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Abstract of the Dissertation

A Scalable VLSI Architecture for Real-Time

and Energy-Efficient Sparse Approximation

in Compressive Sensing Systems

by

Fengbo Ren

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Dejan Marković, Chair

Digital electronic industry today relies on Nyquist sampling theorem, which requires to

double the size (sampling rate) of the signal representation on the Fourier basis to avoid

information loss. However, most natural signals have very sparse representations on

some other orthogonal (non-Fourier) basis. This mismatch implies a large redundancy in

Nyquist-sampled data, making compression a necessity prior to storage or transmission.

Recent advances in compressive sensing (CS) theory offer us an alternative data acquisition

framework, which can greatly impact power-starved applications such as wireless sensors. CS

techniques provide a universal approach to sample compressible signals at a rate significantly

below the Nyquist rate with limited information loss. Therefore, CS is a promising technology

for realizing configurable, cost-effective, miniaturized, and ultra-low-power data acquisition

devices for mobile and wearable applications.

However, the digital signal processing of compressively-sampled data involves solving

a sparse approximation problem, which requires iterative-searching algorithms that have

high computational complexity and require intensive memory access. As a result, existing

software solutions are neither energy-efficient nor cost-effective for real-time processing of
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compressively-sampled data, especially when the processing is to be performed on energy-

limited devices. To solve this problem, this dissertation presents a scalable VLSI architecture

that can be implemented on field-programmable gate arrays (FPGAs) or system-on-chips

(SoCs) to perform dedicated-hardware-driven sparse approximation. A VLSI soft-IP core of

the sparse approximation engine is developed in Verilog-HDL, which supports a floating-point

data format with 10 design parameters, providing a high dynamic range and the flexibility

for application-specific user customizations. Taking advantage of the algorithm-architecture

co-design that leverages algorithm reformulations, configurable architectures, and efficient

memory mapping schemes, the proposed VLSI architecture features a 100% utilization of

the computing resources and is scalable in terms of computation parallelism and memory

capability.

The hardware emulation of the soft-IP core on a 28-nm Xilinx Kintex-7 FPGA shows that

our design achieves the same level of accuracy as the double-precision C program running

on an Intel Core i7-4700MQ mobile processor, while providing 47–147× speed-up for ECG

signal reconstruction. Furthermore, a 12–237 KS/s 12.8 mW sparse approximation engine

chip is realized in a 40-nm CMOS technology for enabling the mobile data aggregation of

compressively sampled biomedical signals in CS-based wireless health monitoring systems.

The measurement results show that the sparse approximation engine chip operating at the

minimum energy point achieves a real-time throughput for reconstructing 61–237 channels

of biomedical signals simultaneously with < 1% of a mobile device’s 2W power budget,

which is 14,100× more energy-efficient than the software solver running on the CPU. For

high-sparsity signal reconstruction, the sparse approximation engine chip is 76–350× more

energy-efficient than prior hardware designs. With a <1% power budget of a mobile device,

the 5.13 mm2 sparse approximation engine chip integrated in 40-nm CMOS can enable a

2–3× energy saving at CS-based sensor nodes while providing timely feedback and bringing

signal intelligence closer to the user, presenting a significant advantage for 24/7 wireless

health monitoring.
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CHAPTER 1

Introduction

1.1 Background and Scope of The Dissertation

In recent years, compressive sensing (CS) has attracted great research attention in fields of

applied mathematics, computer science, and electrical engineering. CS theory is established

on the fundamental fact that most natural signals are highly compressible—they can be well

represented by only a small portion of their coefficients on a suitable basis [Ca08]. Figure

1.1 shows the Nyquist framework that is the basis of the digital industry today, where an

analog signal is first sampled at a high temporal or spatial resolution constrained by the

Nyquist frequency. Basically, the Nyquist sampling theorem requires to double the size

(sampling rate) of the signal representation in the Fourier basis to avoid information loss.

However, most natural signals have very sparse representations on some other orthogonal

(non-Fourier) basis. This mismatch implies a large redundancy in Nyquist-sampled data,

making compression a necessity prior to storage or transmission (e.g. JPEG-2000, MPEG-4,

etc.). From the analog signal to the sparse information of interest (compressed digital signal),

the information-acquiring path of the Nyquist framework seems to involve an unavoidable

detour. A great question to ask is whether there exists a shortcut or a smarter way of

sampling that can bridge the gap between analog signals and sparse information. The answer

is compressive sensing.

CS theorems tell us that by performing a linear mapping on the signal with randomness,

one is able to well encode the sparse information of a signal with the least amount of

redundancy, implying that sampling and compression can be performed at the same time

through a compressive sampling process. Interestingly, random encoding is such a powerful
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Figure 1.1: Nyquist framework.

scheme that the sparse information can be well preserved regardless of which domain a

signal is sparse on. As a result, CS theorems offer us a universal framework for direct

data sampling in a compressed format and analog-to-information conversion at a much

lower frequency, surpassing the traditional limit of the Nyquist framework. This presents

tremendous application values to the data acquisition devices that are sensitive to cost per

device, portability, and battery life, especially in mobile and wearable applications.

However, great challenges remain in bringing CS technology into real-life applications.

The signal recovery in the CS framework involves solving a sparse approximation (SA)

problem, which is an optimization problem of finding the sparest vector from the solution

space of a linear or quadratic equation. Unlike orthogonal transformation algorithms used

in the Nyquist framework, SA algorithms involve iterative-searching process that leads to

high computational complexity and intensive memory access (see Table 1.1). As a result,

the software solutions are neither energy-efficient nor cost-effective for real-time processing

of compressively-sampled data. For instance, state-of-the-art software solvers running on

general computing platforms usually can achieve a real-time processing throughput of 50–500

1see Section 4.1 for details.
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Table 1.1: Qualitative Comparison of SA and Orthogonal Transformation

SA Orth. Trans.

Computational Complexity O(n3) O(n log n)

Operational Complexity1 High (Iterative) Low

Memory Access Intensity High Low

KSamples/s (KS/s) at the power consumption of 10–100 W (see Fig. 7.11). Unfortunately,

such performance is a deal-breaker for most real-time CS applications, especially on mobile

and wearable platforms, where the target throughput must be achieved very much limited

power budgets.

To solve this problem, this dissertation presents a scalable VLSI architecture (the soft-IP

core) that can be implemented in reconfigurable logic devices, such as field-programmable

gate arrays (FPGAs), or in system-on-chips (SoCs) to perform hardware-accelerated SA

for supporting the real-time and energy-efficient signal recovery in CS systems. The soft-

IP core is developed in Verilog-HDL. It supports 10 user-specified parameters and can

be customized at the compile time, providing the scalability for application-specific user

customizations. Taking advantage of the algorithm-architecture co-design based upon the

reformulated OMP algorithm, the proposed VLSI architecture features high parallelism,

scalability, and configurability, in which all the computing resources are shared for executing

the entire algorithm, leading to a 100% utilization of the computing resources.

