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Cells such as myocytes and adventitial fibroblasts are responsive to mechanical cues in 

their local environment. In response to mechanical loads, a variety of mechano-transduction 

mechanisms and signaling pathways are activated to regulate their response to the altered 

conditions.  

In order to define mechano-signaling networks and their role in cellular function and 

remodeling, we have adapted and refined previously published systems models of myocyte 
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hypertrophy. Using uncertainty quantification, we first found that the model accuracy was robust 

to parameter changes over a wide range with model outputs being least sensitive to time constants 

and most affected by uncertainty in reaction weights. We also found epistemic uncertainty in the 

reaction logic of the model could greatly affect model accuracy while uncertainty in the validation 

data had a modest effect on model accuracy.  

As a step forward toward understanding myocyte response to external loading, including 

direction-dependent pathways, we extended this previous network model to include the 

transcriptional regulatory networks controlling gene expression as well as protein translation, and 

introduce a mass-action method to model quantitative gene expression. By incorporating RNA-

sequencing data, this new approach displayed high accuracy with 69% agreement overall and 72% 

agreement for predicted differentially expressed genes in response to longitudinal stretch. We 

further found that the difference between transverse and longitudinal stretch responses in 

cardiomyocytes could be related to the sensitivity of directional mechanotransduction, with the 

sensitivity of longitudinal stretch being greater than transverse. Upon analyzing genes regulated 

by multiple TFs, we found that expression of these genes didn’t monotonically change with the 

number of TFs, which indicates TF regulation effects may saturate faster when multiple TFs 

coregulate gene expression. Moreover, we identified AT1 and ET1 receptors as main regulators of 

the stretch induced responses through receptor inhibition simulations and subsequent experiments. 

A similar approach was used to study mechanical signaling and remodeling responses in 

PAAFs. In the current work, we have modified an existing systems model of cardiac fibroblast 

signaling to PAAFs and the cellular regulation of profibrotic signaling by combining both in-vitro 

and in-silico models of cell signaling in response to altered mechanical conditions. A UQ analysis 

on this model highlighted parameters to be optimized and network modules to be elucidated with 
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more experiments. The signaling model in PAAFs and the subsequent experiments identified that 

both stretch and increased substrate stiffness regulated profibrotic genes, while no interaction 

effect was found between stretch and stiffness for several key genes studied. In addition, the 

activation of fibronectin expression by stretch in PAAFs may be angiotensin-independent when 

the cells are adhered on stiff but not soft substrates.  

While these signaling network models can help distinguish regulators and their sensitivity 

to different mechanical stimuli, it is not known how these regulators participate in gene regulation 

of in-vivo hypertrophy. In the future, these signaling network models can be used to identify key 

regulators of hypertrophy-related heart failure and tissue fibrosis and provide support for drug 

discovery. 
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Chapter 1: Introduction 

1.1. Mechanotransduction in Cardiomyocytes and Adventitial Fibroblasts 

Many heart diseases, including hypertrophic cardiomyopathy, are associated with cardiac 

hypertrophy [1]. Cardiac hypertrophy is the enlargement or thickening of the heart muscle, and in 

many cases, hemodynamic overload on the heart can induce different modes of ventricular 

hypertrophy and remodeling. Physiological hypertrophy, often a result of exercise, is an adaptive 

response to hemodynamic loading [2, 3]. This compensatory hypertrophic growth of the heart 

enhances cardiac performance and may diminish ventricular wall stress and oxygen consumption 

[3]. In many cases, prolonged hemodynamic overloads on the heart are pathologic, with a long-

term response that is maladaptive and can result in pathological hypertrophy, characterized by 

maladaptive geometric remodeling and fibrosis, which ultimately can lead to heart failure [3-5]. 

Remodeling of myocardium, whether physiologic or pathologic, is typically associated with 

phenotypic changes such as growth of the resident muscle cells of the heart, and the remodeling 

of the constituents of the extracellular matrix (ECM) that interconnect these cells [6]. Many of 

these phenotypic changes have been related to alterations in the mechanical environment of these 

cells in heart, or dysregulation of the sensing or response to altered mechanical loads. 

A major component of ventricular remodeling is governed by the changes in 

cardiomyocytes, due to the overwhelming volumetric proportion in this cell population of the 

heart. These cells have well characterized responses to multiple mechanical stimuli including 

compressive and tensile stresses and strains in their surrounding environment [7-9]. Cellular 

responses, such as myocyte hypertrophy, are regulated by mechanotransduction, which converts 

mechanical signals from the outside of the cells via internal structures such as the membrane and 
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cytoskeleton of these cells, into biochemical responses via the activation of mechanosensitive 

signaling pathways [8-11]. These mechanical signals then propagate to the nucleus, where they 

can alter the activities of transcription factors and further induce transcriptional responses leading 

to changes in proteins and hence cellular remodeling.  

Although the exact mechanisms are unknown, evidence suggests that mechanical signals 

in the myocardium and other tissues are perceived by the resident cells and transmitted through 

many transmembrane complexes including proteins connecting the ECM with the cytoskeleton, 

transmembrane receptors, and the ion channel receptors on the membrane surface [12-18]. The 

ECM is a key player in these mechanosensitive pathways, as it can transmit mechanical loads via 

its structural components such as collagen and elastin, to myocardial cells via transmembrane 

protein structures such as integrins [13-15]. Hence, mechanosensing and transduction are 

fundamental to the normal functioning of these cells in response to environmental changes, and 

defects in these sensing and signaling pathways are likely involved in pathophysiology [13-15]. 

In addition to force transmission to a cell, internal sensing and subsequent changes in gene 

expression, mechanical loading can also trigger autocrine and paracrine mechanisms via 

transmembrane receptors [16-17]. Angiotensin II (AngII) is a peptide hormone converted from 

Angiotensin I and its levels have been reported to be elevated by mechanical stretch [16]. The 

locally produced AngII has both autocrine and paracrine properties that further activates 

hypertrophy and matrix remodeling via the AngII type 1 receptor (AT1R) [16]. AngII has also 

been reported to stimulate protein synthesis in the ECM, and this accumulation of ECM increases 

myocardial stiffness and results in impaired contractile behavior [17]. 

Many mechano-regulated responses have also been reported to be associated with 

mechanoelectric feedback via regulation of the cross-membrane fluxes of ions such as calcium 
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[18-19]. These transmembrane currents can go through mechanosensitive channels such as 

transient receptor potential (TRP) in response to acute stretch [19-20]. 

In addition to mechanically-linked left ventricular (LV) diseases such as LV hypertrophy 

and LV hypertrophic cardiomyopathies, pulmonary arterial hypertension (PAH) is another 

common disease with implications in the right ventricle as well as remodeling in the pulmonary 

arteries themselves [21-22]. During the progression of PAH, the pulmonary arteries and veins 

undergo many structural alterations, commonly referred to as pulmonary vascular remodeling [23-

24]. Pulmonary artery adventitial fibroblasts (PAAFs), the principal cell type in the adventitial 

layer, are important mediators of pulmonary vascular remodeling in response to mechanical stimuli 

[25-26]. Like cardiomyocytes, the response of these cells is also mediated by many 

mechanosensitive signaling pathways. In the following subsections, both mechanosensors and the 

associated signaling pathways in cardiomyocytes and PAAFs will be introduced in detail. 

1.1.1. Mechanosensors and Associated Signaling Pathways in Cardiomyocytes 

Cardiomyocytes sense mechanical stimuli by transmitting forces from their external 

environment to to mechanosensors that are likely located at the cell membrane or in internal 

structural components of the cytoskeleton. Various structural mechanisms have been proposed in 

the transmission and sensing of external forces, including structural proteins that bind to the ECM, 

transmembrane receptors, and the release of small molecules through autocrine or paracrine 

mechanisms, and ion channel receptors [12-19]. Some mechanosensors are thought to be located 

in the sarcolemma, the cell membrane of cardiomyocytes, which contains many structural protein 

complexes that connect ECM ligands with the cytoskeleton, including the integrin complex and 

the dystroglycan complex [13-15,27-28]. Integrins are heterodimeric cell-surface receptors with 𝛼 

and 𝛽  subunits that link the ECM and the intracellular cytoskeleton and function as 
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mechanotransducers by binding to ECM proteins, including fibronectin, laminin, and collagen [13-

15,29-30]. The main integrin heterodimers expressed in cardiomyocytes are 𝛼!𝛽" and 𝛼#𝛽$, where 

the deletion of either 𝛽subunits disrupt pressure-induced hypertrophic signaling [15]. The role of 

integrins in connection with laminin can be compensated by the dystroglycan complex, a 

glycoprotein that can attach to the actin cytoskeleton via dystrophin [27-28].  

In addition to force transmitted via the cytoskeleton or other structural components of the 

myocyte, mechanical signals may be sensed directly by transmembrane receptors in response to 

altered molecular environment. The release of AngII and ET1 induced by mechanical stress can 

activate AT1R and ET1 receptor (ET1R), respectively [31-33]. AT1R was also found to be directly 

activated under mechanical stretch independent of AngII [31,33]. Similar to AT1R, gp130, a 

transmembrane protein, is a founding member of the class of many cytokine receptors [34-36]. 

Reduced compensatory hypertrophy was found in gp130-KO mice during pressure overload [36], 

possibly indicating a load sensing mechanism through this receptor. 

Another pathway that may be involved in mechanotransduction in cardiomyocytes is the 

regulation of intracellular calcium, which has been reported to be elevated in cardiomyocytes in 

response to acute stretch [18-20]. Many mechanosensitive channels, such as the left-type calcium 

channel (LTCC) and TRP, can be activated through this process. Compared with LTCC and TRP 

which directly affect the calcium influx, sodium hydrogen exchanger (NHE) mediates calcium 

oscillation by adjusting the sodium concentration and pH of the extracellular environment [37]. 

In the following subsections, the signaling pathways following the activation of these 

mechanosensors will be introduced.   
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1.1.1.1. The Cytoskeleton-Related Complexes and the Associated Signaling Pathways 

The myofibril is the major force-generating functional components of the cardiomyocyte 

[14,38-40]. It contains repeated contractile units, also known as sarcomeres, and is crucial to 

maintaining the normal function of cardiac muscles in response to mechanical loading [14,38-40]. 

The primary components that form the sarcomere are actin and myosin [14,40]. Myosin binding 

to actin can generate cross-bridge tension leading to the movement on the actin filament, which 

results in myofibrill contraction and force transmission [41-42]. Titin, also known as connectin, is 

a giant protein complex that connects the z-disc with the M-line of the sarcomere and is critical to 

contractile function of the cell [43-44]. Its interaction with actin promotes the stiffening of cardiac 

muscle [43]. Titin kinase couples the ubiquitin kinases Muscle Ring-Finger protein 1 (MuRF1) 

and MuRF2, which further coordinate myofibril trophicity [45]. Mechanosignaling may be 

regulated via the connection of titin with many cytoskeletal proteins, including the Muscle LIM 

Protein (MLP) and the four-and-a-half domains (FHL) [46-47]. These proteins then propagate the 

signals between myofibrils and the cytoskeleton to many downstream signaling pathways, which 

will be discussed later. 

Integrins connect the actin cytoskeleton to the cell membrane via sub-membranous 

structures including the costamere, which contains proteins such as talin and vinculin [48-51]. 

Talin is a large dimeric cytoskeletal protein that activates the binding of integrin with actin [49]. 

Like talin, vinculin is one of the major cytoplasmic actin-binding proteins enriched in focal 

adhesions [50]. The binding of actin with integrin can be strengthened via the binding of talin to 

vinculin [49]. Similar to how integrin functions, the dystroglycan complex is a compensatory role 

to integrin that alternatively connects the cardiomyocyte cytoskeleton with laminin in the ECM 

via dystrophin [28]. As a result of force transmission via integrin or dystroglycan to the 
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cytoskeleton, Rho guanine nucleotide exchange factor (RhoGEF) is activated and recruited to the 

adhesion complex [52]. This further stimulates RhoA, a small GTPase protein, and its binding to 

Rho-associated protein kinase (ROCK), which prevents actin depolymerization and the normal 

function of titin [53-57]. RhoA also mediates nuclear translocation of myocardin-related 

transcription factor (MRTF), which usually acts as a coactivator of many TFs [58]. Rapid 

phosphorylation of the focal adhesion kinase (FAK) can be induced by the activation of 𝛽(1D)-

integrin by 𝛼(1)-adrenergic stimulation, which then alters the Src binding and stimulates the 

signaling cascade of phosphatidylinositol 3 kinase (PI3K) [59-60]. PI3Ks are heterodimeric 

enzymes consisting of an adapter regulatory subunit and a catalytic subunit tightly bound to the 

regulatory subunit [61]. Activated PI3K can phosphorylate and activate protein kinase B (also 

known as Akt) by recruiting phosphoinositide-dependent kinase-1 (PDK1) to the sarcolemma [61-

63]. Akt can further regulate the activity of many ion channel receptors via the activation of the 

nitric oxide synthase (NOS) [64-65]. Nitric oxide, through the activation of soluble guanylyl and 

the cGMP formation, can enhance the phosphorylation of cGMP-dependent protein kinase (PKG), 

which has an antihypertrophic effect through inhibiting intracellular release of calcium via 

blocking the normal functions of the ion channel receptors [64-67]. Akt also enhances protein 

synthesis and regulates myocyte size through the activation of the mammalian target of rapamycin 

(mTOR) dependent pro-growth pathways [62-63, 68-69]. mTOR can regulate gene expression by 

relieving transcription from the repression of glycogen synthase kinase-3 beta (GSK3B) and 

inhibitor of kappa B (IKB) [70-72]. GSK3B is a negative regulator of many TFs associated with 

cardiac hypertrophy and is normally active [70]. Phosphorylation of Akt can inactivate GSK3B 

and this inhibition can dephosphorylate the TFs and allow the TFs to translocate to the nucleus 

and initiate transcription process [70,73-75]. As is reported, mTOR can directly regulate protein 
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translation by activating the S6 kinases and eukaryotic translation initiation factor 4E (eIF4E) [62, 

76-77]. More details regarding transcription regulation will be discussed in later subsections. 

1.1.1.2. Transmembrane Receptors and Associated Signaling Pathways 

Autocrine and paracrine mechanisms, generally mentioned previously, can be triggered by 

mechanical strain that leads to myocardial hypertrophy through the release of AngII and ET1 [16-

17, 31-33]. The JAK/STAT signaling pathway mentioned above is also activated directly by 

AT1R, indicating these G-protein coupled receptors may also pass the signal through canonical 

pathways triggered by cytokines [81]. 

Many transmembrane receptors have acted as signal transducers in response to changes, 

such as the elevated levels of cytokines and growth factors, in the micro-environment surrounding 

the cardiomyocytes [20]. For example, glycoprotein (gp) 130 is a common receptor subunit of 

interleukin (IL)-6-related cytokines and a founding member of cytokine signaling in 

mechanotransduction [35-36, 78]. Transmembrane gp130 activates protein tyrosine kinases JAKs, 

which phosphorylate STATs and cause STATs to dimerize and then translocate to the nucleus and 

initiate gene transcription [78-80].  

The major signaling pathway regulated by these G-protein coupled receptors include the 

mitogen-activated protein kinase (MAPK) signaling pathway [82-83]. MAPKs are 

serine/threonine kinases that are downstream of the mitogen-activated protein kinase kinases 

(MEKs) and mitogen-activated protein kinase kinase kinases (MEKKs). These MAPKs mainly 

include the extracellular signal-regulated kinase 1/2 (ERK1/2), the extracellular signal-regulated 

kinase 5 (ERK5), the c-Jun N-terminal protein kinase (JNK) and the p38 MAPK [82-84]. These 

MAPKs have been reported to be quickly activated by mechanical stimuli within a time span of 

15 minutes [79,85]. While these MAPKs are mainly regulated by the MEKs and MEKKs, 
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deficiency in FHL1 results in a loss of ERK1/2 phosphorylation in the pressure overload induced 

hypertrophy following TAC [86]. This indicates the potential interaction between the quickly 

activated MAPKs and the cytoskeleton. More importantly, these MAPKs can phosphorylate and 

activate TFs and promote gene expression [84].  

1.1.1.3. The Mechanosensitive Channels and Calcium Signaling Pathways 

Cardiac hypertrophy is also associated with marked changes in myocardial contractility 

that peak active tension increases and the rates of both tension development and relaxation are 

slowed, which is also associated with alterations in calcium transients [87]. Many of these ion 

channels are mechanosensitive and have been reported to regulate transmembrane fluxes of 

calcium [19, 88-89]. Two mechanosensitive channels regulating the calcium transients have been 

widely discussed, including LTCC and members of TRP channel [90-91]. Studies have shown that 

LTCC was expressed transiently and the current through this channel was highly sensitive to the 

flow-induced shear force [90,92]. Further, the 𝛼"% subunit of LTCC was directly associated with 

the mechanical regulation of calcium entry [92]. Similar to LTCC, the TRP family also plays a 

vital role in regulating the calcium influx. It has also been shown that TRPC6 activity was greatly 

reduced by a specific inhibitor of mechanosensitive channels, GsMTx-4 [93]. TRPV4, another 

highly expressed ion channel, was found to be activated in response to increased mechanical 

loading [94]. Apart from these calcium channels, alterations of other ions have also been 

stimulated, including sodium. NHE is an ATP-independent membrane glycoprotein transporter 

that takes Na+ into the cell and transports H+ out of the cell and is thus involved in the regulation 

of intracellular pH [95-96]. The change of the intracellular pH can in turn affect the normal 

functioning of the calcium influx [96]. Besides, the influx of calcium can also be inhibited by 

cGMP-dependent protein kinase (PKG) signaling [64-67].  



 
 

 

9 
 

Changes in intracellular calcium levels can regulate many signaling pathways associated 

with cardiac hypertrophy, including protein kinase C (PKC), calcineurin (CaN), and calcium-

calmodulin dependent protein kinase (CaMK) signaling [97-99]. PKC is a serine/threonine kinase 

that can be activated by mechanical stretch via secondary messengers, such as calcium or 

diacylglycerol (DAG) [97]. PKC can activate the ERK signaling pathway and regulate the gene 

expression via the phosphorylation of Raf [100-101]. Activation of PKC further leads to 

phosphorylation of histone deacetylase 5 (HDAC5), which causes nuclear export of HDAC5, thus 

can relieve the transcriptional activity of many TFs from the repression of HDAC5 [102-103]. In 

contrast with PKC, enhanced CaMK activity, especially CaMKII, can translocate HDAC4 out of 

the nucleus and promote gene expression [104-105]. While CaMK doesn’t bind to HDAC5 

directly, CaMK can bind the subunit of HDAC4, then disassemble the heterodimer formed by 

HDAC4 and HDAC5, and facilitate the export of the HDACs out of the nucleus [105].   

1.1.2. Mechanosensors and Associated Signaling Pathways in Pulmonary Artery 

Adventitial Fibroblasts 

Another example of mechano-sensing and transduction is in fibroblasts, which regulate 

ECM in most tissues. A typical response found in many tissues is excess fibroblast-mediated 

fibrosis under abnormally high mechanical loads. PAAFs are important mediators of fibrotic 

vascular remodeling during the progression of pulmonary hypertension (PAH) and have been sown 

to mediate ECM remodeling in response to pathological strains and stresses [106-109]. Increased 

vascular stiffness and stress are thought to be mediators of PAAF function during PAH [107-109]. 

PAAFs can bind to ECM ligands such as fibronectin and collagen, sense mechanical signals, and 

respond to the stimuli via transmembrane receptors [107]. This response is mainly regulated by 

the interaction of the integrin complex with the ECM [110-112]. Syndecan-4, a heparan sulfate-
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carrying protein on the cell surface, can also bind to fibronectin and collagens in the ECM via its 

glucosaminoglycan chains, and regulate ECM production [112-113]. 

Similar to cardiomyocytes, many autocrine and paracrine related signaling pathways are 

also activated in PAAFs [26, 114-121]. AngII is another regulator of ECM production, and 

increased levels of AngII can regulate collagen expression via the activation of AT1R [115-116]. 

This is reported to be mediated by TGF𝛽 signaling and other paracrine mechanisms [107, 116, 

120-121]. Many other autocrine or paracrine factors such as PDGF, FGF and TNF𝛼, have also 

been reported to regulate the response of fibroblasts under altered mechanical environments [117-

121].  

Apart from the canonical pathways in fibrosis, mechanical loading also affects the oxygen 

consumption within these tissues [3, 26, 75, 122]. Hypoxia, a well-known feature in many 

pathological disorders, was found to contribute to the pathogenesis of fibrotic disease [24, 26, 

122]. Alterations of NO levels in the pulmonary artery and elevated expression of NADPH oxidase 

4 (Nox4) were found in PAH rats [116, 122]. Notch signaling, a major pathway involved in the 

angiogenesis and vascular remodeling, can increase the vessel wall thickness of pulmonary arteries 

of rats subjected to hypoxia [123-124]. 

In the following subsections, the downstream signaling pathways associated with these 

mechanosensors in PAAFs will be introduced. 

1.1.2.1. The Cytoskeleton-Related Complexes and the Associated Signaling Pathways 

In contrast with cardiomyocytes, where the force transmission along the cytoskeleton is 

relatively well studied, how mechanical stimuli affects PAAFs via its cytoskeleton is still poorly 

understood. In response to these mechanical stimuli, the levels of ECM proteins were found to be 

upregulated, including collagen and fibronectin [23, 25, 107]. Integrins on the fibroblast surface 
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can bind to laminin via the interaction of the 𝛽$ unit of integrin and further regulate the migration 

of the cells [107, 118]. Like integrin, syndecan-4 is another signal transducer that can connect to 

the ECM and interact with the fibronectin on the membrane surface [112, 113]. Reduced 

calcineurin dependent NFAT activity was found in syndecan-4 KO mice [113]. An NFAT blocker 

effectively A-285222 prevented the induction of collagen I and III, which are ECM proteins [113]. 

These results suggest the crucial role of syndecan-4 in mechanical stress induced responses of 

PAAFs. 

1.1.2.2. The Transmembrane Receptors and the Associated Signaling Pathways 

Increased production of AngII during cardiac remodeling can induce fibroblast 

proliferation via AT1R on the cell surface in fibroblasts [115-116]. The AngII induced responses 

independently activate the MAPK signaling pathways, including ERK1/2 and JNK1/2 via the 

activation of Ras signaling [126-134]. The phosphorylation of ERK1/2 was found to promote the 

AngII induced phenotypic differentiation and matrix metalloproteinase 2 (MMP-2) expression in 

adventitial fibroblasts [134]. JNK1/2 inhibitions blocked AngII-induced gene expression by 

significantly reducing the phosphorylation of c-Jun and c-Fos that are dimerized to form the 

transcription complex AP1 [135-136]. This regulation, however, was not affected by the ERK1/2 

inhibitor PD98059 [135].  AP1 was involved in the balance between matrix metalloproteinases 

and their inhibitors metalloproteinases (TIMPs) in the remodeling of ECM [136-142]. 

Many profibrotic effects on PAAFs differentiation and proliferation may be regulated via 

autocrine or paracrine mechanisms [26, 114-121]. TGF 𝛽  induced adventitial fibroblast 

transformation is mainly regulated by SMAD proteins, which are TFs that the translocation of 

SMAD proteins into the nucleus regulate gene expression, including 𝛼SMA, collagen and elastin 

[129, 143-146]. TGF𝛽 was shown to be activated by AngII via a feedback program that encodes 
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latent TGF𝛽 and its release to ECM and binding to the TGF𝛽 receptor (TGF𝛽R) [147-148]. TGF𝛽 

can also regulate MAPK signaling of p38 via the activation of TGF𝛽 activated kinase 1 (TAK1) 

[130, 147]. p38 is found to involved in the regulation of many genes via the NF𝜅B and AP1 

transcription factor. NF 𝜅B is an important regulator of the gene expression encoding for 

fibronectin and the MMPs [147, 149-150]. 

Similar to TGF𝛽, increased PDGF binding to PDGF receptor (PDGFR) was found in 

induced fibrosis [117]. This factor is an important regulator of the transformation, proliferation 

and the collagen secretion of fibroblasts via the PI3K/Akt signaling pathway [151-152]. MMP-2 

responses were significantly reduced in Akt deficient cells, suggesting that the NF𝜅B signaling is 

dependent on PI3K/Akt signaling [153]. Exogenous fibroblast growth factor (FGF) is another 

growth factor that have been reported to regulate the adventitial fibroblast migration [118]. FGF 

stimulated the expression of OPN and significantly upregulated the MAPK signaling activities 

such as ERK1/2 and JNK1/2 [111, 129, 154]. 

Reports showed that the stimulated MAPK signaling pathways and PI3K/Akt could turn 

on the Hippo kinase core, including MST1/2 [155-157]. Though these pathways are not well 

explored in fibroblasts, it has been suggested that the Hippo signaling may regulate several 

miRNAs including miRNA-130/301, which are critical in collagen deposition and remodeling 

[157-158]. ECM remodeling was shown to promote the pulmonary hypertension via the feedback 

mechanoactivation of the miRNA-130/301 [158]. The induction of miR-130/301 was found to be 

regulated by the TF OCT4, which was inhibited by YAP/TAZ in stiff matrices [158]. The 

activation of YAP/TAZ was induced by the phosphorylation of LATS1/2 regulated by MST1/2 

[157-158]. The collagen deposition and remodeling regulated by the miRNAs was found disrupted 

by the PPAR𝛾 and LRP8 axis [159]. 



 
 

 

13 
 

1.1.2.3. The Mechanosensitive channels and the calcium signaling pathway 

Compared with cardiomyocytes where the roles of mechanosensitive channels are well 

defined, the role of these channels in fibroblasts such as PAAFs are not well-characterized. Many 

non-sensitive ion channels, including 𝐾&'( , CAV3.1 and 𝐵𝐾)! , were found to be expressed in 

fibroblasts but it is reported that the mechanosensitive channel TRPV4 plays a more important role 

in the mechanoelectric feedback of fibroblasts [159-162]. The elevated calcium further activates 

PKC signaling, which was found to be crucial in the expression of 𝛼SMA and elastin [162-164]. 

1.1.2.4. Hypoxia Associated Signaling Pathways 

Exposure to hypoxia is associated with the PAAF remodeling process [123-124]. Hypoxia-

induced pulmonary hypertension was mainly regulated by endothelial nitric oxide (NO), Notch 

signaling, and stimulated activity of the NADPH oxidase 4 (Nox4), which further activates ROS 

[120, 123-124]. Hypoxia-inducible factor 1𝛼 (HIF1	𝛼), an intracellular mediator of ROS, interacts 

with the Notch receptors and stabilize the Notch intracellular domain (NICD), which then 

translocates to the nucleus and regulate the gene expression 𝛼SMA via the progressive expression 

and regulation of HERP [124].  

1.2. Signaling Network Models 

Computational signaling network models represent a powerful tool to better understand the 

function of biological signals and how they can be represented as a mathematical model, 

incorporating experimental data and functional outcomes [165-166]. These models are typically 

developed for an individual cell type, and usually are limited to a single or related groups of cellular 

functions. For example, cardiac hypertrophy (growth of cardiomyocytes [165, 167]) has been 

extensively investigated with experiments to quantify the protein synthesis and resulting cellular 

growth patterns, and the underlying mechanical and receptor-mediated signals that induce the 
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cellular growth [167]. These mechano-sensitive pathways can be remodeled via systems-type 

approaches that start with mechanical or chemical signals and results in cellular growth and 

remodeling. Similar approaches can be used in a fibroblast, for example, systems-based 

approaches can model the functions of a fibroblast that result in tissue fibrosis due to mechanical 

or other input stimuli.  

