is correct in both
TS1 and TS2 for alien 1 (Fig. 2B). But because the reward is 7 for TS1 but 2 for TS2, correct
feedback indicates with certainty which one is in place.

Thus, an agent with a perfect model of the task could, in theory, know with certainty which TS
to select after a single reward. Whether our discrimination of diagnostic and non-diagnostic trials
is valid therefore depends on whether humans have such a perfect model of our task. To conclude,
our results suggest that participants were not able to quickly switch to a correct task-set after a
single diagnostic feedback, despite the fact that the structure of the task could allow such. Instead,
their learning process shows a slower trajectory, consistent with our hierarchical RL model rather
than perfect inference.

Additional Analyses of Mixed Phase
Basic Behavior

Average performance in the mixed phase was 50.3% (sd=20.0%), as compared to 55.8% (sd=9.3%)
during initial learning (chance=33.3%). The numerically lower performance might reflect the in-
creased difficulty of the task when both stimuli and contexts were allowed to change on every
trial. Nevertheless, differences between action-values and task-set values persisted. As expected,
learning within blocks was not evident (suppl. Fig. 4.10A).

Switch Costs

Blocking contexts during initial learning might induce expectations in participants that contexts are
necessarily blocked. The slower RTs after context switches than stimulus switches in the mixed
phase could be a result of a violation of participants’ expectation thus formed, rather than an index
of hierarchical structure. We took several measures to alleviate this concern. First, participants
were told explicitly at the beginning of the mixed phase that contexts would change quickly and
unpredictably:

“You will next encounter the chaotic season. In the chaotic season, the weather changes very
quickly. It can be rainy one day, and then sunny the next.”

Nevertheless, expectations might persist implicitly. To investigate whether this was the case,
we compared the RT effect in the first and second halves of the mixed phase. Our reasoning was
that expectations about trial order should fade away quickly once participants realize that contexts
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are presented in random order. Therefore, RT effects should diminish over time. If the RT effects
were caused by participants’ hierarchical representation, on the other hand, the RT effect should
persist.

Figure 4.10: Mixed phase behavior. A) Performance broken up by action-values (“Act. val.”,
left panel) and task-set values (“TS val.”, right panel). B) Response times on correct trials, in the
mixed phase. The left panel shows stay trials, i.e., when the same stimulus (“Stim.”, red) or context
(“Cont.”, blue) is repeated. The right panel shows switch trials. The top and bottom panel show
the similarity between the first and second half of the mixed phase.

We split the mixed phase into two halves of equal size, and tested for the RT effects in both
halves separately. The RT effect was present in both, with no significant difference between them
(suppl. Fig. 4.10B); all trials: t(25)=3.5, p=0.002; only first half: t(25)=2.5, p=0.02; only second
half: t(25)=2.7, p=0.01; difference between first and second half: t(25)=0.9, p=0.40). These re-
sults suggest that expectations formed by blocked context presentation were unlikely a complete
explanation of the RT effects. The more likely explanation was the hierarchical representation of
stimuli within contexts.

Additional Analysis of Comparison Phase
In the main text, we only showed the performance difference between stimulus and context con-
dition, but not raw performance in each individually. Suppl. Fig. 4.11 and table 4.2 provide this
information. As shown in the figure, the hierarchical RL model was likely to obtain better per-
formance in the context condition (Fig. 3A), but worse performance in the stimulus condition,
compared to flat RL. Bayes factors therefore favored hierarchical RL over flat RL in the context
condition, BF = 1.31, but flat RL over hierarchical RL in the stimulus condition, BF = 0.79.
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Figure 4.11: A)-B) Distribution over model behavior in the comparison phase. A) Accuracy for
the context condition, i.e., % of trials in which the higher-valued context was chosen. B) Same for
stimulus condition.

Relationship Between Model Parameters and Hierarchical Behavior
The behavioral predictions differed qualitatively between our tested models: E.g., the hierarchical
RL model predicted that performance would improve during the first four trial of the hidden-
context phase, whereas the flat RL stated that performance could not yet improve. Despite this
qualitative difference in prediction—the presence versus absence of an effect—, the observable
behavioral pattern—i.e., the slope over performance in the first four trials—lay on a continuum.
In other words, even some flat RL simulations showed positive slopes, solely due to noise. And
many hierarchical RL simulations did not show positive slopes because their underlying parameters
prohibited learning.

Bayes Factors take these factors into account when comparing models quantitatively. In this
section, we aim to understand how each model produced different markers of hierarchical behav-
ior, expecting systematic links between certain parameters and model behaviors for model that
provides a mechanism to explain the result (e.g., positive slopes in the hidden-context phase for
hierarchical RL), and the lack thereof when the model cannot.

In the flat model, the forget parameter f influenced the frequency of task-set perseveration
errors (suppl. Fig. 4.13, “Task-set perseveration errors”), as well as overall accuracy (suppl.
Fig. 4.13, “Accuracy trial 1”), as expected. Nevertheless, the levels of task-set perseveration
errors never went above, and accuracy never dropped below chance, such that these behaviors
did not provide evidence for systematicity, and hierarchy. Extreme values of f also influenced
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performance differences between context and stimulus condition in the comparison phase (suppl.
Fig. 4.13, “Context minus stimulus”), which could be interpreted as a sign of hierarchy, whereby
larger learning rates were related to bigger spreads in this measure.

In the hierarchical model, the forget parameter fa played a similar role for “Accuracy trial 1”
and “Context minus stimulus”, but its role for “Task-set perseveration errors” was reversed. fa also
influenced “Task-set reactivation” (suppl. Fig. 4.12. Other model parameters showed additional
relationships with behavioral markers in this model, such that, for example, very small high-level
learning rates αT S were associated with more task-set perseveration errors and smaller effects of
task-set values on performance (“Effect of task-set values”), and high-level beta βT S was associated
with increased task-set reactivation, reduced task-set perseveration errors, and increased effect of
task-set values on performance. This shows that in the hierarchical model, behavioral markers of
hierarchical behavior arose from a complex interplay between model parameters.
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Figure 4.12: Relationship between hierarchical model parameters and behavioral markers across
50,000 simulations.
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Figure 4.13: Relationship between flat model parameters and behavioral markers across 50,000
simulations.
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Figure 4.14: Relationship between hierarchical model parameters and behavioral markers across
60,000 simulations.
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Chapter 5

Hierarchical Learning of Complex Action
Sequences

This chapter delves into the creation of structured representations in humans. We present a task
that motivates participants to use hierarchical representations to solve it, and investigate how par-
ticipants form hierarchical representations. 1