1.2 CS-based Wireless Health Monitoring

Wireless health technology makes medical resources, including medical facilities, medicine

and professionals, accessible to anyone, at anytime and anywhere. It enables reducing

the medical cost, increasing the engagement between patients and doctors, and promoting

connectivity of individuals to the world. The ultimate goal of wireless health is to
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Figure 1.2: A CS-based wireless health monitoring system: always-on sensors compress data

for low energy, a mobile data aggregator performs real-time signal reconstruction for timely

prediction and proactive prevention.

revolutionize the operation model of the medical system to transform health related services

from the system based on episodic examination, disease diagnosis, and treatment to one with

continuous monitoring, disease prediction, and prevention [Var07, Xa13]. These changes will

make health care systems more effective and economic, benefiting billions of individuals.

One of the key challenges in wireless health research is efficient sensing technology, as

the continuous monitoring on health status will inevitably generate large amount of data for

transmission, storage, and analysis. CS technology provides a viable solution to building the

low-power and cost-effective on-body sensors for performing 24/7 wireless health monitoring.

Figure 1.2 illustrates a CS-based wireless health monitoring system that includes always-

on CS-based sensors that compress data for energy saving, and a mobile data aggregator
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that performs real-time signal reconstruction for timely prediction and proactive prevention.

Electrocardiography (ECG), electroencephalography (EEG), and electromyography (EMG)

signals, collectively referred to as ExG, contain critical information about the human body

status, thereby are the main targets of the monitoring [Ka11, Ca12, Da12].

The CS-based wireless health system has several advantages over the Nyquist-based

counterpart. First of all, the total energy consumption of the sensor nodes in such a

system is typically dominated by the radio frequency (RF) power for data transmission.

By reducing the data size for wireless transmission through random encoding, a 2–3× total

energy saving can be achieved at the sensor nodes [Ca12]. Second, since different biomedical

signals have sparse representations on different basis, multiple compression standards must

be implemented on the sensor nodes of the Nyquist-based system in order to reduce the

data size for wireless transmission, making it an impractical approach due to the design

complexity implied. Alternatively, a simple and universal random encoding scheme can be

realized by using low-power microprocessor and pseudo-random number generators in the

CS-based sensor nodes for a wide range of bio-medical signals, making the system highly

scalable and easy to upgrade.

Note that deploying a mobile data aggregator to perform real-time signal reconstruction

is crucial in this application scenario. The mobile data aggregator not only enables timely

feedback but also brings signal intelligence closer to the user. To further reduce the data size

for storage or post-processing, only the sparse coefficients of the signal are reconstructed.

For supporting the real-time reconstruction of multi-channel ExG data without moving the

energy needle of a mobile platform, the SA engine in Fig. 1.2 is required to achieve a

throughput of > 50 KS/s at the power consumption of < 20 mW (< 1% of a mobile device’s

2W power budget). Existing software solutions are not suitable for the intended application

due to the low energy-efficiency for real-time recovery. A hardware solution based on VLSI

implementation is critically needed.

ExG signals can span 3 orders of magnitude in amplitude (10 µ–10 mV) and frequency

(0.1 Hz–500 Hz), and can have a large difference in sparsity depending on the subject’s

activity. For instance, a low and high activity can produce a signal sparsity ratio of < 2%
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and > 15%, respectively [Da12]. As a result, prior chip implementations of generic SA

solvers [Ma10a, Ma12, Sa12] that are optimized to handle a limited dynamic range and a

fixed problem size are not suitable for the intended application. To solve this problem, our

soft-IP core supports a floating-point data format for achieving a large dynamic range and can

be configured at the run time for handling flexible problem settings required by ExG signal

recovery. Specifically, every implemented SA engine can be configured to handle flexible

signal and measurement dimensions (n and m), signal sparsity level (k), reconstruction basis

(A), and error tolerance (ε).

1.3 Dissertation Outline

Chapter 2 introduces the sparse approximation problem along with its applications. The

preliminary knowledge about `p norm and signal sparsity is first explained, followed by

the problem definition of SA. Lastly, several classical applications of the SA problem

are reviewed and discussed.

Chapter 3 reviews three different hardware-friendly SA algorithms. A benchmarking study

on the SA algorithms is also conducted, based on which their potentials for efficient

hardware implementations are discussed.

Chapter 4 presents the algorithm design of the reformulated OMP. Specifically, the

complexity characteristic of the original OMP algorithm is first analyzed. Then, three

algorithm reformulation techniques are incorporated to (1) reduce the computational

complexity of the least-squares (LS) task from O(mk3) to O(mk2) and (2) break down

and simplify the LS task into 4 basic linear algebra (BLA) operations per iteration.

Additionally, a hierarchical atom searching method is proposed to greatly reduce the

computational complexity of the atom searching (AS) task.

Chapter 5 proposes the scalable VLSI architecture of a SA engine soft-IP core co-designed

based upon the reformulated OMP algorithm. The system architecture and the block

diagram of computation cores are described. In addition, the memory control schemes
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for handling Cholesky factorization and the dynamic configuration scheme of the

system architecture for achieving 100% utilization of the computing resources are

explained. Discussions on the scalability of the VLSI architecture is also provided.

Chapter 6 elaborates on the FPGA evaluation of the developed soft-IP core. Specifically,

the FPGA implementation results in comparison to prior designs are first reported.

Additionally, the accuracy and performance benchmarking results in comparison to an

Intel Core i7-4700MQ mobile processor are discussed.

Chapter 7 shows the measurement results of a 12-to-237 KS/s 12.8 mW SA engine chip

for mobile ExG data aggregation. It is demonstrated that the SA engine achieves a

real-time throughput for reconstructing 61–237 channels of ExG data simultaneously

with < 1% of a mobile device’s power budget.

Chapter 8 concludes the dissertation and proposes some possible directions for future

research.
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CHAPTER 2

Sparse Approximation (SA)

Sparse approximation (SA) has been formulated and researched by the signal processing

community since 1990s [Nat95]. To date, SA has been recognized as a powerful framework

in a variety of fundamental and applied research fields, including compressive sensing

[Ca08, Don06], information coding [Ca05], computer graphics [Sa11], geographic data

analysis [Ma09], etc. In this chapter, the sparse approximation problem along with its

applications are introduced. The preliminary knowledge about `p norm and signal sparsity is

first explained, followed by the problem definition of SA. Lastly, several classical applications

of the SA problem are reviewed and discussed.

2.1 Preliminary

2.1.1 Notation

The following conventions apply to the notations in this dissertation. A matrix is denoted

as an upper-case bold letter (e.g. A). A vector is denoted as a lower case letter (e.g.

a). ai, when bolded, represents the ith column vector of matrix A. ai, when not bolded,

represents an arbitrary vector indexed by i. x(i) represents the ith element of vector x. When

operating on a vector x, sgn(x) denotes a sign vector, where sgn(x(i)) = −1 if x(i) < 0,

and sgn(x(i)) = 1 otherwise. A set of index is denoted by an upper case Greek letter (e.g.