Two main approaches in modeling such systems have been widely discussed, including the 

logic-based models and the continuous models [165-166]. Many biological processes show 

‘ON/OFF’ switch-like behaviors, where ‘ON’ may represent ‘active’ and ‘OFF’ for ‘inactive’. 

Boolean network models, representing the regulatory functions as logic gates, are some of the most 

commonly used logic-based models that can describe this behavior. Sanchez et al. used this 

approach to model the qualitative gap in gene expression patterns between wild type and mutant 

Drosophila [168]. Such Boolean network models are very simple and efficient since they usually 

require only a small number of parameters in the simulation. This characteristic, however, also has 

the drawback that many temporal dynamics will not be present. The differential equations 

approach, representing the regulatory functions as a set of differential equations, has been widely 

used to present evolving dynamics continuously. A well-known application of this approach is the 

bacterial operons such as lac and tryptophan [169-171]. In order to present more details regarding 

the evolving dynamics, more parameters are required, thus increase the computational complexity 

significantly [165-166].  

A recent signaling network was formulated by integrating the mechanosensitive pathways 

in cardiomyocytes described in Section 1.1 [172]. This signaling network was modeled using a 

combination approach of Boolean network model and Continuous model approaches [172-173]. 
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In the following subsections, the approaches that are used to model biological signaling networks 

are outlined accordingly.  

1.2.1. Boolean Network Approach 

The states of nodes in the biological processes are often synchronous and updated 

according to the regulating functions. The regulation functions are either activation or inhibition, 

which is represented as 'NOT'. Within these regulation functions, there may exist interactions 

between nodes in these processes. Thus, the regulatory functions can be further refined with co-

regulation using two logical operators: 'AND', representing where the activation requires the 

activity of multiple upstream nodes; "OR", representing a reaction in which the node can be 

activated by multiple inputs independently. 

𝑓&*+(𝑄) = 𝑓(𝐴𝐵)	

𝑓,-(𝑄) = 𝑓(𝐴) + 𝑓(𝐵) − 𝑓(𝐴𝐵) 

Q is a node regulated by A, B. 

To describe these behaviors, Logic-based models such as Boolean Models are used to 

define the structure of the nodes and the relationships between them in the network, and to 

represent the regulatory functions with the use of logic gates. These models often define the local 

state of each node at any time as a discrete level. The logic-based model is a relatively simple 

approach to allow the species to remain in one of the two states: ON or OFF, representing activated 

and inhibited states, respectively. The states may evolve into dynamic progress as nodes in the 

network switched states between ON or OFF until the steady state is achieved. These 

characteristics have made logical models efficient in terms of time and convenient in terms of 

model complexity. 
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1.2.2. Differential Equations Approach 

Continuous models are usually deterministic and used to summarize experimental results 

with real-valued data. In contrast with the basic logic-based models discussed in the previous 

subsection, continuous models allow the direct quantitative comparison between different states 

and thus are more accurate. Among continuous models, differential equation models are widely 

used in modeling gene expression.  

For many biological systems with high-quality measurements, differential equations can 

capture the dynamics nature of these systems. These equations describe the levels of each node as 

a function of other components in the network. In the context of biological signaling models, the 

change of each node (presence of a particular biological species) is defined as a result of rates of 

production and decay of the species, where production is defined by the activation or inhibition by 

the rules related to the node and decay is determined by the node degradation (see the equation 

below). Differential equation models usually include two groups: ordinary differential equations 

(ODE) and partial differential equations (PDE). Both systems usually have time-dependent 

variables while the latter may include spatial variables. Compared with PDE, ODEs are usually 

simpler in terms of formulations and more efficient in terms of computation complexity. 

𝑑𝑁𝑜𝑑𝑒
𝑑𝑡 = 𝑅𝑎𝑡𝑒./012%3405 − 𝑅𝑎𝑡𝑒16%67 

1.2.3. Normalized-Hill Equations Approach 

A normalized-Hill differential equation approach based on logical operators, as described 

previously [172-173], was used to model the interactions between species within the 

mechanosignaling network (MSN). The activity of each species was normalized and varies 
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between 0 and 1. The interactions between species within the cardiomyocyte mechanosignaling 

network were modeled using Hill-type equations based on logical operators [173]. The activity of 

each species in the network is represented by a state variable normalized to vary between 0 and 1, 

and reactions are represented by the logic-based differential equations developed for modeling 

biochemical networks [174] in which the activation of each species varies according to a sigmoidal 

Hill function. The state variable yi for species i in the network regulated by species j is governed 

by:  

𝑑𝑦4
𝑑𝑡 =

1
𝜏 :𝜔84𝑓8𝑦4,:6; − 𝑦4< 

where 𝜏84 is the reaction time constant determining the rate of change of species i, 𝜔84 is 

the general reaction weight that can vary between 0 and 1, and 𝑦4,:6; is defined as the maximal 

activation of species i in the network. Typically, 𝜔84is 1 or close to one unless the node is being 

pharmacologically or genetically inhibited or knocked down. The Hill function 𝑓84 , can be 

activating (act) or inhibitory (in): 

𝑓84 =

⎩
⎪
⎨

⎪
⎧𝑓6%3A𝑦8B =

𝐵𝑦85

𝐾5 + 𝑦85
												𝑖𝑓	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑛𝑔

𝑓45A𝑦8B = 1 −
𝐵𝑦85

𝐾5 + 𝑦85
				𝑖𝑓	𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦

 

where B is a function of the Hill coefficient n and the half-maximal activation EC50: 

𝐵 =
𝐸𝐶!<5 − 1
2𝐸𝐶!<5 − 1	

𝐾 = (𝐵 − 1)
"
5 
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1.3. Transcriptional Regulatory Network and Model 

Cardiomyocytes alter gene expression patterns via the transcriptional regulatory network 

in order to adapt to mechanical stimuli [3, 5]. Transcriptional regulatory networks are used to 

illustrate and assess gene expression regulation as a result of interplay between transcription 

factors and DNA [3, 5, 174-176]. A transcription factor (TF) is a protein that can control the rate 

of transcription by binding to a specific site on the DNA sequence, including enhancers that boost 

the activation of gene expression and repressor that decrease the gene expression [175-176]. When 

TFs are bound to these sites, it may become easier or harder for the RNA polymerase to bind to 

the promoter of the genes [175-176]. TFs are composed to two functional regions, including the 

recognition and the binding of the DNA sequences. These regions may interact with coregulators 

and connect to the transcription complexes and thus recruit or prevent the RNA polymerase 

binding to the promoter regions [175-176]. 

Many genes have multiple binding sites upstream of their sequences. Individual TFs adapt 

their conformation and functions to assemble a protein-DNA complex [175-177]. The further 

alteration in the structure of the complex will then mediate the activity of the transcriptional 

machinery. These combinatory regulations, commonly represented as ‘AND’ mechanism, can 

describe the transcription of the genes. The gene is only expressed when all activators are present 

otherwise the gene is partially transcribed. When a repressor is present, the gene transcription is 

thus blocked. When both activator and repressor are present, there are two main mechanisms 

proposed. The activator and repressor bind to the different regions, which results in total block of 

gene expression, or competitive binding wherein the activator and repressor competitively bind to 

the sequence. Rather than blocking gene expression, the gene can still be transcribed but the 

expression level may be limited. 
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Many TFs have been shown to be associated with the remodeling of cardiomyocytes in 

hypertrophic diseases. 

1.3.1. Mechanosensitive Transcription Factors 

The mechanosensitive pathway sends signals from transmembrane receptors and channels 

to the cytoplasm and then to the nucleus, where the activation of TFs is mediated [3, 5, 174]. Many 

TFs have been found to be upregulated as well as the expression of some marker genes in cardiac 

hypertrophy [178-180]. For example, Nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF𝜅B) is a major transcription factor regulating multiple cellular functions including cell 

growth related to cardiac hypertrophy [3]. NF𝜅B transcriptional activity is mainly regulated by 

inhibitor of kappa B (IkB) and inhibitor of kappa B kinase (IKK). IKB is normally turned on that 

NF𝜅B is bound to the inhibitor protein IkB in the cytosol. Activated IKK can phosphorylates IkB, 

which can dissociate IKB from NF𝜅B and further allow NF𝜅B to translocate to the nucleus and 

bind to its DNA response element [181]. It is also reported that inhibitors of p38 and ERK can 

partially block the dependent gene expression [182]. 

Nuclear factor of activated T-cells (NFAT) is a family of TFs that was first discovered to 

activate the transcription of genes [73, 183-184]. Increased expression of FHL2 can suppress the 

stress-induced activation of CaN, which further leads to the inhibition of NFAT dependent gene 

expression [73, 183-184]. The phosphorylation of GSK3b promotes the nuclear exit of NFAT 

while NF𝜅B can directly interact with NFAT on NFAT-dependent transcription [73, 183]. 

Signal transducer and activator of transcription (STAT) is a transcription factor 

phosphorylated and activated by JAK that translocates into the nucleus to induce gene expression 

[185-186]. In the nucleus, STATs can cooperatively bind with other TFs, such as NF𝜅B and 
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NFAT, then form a mediator complex and locate to promoter regions of their target genes and 

activate gene transcription [187-189]. 

Myocyte enhancer factor-2 (MEF2) and Serum response factor (SRF) are both MADS-box 

TFs and reported to form a mediator complex as mentioned above [190-191]. MEF2 can regulate 

cardiac gene expression through the direct phosphorylation of p38 and ERK5 [192-193]. 

Translocation of class II HDACs out of the nucleus have been shown to relieve the repression of 

MEF2 target genes transcription [102-105]. Compared with MEF2, SRF can regulate many 

immediate early genes and the SRF induced gene transcriptional activity can also be attenuated by 

the translocation of HDACs [178, 194-196]. The muscle ring-finger (MuRF) family of proteins 

interacts with SRF and inhibits SRF transcriptional activity [195]. Myocardin-related transcription 

factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene 

transcription [196]. FHL2 binds to the promoters of SRF-response genes and competes with MRTF 

on SRF-binding [195-196]. 

The cyclic adenosine monophosphate response element-binding (CREB) is a cellular TF 

that has been found to be elevated in the nucleus by cyclic mechanical stretch [197-198]. CREB 

were also found involved in the cooperative regulation of gene expression by binding with the 

NF 𝜅 B/STAT and SRF/MEF2 [191, 199]. Elevated GSK3b activity resulting in the de-

phosphorylation of CREB was found in hypoxia induced hypertrophy while p38 was shown to 

induce the phosphorylation of CREB [75]. 

cJun and cFos are TFs that also combine to form the early response transcription factor 

AP-1 through heterodimerization [180, 200-201]. Both c-Jun and c-Fos transcription are 

autoregulated by their own protein products [180, 200-201]. The up-regulation of these immediate 

early genes have also involved in the adaptational response of cardiac hypertrophy [202]. Their 
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activities have also been found to be regulated by ERK1/2 while c-Jun is further regulated by JNK 

signaling [203-205].  

Cellular Myc (cMyc) is one of most frequently activated member of Myc family 

transcription factors and promotes compensated cardiac hypertrophy [206-207]. cMyc gene 

expression was found to be rapidly upregulated and its activation was sufficient to reproduce the 

characteristic changes in myocyte size and protein synthesis in the induction of cardiac myocyte 

hypertrophy [206-207].  

It is suggested that GATA4 might play an important role in regulating cardiac development 

since many cardiac muscle-specific promoters and enhancers including the cardiac troponin C 

enhancer, the 𝛼-myosin heavy chain (𝛼-MHC), and the artial naturietic factor (ANF) have GATA4 

binding sites [208-211]. And the overexpression of GATA4 can transactivate these promoters, 

however, its role in regulating gene expression in response to mechanical stimuli remains unclear 

[212].  

All TFs discussed so far are pro-hypertrophic that the elevated TF activitis can lead to 

cardiac hypertrophy. In contrast to these TFs, Forkhead box O (FoxO) was found to be a negative 

regulator of hypertrophy where it prevents cell growth of cardiomyocytes [213-214]. The 

phosphorylation of FoxO by PI3K/Akt signaling pathway results in the translocation of FoxO out 

of the nucleus [213-214]. 

1.3.2. Target Genes of Mechanosensitive Transcription Factors 

Past studies have used inhibitors of certain transcription factors or a knock-out model to 

identify the interactions with genes by measuring the gene expressions through PCR. However, 

these approaches can only measure a limited number of genes concurrently and are less specific 

and accurate since interactions between the regulations are not considered [215].  
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Chromatin immunoprecipitation (ChIP), commonly used to analyze protein interactions 

with DNA in large scale, can determine whether a TF can bind to the promoter region of a gene 

[216-218]. In combination with sequencing technology, ChIP-Seq can identify direct interactions 

between TFs and target genes by probing all genomic regions for potential binding by the TF [216-

218]. The direction of the interactions is often determined by observing the measurement if a gene 

is significantly upregulated or downregulated when a TF is perturbed.  

Typically, these experimentally based techniques have been used to construct 

transcriptional regulatory networks. When the data is insufficient, many computational methods 

have been proposed to predict the binding activities between TFs and genes of interest [218-226]. 

One approach is to identify the TF binding sites (TFBS) on gene sequence through the analysis of 

the predicted binding sites for genes of interest since many genes co-regulated by the same TF 

share same binding sequences [219-223]. These TFBS, however, are usually short and variable 

within large non-coding regions, and the determination of these TFBS requires large amounts of 

experimental measurements and complicated algorithms, which is currently not computationally 

efficient [223-224]. Some approaches implement a genome-wide ranking-and-recovery approach 

using cis-regulatory sequence analysis to detect enriched transcription factor motifs and their 

optimal sets of direct targets [224]. Other approaches, like deep learning techniques, have widely 

taken advantage of the large number of Chip-Seq datasets to predict co-regulated genes and the 

corresponding TFs [225-226]. The emergence of these computational methods has greatly reduced 

the experimental workload while achieving high accuracy. 

To better understand what genes are involved in the regulation of cardiac hypertrophy, 

genes that are targets of the 11 TFs mentioned previously were collected and categorized thusly: 
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• The TF-gene interaction was identified from experiments conducted in mouse or 

rat. 

• The TF-gene interaction was identified through published ChIP-seq datasets and 

verified using computational approaches. 

For each TF, a list of target genes and the TF’s effect on the expression direction of the 

target genes were compiled. Each reaction was substantiated with both co-expression evidence and 

DNA binding evidence as discussed in Section 1.3.1. Co-expression evidence was identified using 

studies, preferably in myocytes, where a TF was perturbed, and whole genomic changes were 

measured by microarray or RNA-Seq.  

The gene regulatory network is constructed based on TF-gene regulations where at least 1 

of these criteria was met. Candidate genes were validated as having a binding site for the TF using 

iRegulon [224]. iRegulon is a binding motif analysis tool that utilizes position weight matrices 

from TRANSFAC [227], JASPAR [228], and UNIPROBE [229] to identify the TFs that can bind 

to a set of genes. Once the target gene list was finalized, reactions were added to the model to 

simulate their gene transcription by the TFs. Furthermore, the target gene list was cross-referenced 

against the nodes in the mechanosignaling network in order to implement feedback loops. 

Reactions were added to the model to simulate protein translation from gene product to the 

upstream protein node. 

1.3.3. Extension of the Regulatory Network with Genes 

Previously, a combinatory approach combining the Boolean network model and the 

differential equations was shown that could capture the dynamics of the changes of the signaling 

nodes in response to altered stimuli when the data is not sufficient. However, this approach is 

incapable of predicting exacting gene expression changes when quantitative data is present. To 
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allow the model to quantitatively describe gene expression, a mass-action method based on the 

Mass Conservation Law was introduced for the interactions between transcription factor and gene. 

The rate of gene expression change depends on the regulation by the corresponding TFs and its 

natural decay rate.  which is adapted from Hill equation and modeled as followed: 

𝑑𝐺𝑒𝑛𝑒4
𝑑𝑡 =

𝜔4𝑁4𝐻𝑖𝑙𝑙(𝑇𝐹4)
𝜏 −

𝐺𝑒𝑛𝑒4
𝜏  

where the transcription rate 𝑁4 are defined as followed: 

𝑁4 =
𝐺𝑒𝑛𝑒4,%053/0=

𝜔4𝐻𝑖𝑙𝑙(𝑇𝐹4,%053/0=)𝜏4
 

To numerically simulate the effects of stretch, a small stretch stimulus is first used by 

running the Hill model and mass-action method to a numerical steady-state in order to mimic 

cellular steady state, which generates the control values of signaling molecules and the gene 

normalization constants. A fixed-intercept (0) linear regression is then conducted by comparing 

the experimental measurements with model simulation. The closer to the unity line, the better the 

effect was at mimicking the steady state. Using this method, a new stretch input will be determined 

and then applied to the system to simulate gene expression with a time course of interest. 

Default parameter values (𝜔= 1, n = 1.4, and EC50 = 0.5) except 𝜏 were used for all 

reactions unless specified. Kinetic parameters for target genes were determined using an mRNA 

half-life (HL) database [230]. HL was converted to the time constant 𝜏 using the formula: 

𝜏 =
𝐻𝐿
𝑙𝑛2 

For all other nodes, 𝜏 = 30 seconds was used. This time constant will allow nodes such as 

ERK1/2 and p38 MAPK to reach peak activation by 10 minutes of stretch, which matches previous 

data that maximal phosphorylation of ERK1/2 and p38 MAPK is induced by 10 minutes of stretch 

[231]. 
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1.4. RNA Sequencing and Data Analysis 

Quantitative reverse transcription polymerase chain reaction (RT-PCR) is one approach for 

measuring mRNA abundance. This technique can also be used quantify the expression of hundreds 

of genes simultaneously for expression profiling [215]. This method, though less expensive, 

requires intensive labor and may generate a small bunch of genes [215]. Microarray, a single chip 

or array containing probes to determine transcripts levels for all genes, has replaced PCR for when 

gene expression needs to be measured at a much larger scale [215]. A more robust and accurate 

approach based on next generation sequencing (NGS), also known as RNA-Seq, can identify gene 

expression and even the splicing information when little information is available [216, 232]. RNA 

Sequencing has become the new standard approach for probing gene expression changes in 

response to an experimental stimulus especially since the cost has dropped significantly in recent 

years [216, 232]. 

 The RNA samples are sequenced, and raw read files are generated that contain the 

nucleotide sequence of each read. The read files are often stored in formats such as fastq and fasta. 

In single-end reading, the sequencer reads a fragment from only one end to the other, generating 

the sequence of base pairs. Then as the technology advanced, paired-end reading was invented to 

improve the sequencing quality [233-234]. In paired-end reading, it starts at one read, finishes this 

direction at the specified read length, and then starts another round of reading from the opposite 

end of the fragment. Compared with single-end reading, paired-end reading improves the ability 

to identify the relative positions of various reads in the genome, making it much more effective 

than single-end reading in resolving structural rearrangements such as gene insertions, deletions, 

or inversions [233-234]. It can also improve the assembly of repetitive regions. However, paired-

end reads are more expensive and time-consuming. In some cases, samples using single-end 
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technology can be combined with those of paired-end for data analysis but may require further 

understanding [235]. 

1.4.1. Quality Control and Sequence Alignment 

Raw RNA-Seq data may have quality issues, which significantly distort analytical results 

and lead to erroneous conclusions. Therefore, the raw data may be subjected to vigorous quality 

control (QC) procedures before downstream analysis. After the quality control is performed, an 

optional step is data trimming, which aims at removing unnecessary sequences of bad quality [236-

237]. If the data are used for variant analyses, genome annotation or genome or transcriptome 

assembly purposes, it is strongly recommended that read trimming should be performed, including 

both adapter and quality trimming. For differential gene expression (DGE) RNA-seq analysis and 

ChIP-seq, however, read trimming is generally not required anymore when using modern aligners, 

which will “soft-clip” non-matching sequences [236, 238]. 

Following quality control, the next step is to align the RNA-Seq reads with the reference 

genome to identify the correct genomic loci from which the read originated. Read alignment is one 

of the first steps required for many different types of analysis. In RNA-seq, alignment is a major 

step for the calculation of transcript or gene expression levels; several splice aware alignment 

methods have been developed for RNA-seq experiments such as STAR, HISAT2 [239-240]. These 

aligners are designed to specifically address many of the challenges of RNA-seq data mapping 

using a strategy to account for spliced alignments [239-240]. 

1.4.2. Data Normalization 

After sequence alignment, the next step is to estimate the reads count of each genomic 

feature. This process uses a reference transcriptome and counts the number of reads that uniquely 

maps to the transcripts. Common tools such as HTseq and featurecounts have been used to count 
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the reads [241-242]. Both methods ignore reads that are mapped to multiple transcripts since any 

single fragment must originate from only one of the target genes, but the identity of the true target 

gene cannot be confidently determined [241-242]. Feature captures more read counts compared 

with HTSeq while being more efficient in terms of memory and running time [242-243].  

A naive comparison of read counts for a given gene under the different conditions is 

problematic for two reasons. First, the number of reads aligned to a given gene in each sample is 

generally considered a random variable (though non-random events, such as inconsistent fragment 

amplification or poor amplification of certain sequences, can impact the final read count), and thus 

read count comparisons must take into account the variability of these random variables [244-245]. 

Second, the total number of reads can vary across samples, and a large difference in a gene’s read 

count between different conditions may simply be the result of differential coverage, rather than 

of differential expression [244-245]. It is the second problem that necessitates normalization of 

read counts before differential expression analysis can be performed. The main factors often 

considered during data normalization include sequencing depth, gene length, RNA composition 

[244-246]. Samples with larger sequencing depth usually have larger number to total gene reads. 

This may result in higher expression for any individual genes. Similarly, more reads can map to 

genes with bigger length. Besides, a few highly differentially expressed genes between samples, 

differences in the number of genes expressed between samples, or presence of contamination can 

skew some types of normalization methods [244-246].  

Many normalization methods have been proposed to minimize the variance and used to 

normalize the gene counts in order to make gene expression across samples comparable [246-253]. 

Counts per million (CPM), counts scaled by the total number of reads in a given sample, have been 

used to analyze the gene count comparisons between replicates of the samples within the same 
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group. Similarly, transcripts per kilo million (TPM), a method based on CPM, further scale the 

CPM over gene length. On the basis of TPM, reads/fragments per kilobase of exon per million 

reads/fragments mapped (RPKM, FPKM) normalize the raw gene counts over sequencing depth 

and gene length but in a different order. The two other approaches further involve sequencing 

depth and RNA composition during the normalization of data, including DESeq2 and EdgeR [248-

249]. DESeq2's median of ratios are computed where raw counts are divided by sample-specific 

size factors determined by median ratio of gene counts relative to geometric mean per gene [248]. 

EdgeR computes trimmed mean of M values using a weighted trimmed mean of the log expression 

ratios between samples [249]. FPKM/RPKM are less popular now since the total number of 

normalized counts are different between samples where large sequencing depth usually caused 

large variance in terms of the total counts [247, 250]. 

For data comprised of multiple repeated experiments, these normalization approaches may 

not be appropriate when samples are more likely to be grouped by individual experiments rather 

than experimental treatments. For example, these methods are unable to handle data composed of 

both single-end and paired-end samples. In our work, DESeq2 will be used for data normalization 

and differential analysis of gene expressions. 

1.4.3. Statistical Testing 

After data normalization, the final step is to perform differential analysis. Since variance 

in RNA-Seq data is much higher than the mean due to the technical difference in the biological 

replicates, a negative binomial distribution is applied to account this overdispersion. Both DESeq2 

and edgeR calculate the overdispersion by utilizing empirical Bayesian model on each gene and 

then deriving the average variance from all genes [248-249]. Following the variance calculation, 

a statistical test is conducted to determine if a gene has significant change in expression between 
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treatment group and control group. DESeq2 uses Wald test while edgeR uses an exact test similar 

to Fisher's exact test [248-249]. Other tools may use tests such as the Wilcoxon signed-rank test, 

an alternative to the paired Student's t-test when the distribution of the difference between the 

mean of two samples cannot be assumed to be normally distributed. 

Since RNA-Seq data from mammalian cells usually has more than ten thousand genes, it 

is often required to conduct the Benjamini-Hochberg correction for multiple comparison after 

calculating the p-values. This procedure can reduce false positives and control the false discovery 

rate (FDR) [254]. Additionally, many researchers may also apply a minimum fold change check 

along with statistical test to determine DE gene. 

1.4.4. Statistical Analysis of RNA-Sequencing Data 

Modeling biological systems has been a basic and critical challenge in systems biology. 

The regulatory network is commonly shaped as a diagram/graph with each species representing a 

node and the corresponding regulation acting as an edge connecting two nodes [165, 255]. Klamt 

et al proposed a formatting methodology for the structural and functional analysis of these 

regulatory networks which includes the structure definition and verification, mathematical 

formulation, prediction and validation analysis of the network [255]. To understand the functions 

of such a given network, the logic-based models and continuous models have been introduced in 

section 1.2 to illustrate the corresponding biological phenomena of interest. These approaches 

based on existing knowledge, however, are unable to predict the gene regulation patterns that are 

not known yet. Rapid development of data such as multi-omics and imaging provides a unique 

perspective to analyze the regulation patterns from the data directly without knowing any prior 

information. Multi-omics data including transcriptomics and proteomics is the most-commonly 

used data type in analyzing regulatory network. Statistical approaches have thusly been commonly 
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used to uncover such gene regulation patterns and their relationships with specific diseases [256-

260]. The goal of this approach is to discern regulatory patterns or regulatory networks underlying 

in the data. 

These statistical approaches can be highly effective for data comprised of large-scale 

expression profiles such as transcriptome data. Among the statistical models, identifying the 

difference between conditions through multiple testing is a straightforward approach to extract 

unknown regulating patterns. By analyzing the differential expression, it can be easy to determine 

a subset of genes induced under a given experimental condition.  

Statistical correlations can cluster genes with similar expression patterns under different 

experimental conditions and unveil important functions and regulatory patterns [256-258]. 

Clustering, an unsupervised learning technique, have been used to group genes in the gene 

expression profile data with different expression patterns. The two most-commonly used clustering 

methods for analyzing gene expression profiles and protein activities are hierarchical clustering 

and k-means clustering [256-258]. The most common form of hierarchical clustering is a bottom-

up agglomerative approach that organizes the data into a tree structure without user input by 

starting with each data point as its own cluster and iteratively combining them into larger clusters 

or ‘clades’ [257]. In contrast, k-means clustering requires the investigator to define the number of 

clusters (k) a priori, and data are then sorted into the cluster with the nearest mean [258]. Prior to 

applying these clustering methods on gene expression data, data transformations are often 

conducted on the RNA-seq count data that usually follows negative binomial distribution [253]. 

Logarithmic transformation can reduce the variability and make the data closer to normal 

distribution while variance stabilizing transformation can stabilize the asymptotic variance over 

the full range of the data. Depending on the data types, different distancing functions may be 



 
 

 

31 
 

applied to calculate the similarity between any two given genes. Many pathway analysis tools have 

relied on clustering methods to correlate genes with similar expression profiles and highlight the 

potential functionalities, such as the KEGG enrichment analysis tool [261].  