Abstract
Humans have the astonishing capacity to quickly adapt to varying environmental demands and
reach complex goals in the absence of extrinsic rewards. Part of what underlies this capacity is
the ability to flexibly reuse and recombine previous experiences, and to plan future courses of
action in a psychological space that is shaped by these experiences. Decades of research have
suggested that humans use hierarchical representations for efficient planning and flexibility, but
the origin of these representations has remained elusive. This study investigates how hierarchi-
cal representations can be learned through experience. Seventy-three participants completed a
task in which they had to perform complex action sequences to obtain rewards. Crucially, com-
plex action sequences were composed of simpler action sequences, which were not rewarded, but
whose completion was signaled to participants. We found that participants learned to perform the
simpler action sequences and combined them into complex action sequences. Strikingly, partic-
ipants actively taught themselves the simpler sequences, pausing after their first completion and
actively rehearsing them thereafter, despite the lack of extrinsic rewards. This suggests that in-
trinsic motivation to understand environmental dynamics can subserve the creation of hierarchical
representations. Response times also revealed hierarchical structure, showing segmentation at the
borders of simple sequences. Response times within simple sequences dropped markedly after
their first discovery, suggesting chunking of individual actions into sequences; similarly, response
times between simple sequences dropped once complex sequences were discovered, suggesting
hierarchical chunking of simple sequences into complex sequences. After a learning phase, par-

1Anne G.E. Collins, Aram Moghadassi, and Amy Zou contributed to the research presented in this chapter.
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ticipants completed a transfer phase in which either simple sequences or complex sequences were
modified without notice. Relearning progressed slower when simple sequences were changed than
complex sequences. This suggests that in hierarchical representations, lower levels might be less
malleable than higher levels, in accordance with a role of lower levels to stabilize and structure
exploration, and of higher levels to flexibly recombine elements.

5.1 Introduction

Complex problems can only be solved by using hierarchy
The everyday world poses problems of a level of complexity that require sophisticated, abstract
representations to solve. Consider the amount of information that arrives at your senses every
second, and the number of muscles in your body that you could activate in response at any moment
and to any degree. The number of possibilities of just a single choice already seems infinite, but this
number multiplies with each additional time step because each action can be followed by any other
action, and so on. This combinatorial explosion of possible trajectories makes it seem like planning
even a small number of steps into the future is impossible. To make things worse, the everyday
world is sparse in rewards and requires sophisticated exploration strategies to achieve even simple
goals. Consider how many independent muscle activations were necessary to prepare your last
breakfast, let alone write your last research paper, or plan your vacation. The complexity of our
goals makes it almost impossible to achieve them by random exploration, and this means that we
cannot rely on simple reinforcement to learn how to achieve them. A solution to these problems is
the use of abstract representations. Abstract representations reduce the dimensionality of problems
by recognizing patterns (e.g., automatizing common movements like reaching and grasping), and
thereby reduce the problem of combinatorial explosion. Hierarchical representations also alleviate
the problem of sparse rewards. Instead of exploring the vast space of possibilities based on random
muscle movements, an abstract representation allows for exploration based on complex action,
such as—in the example of planning a vacation—searching online for places with a beach, calling
a friend who recently came back from a vacation, or checking for destinations that offer cheap
flights.

Example: 4-rooms domain
The potential benefits of hierarchy are famously illustrated in the 4-rooms example (Sutton et al.,
1999). An artificial agent is dropped at a random location in a gridworld with four rooms, and
needs to navigate to a random goal in a different room. All neighboring rooms are connected by
narrow doorways. When the agent only has access to basic actions (one step up, down, left, or
right), it often fails to reach the goal because it gets stuck exploring just the initial room. If the
agent reaches the goal, learning the correct policy to find it again takes many iterations. On the
other hand, when the agent has access to additional hierarchical actions that can reach each door, it
explores all rooms more evenly, finds the goal faster and more reliably, and also learns the correct
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policy much faster. This example highlights how seemingly complex problems can become very
simple with the right form of abstraction—in this case, temporal abstraction, the ability to execute
multi-step actions.

Previous Research
Previous research across disciplines has shown that hierarchy is a powerful ingredient for artificial
intelligence, and a fundamental part of natural intelligence. Research in machine learning and Ar-
tificial Intelligence (AI) has employed hierarchical representations to solve increasingly complex
problems (e.g., Bacon et al., 2017; Dayan, n.d.; Dietterich, 2000; Duan et al., 2016; Finn et al.,
2017; Parr and Russell, 1998; Sutton et al., 1999; Vezhnevets et al., 2017; Wang et al., 2016). In
Psychology, decades of research have investigated the hierarchical structure of the mind, including
research on cognitive control, expertise, and sequential action (Broadbent, 1977; Chase and Simon,
1973; Cohen, 2000; Cooper and Shallice, 2006; Lashley, 1951; Newell, 1994; Rosenbaum, 1987;
Schank and Abelson, 1977). Recent research has increasingly focused on formalizing models of hi-
erarchical cognition, using hierarchical Bayesian models (Collins and Koechlin, 2012; Gershman
and Niv, 2010; Griffiths et al., 2019; Huys et al., 2015; Kemp and Tenenbaum, 2008; Schapiro
et al., 2013; Solway et al., 2014; Tomov et al., 2019), and hierarchical Reinforcement Learning
(RL) models (Botvinick and Weinstein, 2014; Cushman and Morris, 2015; Dezfouli et al., 2014;
Diuk, Schapiro, et al., 2013; Eckstein and Collins, 2018; Frank and Badre, 2012; Momennejad
et al., 2017; Ribas Fernandes et al., 2011). Research in neuroscience has provided strong evi-
dence for the hierarchical organization of the brain, both in the sense of “processing hierarchies”,
in which superordinate levels operate over longer time scales and asymmetrically modulate sub-
ordinate processing, and of “representational hierarchies”, in which superordinate representations
form abstractions over subordinate representations, favoring generality over detail, and allowing
information to be inherited asymmetrically from higher to lower levels (for reviews, see Badre,
2008; Balleine et al., 2015; Graybiel and Grafton, 2015; E. K. Miller and Cohen, 2001).