Λ). AΛ, when bolded, represents the set of column vectors of A that are indexed by Λ, and

x(Λ) represents the set of elements of x that are indexed by set Λ. When operating on a set

Λ, |Λ| denotes the cardinality of Λ, and ΛC denotes the absolute complement of Λ.
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2.1.2 `p Norm

In digital signal processing (DSP), a signal is often modeled as a vector x ∈ Rn, living in an

n-dimensional space. The `2 norm of x ∈ Rn is defined as

‖x‖2 = (
n∑
i=1

|x(i)|2)
1
2 , (2.1)

which represents the length of a vector in the Euclidean space, a.k.a. the Euclidean distance,

or the square root of a signal’s energy.

The `p norm of x ∈ Rn generalizes the length of a vector, or the distance between two

points, in all `p spaces. For a real number p ≥ 1, the `p norm of x ∈ Rn is defined as

‖x‖p = (
n∑
i=1

|x(i)|p)
1
p . (2.2)

The `∞ norm is the limit of the `p norm when p→∞, which is defined as

‖x‖∞ = max
i=1,··· ,n

|x(i)|. (2.3)

For all p ≥ 1, the `p norms in (2.2) and (2.3) define a norm function that satisfies the

following properties, where c ∈ R, x, y ∈ Rn.

1. If ‖x‖p = 0, then x is the zero vector.

2. ‖c · x‖p = |c| · ‖x‖p.

3. ‖x+ y‖p ≤ ‖x‖p + ‖y‖p (triangle inequality).

Besides, the unit circles in `p norms are all convex when p ≥ 1. Some common examples of

the unit circle in 2-dimensional (2-D) space are shown in Fig. 2.1.

Note that when p < 0 < 1, the resulting (2.2) defines a quasi-norm rather than a norm

function, because the triangular inequality no longer holds true. In addition, the resulting

unit circles become concave instead of convex (see Fig. 2.1). A special case is when p = 0,

where the definition in (2.2) is not valid any more.
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Figure 2.1: Illustration of unit circles in 2-D space.

2.1.3 Signal Sparsity

The sparsity of a signal is closely related to the `0 pseudo-norm of its vector form. The `0

pseudo-norm of a signal x ∈ Rn is defined as

‖x‖0 = |supp(x)|, (2.4)

where the operator | · | denotes the cardinality of a set, and supp(x) is the support of x

defined as

supp(x) = {i | x(i) 6= 0}. (2.5)
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Figure 2.2: Illustration of 1- and 2-sparse vectors in 2-D space.

Figure 2.3: Example of a 10-sparse signal in 100-dimensional space x ∈ S100
10 .

Namely, the `0 pseudo-norm of x measures the number of non-zero elements in the vector.

Examples of 1- and 2-sparse vectors with different lengths in 2-D space are shown in Fig.

2.2. Unlike the `p norms in (2.2) and (2.3), the `0 pseudo-norm contains no information

about the vector length or the signal energy but indicates its sparsity level. A signal x is

defined to be k-sparse if

‖x‖0 ≤ k, (2.6)

and the set of all k-sparse signals in Rn can be denoted as

Snk = {x ∈ Rn | ‖x‖0 ≤ k}. (2.7)

It is important to note that Snk−1 j Snk as indicated by (2.7). An example of a 10-sparse

signal in 100-dimensional space x ∈ S100
10 is shown in Fig. 2.3.

In practice, the digital samples of natural signals are never ideally sparse on any basis due

to the presence of various noise. However, their sorted coefficients often exhibit a power-law

decay property on a proper basis [Ca08]. Specifically, given x is the coefficient of a signal
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Figure 2.4: Example of (a) an EEG signal and (b) its top 10% coefficients (sorted by

amplitude) on the DCT basis.

α on an orthogonal basis Φ as α =Φx, the sorted coefficients x′ = sort(x) often obey a

power-law decay defined by

|x′(i)| ≤ C · i−q, (2.8)

where C is a constant and q ≥ 0. Equation (2.8) indicates that on a proper basis, a

small portion of the coefficients often carries a significant portion of the signal energy. An

example of an electroencephalography (EEG) signal and its top 10% coefficients on the

discrete cosine transform (DCT) basis are shown in Fig. 2.4. Note that the sorted coefficients

follow a fast power-law decay, and most of the signal energy is carried by only the top 5%

of the coefficients. Similarly, most natural signals are compressible in the way that the

insignificant coefficients can be disregarded with very limited information loss. In other

words, most natural signals can be well represented (with bounded errors) by a sparse vector

on a proper basis [Ca08, Don06]. The sparsity level k of the vector is determined by the

target approximation error ε and the power-law decay factor q. The larger value of ε and q,
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the lower k of the sparse vector, and the higher the compression rate.

2.2 Problem Definition

Sparse approximation (SA), a.k.a `0 pseudo-norm minimization, is the problem of finding

the vector with the least `0 pseudo-norm in the solution space defined by a linear equation.

The mathematical formulation of the SA problem is defined as

min ‖x‖0,

subject to y = Ax,
(2.9)

where x ∈ Snk is a sparse signal to be estimated, y ∈ Rm is an noiseless observation or a

measurement taken from the linear mapping of A (usually k � m < n), and A ∈ Rm×n is

an under-determined matrix called the dictionary, representing a dimensionality reduction

from Rn to Rm. The linear constraint in (2.9) is an under-determined equation, which has

infinite possible solutions. The SA problem is to find the sparsest vector out of the solution

space constrained by y = Ax.

In practice, the observation y is often contaminated by noise, denoted as β. The SA

problem of estimating x, given a noisy observation y = Ax+ β, is defined as

min ‖x‖0,

subject to ‖y −Ax‖2 ≤ ε,
(2.10)

where ε is the energy level of the noise, given by ‖β‖2 ≤ ε. Note that the second-order cone

constraint in (2.10) relaxes the solution space by taking into account the impact of noise.

One should note that x ∈ Snk implies only k elements of x are non-zero. The set of the

non-zero elements in x is called the active set, and the column vectors of A are called the

atoms. According to y = Ax (noiseless case), y can be decomposed as a linear combination

of only a few atoms of A. Consider A as a over-complete dictionary containing many atoms

that can possibly describe y, the SA problem is essentially to find the most sparse (compact)

representation by the dictionary out of all possible cases. In general, the sparsity level

(compactness) of x is an indication of how well the dictionary can describe the observation.
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The higher the sparsity, the better the dictionary does. In addition, the selective atoms

corresponding to the active set are often closely correlated to y, otherwise the representation

would not have been compact. By utilizing the principles behind sparse representation and

interpreting its indications accordingly, the SA problem has found wide use in a wide range

of applications. A few of the important applications will be discussed in the next section.