Other statistical models such as machine learning or graph-based models using neural 

networks are more advanced approaches that have been applied to infer disease-related patterns 

[259-260]. Such approaches have become more important and commonly-used and will be 

discussed in the future. 

1.5. Current Open Questions in Cardiac Systems Biology and the Motivation for 

the Dissertation  

1.5.1. Uncertainty Quantification of Model and Data 

In the original report of the MSN [172], the robustness of model accuracy was evaluated 

by a simple general sampling of parameters such as weights and Hill coefficients, assuming such 

parameters share the same default values. Realizing that parameters may be different for each 

reaction used to formulate the model, it is appropriate to extend the analysis by a system of 

uncertainty quantification of parameters for each reaction. Through this type of analysis, we 

explored which network modules and outputs are most sensitive to parameter uncertainty and 

which parameters propagate the most error. In addition, the original study did not discuss how 

network modules cooperate in the regulation of the model. A goal of the current work is to use 

uncertainty quantification (UQ) to investigate the consequences of epistemic uncertainty in the 

model logic. As a step forward, the likelihood of errors produced by biological experiments will 

be estimated, which are almost invariably under-powered. The details of this study are described 

in Chapter 2.  
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1.5.2. Stretch-Induced Response in Cardiomyocytes 

The internal organization of the sarcomere and cytoskeleton suggests that myocytes may 

respond differentially to mechanical loading applied either parallel or transverse to the long axis 

of the cell. When cultured on micropatterned substrates, previous studies showed elongated 

neonatal rat cardiac myocytes exhibited different phenotypic responses to 24 hr of static stretch 

when the stretch was applied primarily along the cell axis compared with transverse to it [262-

263]. 

Previous studies have also shown that longitudinal uniaxial stretch of aligned neonatal rat 

ventricular myocytes induced the addition of new sarcomeres in series so that by six hours the 

original unstretched sarcomere length had been restored [264]. Hence, the hypertrophic signaling 

and remodeling responses to stretch in neonatal myocytes in-vitro are likely quite rapid. Many 

studies have also shown evidence of paracrine and autocrine responses to stretch that act over short 

and longer-term time scales [265]. Also, longitudinal stretch induced both cardiomyocyte 

elongation in the longitudinal axis and lateral extension, while transverse stretch only caused 

lateral extension [266]. Therefore, the main goal of the current study is to examine differential 

gene expression profiles after up to 4 hr of stretch in micropatterned neonatal mouse cardiac 

myocytes, and compare responses when the cells are stretched primarily along or transverse to 

their long axes. This work is discussed in detail in Chapter 3. 

1.5.3. Pro-Fibrotic PAAF Cell Signaling 

PAH is a vasculopathy manifested by sustained elevation of pulmonary arterial pressures, 

vascular constriction, and irreversible vascular remodeling, which is mediated in part by PAAFs 

in response to pathological mechanical overload and hypoxia [23-26]. As another application of 

systems modeling to help uncover mechanisms of cellular mechanotransduction, we extended our 
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previous work in the PAAFs to study the interplay between the effects of signaling cytokines, 

hypoxia, and the mechanical stimuli that are activated in PAH using the same computational 

approach as described previously in section 1.2 and 1.3 for cardiomyocytes. Using systems 

modeling approaches, we aim to elucidate signaling pathway interactions and identify the key 

regulators in vascular adventitial remodeling as the result of changes in stretch and matrix stiffness 

that occur during the progression of PAH. Chapter 4 discusses this work in detail. 
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 Quantification of Model and Data Uncertainty in a 

Network Analysis of Cardiac Myocyte Mechanosignaling 

2.1. Introduction 

Increased hemodynamic loads acting on the heart can result in ventricular hypertrophy and 

remodeling. In response to altered mechanical loading, a variety of mechanotransduction 

mechanisms and mechanosensitive cell signaling pathways are activated in cardiomyocytes [267]. 

A mechanosignaling network model that our groups developed earlier [172] successfully predicted 

134 qualitative results of 172 input-output (9/9), input-intermediate (43/43) and inhibitor (82/120) 

experiments that had been reported in 55 published papers not used for the initial model 

formulation. The model was represented as a Boolean network and implemented as a system of 

logic-based ordinary differential equations in which 94 normalized state variables represent 

upstream stimuli and ligands, cell surface receptors, signaling molecules, transcriptional regulators 

and cardiomyocyte marker genes and phenotypes. The parameters of the 125 activating and 

inhibitory reactions linking the species of the network included the Hill coefficient n (set to a 

constant of 1.4) and half-maximal effective concentration EC50 (set everywhere to 0.5). Each state 

variable had an initial activation of 0, maximal activation of 1, and a time constant 𝜏 of 1. 

While our original report did investigate the robustness of the model accuracy to parameter 

uncertainty [172], here we extend the analysis by exploring which network modules and outputs 

are most sensitive to parameter uncertainty and which parameters propagate the most error. We 

also use uncertainty quantification (UQ) to investigate the consequences of epistemic uncertainty 

in the model logic, and finally we quantify how data uncertainty in the experimental results used 

to validate the model affects the estimated accuracy of the model. Of particular interest regarding 
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this type of data uncertainty is the greater likelihood of type II than type I errors in cell biological 

experiments, which are almost invariably under-powered. 

For deterministic systems of ordinary differential equations with known initial conditions, 

parameter values are usually chosen based on reported models or experiments, or they are 

optimized to fit observations. However, these parameters are typically uncertain owing to 

limitations in the availability, reproducibility or accuracy of experimental measurements [268]. 

Uncertainty quantification (UQ) has been widely used to identify statistical estimates of model 

outputs where parameters, such as the reaction weights and Hill coefficients in our network model, 

are approximations or a consensus of differing estimates [269]. A variety of UQ methods have 

been used including Monte Carlo (MC) methods [270] and polynomial chaos expansions (PCEs) 

[271], which can be more computationally efficient. Here we used both approaches to quantify the 

effects of uncertainty in model parameters, model logic and validation data on estimated model 

accuracy. We used these findings to identify specific model parameters, sub-networks and data 

limitations that should be the focus of further experimental investigation for model improvement. 

2.2. Methods 

We performed UQ analysis of the mathematical model of the cardiac myocyte 

mechanosignaling network described by us earlier [172] to assess the effects of uncertainty in 

model parameters, model logic and the experimental validation data on assessments of model 

prediction accuracy. 

2.2.1. Model Formulation 

The interactions between species within the cardiac myocyte mechanosignaling network 

were modeled using Hill-type equations based on logical operators [172] described in section 1.2. 

The model [172] has 125 reactions and 94 species derived from published experimental reports. 
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The default parameter values were 𝜔 = 0.9, n = 1.4, EC50 = 0.5, 𝜏 = 1 min, and yi,max = 1 for all 

species and reactions. Applying a stretch input of 0.7 to the system stimulates output responses 

similar to those observed in response to an in-vitro strain of ~ 20%. The constant input and 

parameter values of stretch (0.7), weights (0.9), Hill coefficient (1.4), EC50 (0.5) and time constant 

(1 minute) selected in the original model study [172] were used here as default values with no 

formal attempt at parameter optimization. The default input stretch and weight values were chosen 

manually in the original study to achieve steady-state activation of between 50% and 95% of 

network nodes [172]. The default Hill coefficient and EC50 were chosen in the original paper based 

on typical values commonly reported in biochemical literature [172-173, 272]. The resulting 

system of ordinary differential equations that describe the regulatory network dynamics is 

integrated numerically using the LSODA algorithm for stiff ODEs that automatically switches 

between the Adams' method and the Backward Differentiation Formulae (BDF) method. Our 

numerical implementation of this network has been customized and released as a Jupyter notebook 

available to the public (Refer to the example folder in the Github repository for simulated data). 

2.2.2. Model Validation 

To validate the predictions of the mathematical model in the original study, experimental 

data were set aside from 55 papers that had not been used during the initial model formulation 

[172]. These studies contained 172 experimental results collected from in-vitro experiments 

comprising 52 input-output or input-intermediate experiments and 120 inhibition experiments. 

Using the reported statistical threshold, the result of each published experiment was classified as 

the output node being increased, decreased or unchanged. For comparison, a change in the 

magnitude of the model-computed output of greater than or equal to a threshold of 0.05 was 

classified as an increase or decrease, while responses of less than 0.05 were classified as 
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unchanged. A mathematical definition of this metric for model accuracy is summarized in 

supplement S2.1. Applying these criteria to the model with default parameters, the model correctly 

predicted 100% of input-output and input-intermediate observations and 68% of the 120 inhibition 

results. In this study, we examined the effects of parameter, structural and data uncertainties on 

these validation metrics (figure 2.1). 

  

2.2.3. Sources of Uncertainty 

We investigate the effects of parameter uncertainty in model reaction coefficients, 

epistemic uncertainty in pathway logic, and data uncertainty in validation measurements on 

estimates of overall model prediction accuracy. In the original analysis, the parameters n, 𝜔, EC50 

and 𝜏 were set to be constant for every reaction, but here we allow every parameter to be assigned 

to a different random value for every ODE. Moreover, while the molecules and basic structure of 

the signaling network are in general clearly reported in the experimental literature, the choice of 

 

Figure 2.1| Sources of uncertainty in validating the accuracy of logic-based network models 
of cell signaling. An example network with five nodes that includes examples of ‘NOT’, ‘AND’ 
and ‘OR’ reaction logic. Uncertainty in model-predicted results arises from parameter uncertainty 
and epistemic uncertainty in model structure and logic. Validation requires comparison of model 
results with experimental data that are subject to statistical uncertainty. (Online version in color.) 
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reaction logic that best reflects the literature is more often subject to interpretation. Finally, there 

is statistical uncertainty in the conclusions from the experimental studies. While all the input-

output and input-intermediate validation results were based on statistically significantly increased 

or decreased measurements that were subject to type I error, the inhibition experiments also 

included findings that were not significantly changed. They are subject to a greater likelihood of 

type II errors in cell biological experiments, which are typically under-powered. Hence, data 

uncertainty represents a potential source of bias in model validation. 

2.2.3.1. Parameter Uncertainty 

We quantified the effects of uncertainty in the magnitudes of the model reaction parameters 

(n, 𝜔, EC50 and 𝜏) on the assessment of model accuracy. We repeated the model validation by 

randomly sampling each of these parameters for each ODE from uniform distributions with mean 

values that were not necessarily the same as the constant values used in the original validation 

analysis. Since K and B in the model are nonlinear functions of EC50 and n, it was necessary during 

the sampling process of these two particular parameters to ensure that B>1 so that K is represented 

by a real number that satisfies the following inequality: 

𝐸𝐶!<5 − 1
2𝐸𝐶!<5 − 1 > 1 

which leads to the following restrictions on these two parameters: 

𝑛 >
𝑙𝑛 12
𝑙𝑛𝐸𝐶!<

, 𝐸𝐶!< < 2>
"
5 

Using these constraints, the default Hill coefficient of n=1.4 requires EC50<0.61, and the 

default half-maximal activation of EC50=0.5 requires n>1.0. 

Similarly, the values of both 𝜔  and 𝜏  were sampled from uniform distributions in the 

ranges [0.2, 1] and [0.5, 10], respectively. To allow for comparison between uniform and Gaussian 



 
 

 

39 
 

distributions, we calculated the mean and standard deviations of the Gaussian distribution such 

that ± 2 standard deviations spanned 95% of the range in the uniform distribution.  

As in the original report, a threshold change of 0.05 in a network intermediate or output 

variable was used when comparing between model predictions and experimental results. Parameter 

perturbations, particularly in 𝜔 , that affected the overall input-output gain of the system 

predictably affected validation accuracy reciprocally with a change in threshold. Therefore, we 

also analyzed the effects of simultaneously sampling the stretch input and the threshold from 

uniform random distributions ranging from 0.1 to 0.9 and 0.01 to 0.09, respectively. For each 

calculation, the analysis of the input stimulus and reaction weight 𝜔 were drawn from the same 

uniform random distributions used above with ranges of [0.4, 1] and [0.2, 1], respectively. 

2.2.3.2. Epistemic Uncertainty 

Epistemic uncertainty is the uncertainty caused by incomplete of knowledge of the system. 

Compared with the network components and structure, which are readily appreciated from the 

experimental literature, the choice of logic that best represents reactions with multiple inputs is 

more prone to errors of interpretation and the limitations on the ability of a logic-based formulation 

to properly represent biochemical processes. In this study, 52 of 94 signaling components were 

regulated by multiple upstream nodes, and these interactions were approximated in the 

mathematical model using 19 "AND" and 33 "OR" logic gates. To explore the effects of epistemic 

uncertainty in the model logic, we performed three UQ analyses: First, each "AND" reactions was 

randomly changed to "OR" with a probability of 0.5; similarly, each "OR" reaction was randomly 

changed to "OR" with a probability of 0.5; and lastly, we randomly switched the logic sampling 

from a binomial distribution with a mean probability of 0.5. 
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2.2.3.3. Data Uncertainty 

Finally, we also analyzed the effects of the data uncertainty inherent in all biological 

experiments on the validation accuracy obtained by comparing the model with the subset of 120 

inhibition experiments used for validation. Cell biology studies invariably rely on the conventional 

statistical threshold (P-value) of P<0.05, which corresponds to the risk of making a type I error. 

But these studies rarely have large enough sample sizes to achieve a comparably low risk 𝛽 of 

making a type II error. We reviewed the papers from which the 120 inhibition validation 

experiments were drawn; they included 106 significantly down-regulated, 10 unchanged and 4 up-

regulated responses. Statistical power was rarely reported, so we made use of webplotdigitizer 

[273-274] and recalculated power from the published inhibition experiments that reported no 

significant change. Power was in the range of 0.6~0.8 so we chose a value for 𝛽 of 0.4. UQ was 

used to measure the effects of statistical uncertainty on model validation accuracy by testing how 

the model accuracy changed when the published experimental conclusions were randomly 

overturned. For each of the 110 experiments that showed significantly changed stretch response to 

an inhibitor, we randomly reassigned each result with a 5% probability of overturning the 

significant change. We randomly resampled the remaining 10 experiments reporting no significant 

change, with a 40% probability of reclassifying them to be significantly up- or down-regulated. 

Since the ratio of decrease vs. increase in the experiments was 106:4, the conditional probabilities 

of the overturned non-significant experiments being classified as up-regulated was set to 4/110 

and down-regulated was set to 106/110. 

2.2.4. Uncertainty Quantification Methods 

For UQ analysis, we used Monte Carlo (MC) [275] or polynomial chaos expansion (PCE) 

[271] simulations. PCE is an approximate method that makes use of polynomial expansions to 
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reduce calculation time significantly over MC simulations provided the number of parameters is 

not too large [275]. Therefore, here we performed preliminary analyses comparing computed 

accuracy distributions and computational performance of PCE with MC simulations to determine 

when PCE could be reliably used to save on computation time without significantly affecting the 

resulting distribution. We also tested the Markov-Chain Monte Carlo (MCMC) method, an exact 

Monte Carlo Method that samples the distribution via a stochastic process, to test whether MCMC 

sampling had any effect on computational cost. While MC simulations typically require a large 

sample size to account adequately for all possibilities, PCE methods are an efficient and 

mathematically rigorous strategy for UQ and sensitivity analysis [276] that are typically faster than 

MC methods when the number of sampled parameters is fewer than 20 and the output has smooth 

behavior with respect to the input parameters [275]. 

Previous studies have reported that PCE simulations achieve comparable accuracy to MC 

simulations and are significantly faster when the number of parameters is fewer than 20 [275, 277-

278]. We therefore compared the distributions of simulated model accuracy distributions using 

PCE, MC and Markov-Chain MC simulations to quantify the effects of parameter uncertainty for 

different numbers of parameters. Randomly sampling the stretch input variable with all three 

methods achieved very similar distributions of model accuracy (figure 2.2A) that were not 

significantly different by Kolmogorov-Smirnov (K-S) test (P>0.99 for PCE vs. MC and PCE vs. 

MCMC). Simulations varying 15 weight parameters also produced distributions of accuracy that 

were not significantly different by K-S test (P>0.99) between order 3 PCE simulation and MC 

simulations with sample sizes of 3000 and similar computation times for each method (figure. 

2.2B). Simulation using order 2 PCE also resulted in distributions that were not significantly 

different from those with 3000 MC samples (P>0.95) but with run times that were 1/5th as long 
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on average. For more than 20 parameters, PCE simulations took an average of over 3 times as long 

to compute as comparably accurate MC simulations. K-S tests comparing the accuracy 

distributions obtained using MCMC simulations showed no significant differences with the results 

of PCE (P>0.99) or MC (P>0.30) simulations, though the required number of MCMC model 

evaluations was slightly lower than for the standard MC approach yet still more than the PCE 

method required to achieve comparable accuracy. Thus, for all the parameter UQ simulations 

reported here, we used order 2~4 PCE simulations when the uncertain component size was fewer 

than 20, otherwise we used MC simulations. We conducted initial simulations sampling from both 

uniform and Gaussian distributions (figure 2.2D). Since there were no statistically significant 

differences between the predicted accuracy distributions (P>0.65 by K-S test), we used a Uniform 

distribution as the default statistical sampling distribution for all the UQ simulations reported here, 

except where specified otherwise (Fig 2.2). 

For reaction parameters n, EC50, 𝜔 and 𝜏 of all 125 reactions, we used MC simulations to 

sample from uniform random distributions in the following ranges: 
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n ~ U(1,3),  

EC50 ~ U(0.4, 0.6),  

𝜔 ~ U(0.2,1), 𝜔 ~ U(0.8,1),   

𝜏 ~ U(0.5, 10). 

 

Figure 2.2| Methods and parameters of UQ.  (A) Model predictive accuracy distributions 
computed for univariate sampling of the input stretch using MC (150 samples, in orange), MCMC 
(150 samples, in green) and PCE (order = 4, in blue) (arrows from top to bottom). (B) Cumulative 
accuracy distribution due to uncertainty in 20 weight parameters using different UQ methods and 
a comparable number of model evaluations (green: MCMC with 3000; blue: order 3 PCE; orange: 
MC with 3000 samples; arrows from top to bottom). (C) Model prediction accuracy distributions 
computed by MC sampling the input stretch with different sample sizes (sea green: 1000; orange: 
400; steel blue: 200; grey: 50; pink: 100; arrows from top to bottom). (D) Model prediction 
accuracy distributions computed by MC sampling of the input stretch from different random 
distributions (dotted line: Gaussian distribution; dashed line: uniform distribution; arrows from 
top to bottom) with a sample size of 40. (Online version in color.) 
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The ranges of n, EC50 and 𝜏 sampled for parameter UQ were determined based on values 

commonly reported in the biochemical literature [172-173] together with mathematical constraints 

imposed by the model equations to prevent negative function values. Ordinarily, the reaction 

weights 𝜔 would be set at or close to 1 (the original default value was 0.9) unless the effects of an 

inhibitor, knockout or knockdown were being simulated. Therefore, we sampled 𝜔 from U(0.8, 

1). Recognizing that this is a narrow range, we repeated the analysis for 𝜔 in the range U(0.2, 1). 

As expected, sampling from a wider range of 𝜔  that included lower node weights decreased 

average model accuracy when maintaining the same threshold. We therefore investigated the 

extent to which this effect was dependent on the chosen threshold. MC sampling was also used for 

analyzing uncertainty in the validation data and the model threshold in the range (0.01,0.09). We 

used MC sampling to quantify the epistemic uncertainty due to the choice of interaction logic by 

switching AND and OR logic with a random probability of 0.5. 

To test whether sufficient parameter combinations were sampled, we increased the sample 

size in the UQ analysis of 𝜔 from 2,500 samples to 100,000. The resulting distributions of model 

accuracy were not significantly different (P>0.05 using Student's t-test). 

2.3. Results 

2.3.1. Parameter Uncertainty 

The effects of uncertainty in the parameters of all 125 reactions on computed model 

validation accuracy were quantified separately for 𝜔, n, EC50, and 𝜏 as shown in Fig. 2.3. Accuracy 

was generally robust to parameter variation, but most sensitive to uncertainty in 𝜔 (Fig. 2.3C) and 

insensitive to uncertainty in 𝜏 (not shown). Most perturbations decreased model accuracy, but 

some increased it marginally suggesting some potential for model improvement. Uncertainty in 

the Hill coefficient n and half activation parameter EC50 had similar effects on the distribution of 
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model accuracy. These two parameters of the activation function are coupled numerically and only 

affect the speed at which signaling molecules reach steady state. Perturbations in 𝜏 were not large 

enough relative to the four-hour time-course of the simulation to affect the steady state results. A 

global UQ analysis of all the model parameters led to a flatter accuracy distribution than that of 

the distributions obtained by sampling individual parameters. This distribution was similar to the 

sum of the individual parameter distributions suggesting that the impact of uncertainty in each 

individual parameter may be a good indicator of its contribution to the impact of parameter 

uncertainty in all parameters (Fig. 2.3D). 

In assessing the effects of uncertainty in n, EC50 and 𝜔, we found that the loss of accuracy 

was mainly due to changes in the ability of the model to correctly predict the results of inhibition 

experiments rather than input-output experiments. In the analysis of parameter uncertainty in EC50, 

 

Figure 2.3| Parameter uncertainty quantification.  Model predictive accuracy distributions 
computed for univariate random sampling of uncertainty in reaction parameters: Hill coefficient 
n (A), half-activation EC50 (B), reaction weight ω (C) and all model parameters combined (D). 
Vertical arrows indicate original default model accuracy. See text for details. 



 
 

 

46 
 

the average accuracy of the input-output and input-intermediate validation decreased from 100% 

to 92% while the average accuracy of inhibitor experiment validations fell from 68% to 33%. For 

𝜔 sampled in U(0.8,1), mean input-output accuracy only fell to 98% whereas mean inhibition 

experiment prediction accuracy fell to 29%. This conclusion was also consistent in the global UQ 

analysis on all parameters where the corresponding decreases were 100% to 60% and 68% to 15%, 

respectively. It is not surprising that inhibition experiments represent a more stringent test of model 

accuracy than input-output experiments, but they are also more likely to be subject to experimental 

error and more sensitive to model perturbations. 

Taken together, the importance of the effects of perturbations in the reaction parameters on 

accuracy (Fig. 2.4A) as estimated by Pearson correlation analysis was not significantly different 

between the seven major modules of the network: cell surface receptors; the phosphoinositide 3-

kinase/protein kinase B (PI3K/Akt) pathway; the mitogen-activated protein kinase (MAPK) 

pathway; cytoskeletal signaling; calcium signaling; transcription factors; and outputs. For this 

purpose, reactions were assigned to modules based on the module containing the target of the 

reaction, not the inputs. 

Lower inputs or reaction weights may have reduced validation accuracy by reducing 

overall system gain causing more responses to fall below the fixed threshold. To test this, we 

allowed the input to vary randomly from 0.1-0.9 and simultaneously allowed the threshold to vary 

randomly from 0.01-0.09. The contours of constant accuracy on the input-vs.-threshold plane (Fig. 

2.4B) show that decreases in model accuracy due to decreased input stretch could be partially 

offset by decreasing the threshold for categorizing an output of the model as significantly changed. 

Consequently lowering the threshold increased mean accuracy (Fig. 2.4C). 
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Figure 2.4| Analysis of parameter importance and the effects of model threshold.  (A) 
Importance analysis of reaction parameters ω (light grey), EC50 (dark grey) and n (black) by 
network module calculated using Pearson correlation of parameter variations with accuracy. 
Outlying reactions with the highest importance tended to be input or output reactions and included 
the reactions that activate endothelin-1 (1) and the endothelin-1 receptor (2), integrins (3), 
angiotensin II (4), phosphoinositide 3-kinase (5) and the skeletal α-actin gene (6). (B) 
Relationship between the effects of input and weight uncertainty and threshold uncertainty on 
accuracy contours. (C)Effects of varying model prediction threshold (between 0.09 purple, 0.07 
red, 0.05 green, 0.03 orange and 0.01 blue, arrows from left to right) on accuracy distributions 
due to uncertainty in input and reaction weights. Vertical arrow indicates original default model 
accuracy. (Online version in color.) 
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2.3.2. Model Logic Uncertainty 

We examined the individual impact of model logic uncertainty for the 19 reaction 

combinations with "AND" logic and 33 interactions with "OR" logic on validation accuracy. As 

seen in Fig. 2.5A, switching model logic could greatly reduce accuracy, with changing "OR" to 

"AND" interactions causing much larger reductions that switching "AND" reactions to "OR" logic.  

 

Figure 2.5| Analysis of uncertainty in reaction logic and validation.  (A) Effects on 
model validation accuracy of randomly changing ‘AND’ logic to ‘OR’ logic (blue |), ‘OR’ 
reactions to ‘AND’ logic (orange -) or both (green), all with a probability of 0.5. (B) 
Effects of data uncertainty on model validation accuracy assessed only using reported 
inhibition experiments [12], for which the original accuracy was 67%. Effects on accuracy 
of changing significantly changed (SC) validation measurements to no change (NC) with 
a probability α of 0.05 (blue |). Effects of changing NC to SC with a probability β of 0.4 
(orange -). Combined effects of both random changes (green). (Vertical arrows indicate 
original default model accuracy). (C) Effects on model accuracy of the length of the 
pathway between the inhibited node and the measured response node in the inhibition 
validation experiment [2]. Values to the left represent incorrect model predictions and 
values to the right represent correct predictions. Light grey represents model predictions 
of no change and black represents model predictions of significant change. (Online version 
in color.) 
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A step-wise regression analysis of all the "AND" logic interactions and a statistical analysis 

correcting for multiple comparisons (Benjamin-Hochberg false discovery rate) showed that 

predictive accuracy was significantly affected (P<0.05) by the logic choice of 12 of the 19 "AND" 

interactions (Table 2.1). Switching all 12 interactions from "AND" to "OR" would decrease model 

accuracy from 77.9% to 56.4%. Eight interactions were highly significant (P<0.01); they are all 

either output nodes of the system such as B-type natriuretic peptide (BNP), cell area, 𝛽-MHC, 

connexin 43 (Cx43) or particularly well-known regulators of mechanotransduction signaling such 

as focal adhesion kinase (FAK), protein kinase C (PKC), extracellular-regulated kinases 

(ERK1/2), and calcineurin (CAN). The "AND" interaction between the reactions activating the 

muscle LIM-domain protein (MLP) was the only one to have a negative coefficient in the 

regression analysis suggesting that switching this "AND" logic to "OR" resulted in a slight 

improvement in accuracy. Reformulating the network by changing the interaction logic of the 

reactions activating MLP increased model accuracy by 1%. For the inhibition validation 

experiments, the original model predicted that MEF2 gene expression was only reduced by 8% 

when PKC was inhibited compared with approximately 100% block in published experiments 

[102, 104]. Changing the logic by which PKC and calcium-calmodulin kinase (CaMK) regulate 

histone deacetylase 4 (HDAC4) from "AND" to "OR" increased the inhibitory effect of PKC 

blockade on MEF2 to >20% and significantly improved model accuracy by >5%. 
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2.3.3. Data Uncertainty 

The final source of uncertainty we investigated was statistical uncertainty in the 

experimental results of the inhibitor studies used to validate the model. In particular, while 110/120 

of the published validation experiments reported a significant change in intermediate or output due 

to inhibitor treatment, 10/120 reported no change. However, the uncertainty inherent in the 

unchanged responses was 4-8 times higher than the uncertainty in significantly changed responses 

because the conventional choice of 𝛼  (P < 0.05) is much lower than 𝛽  in the cell biological 

experiments, which are invariably under-powered owing to small sample sizes. Overall, data 

uncertainty had a limited impact on model accuracy; the original baseline inhibition accuracy was 

68% and accuracy in almost all the UQ simulations was between 60% and 70% (Fig. 2.5B). The 

Table 2.1| Regression analysis on perturbation of reaction interaction logic 
Output node Estimate s.e Pr(>|t|) 
BNP 0.095 0.025 0.0003 
β-MHC 0.093 0.025 0.0004 
CaN 0.093 0.027 0.0008 
Cx43 0.085 0.025 0.0012 
CellArea 0.086 0.027 0.0017 
FAK 0.084 0.026 0.0018 
PKC 0.080 0.026 0.003 
ERK12 0.075 0.026 0.005 
HDAC 0.067 0.025 0.010 
PrSynth 0.062 0.026 0.019 
CREB 0.060 0.025 0.019 
sACT 0.059 0.025 0.022 
ANP 0.049 0.025 0.054 
SRF 0.052 0.027 0.056 
IP3 0.045 0.028 0.107 
Ao 0.039 0.025 0.127 
FHL2 0.040 0.027 0.131 
MuRF 0.016 0.026 0.538 
MLP -0.002 0.028 0.932 
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number of validation comparisons that would have been reversed by switching validation results 

from significant to unchanged was approximately the same as if the validation finding had been 

switched from unchanged to significant. Overall though, switching unchanged findings to changed 

led to a higher mean accuracy. This suggests that better powered experimental studies may be 

justified for experiments designed to test significant model-predicted responses to inhibitors that 

had no observed statistical effect in published experimental studies. 