The Problem of Creating Hierarchy
Despite the near-universal conviction that hierarchical representations are necessary to solve prob-
lems of real-world complexity, the question remains unanswered how to create appropriate hier-
archical representations. In AI, this is called the “option discovery problem” because abstract,
multi-step actions are often called “options” (Sutton et al., 1999). Hierarchical representations are
only beneficial when they condense the important aspects of a task in the right way, but they can
be disadvantageous otherwise and even hurt performance. (For example, in the 4-rooms domain,
adding multi-step actions that lead to doorways boosts performance, but multi-step actions that
lead to room corners hurts performance.) Humans have been shown to discover the Bayes-optimal
task decomposition when solving complex problems (Solway et al., 2014), but it is unclear how
they discover these decompositions, lacking access to the full state space, and with limited com-
putational resources. Research in AI has investigated several promising avenues for how to create
appropriate hierarchical representations. Some approaches equip agents with intrinsic motivation,
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a form of motivation that is independent of extrinsic rewards and often tries to mimic novelty
seeking and curiosity observed in humans and animals (Gershman and Niv, 2015; Lieshout et al.,
2018). Other approaches analyze the abstract problem structure and try of locate bottlenecks of the
state-space or locations of advantageous graph-theoretical measures such as maximum between-
ness (e.g., Machado et al., 2017; Pathak et al., 2017; Schmidhuber, 2010; Singh et al., 2005; for
review, see Konidaris, 2019). The goal of both approaches is to identify states that would make
appropriate targets for multi-step actions, and thereby create a hierarchical representation.

Our Take
In the current study, we propose that humans create hierarchical representations piece-by-piece,
continuously learning new, ever more complex actions. We propose that, starting from a set of basic
actions (e.g., stretch arm, move fingers), we explore the world around us by randomly executing
one action at a time. Some combinations of actions lead to unexpected events in our surroundings
(e.g., hitting a rattle makes a sound). Such events trigger curiosity(—defined as an interest in
events that are not rewarding, but potentially provide information that are relevant for obtaining
reward in the future). Curiosity motivates further exploration of the event, and once the event
can be reproduced reliably by using appropriate combinations of basic actions, a new skill has
been learned (e.g., grasp the rattle). Adding skills to the action repertoire allows for more targeted
exploration, and can speed up the acquisition of more abstract skills by combining less abstract
skills (e.g., shake and throw the rattle), following the same curiosity-guided process. Curiosity-
based explanations like this one deal elegantly with the problem of sparse rewards because they
move the role of teaching signal from rewards to other environmental signals. And it reduces the
dimensionality of the space by creating multi-step actions, which reach further into the future and
constrain all subsequent actions once the chain has been picked.

The Task
To test this prediction, we created a task in which participants learned to execute complex action
sequences, which were composed of simpler action sequences, which themselves were composed
of basic actions (Fig. 5.1A-B). The goal of the task was to create a specific star on each trial, using
a star-making machine. The machine accepted 4 key presses per trial, and created a star when a
correct 4-key sequence was typed in. Crucially, stars’ “complex” 4-key sequences were composed
of “simple” 2-key sequences, and the execution of a “valid” 2-key sequence was signaled by an
item appearing in a window on the machine. Four different stars, learned in successive blocks,
required a different combination of two of four possible simple 2-key sequences. This paradigm
has a clear hierarchical structure: basic actions (individual key presses) form the lowest level;
simple skills (2-key sequences), which are not rewarded and have to be learned through intrinsic
motivation, form the intermediate level; and complex skills (4-key sequences), which are composed
of simple skills and lead to reward, form the most abstract level. This task was designed to elicit
curiosity-driven learning and the creation of hierarchical structure. The goal of the study was to
investigate whether participants could leverage the hierarchical structure of the task, and if so, how
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they learned to create the necessary hierarchical representations. We predicted that participants
would acquire and practice 2-key sequences before 4-key sequences, and that they would explore
4-key sequences with 2-key sequences, rather than key by key.

The task also included a transfer phase in which either simple or complex key sequences
changed without notice, to investigate whether actions at different levels of abstraction played
different roles. After 300 trials of the initial paradigm, participants either entered a “low” or a
“high” transfer phase. In the low transfer phase, some 2-key sequences were modified by replac-
ing individual keys; in the high transfer phase, some 4-key sequences were modified by replacing
entire 2-key sequences. Even though both manipulations affected similar numbers of individual
keys in the tested stars, they should have different effects when using a hierarchical representa-
tion. We predicted that sequences at the low level, being more consolidated, would be difficult to
re-learn, whereas sequences at high levels, still flexible and malleable, should be less affected by
transfer. Furthermore, we predicted that participants would attempt to reuse learned simple chunks
for learning, rather than exploring in the “single key press” space.

Paper Outline
The goal of this study was to investigate the process by which humans create hierarchical represen-
tations, and how these representations are used, using a task with sparse rewards and a relatively
large combinatorial space, but clear hierarchical structure. The study addresses both questions in
turn: In part 1, we will investigate how participants added layers of abstraction to create hierar-
chy, that is, how they combined basic-level actions into skills, and how these skills were added to
the action repertoire. We investigated whether participants were intrinsically motivated to learn
skills / 2-key sequences, in the absence of extrinsic reward. In part 2, we will shed light on how
participants used the hierarchical structure just created. Did the existence of complex actions help
explore the space of possibilities more efficiently? What happened when participants reached a
star, did they build 4-key sequences? Did actions at the low (key press) and the high level (2-key
sequences) play different roles? We also investigated what it meant to use a hierarchical rather
than a flat representation, in terms of how transfer affected choices and learning.
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Figure 5.1: Task design. (A) On each trial, participants sequentially entered four key presses in a
self-paced manner (maximum response time: 2.5 seconds). Each key press was acknowledged by
the appearance of a colored circle in the response board. Each valid 2-key sequence (see rules in
part C of this figure) was acknowledged by the appearance of a unique item: in the example shown,
keys 0 (subtrials 3) and 1 (subtrial 4) led to item a. All other “invalid” 2-key sequences did not lead
to items. (B) Four specific combinations of 2-key sequences led to the appearance of a star (see
part C for rules). Each trial indicated a specific goal star (not shown here). Achieving this star led
to reward. (C) Rules for valid 2-key and 4-key sequences. Left table “Learning”: Key sequences
for the learning phase. The left column “Low rules” shows valid 2-key sequences. The left sub-
column “Actions” shows the identity and order of actions that need to be executed, and the right
sub-column “Item” shows the resulting item. Keyboard keys were randomly assigned to actions,
and images were randomly assigned to items. The right column “High rules” shows valid 4-key
sequences. Each 4-key sequence was composed of two 2-key sequences, shown in the left sub-
column “Items”, and led to the star shown in the right sub-column “Star”. Right table “Transfer”:
In the transfer phase, either the low rules or the high rules changed. In the low transfer phase, the
low rules shown in “Learning” table were replaced by the low rules shown in the “Transfer” table.
In the high transfer phase, the high rules of the “Learning” table were replaced by the high rules
in the “Transfer” table. The table highlights differences between learning and transfer rules in red.
(D) Learning curves. Trials 1-300 were part of the learning phase, 301-501 of the transfer phase.
Accuracy was determined by whether the correct star was created.
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5.2 Results