2.3 Applications of SA

Over the past decade, SA received a lot of attention in engineering research, especially in the

field of electrical engineering and computer science. SA has found substantial use in a wide

range of applications. In this chapter, we will review and discuss a few popular applications

where SA is hailed as the key enabler for unprecedented advances.

2.3.1 Compressive Sensing (CS)

Digital electronic industry today relies on Nyquist sampling theorem, which requires to

double the size (sample rate) of the signal representation in the Fourier basis to avoid

information loss. However, most natural signals have very sparse representations on some

other orthogonal (non-Fourier) basis. This implies a large redundancy in Nyquist-sampled

data, making compression a necessity prior to storage or transmission. Recent advances

in CS theory offer us an alternative data acquisition framework, which can greatly impact

power-starved applications such as wireless sensors. CS provides a universal approach to

sample compressible signals at a rate significantly below the Nyquist rate with limited

information loss. Therefore, CS techniques present great application values for improving

the data acquisition devices that are sensitive to cost, battery life, and portability.

2.3.1.1 Sampling and Reconstruction

The sampling process in CS is often modeled as a linear system given by

y = Ψα + β, (2.11)
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where α ∈ Rn is the digital sample of a signal from the Nyquist sampling, Ψ ∈ Rm×n is

a random matrix, β ∈ Rm is a random noise with bounded energy given as ‖β‖2 ≤ ε, and

y ∈ Rm is a linear measurement or sampled data. Given that α can be well represented by a

k-sparse vector x ∈ Snk on a orthogonal basis Φ as α = Φx, (2.11) can be also expressed as

y = Ax+ β, (2.12)

where A = ΨΦ ∈ Rm×n, is still a random matrix, called the sampling matrix, representing a

linear mapping from Rn to Rm. Since A is a fat matrix with m < n, the linear mapping also

represents a dimensionality reduction from n tom. Therefore, y is a compressed measurement

of the signal’s sparse coefficient x, which is encoded by the sampling matrix A.

Equation (2.11) and (2.12) indicate that applying a random projection on a compressible

signal is as if taking a random measurement on the sparse coefficient of the signal. This

means that by sampling the random measurements of a signal, one can indirectly access

the sparse domain information of the signal. This presents significant advantages over the

Nyquist framework (see Fig. 1.1) as long as the needed information can be exactly recovered

from the random measurements.

In order to recover x (or equivalently α as α = Φx) from y, the linear equation in (2.12)

must be solved (assuming β = ~0 for now). Note that (2.12) is an under-determined problem,

which has infinite possible solutions. However, by utilizing the prior knowledge that x ∈ Snk ,

it is possible to retrieve x from the solution space by finding the sparsest solution. It is

proven that a signal x ∈ Snk can be exactly recovered by solving the SA problem defined in

(2.9) as long as A satisfies the Null Space Property (NSP) of order 2k [Ca08, Don06].

A necessary and complete condition for (2.9) to work is that every x ∈ Snk must have an
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unique image through the linear mapping. In other words, for any two vectors x, x′ ∈ Snk ,

Ax 6= Ax′

⇔

A(x− x′) 6= 0,

⇔

(x− x′) /∈ Null(A),

(2.13)

must hold true. It can be proven that if x, x′ ∈ Snk , then x − x′ ∈ Sn2k. Therefore, a linear

mapping A uniquely represents all x ∈ Snk if and only if

Sn2k * Null(A). (2.14)

A matrix A is said to satisfy the NSP of order 2k if (2.14) applies. The NSP of order 2k

rigorously guarantees that if x ∈ Snk , there exists one and only one k−sparse vector in the

solution space of (2.12). Consequently, x can be exactly recovered by solving the SA problem

defined in (2.9).

A matrix A satisfies the Restricted Isometry Property (RIP) of order 2k if there exists

a small constant δk ∈ (0, 1) such that

(1− δk) ≤
‖A‖2
‖x‖2

≤ (1 + δk), (2.15)

holds true for all x ∈ Sn2k. Equation (2.15) assures that the length distortion of all 2k-sparse

vectors is strictly bounded by δk in the transformed space. The boundary of distortion

indicates that A acts like an orthonormal matrix when operating on 2k−sparse vectors—

it preserves the distance and angle between any two k−sparse vectors so that they are as

distinguishable in the transformed space as they are in the original space. Therefore, the NSP

and the RIP of order 2k guarantee the success of signal recovery even in a noisy environment.

When β 6= ~0, it is proven that a signal x ∈ Snk can be exactly recovered by solving the SA

problem with a second-order cone constraint given by (2.10) as long as A satisfies the NSP

and the RIP of order 2k, where ε is the upper bound of the square root of the noise energy,

expressed as ‖β‖2 ≤ ε. In fact, the RIP is a sufficient (but not necessary) condition of the

NSP [Ca08].
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2.3.1.2 Sampling Matrix

A sufficient condition for a normalized (column-wise) matrix A to satisfy the RIP of order

2k is

µ(A) <
1

2k − 1
, (2.16)

where µ(A) is the matrix coherence defined as

µ(A) = max
i 6=j

ai, aj
‖ai‖2 · ‖aj‖2

. (2.17)

Equation (2.16) and (2.17) state that the maximum correlation coefficient between any two

atoms of A must be bounded. Otherwise, the basis of A would carry too much mutual

information so that each component of the measurement will contain a lot of redundancy

rather than new information of the signal. From this point of view, randomness plays an

important role here, as independent random variables are hardly correlated. Therefore,

random matrices inherently have low coherence.

It is proven that a random matrix A ∈ Rm×n consisting of independent and identically

distributed (i.i.d.) variables following sub-Gaussian distributions, such as a random Gaussian

or a random Bernoulli matrix, can satisfy the RIP of order 2k with an overwhelming

probability if

m ≥ C · k · log(
n

k
), (2.18)

where C is a mysterious constant. Different from random Gaussian matrices, the entries

of random Bernoulli matrices are either 0/-1 or 1 with equal probability. Implementing the

linear mapping of such a matrix only requires addition operations, because the multiplication

with ±1 is just a sign manipulation. This merit makes random Bernoulli matrices the

preferred candidates for hardware implementation [Don06, Rom08, Da08]. In addition,

partial orthogonal matrices whose rows are randomly selected from a full size (n × n)

orthogonal matrix are also good candidates for potential hardware implementation [Da06].