The accuracy with which the model correctly predicted the results of inhibitor experiments 

depended on the length of the pathway between the inhibited node and the readout node. For 

pathway lengths exceeding five, prediction accuracy decreased markedly (Fig. 2.5C).  

Pathway analysis of the 120 inhibition experiment node pairs revealed 11 node pairs that 

were not connected in the network with the result that only 2 of these 11 experiments, ET1R/STAT 

and PI3K/JNK, could possibly have been correctly predicted by our model. For the other 9 node 

pairs, we examined the original experimental studies and found there was either a lack of 

corroborating data [279-282], evidence of pathway crosstalk (e.g. between PI3K and Ras or Src 

and FAK) that was not represented in the original model [283-285] or contradictory data in 

subsequent publications 1. In the other 109 node pairs, pathway analysis suggested that the longer 

the pathway (above 6 steps) between inhibited node and readout node, the higher the probability 

that the model would predict no change. This difference was mainly caused by the accumulated 

loss of activity values and a consequent decrease in likelihood that the model would reach the 

threshold for significant change with a consequent decrease in model accuracy. 

 

1 This exercise also caused us to identify a typographical error in Fig. 3 of our original model paper [172], which 
should have indicated that stretch decreased rather than increased MuRF translocation to the nucleus both in the 
experimental study and the model. This error did not affect the model results or accuracy 



 
 

 

52 
 

2.4. Discussion 

In this study, we explored the effects of uncertainty in parameters, model logic and 

experimental validation data on estimates of prediction accuracy by a published network model of 

mechanosignaling pathways in ventricular myocytes [172]. Model prediction accuracy was fairly 

robust to moderate uncertainty in network reaction parameters, but large decreases in model 

reaction weight did significantly impair accuracy. However, this was largely attributable to a 

reduction in overall system gain that could be compensated by a corresponding decrease in the 

threshold used to classify a particular model output as changed or unchanged for the purposes of 

comparison with experimental observations.  

In contrast to parameter uncertainty, epistemic uncertainty analysis showed that model 

accuracy is more vulnerable to uncertainty in the choice of reaction logic. Randomly replacing 

"AND" logic reactions with OR logic had modest effects on accuracy, but the converse greatly 

reduced it. In the original publication, it was concluded that changing all logic to "OR" type 

lowered the model performance if effects of varying stretch input and reaction weights were kept 

unchanged as studied in the original paper. Thus, there may be opportunities to improve model 

predictive accuracy and reliability by performing new experiments that can more confidently 

identify the most appropriate reaction logic. For example, we found that changing the interaction 

logic by which PKC and CaMK regulate HDAC4 from "AND" to "OR" increased the inhibitory 

effect of PKC blockade on MEF2 and significantly improved model accuracy. However, neither 

choice resulted in close quantitative agreement with experiments. The mechanisms by which 

different kinases and phosphatases regulate nuclear translocation of HDACs where they alter 

chromatin structure and gene expression are complex. They involve the successive 

phosphorylation of multiple residues that are targets of multiple kinases and phosphatases and 
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could be cooperative [286]. A more complete investigation of uncertainty in the network structure 

could have been achieved by also completely removing reactions or adding new ones. However, 

determining which new reactions to be added to the model requires developing an improved model 

with more reactions. The effects of removing nodes were approximated when we sampled from a 

wider range of reaction weights since lower weights had the effect of rendering reactions 

ineffective at changing downstream node values enough to exceed the threshold for classifying 

them as significantly changed. Hence, it is not surprising that the resulting biochemical interactions 

may not be accurately approximated by a single logic gate. Therefore, improving quantitative 

model predictive accuracy and reliability may require a combination of reaction parameter and 

logic or the inclusion of additional types of reaction equations that more accurately approximate 

biochemical mechanisms. 

Most combinations of parameter, data or logic perturbations tended to decrease the 

prediction accuracy compared with the default model accuracy. This is not unexpected given that 

the data and logic choices by default in the original model were based on published experimental 

literature that we expect to be correct substantially more often than not. Similarly, while the 

original default model parameters were not optimized, they were based on prior published 

knowledge and hand tuned to give expected levels of network activity. Given this, a more rigorous 

approach to determining the distributions in Section 2.2 could be to compute posteriors for the 

parameters and the model in a Bayesian setting and use those posteriors in place of the distributions 

described. Perturbations to parameters and reaction logic more often caused decreases than 

increases in output values. This difference was mainly due to the accumulated loss of activity 

values and thus a decrease in likelihood that the model would reach the threshold for significant 

change leading to a decrease in model accuracy. Particularly for 𝜔, large variations could cause 
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large decreases in accuracy. However, these parameters are normally set to 1 or close to 1 (0.9 by 

default) unless the reaction is being pharmacologically or genetically inhibited. Moreover, some 

of this loss of accuracy could be offset by a corresponding adjustment of the threshold for 

categorizing a model output as changed or unchanged. For realistic ranges of 𝜔 and all other model 

parameters the accuracy of model predictions was generally robust. 

Finally, data uncertainty due to the risk of type I and type II errors in experimental data did 

not significantly affect estimated model accuracy. Interestingly, the higher uncertainty due to low 

power in the small fraction of inhibitor experiments with no significant change was less likely to 

decrease model accuracy than the much lower uncertainty associated with the larger number of 

experiments resulting in a statistically significant change. False positive model predictions could 

be worth investigating further by repeating previously reported experiments with larger sample 

sizes and statistical power.  

In this study, we use two different UQ sampling methods: Monte Carlo simulations and 

polynomial chaos expansions. The latter method produced equivalent distributions of accuracy 

with less computational cost than the former when fewer than 20 parameters were being sampled 

and was over ten times faster for ten or fewer parameters. We also found that sampling reaction 

parameters from uniform distributions yielded very similar findings to those obtained when the 

uncertainty was Gaussian. In our analysis, we found a numerical error rate of up to ~10% because 

some extreme combinations of parameters could force the system to limit and increase the stiffness 

of the system of ODEs. 

2.5. Conclusion 

Quantification of the effects of uncertainty in model parameters, logic and validation data 

on the estimated accuracy of an ODE network model of the ventricular myocyte mechano-
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signaling network showed that the model was robust to parameter and data uncertainty but more 

vulnerable to errors in the choice of logic used to represent biochemical interactions between 

interacting biochemical species. In particular, incorrect interpretation of experimental data to 

represent "AND" reaction logic can significantly decrease prediction accuracy. The findings of 

this UQ analysis point to opportunities for model parameter refinement and extension of model 

pathway structure and logic, and for new experimental measurements that improve the power of 

statistical conclusions. 
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 Fiber and Transverse Stretch Mediate Differential 

Transcriptional Responses in Mouse Neonatal 

Ventricular Myocytes 

3.1. Introduction 

In the heart, hemodynamic overload can induce different modes of ventricular hypertrophy 

and remodeling, and may be associated with distinct multiaxial mechanical stimuli [11, 287-288]. 

Several cell signaling pathways and mechanisms have been implicated in the myocyte 

hypertrophic response to mechanical loading and stretch [8, 10, 289], but little is known about the 

specific pathways and mechanical stimuli that mediate direction-dependent responses, for 

example, predominant myocyte lengthening during ventricular volume overload [290]. The 

internal organization of the sarcomere and cytoskeleton suggests that myocytes may respond 

differentially to loading applied either parallel or transverse to the long axis of the cell. In 

micropatterned, elongated neonatal rat cardiac myocytes, phenotypic responses to 24 hr of static 

stretch differed significantly when stretch was applied primarily along the cell axis compared with 

transverse to it [262-263]. 

Previous studies have shown that longitudinal (along the myofilament axis) uniaxial stretch 

of aligned neonatal rat ventricular myocytes induced the addition of new sarcomeres in series, so 

that by six hours the original unstretched sarcomere length had been restored [264]. Hence, the 

hypertrophic signaling and remodeling responses to stretch in neonatal myocytes in vitro are likely 

quite rapid. Many studies have also shown evidence of paracrine and autocrine responses to stretch 

that act over short and longer-term time scales [265]. Therefore, the first goal of this study was to 

examine differential gene expression profiles following up to 4 hr of stretch in micropatterned 



 
 

 

57 
 

neonatal mouse cardiac myocytes and compare responses when the cells are stretched primarily 

along or transverse to their long axes. 

To elucidate the differential transcriptomic responses to longitudinal vs. transverse stretch, 

we expanded a previous logic-based computational model of the cardiac myocyte 

mechanosignaling network [172] by incorporating transcriptional control of 772 genes shown to 

be regulated by the 11 transcription factors (TFs) in the signaling model. In the signaling model, 

stretch can modulate pathways downstream of mechanically sensitive membrane receptors and 

channels. Differential gene expression predicted by the model showed 69% agreement with the 

gene expression measurements after 4 hr of longitudinal stretch and 72% agreement with genes 

that were significantly different. To further examine axis-dependent genetic signaling pathways, 

we used the signaling model to detect axis-dependent receptor-mediated pathways, and then 

performed receptor blocking studies in culture to validate those findings, implicating AT1 and ET1 

receptors and their downstream signals to be important in the response to both transverse stretch 

and longitudinal stretch. The model results did not indicate different signaling pathway activation 

to different directions of stretch, but we found that the main difference between transverse and 

longitudinal stretch responses may be due to sensitivity differences to the direction of stretch. 

Finally, pathway analysis applied to the systems network found a key subnetwork of the genes, 

which are targets of 9 TFs, and are regulated by stretch via 16 signaling molecules including the 

MAPK signaling pathway. 

3.2. Methods 

3.2.1. Micropatterning, Isolation and Culture 

Cardiac myocytes were cultured on flexible, micropatterned elastomeric substrates and 

subjected to a static mechanical load using methods described previously [291]. Briefly, Sylgard 
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186 polydimethylsiloxane (PDMS) membranes were spin-coated on silicon wafer master molds 

micropatterned with SU-8 2005 negative photoresist using a custom photomask, degassed, and 

cured at 70°C for 30 minutes and then at room temperature overnight. The resulting 10 μm wide 

microgrooves were 5 μm deep and 10 μm apart. The micropatterned membranes were mounted in 

custom elliptical cell stretchers and coated with murine laminin at 10 μg/ml in phosphate buffered 

saline (PBS). Excess protein was removed by rinsing twice in 1X PBS prior to plating cells.   

Cardiac myocytes were isolated from 1–2 day old C57BL/6 mouse hearts as described 

previously [292]. Cells were plated on the PDMS membranes in the stretchers at a density of 1.5-

2 million cardiac myocytes in an area of approximately 600 square mm per stretcher. The cell 

media consisted of Dulbecco’s Modified Eagle Medium and Medium 199 supplemented with 10% 

horse serum, 5% fetal bovine serum, 100 units/mL penicillin, and 100 μg/mL streptomycin, and 

incubated at 37°C with 10% CO2. At 72 hr after plating, media was changed to a serum-free media, 

and the cells were cultured for another 24 hr prior to stretch, taking on an aligned, rod-like 

morphology. 

3.2.2. Stretch and RNA-Seq 

The elliptical stretchers applied an anisotropic, biaxial strain to the membrane of 14% along 

the minor axis of the ellipse and 3.6% along the major axis [291]. Membranes were oriented during 

assembly into the stretcher so that cell alignment would be parallel to either the minor (longitudinal 

stretch) or the major axis (transverse stretch). Two stretch durations, 30 min and 4 hr, and both 

axes of major stretch were studied with unstretched cells on similar engineered substrates used as 

a control, for a total of five groups. Three stretchers for each condition served as biological 

replicates. Total RNA was extracted using an RNeasy Mini Kit. 
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Total RNA samples were tested for quality using an Agilent Technologies 2100 

Bioanalyzer. RNA samples were prepared for sequencing with the TruSeq RNA Sample Prep Kit 

v2 according to manufacturer’s instructions and then sequenced with an Illumina HiSeq 2000. 

Quality analysis was performed using FastQC [293]. Low quality reads and adapter sequences 

were trimmed with FASTQ trimmer in the FASTX-Toolkit (supplement S3.1) [293], aligned to 

mm9 mouse genome with HiSat2 [240]. Featurecounts was used to count aligned reads, and 

DESeq2 was used to perform the differential expression testing by comparing abundance of gene 

expression in each stretch condition to the control condition [242, 248]. The adjustments for 

multiple comparisons were then performed using the method described by Benjamini and 

Hochberg [254]. Genes with a false discovery rate (FDR) < 0.05 and a minimum log2 fold change 

(log2 FC) of 0.5 with respect to control were defined as differentially expressed (DE). The RNA-

Seq data was deposited at the GEO website, accession number GSE83655. 

Power analysis was conducted on the RNA-Seq data. To filter out genes with low 

expression, only genes with greater than 1 count for each sample were kept. The average number 

of counts per gene and the biological coefficient of variation for all genes were calculated in edgeR 

[249]. These values along with an FDR of 0.05 and a minimum log2 FC of 0.5 were taken as inputs 

into the R package rnaPower, which was used to calculate power [295]. 

3.2.3. Gene and Pathway Enrichment Analysis 

Functional and pathway enrichment analyses was performed by comparing DE genes with 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. DE genes were categorized 

into lists of genes for each stretch condition. These lists were analyzed by David, which identified 

enrichment of genes in pathways [296]. The criteria for classifying a term as enriched were P-

value < 0.05 and number of DE genes > 2. 
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3.2.4. Reverse Transcription Polymerase Chain Reaction 

RT-PCR was used to validate representative RNA-seq results and in receptor blocking 

studies. RNA was quantified using Qubit 2.0 and the Qubit Broad-Range RNA Kit. cDNA 

synthesis was performed using an RNA input of 500 ng per reaction and a ProtoScript First Strand 

cDNA Synthesis Kit. Reverse Transcription Polymerase Chain Reaction (RT-PCR) was performed 

on a Life Technologies StepOnePlus Real-Time PCR System using a KAPA SYBR Fast Universal 

qPCR Kit. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or 18s ribosomal RNA are both 

housekeeping genes used as the reference gene for fold change normalization. Primers for RT-

PCR were listed in supplement S3.2. 

3.2.5. Inhibitor Studies of Mechano-Sensitive Receptors 

In order to test the predictions from the network model, cell stretch experiments in the 

presence of pharmacological inhibitor combinations were performed. Cells were divided into three 

treatment groups: Group 1 inhibited AT1 and ET1 receptors with 1 𝜇M Losartan/100 𝜇M 

BQ123/10 𝜇M BQ788, 30 min before stretch, Group 2 blocked L-Type Calcium Channels 

(LTCC), Sodium Hydrogen Exchangers (NHE), and Transient Receptor Potential (TRP) channels 

with 1 𝜇M Ruthenium Red/5 𝜇M Nifedipine/10 𝜇M HOE642 (Cariporide), 10 minutes before 

stretch. Group 3 served as a vehicle control for 4 hr for both Groups 1 & 2 4 before stretch and 

were treated with vehicle controls for each compound as follow: 4 hr before stretch Group 3 was 

given 2 𝜇L DMSO, 30 minutes before stretch Group 3 received 50 𝜇L dd H2O and 2 𝜇L DMSO, 

10 minutes before stretch Group 3 was given 2 𝜇L dd H2O and 4 𝜇L DMSO. Half the cultures in 

each group were stretched in a primarily transverse direction (14% transverse stretch, 3.6% 

longitudinal stretch) and half were not stretched (unstretched control). All stretchers were then 

incubated for 4 hr at 37oC, 10% CO2 and 100% humidity. All compounds remained in culture 
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during stretch. Cells were then rinsed with room temperature 1X PBS and lysed using Qiagen’s 

RNeasy Mini Kit (# 74104) protocol, using beta-mercaptoethanol in the RLT Buffer. 

3.2.6. Computational Mechanosignaling Network 

To investigate the roles of mechanosignaling pathways in regulating changes in gene 

expression in response to anisotropic stretch of ventricular myocytes, we extended the MSN model 

to include transcriptional regulation and expression of genes downstream of the 11 transcription 

factors in the previous model [172-173, 297]. We classified 772 putative target genes [224, 228-

229, 298-299] that were also detected in our RNA-seq measurements according to three criteria 

corresponding to different levels of experimental validation: (I) 288 genes for which 

transcriptional regulation has been confirmed in experiments in mice or rats; and (II) 561 genes 

for which regulation of the target gene by the transcription factor has been predicted using 

bioinformatics based on DNA binding sites from published ChIP-seq datasets or confirmed in 

experiments in mice or rats (supplement S3.3). Of the 772 target genes, 14 encode for an upstream 

protein in the signaling network. Therefore, the feedback pathways were included to represent 

protein translation for each of these nodes (supplement S3.3). Seven distinct classes of nodes are 

seen in this expanded network model (Fig. 3.1), which were rendered with the aid of Cytoscape 

[300]: membrane mechanoreceptors or mechanosensitive nodes are at the top; four different 

canonical signaling pathways are activated by the mechanoreceptors (calcium signaling, MAPK, 

PI3K-Akt, and cytoskeletal-related);  these pathways converge onto 11 TFs which regulate the 

expression of the target genes, of which only the 14 genes that feed back into the network are 

displayed in Fig. 3.1. These foundational pathways were also found to be the enriched KEGG 

pathways under the 4 hr stretch. 
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To numerically simulate the effects of stretch on cardiomyocyte, a small stretch stimulus 

(0.315) was first used by running the Hill model and mass-action method as described in section 

1.2 and 1.3 [173] to a numerical steady-state in order to mimic cellular steady state, which 

generated the control values of signaling molecules and the gene normalization constants. Then, a 

 

Figure 3.1| Reconstruction of the mechano-signaling network in cardiomyocytes.  The 
model comprises 921 activating or inhibitory reactions linking 84 signaling nodes with 772 
genes, beginning with 9 mechano-sensors (NHE, LTCC, TRP, ET1, AT1R, AngII, gp130, 
Integrin, and Dysgl) and proceeding through multiple signaling cascades and 11 transcription 
factors (in pink) to 772 gene products including 14 translation feedback paths. Complete lists 
of genes, model reactions and abbreviations for node names are provided in supplement S3.3. 
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stretch input of 0.7 was applied to the system to simulate gene expression with a time course of 4 

hr. A linear regression with a fixed intercept of 0 was conducted by comparing RNA-Seq 

measurements and model simulation at 4 hr.  

Default parameter values (specified in supplement S3.3, weight = 0.9, n = 1.4, and EC50 = 

0.5) except 𝜏 were used for all reactions. Initial gene expression values were derived from the 

control group of the RNA-Seq data without stretch. Kinetic parameters for target genes were 

determined using an mRNA half-life (HL) database [230]. HL was converted to the time constant 

𝜏 using the formula: 

𝜏 =
𝐻𝐿
𝑙𝑛2 

For all other nodes, 𝜏 = 30 seconds was used. This time constant allows ERK1/2 and p38 

MAPK to reach peak activation by 10 minutes of stretch, which matches previous data that 

maximal phosphorylation of ERK1/2 and p38 MAPK is induced by 10 minutes of stretching [230]. 

3.2.7. Network Centrality Analysis 

In biological network systems, centrality analysis has been used to find the most important 

biological nodes based on network topology [301]. For a given network composed of multiple 

signaling nodes and pathways, a sub-network can be formed between any two nodes of interest 

(starting point is defined as ‘s’ and ending defined as ‘e’). The betweenness centrality is a function 

which assigns a numerical value to every node (m) in this sub-network that monitors the 

communications between ‘s’ and ‘e’ [301-302]. Let 𝜎?@ denote the number of shortest paths from 

‘s’ to ‘e’, then 𝑏?@ = 𝜎?@(𝑚)/𝜎?@ is the probability of this node m falls on the randomly selected 

shorted path between ‘s’ and ‘e’ [301]. The overall betweenness centrality of this node m in this 

network will be: 𝐶A(𝑚) = ∑𝑏?@(𝑚). This value ranges between 0 and 1; the higher the value, the 

greater the importance of this node in the sub-network. For example, in a regulatory network 
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starting from stretch and ending at a gene, if the betweenness centrality of a node in this network 

is greater than 0.5, more than half of the pathway flows will go through this node and suggests that 

the node is important in the regulation of the gene. 

3.3. Results 

3.3.1. Transcriptome and Pathway Enrichment Analysis 

The principal stretch axis was aligned either parallel, representing longitudinal stretch, or 

perpendicular, representing transverse stretch, to the cardiac myocyte orientation on the micro-

grooved substrates. A total number of 562 genes with significant changes in expression 

(FDR≤0.05 & |log2FC| ≥	0.5), as measured by RNA-Seq, were identified from all stretch 

conditions supplement S3.4. Of these differentially expressed (DE) genes, 557 were significantly 

changed after longitudinal stretch (40 at 30 min and 527 at 4 hr), 30 were differentially expressed 

after transverse stretch (17 at 30 min and 13 at 4 hr) (Fig. 3.2A). By far the greatest response was 

due to longitudinal stretch, which accounted for 99% of all differentially expressed genes in the 



 
 

 

65 
 

experiment compared with the response to transverse stretch which induced only 5% of the 

differentially expressed genes. 

 

Figure 3.2| An overview of DE genes from RNA-Seq measurements.  (A). Venn diagram 
showing the number of DE genes across multiple stretch conditions: 30 min stretch (Blue); 4 hr 
stretch (Red). Longitudinal stretch induced ~20 times more genes than transverse stretch. (B). 
Clustering dendrogram of DE genes based on expression profiles (log2 FC) using Pearson 
Correlation under longitudinal stretch. Most genes follow a monotonic change with time while 
some 10% and 5% of genes perform higher order dynamics respectively under transverse stretch 
and longitudinal stretch.  
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A clustering analysis was performed on the RNA-Seq data (FDR≤0.05 under either stretch 

condition, on a total number of 1042 genes) and showed several different expression patterns in 

Fig. 3.2B. These patterns mainly include genes that were highly stimulated at 30 min then returned 

to control at 4 hr and genes that were stimulated at 30 min and remained stimulated at 4 hr for both 

types of stretch. The condition-wise clustering suggests that transverse stretch induced similar 

regulation patterns to longitudinal stretch from 30 min to 4 hr, while longitudinal stretch induced 

a larger response in gene expression compared with transverse stretch at both 30 min and 4 hr. 

Among these 1042 genes, sixty genes were induced at 30 min but then dropped at 4 hr under 

transverse stretch while these genes were further stimulated under longitudinal stretch. Another 33 

genes were activated at 30 min and then reversed at 4 hr for both types of stretch. These genes 

with these higher-order dynamics were further verified as immediate early genes (IEGs). 

The expression of representative genes from six of these clusters was validated at 30 min 

and 4 hr using RT-PCR (Fig. 3.3). The measurements agreed closely, with a Pearson correlation 

coefficient of 0.97. 
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Fig. 3.4 shows a subset of the enriched pathways from the KEGG database. It is notable 

that far more pathways were enriched at 4 hr stretch compared with 30 min. Among all the enriched 

pathways, the MAPK signaling pathway was activated as early as 30 min. Among the genes that 

enriched the MAPK signaling pathway, a few genes were IEGs as clustered in the previous 

clustering analysis. Other pathways, such as the Ras signaling pathway, the PI3K-Akt signaling 

pathway, the calcium signaling pathways and regulation of actin skeleton, were mainly enriched 

 

Figure 3.3| PCR Validation of 6 DE Genes in comparison of RNA-Seq 
Measurements.  PCR measurement is represented with color read and RNA-Seq measurement 
is represented with color blue. Fos and Jun displayed more than 20 and 4 fold changes at 30 
min stretch but fell back to near control at 4 hr. Abra, Bach2 and Otud1 showed steady increase 
in activity along with time from 30 min to 4 hr. Nppb underwent steady increase under 
longitudinal stretch, which was first highly activated but dropped back to control level under 
transverse stretch. 
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at 4 hr. These results also validate our previously published cardiac MSN model [172] that most 

foundational pathways used to build the model were also enriched in this analysis.  
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Figure 3.4| KEGG Pathway Enrichment Analysis.  (A) KEGG enrichment analysis from DE 
genes in RNA-Seq measurements in the following categories: pathways enriched at 30 min stretch 
(light red); pathways enriched at both 30 min and 4 hr stretch (red); pathways enriched at 4 hr 
stretch (dark red). Pathways are ordered by p-value. (B) KEGG enriched common pathways as A 
from model genes. Pathways are colored from deep to light based on p-value. All pathways in 
bold are also components of the signaling network model.) 
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While the response to transverse stretch was predominantly a subset of the longitudinal 

stretch response based on the statistical analysis, we observed that the numerical difference of gene 

expressions was mainly due to the larger response induced by longitudinal stretch. To illustrate 

the numerical relationship of the gene expression induced by transverse and longitudinal stretch, 

a linear regression was performed on the gene expression (log2FC) of genes (FDR≤0.05) at both 

30 min and 4 hr. This analysis showed significant correlation of gene expression between 

transverse stretch and longitudinal stretch displayed in Fig. 3.5. At 30 min, gene responses were 

significantly larger under longitudinal stretch than transverse stretch with the coefficient as 1.17 

(p<=0.05, R2=0.98). At 4 hr, we observed even greater difference of gene responses between 

transverse stretch and longitudinal stretch with the coefficient as 1.71 (p<=0.05, R2=0.90). To 

further examine the difference of gene responses between transverse and longitudinal stretch at 30 

min and 4 hr, we examined the two sets of DE genes and found that DE genes at 30 min were 

IEGs. As we showed in the clustering analysis, these genes were quickly stimulated at 30 min but 

returned to control at 4 hr. Other studies show that 2.5% cyclic stretch can trigger the transient 

response of the IEGs [303]. These results suggest that the difference between transverse and 

longitudinal stretch induced gene expression may be due to the effects of the magnitude of 

mechanical stretch applied on cardiomyocytes. 
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3.3.2. Dynamics of the Mechanosignaling Network 

To allow for the comparison between measured and model-predicted gene expression, we 

determined the baseline constitutive activation of the network model, as well as the threshold for 

a significant change in gene expression. The baseline activation of the network was varied by 

changing the initial weight of the stretch stimulus variable until the dynamics of the system 

corresponded to unstretched control conditions. Higher values of this initial constitutive stimulus 

resulted in higher steady-state baseline activation of the transcription factor variables, therefore 

requiring lower mRNA synthesis rates to match measured control mRNA levels. An initial value 

of 0.315 was used to simulate the (quasi-) steady state for the unstretched condition. An average 

gain for all genes in the network was found to be 0.32 (-1.91~5.07 on a log2 scale) after 4 hr of 

stimulation compared with the measured mean for 4 hr longitudinal stretch of 0.11 (-1.98~2.76 on 

 

Figure 3.5| Comparison of gene expression induced between longitudinal stretch and 
transverse stretch.  A regression was performed on the gene expression (log2FC) between 
longitudinal stretch and transverse stretch at 4 hr (A, left) and 30 min (B, right) for DE genes 
(p<0.05).  
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a log2 scale) when the network was activated with a stretch stimulus of 0.7. Similarly for transverse 

stretch, the average gain was 0.18 (-0.83~2.95 on a log2 scale) after 4 hr of stimulation compared 

with the mean for 4 hr transverse stretch of 0.04 (-2.52~1.47 on a log2 scale). The threshold for 

considering a gene in the model to be differentially expressed was chosen to be ±0.5 (log2 scale) 

based on the threshold chosen in the measured transcriptome for significantly up- and down-

regulated genes and FDR<0.05. 