Introductory Explanations
Complexity of the Task

Despite the complexity of the task, most participants were able to learn it well. With four keys al-
lowed on each of four subtrials, the task allowed for 44 = 256 different 4-key sequences, and only
4 of them (1.6%) led to a star, only one of which (0.4%) was rewarded in any trial. A strategy of
trying a different sequence on each trial has a 1

256 +
1

255 + ...+ 1
231 = 10.3% probability of discover-

ing the correct star within 25 trials (the length of a block).Participants, on the other hand, achieved
20.5% accuracy by the end of the first block (25 trials), and 54.5% by the end of the last block
(75 trials per star; trials highlighted by red arrows in Fig. 5.1D), roughly doubling both probabili-
ties, which suggests that participants used more efficient strategies. Individual performance varied
widely. Working on a total of 1,000 trials, participants earned anywhere between 106 (10.6% av-
erage accuracy) and 702 points (70.2% average accuracy; population average: 426.4 points, sd:
135.1). This spread facilitated the analysis of individual differences and of how different strategies
related to performance.

How to Interpret the Learning Curves

Participants showed consistent patterns of learning and forgetting. In the first few trials of the
task, participants were unable to find the goal star, but they learned quickly and achieved 20.5%
accuracy by the end of the first block (Fig. 5.1D). When the goal star changed for the first time
on trial 26, accuracy dropped to 10.9%, suggesting that participants were able to reuse knowledge
they had gained when working on the first star for the second star. Final performance in a block
improved with every repetition of a star (repetition 1, average of all four star: 36.8% accuracy on
last trial of block; repetition 2: 48.9%; repetition 3: 56.5%; effect of repetition on performance in
mixed-effects regression: β = 0.098, z = 6.1, p < 0.001). At the beginning of the transfer phase,
when rules changed without notice, performance dropped back to 0% accuracy, but participants
recovered fast, which suggests successful re-learning of rules (Fig. 5.1D).
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Part 1: Creating the Hierarchy by Learning Action Sequences

A
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Figure 5.2: (A) Post-item slowing. Response times on subtrial 3 were uniquely elevated on the
trial in which a new 2-key sequence was discovered on subtrials 1 and 2 (red). Slowing on subtrial
3 was specific to sequence discovery on subtrials 1 and 2 as discovery on subtrials 3 and 4 (blue)
did not elicit slowing. Dots represent means and error bars show between-participant 95% confi-
dence intervals, as in the remaining figure. (B) Repetition of valid and invalid sequences after first
discovery. Trial 0 shows the first execution of any particular 2-key sequence in a block. Subse-
quent trials show the proportion of trials in which the same sequence was repeated, separately for
valid (blue) and invalid (red) 2-key sequences. The inset shows the within-participant difference
between the proportions of valid and invalid sequences. (C) The number of 2-key sequences ex-
ecuted per trial, over time in block 1. The blue line shows the average over the four valid 2-key
sequences (signaled by item appearance), and the red line shows the average over four matched in-
valid 2-key sequences (not signaled by items). The maximum number of 2-key sequences per trial
is two because each trial allows for four key presses. The red and blue lines do not add up to two
because many 2-key sequences were neither categorized as valid nor invalid for this analysis. (D)
Execution time for each key press within a trial. Statistical comparisons refer to repeated-measures
t-tests, as described in the main text. (E) The change of execution time for the final key of 2-key
sequences over sequence repetitions, for valid (blue) and invalid (red) sequences. The larger error
bars for invalid sequences on later repetitions stem from the fact that participants repeated invalid
sequences less than valid ones.



CHAPTER 5. HIERARCHICAL LEARNING OF COMPLEX ACTION SEQUENCES 144

In part I, we investigated how participants learned new action sequences. We tested whether par-
ticipants slowed down after discovering an item for the first time, as a sign of processing the item
as feedback. We also inquired how often participants reused valid sequences compared to invalid
ones, as a measure of intrinsic motivation to execute valid action sequences. We assessed how
many valid compared to invalid sequences participants executed per trial, hypothesizing that valid
sequences would increase and invalid sequences would decrease as participants started exploring
the task based on 2-key sequences rather than individual keys. Finally, we analyzed response time
patterns within trials as an indicator of whether individual key presses were chunked into action
sequences, and examined the development of these patterns over time. All analyses were restricted
to the learning phase of the experiment.

Participants slowed down after seeing a new item for the first time, suggesting that items
elicited feedback processing. We assessed response times on the subtrial after an item was dis-
covered for the first time in a block during the learning phase, and compared them between the
trial in which the item was discovered, and the preceding and subsequent trial (Fig. 5.2A, red line).
Repeated-measures t-tests, controlling for multiple comparison using the Bonferroni correction,
revealed that participants showed significantly longer post-item response times on the trial of item
discovery, compared to the preceding (t(54) = 4.1, p = 0.0003) and subsequent trial (t(54) = 6.9,
p < 0.001). This slowing on subtrial 3 was specific to item discovery on trial 2, as it was absent
on trials in which an item was discovered on trial 4 (Fig. 5.2A, blue line). This result shows
that participants slowed down in the middle of a trial if they had just discovered a new item for
the first time. Similar slowing commonly arises after participants make errors (Danielmeier and
Ullsperger, 2011), receive rewards (Raio et al., 2020), or observe a surprising event [cite], and this
slowing is commonly interpreted as an orienting response and potentially related to the processing
of prediction errors and to learning [cite]. In our task, items implicitly indicated that participants
had executed valid 2-key sequences, and additional processing is expected if participants use this
information to learn 2-key sequences.