One intrinsic advantage is that fast algorithms exist for computing the vector transformation

by partial orthogonal matrices.
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2.3.1.3 Comparison to The Nyquist Framework

Equation (2.18) has very important implications. In the context of CS, m is the measurement

dimension, representing the data size resulting from the compressive sampling, which is

proportional to the sampling rate fCS. n is the signal dimension, representing the data size

resulting from the Nyquist sampling, which is proportional to fNyquist. k is the sparsity level

of a signal on the sparsest domain. Therefore, k/n is the signal sparsity ratio, representing

the relative sparsity level of a signal, and m/n is the undersampling ratio that is equal to

fCS/fNyquist. Given that k � m < n, and k/n is usually fixed a ratio (at least with a

bounded range) for a certain type of signal, it can be inferred from (2.18) that

m ∝ k. (2.19)

Equation (2.19) means that the number of measurements needed in CS for successful recovery

is proportional to the signal sparsity level on the sparsest domain. The higher the sparsity

level, the fewer measurements are needed. When implemented in hardware, the relationship

in (2.19) directly translates into the proportionality given as

fCS ∝ k. (2.20)

The CS framework features several attractive advantages over the Nyquist framework.

First of all, the sampling rate in CS is always proportional to the size of the signal

presentation on its sparest domain (see (2.20)). In the Nyquist framework, the sampling

rate is required to double the size of the signal representation on the Fourier basis only.

Since most natural signals have much sparser representations on non-Fourier basis, the CS

framework allows for data sampling at a much lower rate than the Nyquist framework.

Another interpretation of (2.20) is that the sampling method in CS intrinsically performs

compression (random encoding) at the same time, which not only reduces the data size but

also may speed up the sampling process. Such a compressive sampling method enables the

indirect access to the information of interest in a signal with the least amount redundancy.

Second, the compressive sampling method is universal to all types of compressible signals

[Ca08, Don06]. Unlike the Nyquist framework, where unique compression methods are
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needed for different signals, the random encoding approach used in the CS framework is

independent on the sparse domain of a signal. This makes the various data fusion with

a unified hardware architecture practical. Last but not least, the compressive sampling

method is democratic in the way that each sampled data (random measurement) carries

similar amount of information, making it robust to sample loss or corruption [Ca08, Don06].

This property is a result from the low coherence of the sampling matrix guaranteed by the

randomness (see (2.16)), which implies that the compression rate in the CS framework can

become highly configurable given the target tolerance of reconstruction error.

Overall, the above-mentioned merits render CS a promising technology for realizing

configurable, cost-effective, miniaturized, and ultra-low-power data acquisition devices for

mobile and wearable applications [Da08, Ka11, Rom08, Ma09].

2.3.1.4 CS Systems in Real Life

The first proof of concept of a working CS system is the signal-pixel camera developed by

Durate et al. [Da08]. Compared to traditional cameras with a large image sensor array

containing millions of pixels, the single-pixel camera is able to record high-resolution images

with only a single photo image sensor, making the analog-to-digital (ADC) conversion much

more cost-effective. This presents a paramount application value to the expensive imagers

used for inspections in microscopy and life sciences such as integrated circuit imaging,

material inspection, human tissue analysis, etc.

There are also a few successful applications of CS theory in the fields of medical imaging

and biomedical engineering. The first one is sparse magnetic resonance imaging (MRI).

Lustin et al. [La07] discovered that SA algorithms can effectively reconstruct MRI images

by using 8 times fewer magnetic resonance samples as compared to the traditional MRI

reconstruction method, which leads to faster data acquisition. Kanoun et al. [Ka11]

implemented a CS-based data acquisition device for sampling ECG signals. Normally, ECG

signals have to be sampled at more than 100 Hz (Nyquist rate) in order to capture the

fine-grained details of heart status. This will produce a huge amount of data if it is to
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be monitored continuously over a long time. By adopting the CS framework in their ECG

device, the sampled data size is effectively reduced by 2×.

Looking into the future, we believe CS is a promising technology for realizing the low-

power sensor nodes for the 24/7 wireless health monitoring. On one hand, the compressive

sampling at sub-Nyquist rates allows for reduced data size for transmission at the sensor

nodes, thereby saving energy from wireless transmission. On the other hand, the simplicity

and universality of the compressive sampling process can simplify and unify the building

block pipelining in the sensor system and enable the unified sensing of a wide range of

biomedical signals as a whole. However, for the purpose of timely prediction and proactive

prevention desired by such an application, the sampled data must be recovered in real-time

for further processing on a mobile platform. The key challenge is that general purpose

processors cannot provide the real-time performance with the energy efficiency required by

mobile platforms. In Chapter 7, a silicon solution developed by this work will be presented.

2.3.2 Sparse Representation Based Classification (SRC)

Classification in an important problem in the field of machine learning. The most common

application is in biometrics, such as face, iris, and behavior recognition. Prior study has

revealed that feature selection is the most critical step in the standard signal classification

framework in terms of the recognition accuracy [Bis06]. However, the complexity of biological

features and the lack of prior knowledge about them create difficulties in selecting the optimal

features for different biometric classification problems.

Applying the principle of SA to classification problems opens the gate for solving this

problem [Wa09]. Consider a classification problem that has p different classes, and each class

i has ni training samples with each sample having m features. In total, there are n =
∑p

i=1 ni

training samples. If we collect all the training samples to form a training matrix A ∈ Rm×n

as

A = [A1, · · · ,Ap] =
[
a11, · · · , a1n1 , · · · , ap1, · · · , apnp

]
, (2.21)

where Ai is the training matrix for class i formed by the ni training samples, and aij is the
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jth training sample in class i, then a given test object y with unknown label can be well

approximated as a linear combination of the training samples as

y = Ax = A1x(Ω1) + · · ·+Apx(Ωp), (2.22)

where Ωi is the subset of indices that corresponds to class i. Note that the coefficient x is

expected to be sparse if the training samples are sufficiently representative. The principle

behind this statement is that a signal should be well reconstructed by using a few samples

of the same class with bounded reconstruction error. In this sense, the sparse reconstruction

coefficient x actually contains the information for determining the class label y.

In case of m < n, where we have infinite possible coefficients that can reconstruct y, the

sparsest one can be obtained by solving the SA problem given in (2.9). Then, the label ŷ

of y can be determined as the class that best reconstructs y with the lowest reconstruction

error as

ŷ = arg mini ‖y −Aix(Ωi)‖2. (2.23)

Simulation results show that the SRC framework exhibits higher recognition rate with less

dependency on feature selection methods as compared to conventional classifiers [Bis06].

There are plenty of successful applications of sparse approximation algorithms in

biometric classification. Wright et al. [Wa09] first proposed to use SA algorithms for human

face recognition problems. It is shown that the classification accuracy of SRC framework is

constantly better than conventional classifiers, such as principal component analysis (PCA),

linear discriminant analysis (LDA), with different features. Also, it is experimentally shown

that the performance of SRC framework is not sensitive to the feature selection method. Xu

et al. [Xa12] adapted the framework in [Wa09] with Bayesian formula for sensor location

and human activity co-recognition. Experimental results show that the recognition rate of

SRC framework reaches 87% on average, which is significantly improved compared the two

classical methods, Nearest Neighbor (74%) and Nearest Subspace (79%). Pillai et al. [Pa11]

applied the SRC framework with random projection to iris recognition, which achieved an

excellent accuracy of 99.15% with better robustness than other classification methods.
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2.3.3 Signal Denoising

Another natural application of SA algorithms is signal denoising. Noise is inevitable in

signals and their energy usually spans across the whole spectrum. Denoising has been an

important topic in signal processing for decades. Note that frequency filtering although can

remove the out-of-band noise components. The noise components in the band of interest

still exists and could deteriorate the signal-to-noise ratio (SNR). For complete denosing, a

global solution is needed.