Fig. 3.6 shows the change in expression of all 772 target genes after 12 hr of model 

simulation, along with the time course of the activating stretch. Each row in Fig. 3.6 corresponds 

to the expression profile of a different target gene, and the rows are organized by the activity 

change at 12 hr. A total number of 266 target genes increase in activity with stretch, which are 

located at the top of Fig. 3.4A. At the bottom of Fig. 3.6, only 46 targets decrease in activity with 

stretch stimulus. In between these two groups of genes, a group of 460 genes changed by less than 

0.5 (log2 scale). These genes were subject to both positive and negative transcription factor 

regulation. Among the 266 genes that were upregulated, 101 genes displayed higher-order 

dynamics which was activated at a short time but then dropped as time went on. Similarly, of the 

46 genes that were downregulated, 28 genes were found to have higher-order dynamics. To further 

investigate whether the model is capable of capturing such higher-order dynamics, we found that 

varying feedback from protein products back to the signaling network could change the model 

dynamics. The model oversimplified the feedback of gene expression to the network by mapping 

mRNA levels directly to protein activity in the network. Varying the gain of this feedback from 

0.33 to 1.3 showed the ability of the model to demonstrate more complex dynamics supplement 

S3.5. In this case, lowering feedback activity from a translational process is an efficient approach 

to mimic the sharp shift of gene activity within a short period of time. Considering that only a 
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small portion of DE genes appear in the MSN, there may be more regulation between 

mechanosignaling and gene activity that has not yet been verified (See Discussion). 

3.3.3. Comparing the Mechanosignaling Network Results to Experimental Data 

In order to compare model predictions with experimental gene expression changes, a 

stretch stimulus was applied by increasing the input weight for the stretch node to 0.7 to simulate 

gene response induced by longitudinal stretch and 0.4 for transverse stretch as described. The 

overall prediction accuracy for gene expression by longitudinal stretch at 4 hr was 69% with a true 

 

Figure 3.6| Dynamics of stretch and all 772 genes in the model of myocytes.  The changes 
(log2 FC) in expression of all 772 target genes in model simulation with 12-hour time course 
along with change in stretch. Most genes were predicted to show monotonic up- or down-
regulation, but ~4% of the genes showed non-monotonic time-courses. 
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positive rate (TPR) of 29% and accurate predicted DE genes of 72%. Using the same criteria, the 

model predicted 63% of the genes with 54% TPR and 90% accuracy of predicted DE genes (Table 

3.1). To validate the comparison, we used two extra datasets from the literature, 2-day data from 

the transverse aortic constriction (TAC) [304] and 1 hour data from the cyclic stretch [305]. The 

model predicted 91% of the genes overall with 94% accuracy of the predicted genes in the 1hr 

cyclic stretch dataset, and 63% of the genes overall with 90% accuracy of the predicted genes in 

the 2-day TAC dataset. We then used a less stringent criterial for model threshold and found more 

DE genes were predicted correctly, but this led to a reduction in the general accuracy. 

3.3.4. Differential Responses of Transverse and Longitudinal Stretch 

RNA sequencing experimental results showed that not only more genes were DE after 4 hr 

of longitudinal stretch compared with transverse stretch, but also that longitudinal stretch induced 

nearly twice as large a change in expression as transverse stretch.  A linear regression was 

performed on model simulations between transverse stretch and longitudinal stretch at 4 hr and 

showed significant correlation with a coefficient of 1.93 (Fig. 3.7), which is quite close to the ratio 

we found in the data displayed in Fig 3.5. This result suggests that the differential response to the 

stretches was mainly due to the larger sensitivity of cardiomyocytes to longitudinal stretch. The 

Table 3.1| Comparison of Model Prediction vs. Experiment Measurements 

 Longitudinal 
Stretch, 4 hr 

Cyclic Stretch, 
1 hr TAC, 2-Day Combined 

 n accuracy n accuracy n accuracy accuracy 
All Model 

Genes 772 69% 697 91% 740 63% 74% 

Experimentally 
Verified Genes 288 77% 262 87% 269 76% 80% 

Predicted-DEG 22 72% 15 94% 49 90% 86% 
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linear regression of the model simulation at 30 min, however, suggested that the coefficient was 2 

which is much higher than the coefficient at 30 min. This disagreement also suggests that IEGs 

 

Figure 3.7| Comparison of gene expression between longitudinal stretch and transverse 
stretch.  (A). The comparison of log2FC of model predictions at 4 hr between transverse stretch 
and longitudinal stretch (top left). (B). The comparison of log2FC of RNA-Seq measurements 
at 4 hr between transverse stretch and longitudinal stretch (top right). (C). The comparison of 
log2FC of model predictions at 30m between transverse stretch and longitudinal stretch (bottom 
left). (D). The comparison of log2FC of RNA-Seq measurements at 30m between transverse 
stretch and longitudinal stretch (bottom right). 
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may follow a different expression regulation pattern from the model prediction. 

3.3.5. Expression Saturation of Genes Regulated by Multiple TFs 

Genes in the network are typically regulated by multiple TFs. By looking into gene 

expression, we found that expression of genes regulated by more than 3 and 4 TFs did not maintain 

the increasing trend as we observed in genes with 1 and 2 TFs (Fig 3.8). 

Our model formulation assumes multiple TFs co-regulate gene expression. Literature 

suggests that such coregulation may exist for some TFs while others are not supplement S3.6 [306-

307]. There is also evidence that the dynamics of gene expression could vary with the number of 

controlling TFs. Thus, by adjusting parameters such as EC50, our model now is capable of 

predicting the dynamics of genes regulated by multiple TFs as has observed in several studies 

[306-307].  
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3.3.6. AT1 and ET1 Receptors are the Key Regulators in the Sensitivity of Stretch in 

Cardiomyocytes  

To investigate if certain nodes or pathways are key components related to the differential 

sensitivity of stretch, a sensitivity analysis was performed, in which certain nodes were blocked in 

a subset of model genes which displayed at least 0.5 log2FC at either stretch conditions. As the 

first step to discriminate these pathways, we looked at gene activity with receptor blocking 

simulations. By simulating inhibition of the receptors that have been associated with mechanical 

signaling, the model predicted the greatest inhibition of genes when AT1 and ET1 receptors were 

blocked under stretch while NHE and LTCC showed the least (Fig. 3.9). We further found that 

AT1 and ET1 receptors, which are well studied G-protein coupled receptors, govern the regulation 

of the MAPK signaling pathway while NHE, LTCC and TRP, commonly known as ion channel 

 

Figure 3.8| Gene Expression Dynamics with Number of Regulators.  (A). Gene expression 
dynamics change with number of regulators with default settings. (B). Gene expression 
dynamics change with number of regulators after adjustment on reaction logics and parameters. 
(Data in blue and model simulation in orange.) 
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receptors, control the activity of the calcium signaling pathway. Then we simulated the effect of 

inhibition by blocking a combination of these two groups of receptors respectively. To validate 

the impact of AT1 and ET1 receptors, we then performed multiple receptor blockade experiments 

and analyzed the results with RT-PCR to test how gene activity responds to blocking AT1/ET1 

receptors and LTCC/NHE/TRP receptors under transverse stretch. The experiment result 

confirmed our hypothesis that AT1 and ET1 receptors are key nodes in response to stretch. These 

predictions were confirmed by experiments that showed a significantly greater inhibition (48%) in 

the transverse-stretch induced expression of Ctgf, Fosl2, Mafk and Nuak1 by combined inhibition 

of AT1 and ET1 receptors, as opposed to combined inhibition of the LTCC, NHE and TRP 

channels which resulted in 18% inhibition (Fig. 3.10). Based on the model predictions and the 
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subsequent experiments, we hereby proposed a key subnetwork regulating gene expression in 

response to both stretches using network centrality analysis. This subnetwork transduces the the 

mechanical signal via AT1 and ET1 receptors to 12 signaling molecules (including the MAPK 

signaling pathway) and then gene expression regulation via the stimulation of 9 TFs (Fig. 3.11). 

  

 

Figure 3.9| Average Inhibition of Gene Expression on Receptor Inhibition.  Average 
inhibition of expression for genes with |log2FC| > 0.5 when each of the receptors was inhibited. 
Empty circles and straight lines in the boxplot represent the mean and median of each 
distribution respectively. 
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Figure 3.10| Receptor blockade effects on stretch-induced gene responses.  (A). Inhibition 
distribution of genes with more than 0.5 log2FC when top 3 receptors from Table 3.2 were 
blocked compared with the condition when other receptors were blocked as negative control 
(we chose three ion-channel receptors for easier prepared experiment). (B). Gene expression 
changes of both experimental measurements and model predictions of the 4 genes with highest 
inhibition and 2 negative control genes were displayed. Ctgf, Fosl2, Mafk and Nuak1 were 
blocked to a greater extent near baseline level or below when AT1R/AngII/ET1 were blocked. 
In addition, two negative control genes namely Hbegf and Tgfb2 were also displayed. 
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3.4. Discussion 

3.4.1. Summary 

Hypertrophic remodeling of cardiomyocytes is regulated by a variety of mechanical 

stimuli. We and others have shown that cardiac myocyte gene expression is regulated differently 

by stretch that is primarily parallel to the myofilament axis than by stretch in the transverse 

direction [308]. The anisotropy of myocardial strain in vivo varies with external hemodynamic 

loading and location in the ventricular wall. To identify the mechanosensitive signaling pathways 

and gene expression programs regulated by axis-specific cell strain, we subjected micropatterned 

mouse neonatal cardiomyocytes to 30 min or 4 hr of static non-equibiaxial stretch that was 

predominantly parallel to or transverse to the myocyte long axis. Four hours of static longitudinal 

 

Figure 3.11| A subnetwork regulating gene expression in response to stretch.  A subnetwork 
was extracted for regulating gene expression in response to stretch using network centrality 
analysis described in section 3.2.7. The subnetwork includes 16 signaling molecules and 9 
transcription factors. 



 
 

 

83 
 

stretch in vitro induced differential expression of 557 genes, compared with only 30 for the same 

duration of transverse stretch, and only one of those was also an output of the network model. This 

may be a consequence of the elliptical design of our stretch apparatus that actually applies stretch 

in two directions at once, in a ~4:1 ratio. The numerical differences between gene expression 

profiles in response to transverse and longitudinal stretch suggest that longitudinal stretch-induced 

responses are nearly twice as large as those from transverse stretch. To help interpret these 

measured transcriptional responses to stretch, we extended our earlier logic-based computational 

model of the cardiac myocyte mechanosignaling network to incorporate transcriptional control of 

772 genes shown to be regulated by 11 transcriptional factors in the signaling model [172]. This 

novel analysis predicted observed changes in expression of these 772 genes after 4 hr of 

longitudinal stretch with an accuracy of 69% and 72% for DE genes. By setting a lower weight for 

transverse stretch, we further found model consistency with numerical data from transverse stretch. 

More importantly, the comparison of model predictions between transverse and longitudinal 

stretch also showed a similar trend to what we observed in the experimental data. To help define 

the key nodes that determines this different sensitivity, we simulated inhibition of all the mechano-

sensitive receptors in the model and predicted that gene responses induced by either transverse or 

longitudinal stretch were inhibited most when the AT1 and ET1 receptors were blocked. These 

predictions were confirmed by experiments, which showed a 48% inhibition of the transverse-

stretch induced expression of Ctgf, Fosl2, Mafk and Nuak1 by combined inhibition of AT1 and 

ET1 receptors, compared with 18% by combination pharmacological blockade of the ion channel 

receptors including LTCC, NHE and TRP. Thus, we propose that a subnetwork of gene expression 

by stretch could be transduced by 16 signaling molecules, which includes AT1 and ET1 receptors 

and the MAPK signaling pathway. 
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To our knowledge, this is the first model analysis of its kind to predict genome-scale 

transcriptional responses to mechanical stimulation in any cell type. While the immediate early 

transcriptional response was slightly greater to longitudinal than transverse stretch, it was transient, 

and it was surprising that by four hours, an order of magnitude more genes were differentially 

expressed in the longitudinally stretched cultures. Several previous studies in cultured rat neonatal 

ventricular myocytes have reported a more robust response to transverse than longitudinal stretch, 

typically after 24 hr [262]. Gopalan et al.  observed that 24 hr of static longitudinal strain in rat 

neonatal ventricular myocytes did not significantly alter myofibril accumulation or protein 

expression of hypertrophic markers, but transverse principal strain significantly increased myocyte 

staining of actin filaments, atrial natriuretic peptide, connexin-43 and N-cadherin [262]. The 

duration of stretch is likely to be important in these experiments. We limited our stretch duration 

to 4 hr based on the observation that cultured micropatterned rodent neonatal ventricular myocytes 

hypertrophied longitudinally in response to 10% static longitudinal strain fast enough that 

unstretched sarcomere length was fully restored in 4 hr [264]. This suggests that after 4 hr, 

myocytes would no longer "feel" a static longitudinal stretch of 10%. This assembly of new 

sarcomeres in series was inhibited by blocking PKC and FAK signaling [264]. To account for this 

observation, our analysis used the "cell area" phenotype output of the model as a feedback variable 

that reduced the effective applied stretch proportionately over the 4-hour duration of mechanical 

stimulation. The robust 4 hr transcriptional response to longitudinal stretch that we observed may 

reflect the possibility that ventricular myocytes are primed to respond to increased load and grow 

longitudinally after birth. The principal mode of neonatal ventricular growth is an increase in 

chamber diameter due to faster postnatal myocyte lengthening than thickening [264]. 
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3.4.2. Biological Significance of the Transcriptional Responses to Anisotropic Stretch in 

Cardiomyocytes 

The alignment of cardiac myocytes and extracellular matrix in myocardium, and the highly 

organized cytoskeleton of cardiac myocytes, make their biophysics, mechanotransmission and 

mechanosensing dependent on the localization and axes of physical interactions. The z-disc and 

costamere, both are aligned transverse to the myofilament axis, and are both signaling centers for 

mechano-transduction [309], though it is by no means clear which specific physical stimuli these 

structures are more sensitive to. By far, most genes in this study were induced by 4 hr of 

longitudinal strain, though after 30 min, transverse and longitudinal stretch both induced a 

significant number of immediate early genes, such as Fos and Jun, as well as regulators of cell 

growth, cell cycle and cell death [31, 306-307, 310-311]. The few genes in our measurements that 

were activated by transverse stretch but not longitudinal stretch was too small to identify any 

significantly enriched pathways. In contrast, the great majority of stretch-induced genes were 

regulated by longitudinal but not transverse strain. Genes significantly upregulated by longitudinal 

stretch were strongly associated with sarcomeric, adherans junction and focal adhesion 

compartments, cytoskeletal protein binding and organization, and MAP kinase signaling. Notably, 

the 772 gene outputs of the model were also enriched for the same KEGG pathways as the 

transcripts found to be induced by RNA-seq, suggesting that the measurements were consistent 

with the published literature used to create the model. In contrast, many genes that were 

significantly induced by longitudinal stretch were not represented in the model and included 

significant clusters associated with sarcomeric ion channels and electrical activity. This suggests 

that more studies are needed to identify the regulators of this previously unreported cardiomyocyte 

stretch response. 



 
 

 

86 
 

Longitudinal stretch induced a much broader transcriptional program compared to 

transverse stretch after 4 hr. While the expression of very few genes was changed by transverse 

and not longitudinal stretch (including on one in our model), the majority of differentially regulated 

transcripts were induced by longitudinal but not transverse strain. Comparing model predictions 

with experimental results suggests that calcium influx and gene regulation by SRF may be 

specifically activated by longitudinal stretch. Longitudinal stretch has previously been shown to 

increase in intracellular calcium in cardiac myocytes, and inhibition of the transient receptor 

potential cation channel, subfamily V, member 4 (TRPV4) prevented this increase [91]. TRP 

channels are calcium-permeable cation non-selective channels that are physically linked to the 

costamere via Homer proteins [312] and mechanosensitive.  

To examine the key nodes regulating the major transcriptional responses that were 

activated by either transverse or longitudinal stretch in more detail, we inhibited each receptor in 

the model and compared the effects to the list of genes that were induced by both transverse and 

longitudinal stretch. This analysis predicted that blocking AT1 and ET1 receptors would have a 

significantly greater effect on transverse-stretch induced gene expression than combination 

blockade of the three ion channels and transporters in the model, and this prediction was confirmed 

experimentally. We further found that by AT1/ET1 receptors are the main regulators of most genes 

in the network by blocking a combination of multiple receptors (AT1/ET1 receptors vs. ion 

channel receptors).  

Several pathways that were not included in the model were specifically enriched for DE 

genes that were induced only by longitudinal stretch, including the KEGG annotations for Hippo 

and Rap1 signaling pathways. The Hippo signaling pathway co-regulates cardiac myocyte 

hypertrophy and proliferation with several micro-RNAs by regulating downstream gene 
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expression [313-314]. The activation of Rap1 can also regulate cell-cell interactions, adhesion and 

migration by stimulating ERK1/2 and Rho-ROCK pathways which are both in our model 

[315]. Several genes encoding for potassium channels were significantly downregulated with 

longitudinal stretch but not included in the model. Down-regulation of repolarizing potassium 

currents is a characteristic of the pro-arrhythmic "electrical remodeling" associated with structural 

heart diseases in which myocardial mechanical loading is increased such as ventricular 

hypertrophy and heart failure [316]. While studies have investigated mechanoregulation of the 

expression of junctional proteins involved in electrical conduction such as connexin-43 [317], 

mechanoregulated pathways controlling potassium channel remodeling have not been elucidated. 

3.4.3. Systems Modeling Approaches 

Two main classes of mathematical model have been used to model gene expression at the 

system scale as we discussed in section 1.2 and 1.3: Boolean, and ODE models. These modeling 

approaches have been used to help interpret experimental data, to infer new relations from 

experimental data, and to define new testable hypotheses. Our new network model was based on 

a logic-based ODE system that combined Hill-type modeling with mass action kinetics. By using 

mass action to model mRNA synthesis and degradation, we were able to make use of mRNA half-

life measurements to initialize the transcriptional activity to the measured control state by 

assuming steady state at baseline. This overcame the disadvantage of the normalized logic-based 

approach that by default, the initial steady-state of each gene in the model would be zero (or 

occasionally maximal), making quantitative comparison with experimentally measured mRNA 

fold changes impractical. In the cases when the model output gene encoded a node in the model, 

we used a simple translation reaction to update the normalized activity of the node. We assumed a 

linear relationship between gene activation rates and normalized transcription factor activity. while 
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this approach allowed us to account for baseline gene expression in the control state, it also 

required us to specify an initial residual level of network activation that was arbitrary. More 

biochemically realistic models of transcriptional regulation have been developed that could 

overcome some of the limitations of our current implementation [166]. 

3.4.4. Limitations and Future Studies 

Our experimental apparatus applies static non-equibiaxial stretch [291]. While many 

investigators have used pulsatile stretch to better approximate dynamic myocyte loading in vivo, 

for oscillatory stretch to replicate physiological mechanical conditions, myocytes would need to 

be synchronously paced in phase with the stretch, and this becomes a difficult setup. We consider 

the static stretch stimulus to be more representative of a sustained alteration in hemodynamic load 

and a proven stimulus to myocyte hypertrophy. While the non-equibiaxial cell stretcher we used 

does apply physiologically representative anisotropic strains, because it was not purely uniaxial, 

some stretch was simultaneously applied in both directions. The 3.5% longitudinal strain when the 

major stretch axis was transverse, may have been sufficient to elicit a response and explain why 

we could not identify a significant number of genes that were exclusively activated by transverse 

stretch alone. Another potential limitation is the likely inclusion of non-myocytes in the cultures 

(fibroblasts, endothelial cells, etc.). Myocytes were purified prior to culture via pre-plating as 

described previously [291]. However, the procedure does not completely remove all non-

myocytes, and therefore, some of the measured gene expression could be from non-myocytes or a 

result of paracrine signaling. Experimental limitations of RNA-seq may also contribute to 

differences between model and experiment. The analysis of the current study shows that RNA-seq 

data analysis has a power of 0.8. As with many RNA-seq study designs, the current study has a 

small number (4~5) of biological replicates. Therefore, while the false discovery rate criterion for 
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significantly changed gene expression was stringent, the probability of a type II error was 

consequently higher. Genes predicted by the model to be stretch-regulated whose observed 

changes did not reach statistical significance, would be good candidates for more detailed 

experimental investigation with more replicates. 

A limitation of our network modeling approach is that many differentially expressed genes 

were not included the model and a significant number of target genes in the model were not found 

to change experimentally. Some of the literature sources used to construct the transcriptional 

regulatory network were based on experiments that were not specific to cardiac myocytes, and 

none of these interactions were specific to stretch. Signaling parameters of the model were mainly 

derived from our previously published and validated network model without any parameter 

optimization [172]. In a recent uncertainty quantification study of that network model [318], we 

found that the model accuracy was robust to parameter changes over a wide range. In the present 

extension to the model, we were able to predict mRNA fold changes over time, enabling more 

quantitative comparison with experiments. This, coupled with the larger number of model outputs, 

should make the new model more amendable to numerical parameter optimization. The model also 

only uses canonical mechanisms of transcriptional regulation. Published studies indicate that other 

regulatory mechanisms such as microRNAs are also important in myocyte hypertrophy responses 

to mechanical loading [319-320]. 

3.5. Conclusions 

In this study, we developed a novel extension of our previous myocyte mechanosignaling 

model that added the transcriptional regulation of 772 target genes and validated the model with 

RNA-seq measurements of transcriptomic-wide gene expression levels using primary neonatal 

micropatterned mouse ventricular myocytes cultures exposed to up to four hours of anisotropic 
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stretch. This new approach, with introducing the mass-action method, displayed high performance 

that 69% of the model predictions and 72% of predicted DEG were confirmed by the experimental 

measurements. Our analysis suggests that the difference between transverse and longitudinal 

stretch responses in cardiomyocytes may be related to the sensitivity of directional 

mechanotransduction, with the sensitivity to longitudinal stretch being greater than transverse. In 

addition, we found that gene expression did not monotonically change with the number of TFs but 

showed a saturated expression dynamic. This finding along with model simulations indicate that 

TFs may alter dynamics by reaching maximal activity earlier when multiple TFs co-regulate the 

gene. Moreover, through the inhibition simulation and the subsequent experiments, we identified 

that the stretch induced gene responses were mainly regulated by the specifical interaction with 

AT1 and ET1 receptor pathways rather than other receptors such as LTCC, TRP and NHE, which 

may be redundant in stretch sensing. Finally, our study showed the importance of a hypertrophy 

pathway that regulates target genes via the activation of AT1/ET1 receptors through the MAPK 

signaling pathway. 
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 Uncertainty Quantification and Regulation Analysis of 

Profibrotic Mechanosignaling in Pulmonary Arterial 

Adventitial Fibroblasts 

4.1. Introduction 

Cell signaling networks are cascades of biochemical reactions that regulate cellular 

responses to external cues, and their dysregulation is important in the progression of disease. 

Pulmonary arterial hypertension (PAH) is a vasculopathy manifested by sustained elevation of 

pulmonary arterial pressures, vascular constriction, and irreversible vascular remodeling [106], 

which is mediated in part by pulmonary arterial adventitial fibroblasts (PAAFs) in response to 

pathological strain and stresses such as mechanical overload and hypoxia. Studying the interplay 

between the effects of signaling cytokines, hypoxia, and the mechanical stimuli that are activated 

in PAH will help to elucidate signaling pathway interactions and may aid in developing novel 

therapies to reverse vascular fibrosis and disease progression.  

PAAFs residing in the adventitial layer of the arterial wall are responsive to altered 

mechanical conditions and function to remodel the extracellular matrix (ECM) thereby modulating 

its mechanical properties [106], and there is evidence that PAAFs are regulated by matrix stiffness 

[374-376], stretch [121, 377], or overstretch injury [361, 378] and hypoxia [106]. During injury, 

PAAFs are activated and differentiate into myofibroblast subtypes that remodel vascular wall 

properties by directly altering the expression, degradation or cross-linking of ECM proteins 

including collagen, fibronectin, and elastin. Given that the ECM also serves as a substrate for cell 

adhesion and sends physical and chemical cues that determine cell phenotype [321], it has been 
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suggested that matrix stiffening may signal tissue remodeling and be causative drivers of 

pulmonary hypertension [351]. While fibroblast activation induces changes in the composition and 

structure of the vascular collagen matrix, it is unclear how PAAFs are regulated by matrix 

composition and stiffness, how PAAFs are affected by altered vessel stretch due to increased 

loading during PAH, what signaling pathways regulate these phenotypic responses to physical 

stimuli, and the extent to which these mechanically stimulated pathways overlap and interact.  

Mathematical modeling of cell signaling networks is a useful tool for synthesizing 

available experimental data and investigating interactions between pathways that are difficult to 

study experimentally. To better identify the receptors and pathways involved in regulating PAAF 

responses during PAH, we introduced a new logic-based ordinary differential equation model 

[173] of the major biochemical networks known to regulate pro-fibrotic cell responses such as 

ECM expression, proliferation, and myofibroblast transformation in PAAFs [321]. The network 

model was derived from published cell biological experiments and transcriptional measurements 

in primary PAAFs supplemented, where necessary, with information on canonical pathway 

structure from better studied fibroblast types, mainly cardiac fibroblasts. Inputs to the PAAF 

signaling network model were based on reported stimuli upregulated in PAH [106]. While the 

signaling pathways included in this model have been identified in PAAFs, their interplay is not 

well understood, and there is a paucity of experimental data in the literature specific to these 

fibroblast cells. Therefore, after constructing a PAAF signaling network model, we carried out a 

sensitivity analysis to identify the important nodes in the network.  