We next compared what effect observing a valid 2-key sequence (i.e. a sequence that lead to
an item, independently of whether it was a useful sequence for the current goal star) had on subse-
quent 2-key sequence selections. After discovering them for the first time, participants were more
likely to repeat valid compared to invalid 2-key sequences, suggesting a role of intrinsic motiva-
tion in the execution of valid 2-key sequences (Fig. 5.2B). To directly compare valid to invalid
sequences, we randomly selected 4 invalid 2-key sequences that had the same characteristics as
valid sequences (e.g., the two keys of the sequence differ), and subjected them to the same analy-
ses as the four valid sequences. From participants’ perspective, nothing discriminated the invalid
sequences we selected for this analysis from other invalid sequences, and using a different set of
invalid sequences (with the same restrictions) led to similar results. For the following reasons, we
limited this analysis to incorrect trials only. On correct trials, participants necessarily executed two
valid 2-key sequences to achieve the goal star, and because accuracy increased within each block
(Fig. 5.1D), the inclusion of correct trials would necessarily lead to an increase in the proportion of
valid 2-key sequences per trial. To avoid this issue, we only included incorrect trials. To compare
the repetition of valid and invalid sequences, we assessed the proportion of trials in which partici-
pants repeated a 2-key sequence, that they had executed for the first time in a block on trial 0, in the



CHAPTER 5. HIERARCHICAL LEARNING OF COMPLEX ACTION SEQUENCES 145

subsequent trials, for both valid and invalid sequences (Fig. 5.2B). To compare valid and invalid
sequences statistically, we calculated the differences between their proportions for each participant
and each trial (Fig. 5.2B, inset). We then used mixed-effects regression to predict the proportion
differences from the trial since sequence discovery. The regression revealed that the difference was
significantly different from zero (Intercept β = 0.13, z = 14.7, p < 0.001), with a negative effect
of trial (β =−0.01, z =−6.6, p < 0.001). This confirms that the proportions of valid and invalid
sequences differed significantly, controlling for trial post-discovery. In other words, participants
were more likely to repeat valid 2-key sequences after they first discovered them, compared to
invalid sequences. This suggests that the appearance of items motivated participants to repeat key
sequences, potentially in a similar way as explicit rewards would, a typical example of intrinsic
motivation.

Over the course of the first block, participants increased the number of valid 2-key sequences
per trial while decreasing the number of invalid sequences. This is in accordance with a transi-
tion from exploration based on individual keys to exploration based on 2-key sequences. For the
reasons explained above, we again limited our analysis to incorrect trials only. In addition, this
analysis only included data of the first block of the experiment. We assessed how many valid and
invalid sequences participants executed on each trial in the first block. For statistical compari-
son between valid and invalid sequences, we conducted a mixed-effects regression predicting the
number of sequences from sequence validity (valid vs invalid) and trial (1-25), as well as their
interaction. The regression showed a significant interaction between sequence validity and trial
(β = 0.036, z = 7.1, p < 0.001), confirming that the trajectories of valid and invalid sequences dif-
fered (Fig. 5.2C). Valid sequences showed a positive slope (β = 0.011, p = 0.04), indicating that
participants increased the number of valid sequences per trial, while negative sequences showed
a negative slope (β = −0.025, p < 0.001), indicating that participants decreased the number of
invalid sequences. This pattern suggests a shift in exploration strategies: In the beginning, par-
ticipants necessarily explored the task based on individual keys, but once they discovered valid
2-key sequences, they started replacing individual keys by sequences. Executing such temporally-
extended actions is a signature of hierarchy.

Participants showed a pronounced slow-fast-slow-fast response pattern (Fig. 5.2D), which sug-
gests that they executed two distinct 2-key sequences, rather than four distinct key presses. For
statistical comparison, we calculated the differences in response times between pairs of subtrials
within each trial, separately for each participant. We then averaged these response time differences
within participants and conducted one-sample t-tests to determine whether the differences were
significant. All eight tested differences were significant, even after stringent Bonferroni correction
(all t(55)s > 2.9, all ps < 0.04; Fig. 5.2D). That participants executed the second (fourth) key
press faster than the first (third) confirms that they chunked the pair of key presses into a single
unit, in accordance with the consolidation of 2-key sequences into distinctive, temporally-extended
actions. That participants also responded faster on the third (fourth) compared to the first (second)
subtrial might suggest frontloading of processing, such that in part, the second 2-key sequence was
already prepared before or during the first sequence.

Participants became faster at executing valid 2-key sequences with each execution, but the
same was not true for invalid sequences. We examined how the response time of the second key
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of a 2-key sequence developed with each execution of that sequence (Fig. 5.2E). If sequences
were increasingly automatized, the execution time should decrease over time. Indeed, mixed-
effects regression models, restricted to ten sequence executions to maximize the amount of data for
invalid sequences, revealed a significant effect of the number of repetitions on execution time (β =
−4.1, z =−2.4 p = 0.014), revealing a decrease in execution times with repetition. Furthermore,
execution times were significantly slower in invalid compared to valid sequences (β = −30.9,
p = 0.001), confirming that invalid sequences were less automatized.

Part 2: Using the Hierarchy for Exploration and Planning
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Figure 5.3: (A) Number of trials to use a 2-key sequence that was first discovered in one position in
the opposite position of a trial. (B) Performance in the transfer phase. Accuracy (left) and response
times (right) over trials, averaged over blocks, for both high (red) and low (blue) transfer phases.

In part II, we investigated how participants used the hierarchical representations whose creation
we investigated in part I, assessing whether it benefited exploration and planning, as hypothesized.
We tested whether participants reused sequences learnt in one position in the other position, a
sign of adaptive exploration based on 2-key sequences. We also inquired how the transfer phase
affected performance, hypothesizing that changing the “low” rules for 2-key sequences would
affect performance more than changing the “high” rules of 4-key sequences.
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Participants quickly transferred valid action sequences from the position in which they were
originally discovered to the opposite position, suggesting flexible reuse and exploration. We
counted how many trials occurred between the first execution of a 2-key sequence within a block,
and the first execution of the same sequence in the opposite position, e.g., a repetition on subtrials
3 and 4 when the sequence was initial discovered in subtrials 1 and 2. On average, participants
took 5.6 trials to transfer valid sequences (Fig. 5.3A), and mixed-effects regression revealed that
significantly fewer trials were needed to transfer valid 2-key sequences compared to invalid 2-
key sequences (Intercept β = −0.87, se = 0.33, z = −2.63, p = 0.008), with no effect of block
(β=−0.004, p= 0.94). This is in accordance with the notion that when participants acquired valid
2-key sequences, these were consolidated and added the action repertoire, such that they could be
used for future exploration.

Performance suffered more in the low transfer phase than in the high transfer phase (Fig. 5.3B),
in accordance with a role of 2-key sequences as “building blocks” for planning and complex action.
We probed differences between accuracy in the high and low transfer phase using mixed-effects
regression, predicting accuracy from transfer type (high vs low), trial (1-25), and their interaction.
The model revealed main effects of transfer type (β = 0.10, z = 6.4, p < 0.001) and trial (β = 0.1,
z = 15.7, p = 0.10), but no interaction (β = 0.002, z = 1.6, p = 0.11). We used a similar model
to test differences in response time, and found main effects of transfer type (β = 28.2, z = 6.8,
p < 0.001) and trial (β = −2.8, z = −13.5, p < 0.001), as well as an interaction (β = 0.60, z =
2.0, p = 0.044). This confirms that participants performed better in the high compared to the
low transfer phase, and shows that it was more difficult to relearn “low-level” 2-key sequences
compared to “high-level” sequences of 2-key sequences. This is in accordance with the view that
lower level of hierarchical representations are more consolidated and less accessible. Bluntly, once
a key sequence becomes an action, it becomes difficult to change it.