Assume that in the formulation of (2.12), y is an observation of an ideally noise-free

signal ŷ such that y is contaminated by an additive noise β with bounded energy as ‖β‖2 ≤ ε.

Also, assume x̂ is the sparse domain coefficient of ŷ on basis A as ŷ = Ax̂. Then, given the

noisy observation y, x̂ can be identified by solving the SA problem in (2.10) or equivalently

the BPDN problem in (3.2). A clean signal ŷ can be then recovered as ŷ = Ax̂. The

signal denoising through BPDN relies on the fact that white noise usually has dense energy

spectrum on almost every basis. As a result, by finding the sparsest coefficient that can

approximate y with a certain error tolerance ε as shown in (3.2), the components of dense

noise will be consequently disregarded.

Gaudes et al. [Ga11] used BPDN to clean up the noise in functional MRI images, which

enables more accurate blood oxygenation level analysis. Compared to paradigm free mapping

techniques which reaches 95% recognition rate [Ca13], the BPDN method can detect all task-

related events in brain blood veins. Xu et al. [Xa06] proposed a complete solution based

on BPDN to remove the noise from electroencephalography (EEG) signals. With a realistic

head model processed by SA algorithms, the analytic correction rate is improved by 3-5×

under different SNR conditions. Similarly, the same concept can also be used to restore

signals from the corruption by partially gross errors or globally small errors [E 08, Ca10].

2.3.4 Data Separation

Data separation or decomposition is one of the most fundamental problems in signal

processing. It involves decomposing a signal or image into superposed components
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contributed by different sources. Consider symphonic music for instance, which can be

regarded as the superposition of acoustic components generated from different instruments.

Can we separate the contributions from each instrument as if it is played and recorded

separately? In practice, such a problem is often an under-determined problem due to the

lack of knowledge about the mixing weights and the original sources. However, literature

has shown that by using sparsity as prior knowledge, such separation tasks might be possible

through the help of SA algorithms [Sa05].

Assume that a signal y can be well represented as the superposition of d different

components with each coming from a unique source, expressed as

y = z1 + z2 + · · ·+ zd + β, (2.24)

where zi is the ith component, and β is an error vector that contains noise or mismatches.

With the similar concept introduced in Section 2.3.2, it is possible to find an orthogonal

basis or to construct a complete or even over-complete dictionary Ai for each zi such that

there exist a sparse representation xi on Ai for each zi, expressed as

zi = Aix. (2.25)

Replacing zi in (2.24) with (2.25), we can deliver (2.12) in a partitioned form as

y = [A1, · · · ,Ad]


x1
...

xd

+ β = Ax+ β, (2.26)

where A is an over-complete dictionary consisting of Ai, and x is a sparse vector composed

by xi. In this case, one can actually estimate x by solving the SA problem in (2.10), given

an object signal y and a customized dictionary A. As long as each Ai leads to a sparse

representation over the part of the signal it is contributing while being highly insufficient

in representing the remaining parts, each estimated xi will become a unique and sparse

representation of a separated part of the signal. The corresponding component zi can be

separated from y by back-projecting xi to the original domain given by (2.24).
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Note that each zi is a linear combination of a few atoms of Ai, indicating that

the separated component must be well described by the corresponding sub-dictionary.

Consequently, one can decompose or separate a certain component from a signal by carefully

designing the dictionary. For instance, the periodic and piece-wise-smooth components, such

as the texture and the contour part of an image, can be separated by incorporating a Gabor

system and a curvelet basis in the dictionary, respectively [Fa09]. Wavelet basis can be used

to separate the singular component among smoothness, such as a spike in a 1-D time series

or a point in a 2-D image [Kut12]. In addition, over-complete basis composed by selective

training samples can be used to separate the component that is closely correlated to the

selected samples [Wa09].
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CHAPTER 3

SA Algorithms

Because the objective function in (2.9) and (2.10) is non-convex, finding the true solution

to the SA problem is NP-hard [Ca08]. Fortunately, a rich variety of prior studies have

suggested that the SA problem can be translated into a more friendly form through a convex

relaxation of the objective function [Ca98, Tib96, Ta79]. Specifically, it has been proven

that the solution to the SA problem defined in (2.9) coincides with that of the `1 norm

minimization problem, a.k.a the basis pursuit (BP) problem, defined as

min ‖x‖1,

subject to y = Ax,
(3.1)

with an overwhelming probability [Ca08]. Similarly, in the case of a noisy environment,

the solution to (2.10) coincides with that of the basis pursuit denoising problem (BPDN),

defined as

min ‖x‖1,

subject to ‖y −Ax‖2 ≤ ε.
(3.2)

Note that the formulations in (3.1) and (3.2) are convex optimizations. Therefore, the

BP and BPDN problems can be solved by general convex optimization algorithms such

as interior point methods (IPM) [Ba04]. In addition, the BP problem in (3.1) is also a

linear programming (LP) problem, which can be solved by LP-based algorithms, such as

Simplex algorithm. However, these general methods exhibit extremely high computational

complexity with complicated data-flow control schemes and are not suitable for efficient

hardware implementations.

In this chapter, we review three different hardware-friendly SA algorithms. A benchmarking

study on the SA algorithms is also presented, based on which their potentials for efficient

25



Table 3.1: Pseudo-Code of the OMP Algorithm

Step Operation

1 r0 = y, x0 = ~0, d = ~0, Λ0 = ∅, t = 1.

21 c = AT rt−1, ϕ = arg maxi |c(i)|, Λt = Λt−1 ∪ ϕ.

3 x(Λt) = arg minα‖y −AΛtα‖22 .

4 rt = rt−1 −AΛtx(Λt), t = t+ 1.

5 If ‖rt‖2 ≤ ε, break, otherwise, go to step 2.

hardware implementations are discussed.

3.1 Hardware-Friendly Algorithms

3.1.1 Orthogonal Matching Pursuit (OMP)

OMP is one of the greedy algorithms that can efficiently solve the SA problems in (2.9) and

(2.10). OMP is able to approximate a k-sparse solution in exact k iterations [Ta07]. The

concept of OMP is built upon the following observation. When x ∈ Snk has only k non-zero

elements, the linear measurement y = Ax can also be represented as y = AΛx(Λ), where Λ

is the index set of the non-zero elements in x, called the active set. Therefore, to recover a

x ∈ Snk , we only need to recover the unknown part of x as x(Λ). Note that given AΛ ∈ Rm×k

and m > k, x(Λ) can be best estimated by solving the least-squares (LS) problem defined

by

min ‖y −AΛx(Λ)‖22 , (3.3)

as long as the active set Λ can be identified. Consequently, identifying the correct active set

is the key task in the OMP algorithm.