Creating a cell signaling model inherently introduces parameter uncertainty, since 

experimental studies rarely report quantitative biochemical reaction properties. There are also 

epistemic uncertainties in the structure and logic of the network, which depend on published 
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experiments from a variety of cell types and conditions that are occasionally inconsistent or 

ambiguous [322]. Therefore, to analyze the robustness of the developed model and identify how 

small perturbations in the parameters leads to changes in model predictions, we have carried out 

uncertainty quantification (UQ) analysis of the model parameters. Using a separate set of data not 

used in the model formulation, we determined the prediction capabilities of the model and its 

qualitative accuracy. We also used this method to determine if adding pathways from other 

fibroblast cell types impacts model accuracy. 

Here, we have not attempted to optimize model parameters, so we cannot expect close 

quantitative agreement between model predictions and experimental data. Rather, objective 

qualitative comparison criteria were used, and we used UQ to assess the robustness of model 

prediction accuracy and to identify the modules and parameters that are most affected by 

incomplete or noisy data [268]. Analysis of parameter and structural uncertainty showed that the 

PAAF model is robust to most parameter uncertainty and identified the new experiments that are 

needed the most to improve model confidence and accuracy. Also, we used an elaboration of this 

model together with in-vitro experiments on PAAFs cultured in different stiffness gels and under 

different stretch conditions to determine how six profibrotic genes may respond to stretch and 

stiffness changes mimicking mild and severe stages of PAH. The analysis suggests pathways that 

are differentially activated by changes in cell stretch and ECM stiffness that may help elucidate 

the sequence of tissue remodeling in PAAFs. 
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4.2. Materials and Methods 

4.2.1. Computational Model of Pro-Fibrotic PAAF Cell Signaling 

The PAAF signaling model was manually constructed with the same default parameters 

and model file structures as the one developed by Zeigler et al. for cardiac fibroblasts [131]. Out 

of the 92 reactions in our model, 52 reactions are unique to PAAFs. The model construction was 

based on results reported in 52 published papers describing experimental studies in PAAFs or other 

fibroblast types [25, 108, 111, 113, 115-120, 122, 124, 130, 135-138, 143-144, 147, 149, 152-154, 

158, 323-349] when necessary to complete 18 intermediate reactions not described in the 

comparatively sparse literature on PAAF signaling. In addition, 20 independent papers 

documenting in-vitro or in-vivo experiments in rat or human PAAFs and not used in the original 

model formulation were set aside to measure the predictive capability of the model.  

The resulting PAAF signaling network (Fig. 4.1) integrates seven input stimuli that are 

implicated in PAH pathogenesis: mechanical loading, transforming growth factor-𝛽  (TGF	𝛽), 

tumor necrosis factor-	𝛼  (TNF	𝛼 ), platelet-derived growth factor (PDGF), angiotensin II (f), 

fibroblast growth factor (FGF), and hypoxia. These activate seven receptors and signaling 

modules, namely the phosphoinositide 3-kinase (PI3K), TGF	𝛽, Notch, reactive oxygen species 

(ROS), mitogen-activated protein kinase (MAPK), calcineurin and Hippo pathways. Downstream 
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transcription factors regulate the expression of eight outputs important in the pro-fibrotic cell 

 

Figure 4.1| A schematic of pro-fibrotic PAAF cell signaling network comprised of 64 
nodes.  This network is comprised of 64 nodes with input stimuli (blue ovals), receptors 
(triangles), signaling molecules (hexagons), transcription factors (colored rectangles), messenger 
RNA (rectangles) and phenotypic outputs (grey diamonds). The colors represent the recognized 
signaling modules including phosphoinositide 3-kinase (PI3K) (red), TGFβ (orange), Notch, 
reactive oxygen species (ROS, yellow), mitogen-activated protein kinase (MAPK, green), 
calcineurin (blue) and Hippo (purple). The arrows indicate the 92 activation or inhibition 
reactions, with the grey arrows denoting reactions based only on experiments in non-PA 
fibroblasts. Converging reactions denoted by & indicate ‘AND’ gate logic, while other 
combinations imply ‘OR’ gate logic. (Online version in color.) 
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phenotype and ECM remodeling [149]. Overall, there are 64 nodes that represent physical stimuli, 

ligands, receptors, signaling molecules, transcription factors, messenger RNA (mRNA), proteins, 

and cell phenotypes interconnected via 92 reactions. The publications used to justify each 

individual reaction and interaction are cited in electronic supplementary material, S4.1. 

Using previously described methods in Section 1.2, the PAAF signaling network model 

was implemented as a system of logic-based ordinary differential equations that were integrated 

numerically using the explicit second and third order Runge-Kutta method as described previously 

in Chapter 1 [131, 172]. The baseline model solution was obtained using a default Hill coefficient 

of n=1.4 and EC50 of 0.6 for every node. The time constants 𝜏 for each different reaction type in 

the network followed those used previously [131]: 0.1 hour for signaling reactions; 1 hour for 

transcription; and 10 hr for translation. Timepoints chosen were run at steady state. Input weights 

(𝜔) were initialized to 0.25 to represent baseline activity. Reaction weights for the rest of the 

system (𝜔) were set to a default value of 1.  

In the revised network analysis where we wish to distinguish the effect of substrate stiffness 

and stretch, the input weights of stretch and stiffness were both set to 0.25 to represent the softest 

matrix, 0.5-kPa, and no applied stretch. We increased the stiffness input weight to 0.7 and 0.9 to 

represent the effects of 3-kPa and 10-kPa substrates, respectively, and evaluated the model at t=72 

hr to mimic the in-vitro experimental time course. 

To numerically simulate the effects of stretch on PAAFs after 24 hr and the changes in 

substrate stiffness for 72 hr when inhibiting nodes, the model was evaluated at those time points 

(i.e., yi(t=24) and yi(t=72)) after the corresponding input weights of stiffness and stretch were 

increased from 0.25 to 0.7. To simulate the effects of inhibition, yi,max corresponding to blocked 
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nodes were set to 0, while the other parameters remained the same. The change for each gene was 

calculated with respect to each condition's control group.  

To simulate the different conditions under which losartan inhibited AT1R, we conducted 

eight sets of simulations. Four sets of these simulations were evaluated on 0.5-kPa substrate 

stiffness for 72 hr with parameters at baseline, and input weights stiffness and stretch set to 0.25. 

For simulations involving stretch but no inhibition, the input weight of stretch was increased from 

0.25 to 0.7 and the model was evaluated at t=24 hr. For the unstretched and stretched inhibited 

conditions, yi,max corresponding to the AT1R node was set to 0 before applying changes to the 

stretch input weight and evaluated at t =24 hr. The same combinations were used for the other four 

set of simulations on 3-kPa substrate conditions, but with a stiffness input weight of 0.9. 

4.2.2. Model Validation 

To validate the model, 39 input-output experiments in rat or human PAAF cells (reported 

in 20 papers [351-370]) were classified as observing a significant increase or decrease, or no 

significant change in activity of an output quantity that is a node in the model in response to a 

stimulus, that was also an input to the model. The threshold for considering a response in the model 

to represent a significant change in output activity was chosen to be 0.05. In-vivo data were used 

when there were no in-vitro data reported in the literature on PAAFs. The time-course of the model 

for each comparison was matched to that of the corresponding experimental measurement. 

Citations to the publications used for each model comparison experiment are given in electronic 

supplementary material, S4.2. 
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4.2.3. Sensitivity Analysis 

A model baseline was calculated by setting all input weights to 0.25 and the initial values 

of all state variables to 0. They were then integrated until a steady state was achieved for all nodes 

at 200 minutes. 100% knockdown of each node was simulated by reducing ymax from 1 to 0, and 

the subsequent effect at every node was calculated as knockdown activity minus baseline activity. 

Sensitivity analysis was performed under baseline conditions and under conditions of high 

mechanical stretch (mechanical input weight set to 0.9) to represent the effects of mechanical 

overload and matrix stiffening associated with PAH. 

4.2.4. Uncertainty Quantification 

To propagate parameter uncertainties in the network, we followed the approach described 

by Marino et al. [370], in which each parameter in 𝜃 is assumed to be a uniform random variable 

from the uniform distribution ~ U(min, max). Herein, we propagate three uncertain independent 

parameters. These parameters were sampled randomly from uniform distributions. The ranges 

chosen for the model parameters vary roughly 30% around their mean when carrying out UQ 

analysis. For example, n was chosen to be a uniform random variable such that n ~ U(1.36, 2.36). 

It should be noted that the range of n was set from 1.36 to 2.36 as guided by the equation in section 

2.2.3.1 [173], since a default value of EC50 = 0.6 gives a minimum of n to be 1.36 or else B would 

be negative and thus K would not produce a viable value. When n is set to 1.4, the EC50 can only 

vary slightly around the default value of 0.6, so the UQ analysis was run with n set to 2, in order 

to perturb a wider range of EC50 from 0.4 to 0.7, EC50 ~ U(0.4,0.7). Similarly, the input weight 𝜔 

was also run with n set to 2 to keep the results consistent, and was set to vary from 0.1 to 0.4, 

around the default value (0.25), 𝜔 ~ U(0.1,0.4).  
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The uncertainty quantification simulations were performed using the package Uncertainpy 

1.2.1 in Python [275]. The package was run in order to quantify the change in model accuracy 

when varying the aforementioned three parameters: n, EC50, and 𝜔. Since there are only 7 locations 

in the network that depend on the input weight 𝜔 , we used the polynomial chaos expansion 

approach with order-4 approximation to non-intrusively propagate uncertainty. This is generally 

less computationally expensive than Monte Carlo simulations, however for systems with over 20 

uncertain parameters, the required number of model evaluations scales worse than the Monte Carlo 

method [275]. Because of this, the (quasi-) MC method was used with 5,000 model evaluations 

for UQ analysis of n and EC50 due to there being 99 reactions each with individual n and EC50 

values being perturbed in the network. The ranges of parameter values that are noted in the UQ 

results are identified by examining the output file and sorting by accuracy, then analyzing the 

combinations of parameters that led to notable changes in accuracy. The code used for uncertainty 

analysis is available on Github. 

Moreover, to compare the baseline model results with a model derived only from 

experiments in PAAFs or cardiac fibroblasts, we ran UQ analysis using the (quasi-)Monte Carlo 

approach varying all 3 parameters where n ~ U(2, 2.4), EC50 ~ U(0.4, 0.6), and 𝜔 ~ U(0.1, 0.4), 

and with 10,000 model evaluations. The effects on model accuracy of changing parameters and 

the network structure were evaluated by classifying input-output model results as increased, 

decreased, or unchanged using a threshold change of 0.05 and determining the percentage of model 

results in agreement with the published experimental findings. 
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4.2.5. Cell Isolation 

Pulmonary arteries (PAs) were harvested and isolated from six to eight weeks old 

normotensive male Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA, USA) 

under advisement of the Animal Care and Use Committee at the University of California San 

Diego (Protocol #S17237). The adventitial layer was stripped off and segments were cut into 

pieces, enzymatically digested with 1 mg/mL Type 2 collagenase (#LS004176, Worthington, 

Lakewood, NJ, USA) in Dulbecco’s Modified Eagle Media (DMEM, D5030, Gibco Thermo 

Fisher Scientific, Waltham, MA, USA) and agitated for 1.5 hr at 37 ℃, following the protocol by 

Liu et al. [118]. Fibroblast media was prepared by combining DMEM and 10% by volume fetal 

bovine serum (FBS) (#16140, Sigma Aldrich, St. Louis, Missouri, USA) and 1% antibiotic-

antimycotic solution (#15240062, Gibco Thermo Fisher Scientific, Waltham, MA, USA). Isolated 

PAAFs were expanded on T75 tissue culture plastic (#25-209, Genesee Scientific, El Cajon, CA, 

USA) in the incubator at 5% CO2 and 37 ℃, 100 % humidity. To characterize PAAF cultures and 

compare their phenotypes to PAAFs in-vivo, 10-mm segments  of fixed, intact normotensive 

pulmonary artery were cryosections and immunolabeled with antibodies against von Willebrand 

Factor (vWF) (#SC-365712, 1:50, Santa Cruz Biotechnology, Santa Cruz, CA, USA) as a marker 

for pulmonary arterial endothelial cells, myosin-11 (MYH11) (#SC-6956, 1:50, Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) as a marker of pulmonary arterial smooth muscle cells and 

vimentin (#AB-92547, 1:250, AbCam, Cambridge, UK) as a marker in all pulmonary artery cells 

that is also highly expressed in pulmonary arterial myofibroblasts, with appropriately matched 

secondary antibodies (Life Technologies, Carlsbad, CA, USA) (1:500) (Goat anti-Mouse Texas 

Red (#T862), Goat anti-Rabbit AlexaFluor700 (#A21038) and Wheat Germ Agglutinin-488 for 
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membrane (#W6748, 10 μg/mL) and DAPI (#P36941) using standard immunofluorescence 

protocols with images taken at 40x magnification. The same staining protocol and imaging settings 

were also used to image isolated PAAFs that were expanded on plastic to characterize the culture. 

Cells were freshly isolated or used at a maximum passage number of 3 for these experiments. Data 

on Cytosoft® 6-well plates (#5140 and #5142, Sigma Aldrich, St. Louis, Missouri, USA) were 

from seeding 100,000 frozen PAAFs per well, where 2 wells were pooled for RNA isolation after 

3 days. 

4.2.6. Stretcher Preparation 

Polyacrylamide gels were prepared using stiffnesses corresponding to a normotensive 

pulmonary artery (0.5-kPa), mild PAH (3-kPa), and severe PAH (10-kPa), based on work by Liu 

et al. [380]. Gel stiffness was modulated by the percentage of acrylamide and bis-acrylamide 

(#A9099 and #146072, Sigma Aldrich, St. Louis, Missouri, USA): 3% acrylamide and 0.06% bis-

acrylamide were used for the construction of 0.5-kPa gels; 4% acrylamide and 0.3% bis-

acrylamide were used for the constructions of 3-kPa gels; and 10% acrylamide and 0.1% bis-

acrylamide were used for the construction of 10-kPa gels [381]. 

Custom-made circular biaxial stretchers were designed using computer-aided design and 

constructed with polycarbonate. Polydimethylsiloxane (PDMS) membranes were built by mixing 

the Sylgard™ 186 elastomer kit (#4026144, Dow, Midland, MI, USA), extruding onto a wafer, 

degassing in a vacuum chamber then curing in the oven. The PDMS membranes were treated with 

10% benzophenone (#A10739, Alfa Aesar Thermo Scientific, Haverhill, MA, USA) for 

polyacrylamide gel adherence, as previously described by Herum et. al [321]. The polyacrylamide 

gels were constructed to be 25 mm in diameter, cross-linked through exposure to ultraviolet light 

for 25 minutes, attached to PDMS membranes and surrounded by silicone grease to prevent cell 
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migration and media leakage. The gels were equilibrated in 1X Phosphate Buffered Saline (PBS, 

# 10010023, Gibco Thermo Fisher Scientific, Waltham, MA, USA) overnight, then collagen I (100 

𝜇g/mL, #354236, Corning, NY, USA) was attached with 1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (#00050, Chemplex, Mahwah, MJ, USA) and N-hydroxysuccinimide (#A10312, 

Alfa Aesar Thermo Scientific, Haverhill, MA, USA) to facilitate cell adherence. The stretcher was 

assembled so that two full turns were equivalent to 10% static stretch, as previously done [291, 

382]. PAAFs were trypsinized from the tissue culture plates using 0.2% Trypsin-EDTA 

(#25200056, Gibco Thermo Fisher Scientific, Waltham, MA, USA) and seeded onto the gels at a 

density of 140,000 cells per gel. Cells were cultured at 37℃, 5% CO2, 100% humidity for three 

days. Cells were changed to serum-free media before being stretched for 24 hr. The stretch 

condition was applied for 24 hr based on the increase in gene expression shown by Herum et al. 

in left ventricular cardiac fibroblasts [321]. 

4.2.7. Inhibition Studies 

For the inhibition experiments, PAAFs were seeded onto 0.5-kPa and 3-kPa gels at a 

density of 40,000 cells per gel and cultured for three days as described above. The media was 

changed to serum-free, and each gel slated for inhibition was pre-incubated for 4 hr with 1 𝜇𝑀 of 

losartan (#3798, Tocris Bioscience, Minneapolis, MN, USA). The dose of losartan was delivered 

according to work by Kim et al. in adventitial fibroblasts from 6-week old Sprague-Dawley rats 

[383]. The cells were then stretched for 24 hr as previously described in the 4.2.6 subsection. RNA 

Isolation of these cells was conducted as described below. 
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4.2.8. RNA Isolation 

For RNA extraction of the normotensive pulmonary artery, the adventitial layer was 

sectioned into 6 pieces and submerged in TRIzol by Invitrogen (#15596026, Thermo Fisher 

Scientific, Waltham, MA, USA). Tissue was homogenized using a BeadBug homogenizer with 

zirconium beads. (Benchmark Scientific). For PAAF experiments, RNA isolation was carried out 

using TRIzol and 5PRIME phase lock tubes (#2302830, Quantabio, Beverly, MA, USA) and RNA 

was extracted using the RNeasy® Mini kit (#74104, Qiagen®, Hilden, Germany) which was then 

reverse transcribed into cDNA using the NEB cDNA ProtoScript First Strand Kit (#E6300L, New 

England Biolabs, Ipswich, MA, USA). Quantitative real-time PCR was performed using the 

StepOnePlus™ Real-time PCR machine (Thermo Fisher Scientific, Waltham, MA, USA) and 

KAPA SYBR Fast Universal qPCR kit (#KK4601, Roche, Basel, Switzerland) using primers 

targeting genes of interest listed in Supplement S4.3 (produced by Integrated DNA Technologies, 

San Diego, CA, USA). Relative gene expressions were compared against housekeeping gene 18S 

ribosomal RNA unless otherwise noted. 

4.2.9. Imaging 

30,000 PAAFs were plated onto 35 mm cell culture dishes with #0 coverglass bottom 

(#D35-20-0-N, CellVis, Sunnyvale, CA, USA) onto 0.5-kPa and 3-kPa polyacrylamide gels, and 

directly onto plastic for 3 days at 37°C and 5% CO2. Images were taken on an EVOS FL Auto 2 

microscope, running software version 2.0.1732.0 (Thermo Fisher Scientific, Waltham, MA, USA). 

Antibodies against 𝛼-Actin Smooth Muscle Mouse (#A5228 1:100, Sigma, St. Louis, Missouri, 

USA)  with secondary Goat anti-Mouse Texas Red (#T862, 1:250, Life Technologies, Carlsbad, 

CA, USA), Wheat Germ Agglutinin-488 for membrane (#W6748, 10 𝜇𝑔/mL, Life Technologies, 
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Carlsbad, CA, USA) and DAPI for nuclei in mounting media with Prolong Gold Antifade Reagent 

with DAPI (#P36941, Life Technologies, Carlsbad, CA, USA). Images were processed using 

DeconvolutionLab2 (EPFL, Lausanne, Switzerland) in ImageJ v1.53g4 developed by the National 

Institutes of Health (Bethesda, MD, USA). 

4.2.10. Protein Quantification 

10,000 PAAFs per gel were plated on 12 mm polyacrylamide gels at 0.5-kPa, 3-kPa, and 

10-kPa stiffnesses formulated as described above and cultured for 3 days and fixed. Antibodies 

against Collagen 3a1 Rabbit (#13548-1-AP, 1:50, Proteintech, Wuhan, China) with secondary 

Goat anti-Rabbit AF700 (#A21038, 1:250, Life Technologies, Carlsbad, CA, USA) and against 

Smooth Muscle Alpha Actin (SMA) Mouse (#A5228, 1:100, Sigma, St. Louis, MO, USA) with 

secondary Goat anti-Mouse Texas Red (#T862, 1:250, Life Technologies, Carlsbad, CA, USA) 

were used to stain the PAAFs. The same imaging settings were used across cells cultured on 

different stiffnesses and fluorescence intensity was quantified using ImageJ v1.53g4 developed by 

the National Institutes of Health (Bethesda, MD, USA) and displayed as corrected total cell 

fluorescence (CTCF). Imaging data is added as supplementary material S4.4. 

4.2.11. Statistics 

Descriptive statistics were performed using JMP Pro Statistical software (version 14, SAS 

Institute Inc., NC, USA) for group comparisons of relative gene expression. For normally 

distributed data, one-way ANOVA was used to test for differences in means of three different 

stiffnesses and gene expression of the normotensive pulmonary artery adventitial layer for all six 

genes followed by the Dunnett’s post-hoc test. Otherwise, the non-parametric Wilcoxon-Kruskal-

Wallis statistic was used followed by the Dunnett’s post-hoc test. Effects of stiffness and stretch 
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were tested using two-way ANOVA with stiffness and stretch as fixed factors. For normally 

distributed data, the Dunnett’s post-hoc test was used. Otherwise, the non-parametric Wilcoxon-

Kruskal Wallis statistic was used followed by Dunnett’s post-hoc test. For the inhibition studies, 

three-way ANOVA was used to compare the effects of stiffness, stretch, and inhibition, followed 

by a Sidak's post-hoc test. Data are expressed as means ± standard error of the mean, unless 

otherwise specified. Statistical significance was determined at a level of 𝛼< 0.05. Data were 

graphed in GraphPad Prism software (Version 8.4.3.686, San Diego, CA) and Illustrator (Adobe, 

Version 24.2.3). 

4.3. Results 

4.3.1. Model Validation 

The model accurately predicted 31 out of 39 (80%) of the qualitative experimental results, 

including 4 out of 5 of the in-vivo (bolded) and 27/34 of the in-vitro experimental findings (Fig. 

4.2A). Model accuracy went down to 35% when not using PAAF-specific pathways and using 

only reactions from the cardiac fibroblast model by Zeigler et al. (data not shown) [131]. 

The model was also able to predict results from in-vitro experiments in rat PAAFs in which 

TGF𝛽, TNF𝛼 or ROS were inhibited pharmacologically [366-367]. Each node in the model was 

first initialized with a default baseline value of 0.25, and the control activity of collagen I, 𝛼-SMA, 

fibronectin, and IL6 were computed. Next, stimulation with TGF𝛽 and TNF𝛼 was simulated by 

increasing the input weights corresponding to those nodes to 0.475 and 0.375, respectively. These 

two values were chosen to best match the increase in relative level of 𝛼-SMA as reported by Zhang 

et al. and IL6 as reported by He et al. [366-367] experiment. Experiments using 10 𝜇M of the ERK 

inhibitor U0126 (T+U) reduced its activity to 30% [372]. Similarly, 10 𝜇M of the p38 inhibitor 
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SB203580 (T+SB) reduced p38 activity to 5% [373], the ROS scavenger N-acetyl-L-cysteine 

(NAC) completely blocked ROS activity [367]. Hence, after stimulation of the baseline model 

with TGF𝛽, the effects inhibiting the ERK1/2 and p38 nodes were simulated in the model by 

reducing ymax from 1.0 to 0.3 and 0.05, respectively (Fig. 4.2B-D). Similarly, the effects of NAC 

on TNF	𝛼 were simulated by reducing the ROS node from 1.0 to 0.0 (Fig. 4.2E).  Simulations ran 

for 24 hr [366] and 8 hr [367] to match the time-course of the corresponding experimental 

measurements, as depicted in Fig. 4.2B-E.  
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Figure 4.2| Model prediction of qualitative input-output experiments and inhibition results 
signaling.  (A) Input–output validation: model predictions agreed with published experimental 
observations for 31 out of 39 (80%) of the input–output responses measured in rat or human 
PAAFs. Intermediate and phenotypic output results are organized by input stimulus, where the 
bolded node names indicate experimental results that were measured in vivo. (B–E) Inhibition 
validation: results of the PAAF model are compared with the results of inhibition experiments in 
cultured rat PAAFs reported by Zhang et al. (B–D) [76] and He et al. (E) [77]. Each model 
prediction was normalized to the baseline condition obtained when all inputs were 0.25. 
Stimulation with TGFβ and TNFα were simulated by increasing these inputs to 0.475 and 0.375, 
respectively, to be consistent with the experimental protocol. The effects of the ERK inhibitor 
(T+U), p38 inhibitor (T+SB) and ROS scavenger (NAC) were simulated by decreasing ymax for 
those nodes from 1.0 to 0.3, 0.05 and 0, respectively, consistent with the published reports [83,84]. 
(Online version in color.) 
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Percent errors between model-predicted and experimental results for collagen I expression 

stimulated by TGF𝛽 and with TGF𝛽 in the presence of the ERK1/2 and p38 inhibitors were 109%, 

218%, and 283%, respectively [366]. Although these errors were high, the model did qualitatively 

predict the observed increase in collagen I stimulated by TGF𝛽 but not the observed inhibitory 

effects of either inhibitor. This may be because of incomplete or inaccurate interaction logic in the 

module of the network regulating collagen I expression. On the other hand, the model did correctly 

predict observed trends for fibronectin with % errors of 66%, -95%, and -99%, though predicted 

inhibition was greater than observed, perhaps because only MAPK signaling regulates fibronectin 

in the model. Because the model simulation was matched to the 𝛼-SMA experimental results, the 

error for TGF𝛽 stimulation was only -0.4%, and there was a good match with the inhibition results 

with % errors of 16.7% for T+U (ERK1/2 ymax to 0.3) and 8.4% T+SB (p38 ymax to 0.05) [366]. 

This shows that the model was able to closely predict the trends in 𝛼-SMA and fibronectin activity. 

Changes in the model structure may be required before collagen I expression can be predicted. 

We compared the model to experiments in which TNF𝛼 was added to rat PAAFs [367] by 

increasing the TNF𝛼 node from 0.25 to 0.375. The error in the predicted increase in IL6 expression 

was only -1.1%, and the predicted effect of adding the ROS scavenger was qualitatively similar to 

observation, with an error of 128% (Fig 4.2E).  