5.3 Discussion
Abstraction has long been argued to facilitate complex problem solving, including planning over
long time horizons, responding to new situations by leveraging old experiences, and learning in
the absence of direct rewards. Abstraction provides a handle on these problems because it directs
exploration by constricting the space of possibilities, and combating the curse of dimensionality.
It also facilitates learning with sparse rewards because it aims to identify alternative targets of
learning. Given that the right abstractions can solve some of the hardest problems, the crucial
–yet unsolved– issue is how to create such abstractions. The possibility we investigate here is to
use environmental signals to bootstrap learning, i.e., learning complex action sequences that elicit
environmental signals. Such acquired action sequences then form the basis for future exploration,
facilitating the discovery of rewards.
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Summary of Results
In part I, we investigated how participants learned new action sequences, creating temporal hi-
erarchy. Participants slowed down after discovering an item for the first time, suggesting they
processed the appearance of the item as feedback, as would be expected for explicit rewards.
Thereafter, participants reused valid action sequences –i.e., those that result in items appearing–
more often than invalid ones, revealing intrinsic motivation to execute valid action sequences. The
frequency of valid sequences increased, while invalid sequences decreased, suggesting that par-
ticipants progressively explored the task based on 2-key sequences rather than individual keys.
Response time patterns within trials confirmed that participants clustered individual key presses
into action sequences.

In part II, we investigated how participants used the hierarchical representation whose creation
we investigated in part I, asking whether it benefited exploration and planning, as hypothesized.
Participants successfully reused sequences they learnt in one position in the other position, a sign
of active exploration. In the transfer phase, changing the “low” rules –i.e., the recipe for 2-key
sequences– affected performance more than changing the “high” rules –i.e., the recipe for 4-key
sequences, based on 2-key sequences. This confirms that adapting 2-key sequences was more diffi-
cult than adapting 4-key sequences, in accordance with participants’ integration of 2-key sequences
into their action repertoire.

Future Directions
We focused on one way of creating hierarchical representations in this study, using environmental
signals as the targets of complex action sequences. Future research is needed to assess whether
this is a general framework in human learning. Two factors should be manipulated to investigate
this question: the reactivity of the environment and its modularity. With “reactivity”, we refer to
whether an environment signals partial solutions, i.e., whether valid action sequences lead to items
appearing whereas invalid ones do not. Our task design provided maximum reactivity because all
valid (and no invalid) sequences were signaled. Would participants still use environmental signals
to create action sequences when only a subset of valid sequences were signaled, or when some in-
valid led to signals as well? “Modularity” refers to the degree to which rewarded action sequences
are composed of the same set of sub-sequences. Our task provided maximum modularity because
all 4-key sequences were composed of the same set of four 2-key sequences. How would learning
be impacted under lower modularity, i.e., if there were more 2-key sequences and each was used
less in the 4-key sequences? At the extreme, would participants still acquire hierarchical represen-
tations if there was no modularity at all, i.e., if each 4-key sequence was unique, without repeated
sub-sequences? Previous research has suggested that humans create hierarchical representations
even in the absence of hierarchical structure in a feature-based task (Collins, 2017), and research
is needed to show whether this tendency extends to sequential paradigms.

Future research should also employ computational modeling to formally test the process of
hierarchy creation we described qualitatively in this study. We have already presented our intended
computational model elsewhere, including behavioral predictions across a variety of task variations
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(Eckstein and Collins, 2017). Future steps entail formal model comparison to identify the model
components that are required to capture human behavior, and estimating the model parameters of
the best-fitting model to investigate individual differences, and their relation to task behavior.

5.4 Methods

Participant Sample
Seventy-three undergraduate participants provided informed consent and completed the task online
for course credit (58 females, 13 males, 2 declined to answer). Two participants were excluded
because they reported present or past psychological illness; 2 more were excluded because they
had experienced head trauma or loss of consciousness. Six participants were excluded because
they missed more than 50 trials, an elbow point in the number of missed trials (mean missed trials
after excluding: 11.6, sd: 9.2, min: 1, max: 35). Two participants were excluded because they
took more than 60 minutes to respond (mean duration after excluding: 36 minutes, min: 26, max:
46, sd: 5.3). Eleven participants were excluded because they used pen and paper or other external
devices to help with the task. Because of the COVID pandemic, the study was conducted online
and no experimenters were present to monitor subjects. We therefore asked participants in a post-
experiment questionnaire whether they had used pen and paper, and excluded participants who
indicated doing so because the use of pen and paper most likely obscures the memory processes
we aimed to investigate. In total, 17 participants were excluded (some fulfilled more than one of
the above criteria), leading to a final sample of 56 participants (45 females, 10 males, 1 declined
to answer; mean age: 20.6, min: 18.1, max: 31.8, sd: 1.96).

Task procedure
During their experimental session, participants first provided online informed consent, in accor-
dance with the Institutional Review Board of the University of California, Berkeley. Then, partic-
ipants completed a standard demographics form that included questions about sex, age, race, and
medical exclusion criteria. They then worked on the task, which consisted of a tutorial, a learning
phase, and an unsignaled transfer phase. After the task, participants completed a strategy ques-
tionnaire that asked specific and open-ended questions about their strategies employed during the
task.

On each trial, participants pressed four keys with the goal of finding the current trial’s goal
star. The goal star was shown at the top of the screen and participants were told that they would
receive a point each time they achieved a goal star. A point counter at the top of the screen kept
track of participants’ collected points throughout the task. Participants were allowed a maximum
of 2.5 seconds for each trial. Available keys were Q, W, E, and R when participants were using
their left hand, and U, I, O, and P when participants were using their right hand. When the four
key presses took more than 2.5 seconds, participants were reminded to respond faster next time
and the trial was counted as missed. Each trial was followed by a 0.5-second inter-trial interval,
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after which the next trial started. Each key press was visualized as a colored circle that appeared
in a response box underneath the star machine without delay, with a one-to-one match between
key and color. When participants executed a valid 2-key sequence within the first (last) two slots,
an item appeared on the left (right) side of the machine’s window without delay. Each of the four
valid 2-key sequences was represented by a unique item. When participants executed a valid 4-key
sequence, a star appeared immediately after the last key press. When the star coincided with the
goal star, participants received a point, which was signaled by an increment of the point counter.
When a trial did not form a valid 4-key sequence, no star appeared. No other message signaled an
incorrect trial.