The pseudo-code of the OMP algorithm is described in Table 3.1. The algorithm starts

1Assuming all the atoms in A are normalized.
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from an initial estimation x0 = ~0 and a residue r0 = y − Ax0 = y. In iteration t, the

correlation coefficients c of all the atoms in A and the current residue rt−1 are computed as

c = AT rt−1. (3.4)

Then, the index of the single atom that has the largest correlation coefficient in magnitude

is added to the active set Λt−1, and a new estimation xt is made by solving the LS problem

shown in (3.3) based on the updated Λt. Unless the estimation error ‖rt‖2 meets the stopping

criterion, iteration t+1 will be performed for getting a better estimation. Note that in OMP,

the updated residue rt is always orthogonal to the active set atoms AΛt in iteration t. As a

result, zero correlation coefficients of these atoms should be expected in the next iteration.

This guarantees no active atom will be duplicated in the active set. In addition, the active

set size increases by one in every iteration, so does the sparsity of the estimated solution.

This incremental fashion enforces OMP to reconstruct x with as few elements as possible,

thereby approaching the sparsest solution to (2.9) and (2.10).

The OMP algorithm is of great interest to hardware implementations for two reasons.

First, the atom searching part of OMP (Step 2 in Table 3.1) only involves inner product

and scalar comparison operations. This part of the computation has low data dependency

and can be parallelized. In addition, comparison operations often have a low precision

requirement. Consequently, high-level quantization can be applied to significantly simplify

the computation load of the hardware implementation. Second, OMP holds a k-iteration-

solution property, meaning that the total number of iterations of the OMP algorithm is

bounded by k. This property is attractive in the sense that it sets a lower-bound on the

system throughput, especially for the applications featuring high signal sparsity (low k).

3.1.2 Homotopy

Homotopy [Da06, Ea04] is a fast algorithm that is developed from the least absolute shrinkage

and selection operator (LASSO) problem defined as

min ‖y −Ax‖22,

subject to ‖x‖1 ≤ q.
(3.5)
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or equivalently, the unconstrained version of the LASSO problem defined as

min
1

2
‖y −Ax‖22 + λ‖x‖1, (3.6)

where λ is a Lagrange multiplier. The LASSO problem has a close relationship to the BP

problem. Assuming the solution to the LASSO problem in (3.5) is xq for a given value of q,

then the solution path x̃q defined by

x̃q = {xq | q ∈ [0,+∞)}, (3.7)

starts from xq = 0 for q = 0 and converges to the solution to the BP problem in (3.1) as q

increases. Similarly, the solution path x̃λ of the unconstrained version of the LASSO problem

in (3.6), defined by

x̃λ = {xλ | λ ∈ [0,+∞)}, (3.8)

starts from xλ = 0 for large λ and converges to the solution to the BP problem in (3.1) as λ

approaches zero. The Homotopy algorithm is built upon the following observations. First,

the solution path x̃λ of (3.6) is polygonal or piece-wise linear. Second, the vertices of x̃λ

correspond to the change of the sparsity level of xλ. Specifically, either a new atom is added

to or an old atom is removed from the active set at each vertex of the solution path x̃λ.

Therefore, the Homotopy algorithm identifies the active set by tracing the solution path x̃λ

along the vertices as λ approaches 0.

The pseudo-code of Homotopy algorithm is described in Table 3.2. The algorithm starts

to trace the solution path x̃λ from x0 = ~0 with λ0 being the largest correlation coefficient

between y and the atoms of A. Note that when λ ∈ [λ0,+∞), x0 = ~0 is always the solution

to (3.6) [Da06]. When λ = λ0
−, the solution starts to change linearly, leading to the first

vertex on x̃λ. In iteration t, the solution path x̃λ remains linear within λ ∈ [λt, λt−1) as long

as the following two conditions

c(Λt) = λ · sgn(xλ(Λt)), (3.9)

2if x < 0, sgn(x) = −1, otherwise, sgn(x) = +1.
3ΛC

(t−1) is the absolute complement of Λ(t−1).
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Table 3.2: Pseudo-Code of the Homotopy Algorithm

Step Operation

1
r0 = y, d = ~0, c = AT r0, λ0 = maxi |c(i)|,

Λ0 = arg maxi|c(i)|, x0 = ~0, t = 1.

22 Solve α from AT
Λt−1

AΛt−1
α = sgn(c(Λt−1)), d(Λt−1) = α

33 v = AΛt−1
d(Λt−1),

4

ϕ− = arg mini∈Λt−1

−xt−1(i)
d(i)

s = mini∈Λt−1

−xt−1(i)
d(i)

, z− = max (s, 0),

ϕ+ = arg minj∈ΛC
t−1

min(λt−1+c(j)

1+aT
j v

, λt−1−c(j)
1−aT

j v
),

z+ = minj∈ΛC
t−1

min(λt−1+c(j)

1+aT
j v

, λt−1−c(j)
1−aT

j v
),

if z− < z+, z = z−, Λt = Λt−1 \ ϕ−,

otherwise, z = z+, Λt = Λt−1 ∪ ϕ−.

5
λt = λt−1 − z, xt = xt−1 + z · d,

rt = rt−1 − z · v, c = AT rt, d = ~0.

6 If λt ≤ ε or ‖rt‖2 ≤ ε, break, otherwise, go to step 2.

and

|c(ΛCt )| ≤ λ, (3.10)

are satisfied [Da06]. The operator (·)C in (3.10) is the absolute complement of a set.

Therefore, Homotopy algorithm finds the value of λt that leads to the next vertex on x̃λ

by checking the breaking points of condition (3.9) and (3.10). As λ decreases from λt−1, the

dissatisfaction of condition (3.9) infers that a bad atom should be removed from the active

set. In contrast, the dissatisfaction of condition (3.10) infers that a new atom should be

added to the active set. Note that the estimation xλ is updated at every vertex jump based

on (3.9). The whole algorithm terminates when either λt or the estimation error ‖rt‖2 is

small enough to produce an accurate estimate.

Different from OMP, Homotopy allows bad atoms to be removed from the active set so
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Table 3.3: Pseudo-Code of the IST Algorithm

Step Operation

1 r0 = y, x0 = ~0, c0 = AT r0, λ0 = maxi |c(i)|, t = 1.

24 xt = ηλt−1(xt−1 + ct−1), λt = µλt−1.

3 rt = y −Axt, ct = AT rt, t = t+ 1.