All model results were significantly different (p < 0.05) than experimental means except 

those for 𝛼-SMA (Fig. 4.2D. A Student's heteroscedastic t-Test produced p-values of 0.06 for 𝛼-

SMA stimulation and ERK inhibitor (T+U) and 0.16 for 𝛼-SMA stimulation and p38 inhibitor 

(T+SB) given the sample size (n=3) and standard deviation reported in the original experimental 

paper [366]. 
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4.3.2. Sensitivity Analysis 

A sensitivity analysis was used to identify the nodes that are the most influential 

determinants of network state under baseline conditions and conditions of high-mechanical 

stimulation as occurs in PAH. The change in the steady-state (200 min) response of each node in 

the network (columns) to 100% knockout of each node individually (rows) is displayed as a heat 

map in Fig 4.3. The analysis shows that mechanical stimulation, hypoxia, AngII, and TGF𝛽 are 

the most important inputs. Important intermediate regulators include the mitogen-activated protein 

kinases (ERK1/2, JNK1/2 and p38), calcineurin, the Smads 2 and 3, cleaved osteopontin (clOPN), 

reactive oxygen species (ROS), notch intracellular domain (NICD), nitric oxide (NO), and 

NADPH oxidase 4 (Nox4). This sensitivity analysis has thus revealed the larger influence of 

hypoxia and FGF in the PAAF model than in the model of cardiac fibroblasts [131]. 
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Given the importance of mechanical loading and vessel stiffening in the pathogenesis of 

pulmonary arterial fibrosis, we repeated the sensitivity analysis in the context of high-mechanical 

load by increasing the input weight of the mechanical stimulation input node from the baseline 

value of 0.25 to 0.9 as shown in electronic supplementary material, S4.5. Under these conditions, 

 

Figure 4.3| Heatmap of the baseline sensitivity analysis.  Heatmap of the baseline sensitivity 
analysis showing changes in activity of all the nodes in the model (columns) in response to 
knocking out each node (rows), where red indicates an increase in activity over baseline and blue 
shades indicate a decrease in activity in response to the knockout. (Online version in color.)  
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the most influential unique nodes were found to be 𝛼-SMA, cGMP, ET1, proteins in the Hippo 

pathway, and syndecan4. These nodes are highly active in mechanotransduction, proliferation, 

vasoconstriction, and activation of fibroblasts into the myofibroblast phenotype [321]. Knocking 

out these nodes generally resulted in a decrease in matrix proteins including collagen III and 

fibronectin. This global sensitivity analysis is also a way to elucidate the likely determinants of 

greatest structural and parameter uncertainty in the model. In the following sections we 

investigated the effects of parameter and network uncertainty in the model. 

4.3.3. Quantification of Parameter Uncertainty 

In order to examine the effect of propagated uncertainty of model parameters on the 

accuracy of the model, a table of the 39 experimental results was coded to compare results against. 

The accuracy was compared with the baseline 80% accuracy achieved with default model 

parameters.  

Each parameter was varied independently using a uniform distribution n ~ (1.36-2.36), 

EC50 ~ (0.4-0.7), 𝜔 ~ (0.1-0.4). A (quasi-)Monte Carlo method with 5,000 model evaluations was 

used for UQ analysis of n and EC50 to cover the 99 uncertain reactions, and an order-4 polynomial 

chaos expansion was used for the weight 𝜔  of the 7 model inputs. As seen in Figure 4, the 

distribution of model accuracy for input weight has a mean of 70.4%, standard deviation of 5.3%, 

a minimum accuracy of 66.67%, and a maximum accuracy of 79.5%. For EC50, the mean of the 

distribution is 65.4% with a standard deviation of 19.2% and a minimum accuracy of 20.5% and 

maximum accuracy of 82%. For the Hill coefficient, the mean accuracy of the distribution was 

63.9% with a standard deviation of 13.3%, a minimum accuracy of 20.5%, and a maximum 



 
 

 

113 
 

accuracy of 79.5%. This indicates that network model accuracy was most vulnerable to uncertainty 

in n, somewhat vulnerable to uncertainty in EC50 and relatively robust to input weight uncertainty.  

A subset of specific combinations of input weights over the range of 0.1-0.4 did result in a 

decrease in accuracy including a combination of low mechanical and low hypoxia or a combination 

of low AngII, TGF𝛽 and FGF, but these did not decrease the model accuracy more than 13% (Fig 

4.4A).  

There was a wide range of changes in model accuracy as shown in Fig 4.4B, over the 

relatively large range of n of 1.36-2.36, showing increased uncertainty propagation. Lower model 

accuracy (<40%) was observed when more than 30% of the 99 reactions had Hill coefficients n 

exceeding 2.2. In order to allow EC50 to vary, n was set to 2 as stated in the Methods to avoid 

numerical errors [173].  
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Model accuracy was generally high and robust to varying EC50 from 0.4-0.7, but there was 

a secondary peak at 20% as seen in Fig 4.4C. The low peak occurred when the reactions of MST1/2 

activating LATS1/2 and miR130/301 inhibiting LRP8 both had EC50 values greater than 0.68. 

Both reactions are involved in the Hippo pathway, which is activated by mechanical stimulus. 

Finally, there was a set of EC50 values that led to an increased model accuracy of 82%. When 

compared with thousands of combinations that produced an 80% accuracy. This result is unique 

in that all of the inputs and hypoxia -> Nox4 were not extreme values (0.42 < EC50 < 0.68) 

 

Figure 4.4| Uncertainty quantification of parameters.  Quantification of the effects of model 
parameter uncertainty on the probability of qualitative model prediction accuracy assuming 
uniform random distributions of input weights w (a), Hill coefficients n (b), and half-maximal 
activations EC50 (c). Accuracy with using default parameters is annotated. Varying input weight 
w randomly between 0.1 and 0.4 for seven inputs using polynomial chaos expansion with a fourth 
order produced accuracies between 70% and 80%, whereas varying the Hill coefficient n from 
1.36 to 2.36 for all 99 reactions using the (quasi-)Monte Carlo method resulted in a much wider 
distribution of model accuracies ranging from 20% to 80%. Varying EC50 randomly between 0.4 
and 0.7 for all 99 reactions using the (quasi-)Monte Carlo method resulted in peaks in accuracy at 
around 20% and at 70–80%. 
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combined with a high EC50 (>0.68) for the reaction: MMP9 and latentTGF𝛽 activating TGF𝛽 and 

a low EC50 (<0.42) for the reaction: proMMP9 activating MMP9 and TIMP1 inhibiting MMP9. 

This finding demonstrates how further tuning can be done by optimizing model parameters.  

The 11 inhibition results seen in Fig 4.2B-E (activation by TGF𝛽 and TNF𝛼 then inhibition 

of p38, ERK1/2 or ROS) were coded with a threshold of 0.05, and UQ was repeated using 

polynomial chaos expansion with an order-4 varying the 7 input weights from 0.1-0.4. Supplement 

S4.6 shows that the predicted results of inhibition experiments were relatively robust to this 

change, accurately predicting 9/11 (82%) or 8/11 (73%) of the activation by TGF𝛽 and TNF𝛼 and 

inhibition of p38, ERK1/2, and ROS. However, the model was not able to capture the inhibition 

of collagen I by p38 or ERK1/2. 

4.3.4. Quantification of Epistemic Uncertainty 

To use UQ to evaluate the level of uncertainty associated with the cell type used in the 

model construction, a reduced version of the model was created with only experimental data 

reported for fibroblast cells from the cardiovascular system, specifically PAAFs and cardiac 

fibroblasts (CFBs). This new criterion led to a reduced model with 82 reactions and 62 nodes, due 

to the removal of ET1 and latentTGF𝛽, versus the 92 reactions and 64 nodes in the original model 

(electronic supplementary material, S4.1). The reduced model was qualitatively compared against 

the same independent set of data as the full model. Here the accuracy went down to 24/38 (63%) 

from the accuracy of 31/39 (80%) for the original model. The number of experiments compared 

against drops down from 39 to 38 as a result of ET1 being a node in the input-output comparison. 

We ran a (quasi-)Monte Carlo simulation with 10,000 model evaluations where n was 

given a uniform distribution from 2 to 2.4, EC50 was given a uniform distribution of 0.4 to 0.7 
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(default value of 0.6), and the input weight 𝜔 was given a uniform distribution of 0.1 to 0.4 (default 

value of 0.25) as depicted in Fig. 4.5A.  

We further compared the two models by varying all three parameters at once: n ~ U(2, 2.4), 

EC50 ~ U(0.4, 0.6), and 𝜔 ~ U(0.1, 0.4). The mean accuracy of the baseline model (Fig 4.5A) was 

35.7% with a standard deviation of 18% and reaches a maximum accuracy of 80%, while the mean 

accuracy of the reduced model (Fig 4.5B) was 38.4% with a standard deviation of 12% and a 

maximum accuracy of 63%. Overall, this result suggests that while using data from non-

cardiovascular cell types is a source of epistemic uncertainty, the additional model components 

and reactions deduced from these other cell types can improve prediction accuracy without 

significantly compromising robustness. These results may help to prioritize new in-vitro 
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experiments in PAAFs that are not available in the literature but are important to the accuracy of 

the model. 

This includes experiments on the feedback from and activation of latent TGF𝛽, activation 

of TIMP1 and ET1 by AP1, activation of elastin mRNA by PKC𝛼, activation of HIF1𝛼 by ROS, 

and activation of 𝛼-SMAmRNA by p38. 

To examine the effects of only including cardiovascular fibroblast data (PAAFs and CFBs) 

on the inhibition results, simulations were rerun with the same conditions as in Figure 4.5B-E. 

Briefly, input TGF𝛽 = 0.475, and TNF𝛼 = 0.375, ERK1/2 ymax = 0.3, p38 ymax = 0.05, ROS ymax 

 

Figure 4.5| Quantification of epistemic uncertainty of network structure signaling.  Results 
of a 10000 model evaluation runs using the (quasi-)Monte Carlo simulation where the Hill 
coefficient n was a uniform random variate between 2 and 2.4, EC50 was given a uniform 
distribution of 0.4 to 0.6, and w was varied according to a uniform random distribution of 0.1 to 
0.4. The two models being compared are the UQ results for the full model (a) versus the reduced 
model (b) based only on literature data from cardiovascular cells (PAAFs and CFBs) with 
accuracy using default parameters annotated. Inhibition results for α-SMA using the reduced 
model were run under the same conditions used to produce figure 2d (c). Results remained 
unchanged for the other outputs (collagen I, fibronectin, IL6) as seen in electronic supplementary 
material, S4.6. 
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= 0, and at 24 hr and 8 hr, respectively. While other trends remained the same as shown in 

electronic supplementary material, S4.1, the reduced model resulted in a qualitative reversal of the 

accuracy for 𝛼-SMA predicted by the full PAAF model. As shown in Fig 4.5C, there was no longer 

a decrease in activity in 𝛼-SMA due to ERK and p38 inhibitors as originally observed. The reduced 

form of the model only agrees with the increase in 𝛼-SMA due to TGF𝛽 stimulation. The results 

also no longer match the experiment, producing p values that were less than 0.05 with a 

heteroscedastic Student's t-Test, rejecting the null hypothesis that the model results lie in the same 

distribution as the experimental ones [366]. Thus, the full model, despite including some 

information from non-cardiovascular fibroblasts, better captures the complex regulation of 𝛼-

SMA expression. 

4.3.5. Revised Computational PAAF Network Model 

We used the model described in section 4.2.1 to investigate how substrate stiffness and 

stretch regulate profibrotic gene expression in PAAFs [379]. The mechanical stimulus input was 

divided into substrate stiffness and stretch inputs, where stretch activated integrin 𝛽$ , AngII, 

MST1/2, and TRP; and stiffness activated integrin 𝛽$, Ang II, MST1/2, TGF-𝛽, and Syndecan-4 

[111, 113, 158, 327, 329, 346, 384]. We also added details to the activation of mitogen activated 

protein kinases (MAPKs) to allow independent regulation of JNK1/2, p38, and ERK1/2 [125-133]. 

In this refined model, ASK1 regulates JNK1/2 as well as ERK1/2 [125-126]. Ras was added 

downstream of AT1R to mediate regulation of ERK1/2 and JNK1/2 [127-128]. Based on studies 

by Xie et al. [129] in adult rat cardiac fibroblasts, activation of JNK1/2 by cleaved osteopontin 

(clOPN) was included. The TGF-	𝛽 receptor now also activates p38 via the TGF-	𝛽 –activated 

kinase (TAK1) [130] and TGF-	𝛽 receptor also activates Eln through smad2/3 based on work in 
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PAAFs by Rabinovitch et al. [145]. Based on a model of cardiac fibroblasts by Zeigler et al. [131] 

and papers on MAPK signaling [132-133], we included ROS activation of p38. Finally, we 

incorporated the activation of TRP channels TRPC6 and TRPC1/C5 by stretch, which allows 

calcium to activate Protein Kinase C alpha (PKC𝛼) [163-164, 318]. Given the scarcity of PAAF 

studies, the network includes reactions from fibroblasts not derived from pulmonary arteries, such 

as cardiac and lung fibroblasts. The updated network is displayed in Fig. 4.6. 

The input weights of stretch and stiffness were both set to 0.25 to represent the softest 

matrix, 0.5-kPa, and no applied stretch. We increased the stiffness input weight to 0.7 and 0.9 to 

represent the effects of 3-kPa and 10-kPa substrates, respectively, and evaluated the model at t=72 

hr to mimic the in-vitro experimental time course. Similar to the network model analysis by Tan 

et al., we chose a change in normalized model output values of 0.1 as the threshold for considering 

the output to have changed significantly by mechanical stimulation or for a significant response to 

have been significantly inhibited [172]. While Tan et al. used a threshold of 0.05, we chose a more 

stringent threshold of 0.1, but our conclusions were not affected by this difference. Parameters in 

the model have not been optimized or fitted. Rather we chose equal parameters for all reactions 

using values from Zeigler et al. [131]. While the parameters EC50, weight, and Hill coefficient 

were set to be the same value across all reactions, the time constant 𝜏 was chosen according to the 
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type of reaction. Furthermore, parameter values were tested for consistency with the mathematical 

constraints described in Cao et al. for this class of model [318]. In a previous comprehensive 

analysis of parameter uncertainty, we verified that model accuracy was robust to the choices of 

these parameter values [379]. 

 

Figure 4.6| The revised PAAF signaling network model.  PAAF mechanosignaling network 
with 8 input stimuli (orange ovals), 6 receptors (triangles), 34 nodes (ovals), 7 transcription factors 
(rectangles), 6 messenger RNAs (hexagons), and 8 phenotypic outputs (green diamonds), 
modified from our previous work [378]. Activation is shown with arrows and inhibition is shown 
with blunt head arrows. Blue arrows indicate non-PAAF-based experiments. Magenta nodes 
indicate the Phosphoinositide 3-kinase (PI3K) pathway, orange nodes indicate the Reactive 
Oxygen Species (ROS) pathway, purple nodes indicate the mitogen-activated protein kinase 
(MAPK) pathway, blue nodes indicate the calcineurin pathway, and red nodes indicate the Hippo 
signaling pathway. 
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To numerically simulate the effects of stretch on PAAFs after 24 hr and the changes in 

substrate stiffness for 72 hr when inhibiting nodes, the model was evaluated at those time points 

(i.e., yi(t=24) and yi(t=72)) after the corresponding input weights of stiffness and stretch were 

increased from 0.25 to 0.7. To simulate the effects of inhibition, yi,max corresponding to blocked 

nodes were set to 0, while the other parameters remained the same. The change for each gene was 

calculated with respect to each condition's control group.  

To simulate the different conditions under which losartan inhibited AT1R, we conducted 

eight sets of simulations. Four sets of these simulations were evaluated on 0.5-kPa substrate 

stiffness for 72 hr with parameters at baseline, and input weights stiffness and stretch set to 0.25. 

For simulations involving stretch but no inhibition, the input weight of stretch was increased from 

0.25 to 0.7 and the model was evaluated at t=24 hr. For the unstretched and stretched inhibited 

conditions, yi,max corresponding to the AT1R node was set to 0 before applying changes to the 

stretch input weight and evaluated at t=24 hr. The same combinations were used for the other four 

set of simulations on 3-kPa substrate conditions, but with a stiffness input weight of 0.9. 

4.3.6. PAAFs Upregulate Profibrotic Genes in Response to Increased Substrate Stiffness 

and Stretch 

When we immunostained cultures for markers of endothelial cells (vWF), smooth muscle 

cells (MYH11), and myofibroblasts (vimentin) (Fig. 4.7A-H), only 3% were positive for vWF and 

0.2% were positive for MYH11 suggesting high enrichment of PAAFs in our cell cultures. Intact 

PA tissue sections were stained and imaged with the same antibodies and imaging settings as 

positive controls for these markers (Fig. 4.7I-R). 
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Figure 4.7| The enrichment study of PAAFs in cell cultures.  The cell culture showed positive 
labeling for (A,E) DAPI, (B,F) vimentin, (C) vWF, and (G) MYH11 with (D,H) overlays. Out of 
425 isolated cells, 3% expressed vWF, and out of 888 cells 0.2% expressed MYH11 and 100% 
expressed vimentin with representative images shown in (A–H). Immunostained PA tissue 
sections showed positive labeling for: (I) DAPI, (J) WGA, (K) vWF, (red), and (L) 
vimentin(magenta) with an (M) overlay. Separate immunostained PA tissue sections showed 
positive labeling for: (N) DAPI, (O) WGA, (P) MYH11 (orange), and (Q) vimentin (magenta) 
with an (R) overlay. These samples were used as labeling controls to estimate purity of a cell 
culture expanded on plastic. Images were all acquired at 40× magnification, scale bar 50 um. 
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PAAFs expanded on plastic reverted from a myofibroblast to a fibroblast phenotype after three 

days of culture on 0.5-kPa stiffness 6-well plates, as assessed by their low expression of Acta2 

(Fig. S4.1) and their rounded appearance in culture (Fig. 4.8B) compared with the more stellate 

shapes and higher Acta2 expression in cells grown on stiffer substrates (Fig. 4.8C-D). Messenger 

RNA levels of Col1a1, Col3a1, Eln, Fn1, Loxl1, and Acta2 genes in fibroblasts cultured on 0.5-

kPa substrates, were not significantly different from those obtained by extracting RNA from the 

 

Figure 4.8| Effect of substrate stiffness on PAAF differentiation.  Mean ± standard errors of the 
mean relative to housekeeping gene 18S ribosomal RNA of PAAFs cultured at different stiffness 
(n = 9) compared with gene expression of sections in a normotensive pulmonary artery adventitia 
(n = 6). Effect of stiffness (* p < 0.05 and ** p < 0.0001) by one-way analysis of variance 
(ANOVA) compared with control 0.5 kPa with a post-hoc Dunnett’s test. (B–D) PAAFs plated on 
(B) 0.5 kPa (40×), (C) 3 kPa (20×) polyacrylamide gel and (D) plastic (40×), scale bar 50 µm. 
Cells were stained with DAPI, which stains the nucleus (blue), wheat germ agglutinin stains the 
membrane (green), and α-SMA filaments (orange). 
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pulmonary artery adventitia of a normotensive rat (p>0.05 by one-way ANOVA, Fig. 4.8A). This 

finding suggests that cells cultured on a 0.5-kPa substrate may mimic expression of PAAFs in-

vivo with respect to the six genes studied in this paper. 

Compared with mRNA levels in PAAFs cultured on 0.5-kPa substrates, all six genes were 

significantly upregulated in response to increased matrix stiffness (p<0.05 by one-way ANOVA 

and Dunnett's post-hoc test). The expression of Acta2 and Loxl1 was significantly higher on cells 

grown on 3-kPa matrices but not significantly higher on cells grown on 10-kPa matrices, while 

Col1a1, Col3a1, Eln, and Fn1 were significantly upregulated on 10-kPa substrates (comparable to 

arterial stiffness in advanced PAH [380]), compared with PAAFs cultured on 0.5-kPa matrices 

(Figure 4.3A). Interestingly, Acta2 and Loxl1 expression exhibited non-monotonic responses, with 

significant upregulation of gene expression on 3-kPa matrices compared with the 0.5-kPa matrices, 

but no significant difference between cells cultured on 0.5-kPa and 10-kPa matrices.  

Examining the transcriptional responses of the six genes to 10% equibiaxial stretch for 24 

hr in PAAFs (Fig. 4.9A-F), Col1a1, Col3a1, Eln, Loxl1 and Acta2 were significantly upregulated 

compared with unstretched cells independent of the substrate stiffness (p<0.05 based on group 

comparisons made using a two-way ANOVA). Although Fn1 expression did not significantly 

change after 24 hr of stretch (Fig. 4.8D), it was significantly upregulated after 4 hr on all gel 

stiffnesses (from 1.62±0.34 to 5.07±1.22 on 0.5-kPa gels, 3.36±0.26 to 6.93±1.65 on 3 kPa gels 

and 5.08±1.16 to 8.04±2.32 on 10-kPa gels, p=0.0002, n=6). On the other hand, Col1a1 was only 

significantly upregulated after 24 hr of stretch, but not after 4 hr. This suggests Fn1 is transiently 

induced by a short period of stretch, while the Col1a1 response to 
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Figure 4.9| Effect of stiffness and stretch on gene expression in PAAFs.  Mean ± standard 
errors of the mean of mRNA levels relative to housekeeping control gene 18S ribosomal RNA in 
unstretched cells (n = 9, white bars) and after 24 h 10% equibiaxial stretch (n = 12, blue bars). 
*Significant pairwise effect of stiffness (p < 0.05) by a post-hoc Dunnett’s multiple comparisons 
test and # significant effect of stretch (p < 0.05) based on group comparisons made using a two-
way analysis of variance (ANOVA) for: (A) Collagen I (Col1a1) (B) Collagen III (Col3a1) (C) 
Elastin (Eln) (D) Fibronectin (Fn1) (E) Lysyl oxidase-like 1 (Loxl1) (F) Smooth Muscle Actin 
(Acta2). 
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stretch is much slower. This finding is consistent with reports identifying Fn1 as an early response 

gene [385]. No significant interaction effects between substrate stiffness and stretch were found in 

the expression of any of the six genes (Table 4.1).  

Increased ECM stiffness significantly upregulated protein expression of Collagen III and 

Smooth Muscle Actin (SMA) from a baseline of 0.5-kPa at both 3-kPa and 10 kPa based on a post-

hoc test (Fig. 4.10). There was no significant difference between 3-kPa and 10-kPa protein 

expression for either Collagen III or SMA. This is consistent with the changes in relative 

Table 4.1| Two-way ANOVA of the effects of substrate stiffness and stretch on the expression 
of six genes in cultured PAAFs.  Bolded values indicate p<0.05. 

Genes Effects of Stiffness Effect of Stretch Interaction Term 
Col1a1 0.046 0.006 0.86 
Col3a1 <0.0001 0.012 0.69 

Eln 0.009 0.009 0.66 
Fn1 0.001 0.27 0.28 

Loxl1 <0.0001 0.0007 0.30 
Acta2 0.0007 0.002 0.88 

 

 

Figure 4.10| Effect of stiffness on protein expression of Collagen III and SMA in PAAFs.  
Mean ± standard errors of the mean of Corrected Total Cell Fluorescence (CTCF) for 6–8 replicate 
hydrogels. *Significant pairwise effect of stiffness (p < 0.05) determined by one-way analysis of 
variance (ANOVA). 
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expression of RNA for Collagen III (Col3a1) and SMA (Acta2) shown in Fig. 4.9B, F, which 

showed significant increases from 0.5-kPa to 3-kPa, and no further significant increase from 3-

kPa and 10-kPa substrates. 

4.3.7. PAAF Network Model Simulates Gene Expression Activated by Stiffness and Stretch 

A threshold change of 0.1 in the normalized variable representing each of the six genes 

was used to classify the change in each gene as significant. The model predicted significant 

upregulation of all six genes in response to an increase in substrate stiffness from 0.5-kPa to 3- or 

10-kPa (Figure 4.11). These model predictions matched our experimental observation that all six 

genes were significantly upregulated in cells grown on stiffer matrices.  

The model also predicted upregulation of the gene expression of Col1a1, Col3a1, Loxl1, 

and Acta2 and the return to baseline of Fn1 expression 24 hr after induction by 10% equibiaxial 

 

Figure 4.11| Comparison of the experimental observations (Expt) with model predictions 
(Model) of gene activity due to stretch and stiffness.  Increase (red), decrease (blue), and no 
change (grey) in gene predicted by the model is based on a threshold of 0.1 and experimental 
observations that reached a significant difference 24 hr after stretch (p < 0.05). 



 
 

 

128 
 

stretch. However, the model predicted Eln expression to be downregulated with stretch while 

experimental results showed upregulation. We investigated whether the inhibitory effect of 

JNK1/2 on Eln may have outweighed the activating effect of PKC𝛼 and found that decreasing the 

weight of the inhibition of JNK1/2 on Eln [386] by 50% allowed the model to predict the observed 

upregulation of Eln (Figure 4.9). While the model was in qualitative agreement with the data, it 

did not recapitulate the non-monotonic responses of Loxl1 and Acta2 (Figure 4.8A), which were 

significantly upregulated by 3-kPa matrix stiffness (compared with 0.5-kPa) but not by 10-kPa 

substrates. 

4.3.8. Angiotensin II Receptor Inhibition Unmasks an Interaction Between Stiffness and 

Stretch on Fibronectin Gene Expression 

Based on a sensitivity analysis [379], we simulated the effects of stretch and increased 

stiffness in the presence of inhibitors of three mechanosensitive nodes in the model (AT1, and 

TGF-𝛽, and MST1/2). Table 4.2 shows the effects of inhibiting AT1, TGF-	𝛽, and MST1/2 on 

changes in gene expression due to an increase in substrate stiffness from 0.5 and 3-kPa and due to 

stretch on 0.5 kPa stiffness matrices. Here, model-predicted differences in the normalized mRNA 

variable due to inhibitor treatments were considered significant if they exceeded a threshold of 0.1.  
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From the model simulations, the induction of Loxl1 expression by increased substrate 

stiffness is specifically regulated by MST1/2 signaling, whereas the responses of the other five 

genes to stiffness were all significantly inhibited by blocking TGF𝛽  receptor. AT1 receptor 

inhibition significantly attenuated the stiffness-dependent induction of Col1a1, Col3a1, Fn1 and 

Acta2, but had no significant effect on Eln or Loxl1, and the magnitude of inhibition was noticeably 

less than when TGF𝛽 receptors were blocked. Blocking angiotensin signaling in the model with 

increased substrate stiffness downregulated the collagens by 20% and blocking TGF𝛽 signaling 

downregulated the collagens by 30%, while blocking angiotensin downregulated Acta2 by 17% 

and blocking TGF𝛽 downregulated it by 86% (Table 4.2). 

Blocking TGF𝛽 signaling in the model while applying stretch stimulation suppressed the 

upregulation of Acta2 by 28% and reduced the downregulation of Eln by 11%. Stretch induction 

of Col1a1 and Col3a1 was shown to be reduced by inhibition of MST1/2 (by 46%) and angiotensin 

II signaling (by 26%), while Loxl1 regulation by stretch was affected only by inhibiting MST1/2 

(by 100%). Fn1 expression, which was not significantly altered by stretch, remained unchanged 

Table 4.2| Changes in gene expression due to inhibition of selected receptors in response to 
stiffness and stretch PAAFs).  Numbers in bold indicate activity changes greater than a threshold 
of 0.1. 

Genes Effects of Stiffness on 3kPa Effect of Stretch on 0.5 
kPa 

AT1 TGF-𝜷 MST1/2 AT1 TGF-𝜷 MST1/2 
Col1a1 -0.16 -0.24 -0.10 -0.14 -0.06 -0.26 
Col3a1 -0.16 -0.24 -0.10 -0.14 -0.06 -0.26 

Eln -0.04 -0.46 0 0.20 -0.08 0 
Fn1 -0.15 -0.39 0 -0.01 -0.03 0 

Loxl1 0 0 -0.37 0 0 -0.37 
Acta2 -0.14 -0.70 0 -0.04 -0.14 0 
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in the presence of all three inhibitors. This is in contrast to its response to substrate stiffness, where 

inhibiting AT1 and TGF	𝛽 receptors had a significant effect (Table 4.2). 

Since the model suggested a significant role for AngII signaling in regulating Fn1 

expression in response to increased stiffness but not stretch (Table 2 and Fig. 4.12B), we treated 

cultured PAAFs with 1 𝜇M losartan, an AT1 receptor blocker.  