Valid 2-key and 4-key sequences were constructed to maximize similarity between high-level
and low-level transfer, and the same abstract rules were used for all participants. Abstract rules
assigned a number to each action, and we avoided systematic biases by randomizing the assignment
of actions to keys, 2-key sequences to items, and 4-key sequences to star color. For example, the
action sequence “0, 1, 2, 3” could map onto “E, R, W, Q”, “W, R, Q, E”, or any other permutations
of the allowed keys. Valid 2-key sequences are shown and explained in Fig. 5.1C.

Participants completed 12 blocks of 25 trials during the training phase, and 8 blocks of 25
trials during the transfer phase. Within each block, all trials had the same goal star. The order of
blocks was pseudo-randomized to avoid the presentation of the same goal star in two subsequent
blocks. In addition, pseudo-randomization entailed that each goal star was presented once in each
mega-block of 4 blocks, for a total of 3 blocks per star in the learning phase, and 4 blocks per star
in the transfer phase. The transition between learning and transfer block was not signaled.

After completing their first machine (including learning and transfer phase), participants took
a 1-minute break. After the break, participants were presented with a new machine that differed in
color, and were instructed to use the opposite hand from the one they used for the first machine,
on a different set of keys. Order of hands was randomized between participants (number of partic-
ipants who used their right hand for the low-transfer machine: n = 32; right hand for high-transfer
machine: n = 26). Participants who had received the low transfer phase in the first machine, re-
ceived the high transfer phase in the second one (n = 30 after exclusion), and vice versa (n = 26).
The new machine followed the same abstract rules as the old machine, but keys were randomly
re-assigned to the new set of keys to avoid biases and minimize transfer effects. A novel set of
items indicated valid 2-key sequences, and a novel set of stars indicated valid 4-key sequences.

The task was written in jsPsych (de Leeuw, 2015), a JavaScript library that facilitates online
data collection.

Data analysis
We used Python for data analysis and visualization. Regression models were conducted using the
statsmodels package (Seabold and Perktold, 2010). Unless otherwise specified, we used mixed-
effects models and defined each participant as a group.
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Chapter 6

Conclusion

This chapter links the four experiments presented in this thesis, raises open questions and discusses
them, suggests future directions of research, and adds broader points of discussion.

6.1 Developmental Changes in Learning
The study in chapter 2 revealed that some aspects of learning change non-monotonically during
development, and that these aspects can be illuminated using computational modeling. Both Rein-
forcement Learning and Bayesian Inference models captured human behavior, and each provided
a sound and coherent explanation for the observed development. This finding raises deeper ques-
tions about computational modeling: the goal when fitting computational models is often stated
as investigating cognitive processes. If two –mechanistically very different– models fit the same
dataset equally well, what can we conclude about the cognitive process? Does neither model cap-
ture the cognitive process, does only one capture it but the other does not, or do both capture it but
in different ways? In chapter 2, we tried to make progress on this question by assessing whether
both models captured different aspects of behavior –using model recovery approaches–, and how
similar parameters were between models. Interestingly, the models captured distinguishable as-
pects of behavior, but many model parameters showed large overlaps, suggesting that the models
were not identical, but similar.

Even after these analyses, the question about cognitive processes remains unresolved. Ap-
proaching the issue more rigorously, when the same behavior can be described equally well using
different cognitive models, a variety of conclusions could be drawn: (a) There is a direct contra-
diction, and therefore both models must be wrong and neither can be said to capture the underlying
cognitive process. (b) There is no direct contradiction because the models describe the cognitive
process at a different level of analysis (Marr, 1982). (c) There is no contradiction because the
concept of “cognitive processes” does not have a factual counterpart. Humans perceive there to be
cognitive processes, but this does not prove that they exist in reality. (d) There is no contradiction
because computational models only describe behavior, and never cognitive processes. (e) There is
no contradiction because both models capture different aspects of the cognitive process. (f) There
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is no contradiction because each model proposes a different theory about the cognitive process,
and the task is not designed to discriminate between both theories. (g) There is no contradiction
because each model captures different aspects of the cognitive process, which are then mixed in be-
havior, possibly to different degrees in different individuals. (h) There is no contradiction because
“all models are wrong” (Box, 1976).

Options (a), (c), and (d) would be detrimental for cognitive modeling. For (a), if the existence
of an equally-good model led to the invalidation of both models, all existing models would most
likely be invalid if we assume that we can always construct an equally-good competitor model. For
(c), if cognitive processes do not actually exist, the whole endeavor of cognitive research might
have been misguided (Churchland and Haldane, 1988). And for (d), if computational models are
unable to capture cognitive processes, computational modeling has never been the right tool for
cognitive science. Options (b), (e), (f), (g), and (h) rescue computational modeling, but (b) might
not apply to our case because both models were process models at the algorithmic level, and (e) is
unlikely in our case because both models captured very similar aspects of behavior and parameters
showed large overlaps between models. (f) shares spirit with the theory of paradigm shifts (Kuhn,
1996). Different theories –which sometimes are practiced at the same time in science– explain the
same phenomena in different ways, but all explanations are, in the end, just views based in different
scientific paradigms. Similarly, (h) draws a clear distinction between models and the phenomena
they describe, demanding caution when drawing conclusions from models to phenomena.

In conclusion, our results raise questions that seem to go beyond the realm of empirical psy-
chology. Nevertheless, this shows how important it is to understand the strengths and limitations of
the method of computational modeling, and the next chapter investigated this issue in more depth.

6.2 What Can We Learn from Computational Modeling?
The research in chapter 3 revealed that the same parameters did not capture the same cognitive
processes across tasks, and that the same participants did not show the same parameters across
tasks. This contradicts important implicit assumptions of the computational modeling commu-
nity, including that computational models can be compared between tasks, and that generic model
parameters are related to psychological traits, real-world behavior, and brain function.

Our research instead shows that model parameters in reinforcement learning play a very dif-
ferent role than is commonly assumed. A model parameter is not an inherent trait that can be
measured by fitting a computational model, like someone’s inherent intelligence can be measured
using an intelligence test (even though there is also considerable controversy on that), or someone’s
inherent iron deficiency can be measured using a blood test. Instead, each model parameter, in each
task, likely reflects a different compilation of behaviors, which might include temporary strategies
(e.g., favoring speed over accuracy) or persistent personality traits (e.g., intelligence), participants’
psychological qualities (e.g., attentiveness, memory, reasoning style) or task demands (e.g., speed,
number of stimuli, volatility), or different aspects altogether.