Losartan abrogated the induction of fibronectin mRNA expression by 3-kPa substrates 

compared with 0.5-kPa, and Fn1 expression by PAAFs grown on 0.5-kPa matrices remained 

unresponsive to stretch after 24 hr (Fig. 4.12A). Stretch significantly upregulated the expression 

of Fn1 by PAAFs grown on stiffer 3-kPa substrates when AngII signaling was blocked. 

Model simulations of Fn1 expression in response to increased stiffness, stretch, and AT1 

receptor inhibition corresponding to each experimental condition in Figure 7A are shown in Figure 

 

Figure 4.12| Experimental observations of fibronectin gene expression in response to 
increased substrate stiffness and 10% equibiaxial stretch, with and without AT1R inhibitor 
losartan PAAFs).  (A) Data are expressed as Fn1 gene expression mean ± standard errors relative 
to 18S ribosomal RNA housekeeping gene. * Significant effect of stiffness (p < 0.05), # significant 
effect of stretch (p < 0.05) by three-way analysis of variance (ANOVA) with a post-hoc Sidak’s 
test. (B) Model simulation results where stiffness and stretch stimuli were increased by increasing 
the stiffness input weight from 0.25 to 0.7, stretch input weight from 0.25 to 0.7, and inhibition 
applied by blocking the AT1R node. 
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7B. The model recapitulated the increase in fibronectin mRNA under control conditions, when 

substrate stiffness increased from 0.5-kPa to 3-kPa, and the qualitative response of Fn1 on 3-kPa 

matrices to induction by stretch. The model also correctly predicted no effect of losartan on Fn1 

mRNA levels under stretched and unstretched conditions on 0.5-kPa substrates 24 hr after stretch. 

However, while we observed in-vitro that losartan inhibited Fn1 upregulation by increased 

stiffness in unstretched but not stretched PAAFs, and that blocking AT1R led to a stretch response 

of Fn1 on 3-kPa matrices, the model could not reproduce these observations. 

4.4. Discussion 

We created a novel network model of cell signaling in pulmonary arterial adventitial 

fibroblasts that integrates seven signaling modules known to be involved in pulmonary arterial 

fibrosis. This model was qualitatively consistent with experimentally measured input-output 

relationships and the results from inhibition experiments all from independent papers not used to 

formulate the model originally. To determine the specificity of the model to fibroblasts from the 

pulmonary arterial adventitia, we ran a simulation using only nodes also included in the cardiac 

fibroblast model developed by Zeigler et al. Here the cardiac fibroblast model with 40 reactions 

significantly underpredicted by almost threefold the PAAF input-output experiments. This 

indicates the important role played by the 52 added reactions in our fibroblast model to describe 

the signaling pathway representing PAAF properties in PAH. Sensitivity analysis showed that the 

model-predicted PAAF network state was most sensitive to TGF𝛽, MAPK, and hypoxia signaling 

pathways. The sensitivity analysis for the cardiac fibroblast model showed similar importance of 

TGF𝛽  pathways and MAPK pathways, but that mechanical stimulus more impact. By using 

uncertainty quantification, we determined the robustness of the model with respect to input weight 
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and EC50, but found that parameter uncertainty propagation was increased significantly with 

increased n.  

This paper takes similar approaches to those previously undertaken in other logic-based 

network models including those done by Zeigler et al. [131] and Kraeutler et al. [173]. The Zeigler 

model has been shown to be similarly robust to this PAAF model, with an accuracy of 80% and 

similarly predicts a strong influence of TGF𝛽 [131].  Our model uses the same default parameters 

and also includes analysis of variation in baseline input. This is in contrast to the Kraeutler model, 

where the model is fully parameterized and the authors carried out a sensitivity analysis on the Hill 

coefficient, EC50, and ymax [173]. We have further varied the Hill coefficient and EC50 using a 

uniform distribution using UQ. 

We also identified the areas of epistemic uncertainty inherent in network construction that 

will need further confirmation, revision and comparison with future experiments done specifically 

in PAAFs by running a three parameter UQ analysis on the model with and without the pathways 

derived from non-cardiovascular fibroblasts. In some cases, information from non-cardiovascular 

cell types were shown not to highly affect input-output prediction accuracy but did improve the 

accuracy of predictions on the effects of inhibitors as seen in the predictions of how 𝛼-SMA 

responds to TGF𝛽 when ERK or ROS were inhibited. Thus, the full model, despite including 

pathways from other cell types, better recapitulated the regulation of 𝛼-SMA expression. In this 

way, UQ was able to capture the levels to which the output of model accuracy could vary given 

changes in large ranges of parameters and in the absence of pathways elucidated by non-

cardiovascular fibroblasts. This analysis was crucial to a system that has so little certainty in model 

construction and literature data such as in PAAFs. With directions for optimization given by UQ, 

this model can be improved to help the scientific community understand the complex interplay of 
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pathways in pulmonary arterial remodeling in order to identify treatments that can better target 

adventitial fibrosis.  

In-vitro experiments in pulmonary arterial adventitial fibroblasts were used to investigate 

the differential effects of equibiaxial stretch and increased substrate stiffness on six genes of a 

revised mathematical model of PAAF cell signaling [379]. While both physical stimuli occur in 

PAH, these stimuli are thought to be at different stages of the disease, in part because increased 

vascular fibrosis leads to ECM stiffening that in turn opposes the increase in arterial wall strain 

caused by increased wall stress. In this study, we used a novel combination of in-vitro and in-silico 

models to investigate how PAAFs respond to changes in ECM stiffness and strains representative 

of those associated with adventitial remodeling in PAH. While PAAFs are exposed to cyclic 

loading in vivo, we used static stretch as a model of the chronically elevated mean hemodynamic 

load (Herum KM et al., 2017) during PAH rather than acute phasic vascular loading, in part 

because cyclic stretch systems cannot recapitulate the high physiological cardiac frequencies (~6 

Hz) in rats (Layland J et al., 1995) [321, 387]. Although there are no existing studies examining 

how PAAFs respond to cyclic stretch, Wu et al. (Wu J et al., 2013) reported that 10% cyclic stretch 

for 36 hr led to 2-3 fold increases in Col1a1 and Col3a1 expression in mouse aortic fibroblasts, 

which are comparable to the 3-fold increase in Col1a1 and 2- to 4-fold increase in Col3a1 that we 

observed after 24 hr of static stretch [340]. While the cells were maintained at a 10% static stretch 

for 24 hr, measurements of cell area in cardiac fibroblasts using the same circular custom stretchers 

(Herum KM et al., 2017) showed that after cell area initially increased during static stretch, they 

returned to their original size within 1 hour, well before the 24-hour time point at which gene 

expression was measured [321]. 
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4.4.1. Stiffness and Stretch Differentially Affect Expression of Six Profibrotic Genes 

Stretch and increased substrate stiffness were both able to upregulate five out of the six 

profibrotic genes we investigated. But while increasing stiffness from 0.5 kPa significantly 

induced all six genes, fibronectin expression was transiently upregulated by stretch at 4 hr but was 

not significantly altered by stretch at 24 hr. There was also a non-monotonic response to the two 

levels of increased substrate stiffness in the expression of Loxl1 and Acta2, which were both 

upregulated compared with 0.5-kPa substrates on 3-kPa matrices (similar to vessel walls during 

mild PAH), but the expression of both was not significantly altered compared with 0.5-kPa 

substrates on 10-kPa matrices (which are comparable in stiffness to vessel walls during severe 

PAH). Unlike observations in cardiac fibroblasts [321], we found no statistical interaction effects 

between the stretch and stiffness conditions in all these six genes. These results suggest that the 

expression of Col1a1, Col3a1 and Eln could be expected to rise early in-vivo as elevated 

pulmonary arterial pressure increases vascular wall strain and remain elevated as fibrosis increases 

adventitial ECM stiffness, even though this stiffening would also reduce arterial strain. In contrast, 

Loxl1 and Acta2 expression may initially rise but eventually return to baseline as wall stiffening 

becomes severe, and Fn1 mRNA may be induced only after the ECM has remodeled and stiffened. 

4.4.2. Model Modifications to Investigate Differential Regulation by Stretch and Stiffness 

By allowing stiffness and stretch to be separate inputs to the model, we investigated the 

pathways regulating the expression of six mechanosensitive genes (Col1a1, Col3a1, Eln, Fn1, 

Loxl1, Acta2) in response to each stimulus. While there is published evidence that TGF𝛽  is 

activated by stretch in cardiac [321] and lung [388] fibroblasts, we only found experimental 

evidence of TGF𝛽  activation by substrate stiffness in PAAFs [327, 329]. Based on ample 
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published data in other cell types, we refined the model of the MAPK signaling cascade in the 

original version of our model so that ERK1/2, p38, and JNK1/2 could be independently activated, 

and we updated the model to include the effects of stretch-activated TRP channels observed by 

Yue and Suzuma et al [163-164]. 

Comparing the predictions of this revised model against the same independent 

experimental data from rat and human PAAFs that we used to test our original implementation 

[379], we found no significant changes in model validation accuracy from what we reported 

previously [379]. Comparing predictions of the revised model with in-vitro PAAF experiments 

conducted here on the effects of stretch and stiffness on gene expression, the model correctly 

predicted the upregulation of all six ECM genes by increased stiffness though not the subsequent 

return to baseline levels on the stiffest matrices for Loxl1 and Acta2. The model also correctly 

predicted the observed upregulation of four ECM genes and the lack of response to stretch in Fn1 

expression at 24 hr. However, while we observed an increase in Eln mRNA after stretch, the model 

incorrectly predicted a decrease. Examining the regulation of elastin gene expression in the 

network, we found that halving the weight of JNK1/2 inhibition on Eln mRNA while leaving the 

activating weight of PKC𝛼 on Eln the same reversed this result. Hence it is possible that the 

activating effect of PKC𝛼 dominates the inhibiting effect of JNK1/2 in the regulation of elastin 

gene expression by stretch.  

The model is composed of studies from both in-vivo and in-vitro experiments. While we 

used the rat PAAFs to validate the gene expression in response to stimuli such as mechanical 

stretch or substrate stiffness, this approach allows us to predict how phenotypic outputs respond to 

mechanical load. It is reported that mechanical stretch may increase the stiffness of the substrate, 

which in turn decreases the stretch. However, the interactions between them have not yet been 
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classified. Through this work, we can model the interactions by adjusting time parameters and the 

activated reactions to represent beneficial versus maladaptive remodeling in fibrosis. Furthermore, 

the model can simulate a high number of experimental designs and make corresponding 

predictions that would be difficult to reproduce experimentally. This feature also enables the model 

to predict effects of specific drugs through simulating the activation or inhibition of any target 

species in the network. 

4.4.3. Crosstalk between TGF and AngII 

Using this model to predict the effects of inhibiting key mechanoresponsive nodes in the 

network, we found that blocking AT1R in the model significantly decreased expression of Fn1 in 

response to stiffness but did not significantly decrease expression of Fn1 in response to stretch. 

Experimentally, we confirmed that blocking the AT1 receptor with losartan inhibited the 

significant upregulation of Fn1 expression when substrate stiffness is increased and had no effect 

on the response to stretch on 0.5-kPa substrates. However, losartan unmasked a response to stretch 

in PAAFs grown on the stiffer matrices that was not seen in untreated cells or predicted by the 

model. These findings show that angiotensin II signaling is required for the Fn1 response to 

increased stiffness, and that Fn1 expression can be stretch-regulated by an angiotensin-

independent pathway on stiffer matrices when the saturating effects of higher stiffness are blocked. 

The requirement for angiotensin receptors to be activated before fibronectin mRNA can be induced 

by elevated substrate stiffness may be related to angiotensin-mediated conversion of latent TGF𝛽 

to the active state [389-390]. The network already represents this feedback based on reports that 

cyclic strain activates AT1R to cause activation of TGF-𝛽 in rat cardiac fibroblasts and human 

fibroblasts [389, 391]. However, because stiffness also directly activates TGF𝛽 in the model, 
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angiotensin signaling could be blocked in the model without preventing stiffness from inducing 

Fn1 expression. This suggests that increased stiffness only activates TGF𝛽  signaling after 

angiotensin has activated latent TGF𝛽 in our experiments. Angiotensin receptor inhibition also 

unmasked angiotensin-independent Fn1 expression in response to stretch at a higher substrate 

stiffness, but in the model, fibronectin mRNA can only be induced by stretch directly via the 

angiotensin receptor. Hence, our experimental results suggest that there is another stretch-activated 

pathway that regulates a transient response to stretch in fibronectin and is more active in cells 

grown on stiffer matrices independent of AngII. This indicates a currently unknown angiotensin-

independent stretch-activated pathway responsible for an initial rapid upregulation of fibronectin 

gene expression, possibly the STAT3 pathway which is involved in stretch induction of fibronectin 

in renal epithelial cells but not proven in fibroblasts studied by Hamzeh et al. [392]. An 

angiotensin-dependent pathway that downregulates fibronectin expression after 4 hr need to be 

added to the model. One way to further examine this potential crosstalk would be to treat PAAFs 

with a TGF-β blocker based on the high magnitude of inhibition predicted by the model 

simulations (Table 4.2). When blocking TGFβ in the model, expression of Col1a1, Col3a1, Eln, 

Fn1, and Acta2 were significantly inhibited in response to increased stiffness, with no significant 

change observed on inhibiting stretch effects except for Acta2. 

4.4.4. Limitations and Future Directions 

There is very little literature from which to determine specific model parameters, so we 

have not attempted to identify individual parameters and instead used constant values for every 

node and explored parameter uncertainty over a wide range. For example, all reactions are at a 

default weight of 1, however literature data could suggest that some reactions are more important 
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than others in determining fibrosis. These findings are consistent with the conclusion that capturing 

the molecular interactions within the network topology is more important for reproducing the 

qualitative features revealed by typical cell biological experiments than the particular choice of 

parameters. This property explains why this class of network model is often preferred to more 

biochemically detailed models with fewer interacting pathways for interpreting the frequently 

more qualitative conclusions of many cell biological studies. The analyses suggested that the 

model is quite robust to parameter uncertainty, at least when using qualitative experimental 

criteria. When varying input weight (𝜔) the model accuracy ranged from 67%-80%, when varying 

half-maximal effective concentration (EC50) the accuracy generally ranged from 60%-80%, and 

the model accuracy was highly affected by changes in the Hill coefficient n). Given that the UQ 

results depend on the ranges chosen for the model parameters, in this case n, EC50, and 𝜔, caution 

should be taken in making too many biological conclusions based on this analysis.  

A critical next step identified by uncertainty quantification is to fill in the areas where there 

are no in-vitro experiments in PAAFs both to refine the model and acquire more validation data 

so one can be more confident in the results. For example, there is no literature data on how 

stimulation of PAAFs with TNF𝛼 affect phenotypic outputs, only on intermediates in the model. 

There is some data uncertainty in the literature, as a low sample size and power in typical cell 

biology experiments means there is less confidence in experimental findings concluding no 

significant change vs. those reporting significant changes.  

The model is currently only shown to be qualitatively consistent with input-output 

experiments and normalized from 0 to 1 as the range is unknown and many reported experimental 

results are not quantitative. In the future, we can implement mass-action equations with kinetic 

rates to create a more quantitative and realistic measure of matrix remodeling that we can validate 
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through experimentation. We can also integrate paracrine signaling with other cell types, as PAAFs 

are known to activate macrophages and smooth muscle cells surrounding them in the pulmonary 

arterial wall [351]. Another future direction is to reformulate the model by adding exogenous 

stimulation for ET1 and IL6 and feedback, which could increase model accuracy. 

In-vitro experiments in pulmonary arterial adventitial fibroblasts were used to investigate 

the differential effects of equibiaxial stretch and increased substrate stiffness on six genes of a new 

mathematical model of PAAF cell signaling [379]. While both physical stimuli occur in PAH, 

these stimuli are thought to be at different stages of the disease, in part because increased vascular 

fibrosis leads to ECM stiffening that in turn opposes the increase in arterial wall strain caused by 

increased wall stress. In this study, we used a novel combination of in-vitro and in-silico models 

to investigate how PAAFs respond to changes in ECM stiffness and strains representative of those 

associated with adventitial remodeling in PAH. 

We used rat PAAFs because of the detailed biomechanical measurements of ECM stiffness 

pulmonary arterial strain in the sugen-hypoxia rat model of PAH and normotensive control rats. 

However, human PAAF cell lines have been used to study fibrotic signaling in response to 

increased ECM stiffness [351], where they showed that ten out of twelve genes studied were 

differentially expressed when stiffness increased from 1 to 12 kPa. Their analysis identified a miR-

130/301-PPARγ signaling network regulated by ECM stiffness and associated with ECM 

remodeling in human PAH. Studies of mechanosignaling in human PAAF cell lines would enable 

us to generate a similar model of profibrotic mechanosignaling in human cells that could include 

these networks. ECM remodeling depends on protein synthesis, post-translational modifications 

and cell-mediated matrix assembly [107]. One limitation of this study is that we focused primarily 

on gene expression, but we did find that changes in collagen III and smooth muscle actin protein 
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abundances in response to increased ECM stiffness were consistent with changes in their mRNA 

expression. Finally, while the model was able to predict the response of fibronectin gene 

expression on soft gels, it did not replicate all of the observed responses to AT1 receptor inhibition 

on stiff gels or the transient response of Fn1 expression to stretch. These model limitations can 

nevertheless be used to identify candidate pathways and reactions that need to be added to the 

network. 

4.5. Conclusion 

In-vitro experiments using hydrogel substrates of various stiffnesses coating elastic 

membranes in biaxial cell stretch devices showed that expression of profibrotic genes by PAAFs 

is differentially regulated by cell stretch and extracellular matrix stiffness. No interaction effects 

between stretch and stiffness were observed for the six genes studied here, however AT1 receptor 

blockade uncovered an angiotensin-independent activation of Fn1 expression by stretch in PAAFs 

when grown on stiff but not soft substrates. A novel combination of in-vitro and in-silico models 

of PAAF profibrotic cell signaling in response to altered mechanical conditions may help identify 

regulators of the vascular adventitial remodeling that results from the changes in stretch and matrix 

stiffness occurring during the progression of PAH in-vivo. 
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 Summary and Conclusion 

5.1. Summary of Objectives and Conclusions 

The objective of this dissertation was to unveil the mechanisms underlying the differential 

responses of different experiments and explore potential therapies of heart failure in the future. In 

Chapter 2, a global UQ analysis was performed to illustrate the model robustness to the changes 

in parameters, network modules and validation data. In Chapter 3, a computational model of gene 

expression responses to mechanical stretch was constructed by extending a published 

mechanosignaling network with transcriptional regulatory network and used to identify key 

regulators of the stretch induced responses and the pathways and genes that responded differently 

to transverse stretch and longitudinal stretch. In Chapter 4, a new PAAF model was constructed 

using the same methodology to showcase the effectiveness of the model and identify the 

differential responses of pro-fibrotic genes induced by substrate stiffness and stretch. 

Quantification analysis of the effects of the uncertainty in model parameters, logic, and 

validation data on the estimated accuracy of the mechanosignaling network model showed that the 

model was very robust to parameter and data uncertainty but was more vulnerable to errors in the 

choice of logic used to represent the biochemical reactions between interacting species. Our 

analysis indicates that the correct interpretation of experimental data representing the ‘AND’ and 

‘OR’ logic could be critical to model prediction accuracy. 

We further developed a novel extension of our myocyte mechanosignaling network model 

to include both transcriptional and translational regulation and introduce a mass-action method to 

model quantitative gene expression. The KEGG enrichment analysis of the RNA-Seq 

measurements showed many pathways used to formulate the model were also enriched. By 
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incorporating the RNA-Seq data, this new model displayed high accuracy with 69% agreement for 

overall predictions and 72% of predicted DE genes under 4 hr longitudinal stretch. It is also 

indicated from model simulations that TF activities may saturate faster when multiple TFs 

coregulate gene expression. Our analysis also suggests that the difference between transverse and 

longitudinal stretch responses in cardiomyocytes may be related to the sensitivity of directional 

mechanotransduction, with the sensitivity to longitudinal stretch being greater than transverse. We 

further identified AT1 and ET1 as main regulators in response to stretch through receptor 

inhibition simulations and the subsequent experiments. This analysis also showed the importance 

of a hypertrophy pathway that regulate target genes via the activation of AT1/ET1 receptors 

through the MAPK signaling pathway. 

To showcase the performance of this methodology, we applied this approach to build a 

PAAF signaling model and achieved 80% agreement with published studies that were not used to 

build the model. The UQ analysis indicated that the model accuracy was very robust to the 

parameter changes as well as epistemic uncertainty while reducing the network to reactions only 

reported in PAAFs had a larger impact. This model also demonstrated that the differential 

responses of profibrotic genes induced by substrate stiffness and stretch were mainly in Fn1 

expression, which could be activated via an angiotensin-independent pathway. 

5.2. Future Work 

5.2.1. Modifications and Improvements of the Mechanosignaling Network 

The RNA-seq measurements showed 495 genes were DE under stretch but their regulations 

were not clearly identified when the mechanosignaling network model was constructed. By using 

a published database of TF-gene regulation, we found that a new set 17 genes were regulated by 9 
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TFs in the model. By incorporating these genes in a revised network, our model correctly predicted 

the responses of these genes, which may indicate the potential roles of these genes in the 

hypertrophy. Further, an enrichment of these 495 genes showed 4 genes were targets of SREBP, a 

TF associated with lipid metabolism targeted by AngII signaling pathway during the cardiac 

hypertrophy [393-394]. This approach provides a methodology of identifying new TFs to the 

mechanosignaling network model. 

For model genes, our current model incorrectly predicted the direction of 67 genes, with 

39 predicted upregulated in the model while NC in the data and 28 predicted NC in the model but 

downregulated in the data. By looking into the TF-gene regulation database [395], we found 7 

genes were repressed by 16 TFs, which was not present in the current model. Among these TFs, 

we found Smad4 associated with cardiac hypertrophy [394-395]. TGF𝛽-Smad4 was found to be 

elevated by AngII-MAPK signaling while the deletion of Smad4 resulted in hypertrophy in 

cardiomyocytes [396-397]. These results suggests that the model could be improved by including 

more detailed regulations especially negative regulators.  

Pathway enrichment analysis of the RNA-Seq data suggested more pathways could be 

involved in the current model. Early studies showed the critical role of the Hippo signaling 

pathway in cardiomyocyte hypertrophy [155-156, 313-314] induced by exercise training rather 

than pathological hypertrophy. The inactive Hippo signaling enhances gene by interacting with 

proteins such as SMAD [156, 313]. Hippo signaling has also been shown to be an important 

regulator of many miRNAs, which often act as negative regulators of transcriptional responses 

[313-314]. It is also documented that Akt and MAPKs could also interact with Hippo signaling 

while the effects of these interactions were not clear [156, 313]. 
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Oxytocin (OT) and its receptor OTR are expressed in heart and also important players 

involved in cardioprotection [398-399]. The treatment of cardiomyocyte with OT can promote the 

accumulation of ANP and increase intracellular cGMP by reducing the Akt phosphorylation thus 

blocking the translocation of NFAT into the cell nuclei [399].  

The Ras related GTPase (Rap), a memeber of the Ras superfamily, mostly acts as the 

transformation suppressor to ameliorate the Ras transformed phenotype. The Rap1 signaling 

pathway, which is activated by cyclic AMP (cAMP), calcium and DAG, promotes vasoconstriction 

by the activation of JNK, ERK and Rho/ROCK signaling and further increase cell adhesion [315]. 

The ErbB protein is a receptor tyrosine kinase that transduces the signal from extracellular 

environment to the nucleus and promotes differentiation. The over-expression of ErbB will 

upregulate the Heat Shock Factor (HSF)-1 transcription factor and its target genes [400]. ErbB 

receptors activate the mitogen-activated protein kinase (MAPK)/ERK1/2 as well as PI3K/Akt 

signaling. It is also reported that ErbB is downregulated during the progression of cardiac 

hypertrophy [400-401], however, the mechanism is not clear yet. 

Hypoxia Inducible Factor (HIF)-1 is a transcription factor that regulates oxygen 

homeostasis thus critical to maintain normal cardiac function. By its name, HIF-1 signaling 

pathway has been shown to be associated with reduction of the generation of reactive oxygen 

species (ROS) and hypoxia induced hypertrophy. 

By including these new pathways in the current model, we aim to explore more genes in 

the stretch induced hypertrophy genetic program and identify the key regulators underlying in the 

differential responses for the experiment of interest. 
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5.2.2. Pressure and Volume Overload Induced Hypertrophy 

In structural heart diseases, increased ventricular load is a key trigger mechanism for 

altered gene expression and cardiac remodeling. Increased ventricular load translates into 

increased wall stress and results in the growth of the individual cardiomyocyte, leading to 

increased heart weight. Studies showed that the total myocyte number remains unchanged 

following the TAC but its proportion in the cell population dropped due to a profound increase of 

fibroblasts [402]. These changes then increased the stiffness of the tissue. Both systolic and 

diastolic blood pressure were found to be increased 2 weeks after TAC and remained elevated 

[403-406]. The left ventricle peak systolic wall stress was found elevated as quickly as 1 day after 

TAC and restored at around 10 days [407]. Compared with pressure overload that induced 

concentric hypertrophy, volume overload induced eccentric hypertrophy increased both the 

thickness of heart wall and the volume of the ventricle. The mechanisms that led to the two types 

of hypertrophies, however, require further understanding. 

While many studies have shown the roles of individual signaling pathways in cardiac 

hypertrophy, how these signaling pathways integrates in regulating the transcriptional and 

translational responses are poorly understood. It is reported that different pathways were activated 

during these two processes. CaMK and ERK signaling were found activated in pressure overload 

induced hypertrophy while Akt signaling was elevated in volume overload induced hypertrophy 

[408]. On the transcription level, it is shown that cyclin D2 expression attenuated cardiomyocyte 

hypertrophy in pressure overload but not volume overload [409]. Thus, realizing this difference, 

we will use the mechanosignaling network model to study the differential regulation patterns that 

led to the difference of hypertrophy induced by pressure overload and volume overload. By 
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referring to the network, we will use mechanical stress to initialize the network and identify key 

regulators in response to hypertrophy.  

5.3. Significance 

The global UQ analysis provides us an objective approach in demonstrating the model 

robustness as well as the correct choice of model parameters. The independent enrichment analysis 

of KEGG pathways from DE genes and model genes validated the effectiveness of pathway 

integration during model construction. By analyzing the RNA-Seq data of stretch, we showed the 

numerical relationship of transverse stretch and longitudinal stretch induced gene expressions. In 

our work, this is the first time that we were able to model gene expression quantitatively, which 

also confirmed our finding of the numerical difference between transverse stretch and longitudinal 

stretch on regulating gene expression. Besides, the analysis of the MSN regulatory model also 

helped identify the key regulators of the mechanical stretch induced genetic responses. The further 

application of this methodology in another tissue (PAAF) has also shown effectiveness and implied 

the potential ability of the MSN model to be integrated into the organ level. Finally, the receptor 

inhibition analysis also suggested the efficacy of model to test and develop new drugs. To 

summarize, the integration of the RNA-Seq data and the mass action method allows the 

quantitative comparison between experimental measurements and model predictions, which can 

help understand the mechanisms behind the differential responses of different experiments and 

explore potential therapies of heart failure in the future. 
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