Bluntly put, different tasks lead to different results in computational modeling because the
same parameters simply measure different things in each task. It is important to note that this does
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not question the entire endeavor of computational modeling (like our discussion of chapter 2),
and it does not negate that model parameters capture meaningful aspects of cognition or behavior.
What our result show is just that each task’s parameters might need to be interpreted differently,
just like each task’s accuracy needs to be interpreted differently, in accordance with the task’s
characteristics. Back to our earlier example on blood tests, we would not expect an iron deficiency
test to measure liver health or vice versa.

One limitation of this study was the inability to identify which exact cognitive processes were
captured by each model parameter. If it were possible to pinpoint each parameter’s cognitive pro-
cesses, it would be possible to determine which aspects were constant across tasks, and which
differed. Without this possibility, we were only able to assess the amount of variance that was
shared between parameters, and had to guess which cognitive processes the shared and non-shared
aspects corresponded to. Future research needs to devise a way of associating model parameters
with cognitive processes, both to assess similarities in parameters between tasks, and to answer
the more fundamental question of what parameters measure in each task. To do this, computa-
tional models will likely need to be refined to better match complex cognitive processes, and to be
carefully validated against underlying mechanisms and individual differences in multiple tasks.

6.3 Hierarchically-Structured Reinforcement Learning in
Humans

In chapter 4, we showed that human behavior in a context-based learning task is reproduced well
by a hierarchical reinforcement learning model, but not by a flat reinforcement learning model or
a hierarchical Bayesian model. Many open questions remain for future research: (1) Are task-sets
discrete entities, as assumed in our model, or should they be considered continuous? In real life,
no two contexts are ever exactly the same, and we constantly have to generalize beyond previous
experience (Schulz, 2017; Shepard, 1987). Can a theory of discrete task-sets explain our flexibility
in responding to a continuous array of situations? I think that two answers can be given. One
possibility is that even though there is an infinite number of contexts in real life, our mind combines
contexts into a discrete number of clusters, and applies the same task-set to each. In this way, a
discrete number of task-sets is sufficient for a potentially infinite number of contexts. Another
possibility is that both discrete contexts and discrete task-sets (like in our task) are a simplification,
and in reality, both exist in a continuous space. In this view, future models will need to incorporate
task-set generalization, potentially using function learning (Schulz, 2017).

(2) How separate are task-sets from each other? Incidental observations suggest that different
task-sets might share more similarities with each other than would be assumed of they were fully
independent. For example, meta-rules acquired in one task-set readily translate to other task-sets
(e.g., which responses are allowed, the meaning of feedback) and individuals’ characteristics are
evident across task-sets (e.g., risk-proneness vs caution). This suggests that task-sets might have
access to the same information, or be fed by the same underlying processes, and represent the
final, refining step of information processing. Future research should investigate which kinds of
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information are shared between task-sets, and at which processing step this sharing occurs.
(3) How many levels of hierarchy are there? In our model, we assumed a lower level of task-

sets, and a higher level of master strategy over task-sets. But task-sets themselves are composed
of button presses, and button presses are composed of muscle activations. Which structure do
these component processes of task-sets have, and is it similar to task-sets? Moving in the opposite
direction, might there be several master strategies, each for a different master context, such that
we acquire master master strategies to select between them? Future research needs to determine if
there is a limit on the number of levels humans are able to represent, and how processes at each
level differ from each other.

6.4 Hierarchical Learning of Complex Action Sequences
In chapter 5, we took a detailed look at how participants create hierarchical representations when
learning action sequences. We showed that not only explicit rewards can be powerful learning
signals, but also other forms of environmental feedback. Participants learned hierarchical repre-
sentations of the task by decomposing complex action sequences into simpler ones, and thereby
scaffolding learning and exploration. We are currently developing a computational model of this
task to assess this process in more detail (Eckstein and Collins, 2017). Even though we show
behavioral evidence for each step taken by the proposed algorithm, constructing the model is nec-
essary to prove that it will capture all aspects of behavior as a whole.

The task in this study was both compositional –complex elements were composed of a small
number of simpler elements– and responsive –simpler elements elicited environmental responses
that could be observed by participants. Future research needs to investigate each of these two
aspects in more detail. In the case of compositionality, how would participants respond to a non-
compositional task, in which complex elements do not share common elements? We designed the
task to be compositional under the assumption that the world around us is compositional, but it
might be the case that this compositionality itself is an interpretation of our mind. Using a non-
compositional task might shed light on whether humans impose compositionality even when it is
not present in the environment, in an effort to structure the task and break it up into manageable
sub-tasks. In the case of responsiveness, how would participants respond to a more or less re-
sponsive task? Arguably, the real world does not signal each meaningful sub-response, and many
non-meaningful responses elicit responses. It would be interesting to investigate how participants’
strategies will change in a non-responsive task condition. In this case, participants would need to
infer which 2-key sequences are valid retroactively, based on the composition of valid 4-key se-
quences. Partly-responsive and overly-responsive conditions might also shed light on processing.
In the former, only some valid 2-key sequences elicit responses, whereas in the latter, not only
valid, but also some invalid sequences elicit responses.

My prediction is that the lack of both compositionality and responsiveness would hurt partic-
ipant performance. I also hypothesize that participants would perceive compositional structure in
a task in which there is none. There is evidence that our minds choose to represent tasks hierar-
chically that are not intrinsically hierarchical in structure (Collins, 2017), and humans seem prone
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to perceive pattern when there are none (e.g., superstition). In the case of varying responsive-
ness, I hypothesize that participants would deal elegantly with both intermediate versions (partly-
responsive and overly-responsive), but not the non-responsive version. The reason is that as long as
environmental responses are used as teaching signals for the creation of 2-key sequences, both in-
termediate versions will speed up the learning of at least some or all valid 2-key sequences. Even if
not all (or too many) have been pre-learned, their availability should aid in learning compositional
4-key sequences.

6.5 Summary
We conducted four studies with the goal of understanding complex human cognition. Learning
is a crucial component of every intelligent system, and we investigated how this skill changes
during human development. Computational modeling provided insights into individual strategies,
shedding light on the potential mechanisms behind age changes; but it also raised questions about
computational modeling more fundamentally, like which questions the method is able to answer.
The second study focused on the method of computational modeling, specifically trying to under-
stand the role of model parameters. Instead of capturing the same individual differences each time,
many model parameters seem to reflect different processes depending on the task.

Hierarchical representations have the potential to solve a range of otherwise unsolvable prob-
lems, and might explain aspects of human intelligence. Indeed, a hierarchical reinforcement learn-
ing model explained human behavior in our context-based task better than flat reinforcement learn-
ing or hierarchical Bayesian inference. Hierarchical representations themselves might be learned
through scaffolding and creating more-and-more complex actions.
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