4 If ‖rt‖2 ≤ ε, break, otherwise, go to step 2.

that it is possible to fix the wrong decisions made in early stages. It is proven that, as λ

approaches zero, the solution produced by the Homotopy algorithm rigorously converges to

the solution to the BP problem in (3.1) [Da06]. Since Homotopy provides exactly the solution

set of the LASSO problems (3.5) for all the values of λ, it also provides the solution set of the

BPDN problem (3.2) for all the values of ε in the noisy case. Furthermore, the Homotopy

algorithm also features the k-iteration-solution property under a certain general conditions

[Da06]. The uniform recovery guarantee, OMP-like complexity, and the k-iteration-solution

property render Homotopy a strong candidate for the hardware implementation for accuracy-

driven applications.

3.1.3 Iterative Soft Tresholding (IST)

IST is another fast algorithm to search for the solution to the LASSO problem in (3.5)

[Ba08]. The pseudo-code of the IST algorithm is described in Table 3.3. Given the constraint

of y = Ax, an initial guess of x can be approximated by x1 = ηλ1(A
Ty) assuming A is a

nearly-orthogonal matrix, where the operator ηλ(·) denotes a certain thresholding scheme

that prunes the input vector by keeping the top-ranked elements and disregarding the rest.

4µ ∈ (0, 1].
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An example of the thresholding scheme is given by

ηλ(v(i)) =

 v (i)− λ, if |v (i)| > λ,

0, otherwise.
(3.11)

Since, the estimation error e1 = x− x1 can be characterized as

e1 ≈ ATAe1 = ATA (x− x1) = AT (y −Ax1) , (3.12)

a more accurate second estimation can be made by removing e1 as

x2 = ηλ1(x1 +AT (y −Ax1)). (3.13)

Similarly, the estimation error can be reduced gradually by iteratively thresholding the new

estimation given as

xt = ηλt−1(xt−1 +AT (y −Axt−1)), (3.14)

where the value of λ is also shrunk gradually by a multiplier µ ∈ (0, 1] given as

λt = µ · λt−1. (3.15)

Although the IST algorithm is much faster than LP-based algorithms, but extensive

simulations have shown that IST performs worse than LP-based algorithms when it comes

to the sparsity measurement tradeoff [Ma10b]. Fortunately, a slightly tuned version of the

IST algorithm that can perform as well as LP-based algorithms, called approximate message

passing (AMP), has been developed by D. Donoho et al. [Da09]. Different form OMP and

Homotopy, where a LS problem is involved in each iteration, IST algorithms only require

basic vector operations throughout the whole algorithm with a simpler data-flow control

scheme that involves fewer variables. Therefore, IST algorithms are of great interest to

efficient hardware implementations.

3.2 Algorithm Benchmarking

Other than the computational complexity, the performance of approximation algorithms

is also a critical consideration for practical applications. In this section, a benchmarking
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study is performed to compare the computational complexity and the sparse signal recovery

performance of the above-mentioned SA algorithms.

3.2.1 Experiment Setting

In the benchmarking study, the above-mentioned SA algorithms are tested for recovering

ideally sparse signals from the noisy observations obtained by random Bernoulli matrices.

Specifically, k-sparse signals x ∈ Snk are first generated based on i.i.d. Gaussian random

variables zx ∼ N (0, σ2
x). Note that the indices of non-zero elements in x are also randomly

selected. Random measurements are generated by sampling x through random Bernoulli

matricesA ∈ Rm×n as y′ = Ax. Then, the measurements y′ are contaminated by an additive

white Gaussian noise (AWGN) β as y = y′+β, where β is generated based on i.i.d. Gaussian

random variables zβ ∼ N (0, 10−0.1·SNRσ2
x) for setting a fixed SNR target. Last, the original

signals x are recovered by the SA algorithms given y and A. For the entire experiment, a

fixed setting of n = 512 is used. In order to observe the recovery performance with respect

to different undersampling ratios (m/n), m/n is swept from 0.1 to 0.9 with a step size of

0.05. Additionally, to understand the algorithm performance under different cases of signal

sparsity ratio (k/n) and SNR, a k/n = 0.03, 0.1, and 0.2 is used in representing the high-,

medium-, and low-sparsity case, respectively, and a target SNR of 20 and 100 dB is adopted

for the low- and high-SNR case, respectively. For each problem setting (n,m, k), 1000 trials

of the recovery test are performed using each algorithm. The results of each problem setting

are then averaged across all the trials.

The signal recovery tests are performed in MATLAB simulation running on a 2.4 GHz

Intel Core i7-4700MQ CPU. In the experiment, the IPM algorithm used is the log-barrier

solver from the `1-Magic package [Ca06] (available at link). The OMP and Homotopy

algorithms used are developed based upon the pseudo-code in Tables 3.1 and 3.2. The

IST algorithm used is the IST solver from the SparseLab package [Da06] (available at link).

The AMP algorithm used is the Generalized AMP (GAMP) solver from the GAMP package

[Ran11] (available at link). For the best recovery results, the distribution models of x and
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Figure 3.1: RSNR performance of the SA algorithms for a high signal sparsity ratio (k/n =

0.03) in the high-SNR case (SNR=100 dB).

β are used as prior knowledge in the GAMP solver. For comparison purposes, the CPU

execution time of each algorithm is recorded as a general indication of the computational

complexity of the algorithm. The recovery performance is measured by reconstruction signal-

to-noise ratio (RSNR) defined by

RSNR = 20 · log10 (
‖x‖2
‖x− x̂‖2

), (3.16)

where x is the original signal, and x̂ is the recovered estimation of x.

3.2.2 Benchmarking Results

The comparisons of the RSNR performance in the high-SNR case (SNR=100 dB) are shown

in Figs. 3.1, 3.2, and 3.3. For a high signal sparsity ratio (k/n = 0.03), IMP, OMP,
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Figure 3.2: RSNR performance of the SA algorithms for a medium signal sparsity ratio

(k/n = 0.1) in the high-SNR case (SNR=100 dB).

Homotopy, IST, and AMP is able to achieve a RSNR of over 78, 97, 87, 89, and 88 dB at the

undersampling ratio of 0.2, 0.15, 0.2, 0.3, and 0.15, respectively. For a medium signal sparsity

ratio (k/n = 0.1), IMP, OMP, Homotopy, IST, and AMP achieves a RSNR of over 75, 98,

84, 84, and 85 dB at the undersampling ratio of 0.4, 0.35, 0.4, 0.75, and 0.3, respectively. For

a low signal sparsity ratio (k/n = 0.2), IMP, OMP, Homotopy, and AMP achieves a RSNR

of over 80, 97, 87, 32, and 82 dB at the undersampling ratio of 0.6, 0.55, 0.65, 0.9, and 0.45,

respectively.

Overall, OMP presents a perfect denoising capability by constantly showing a RSNR

close to 100 dB. AMP shows the best undersampling capability with OMP being a very

close second. Homotopy also shows a constantly high RSNR performance at the cost of a

higher undersampling ratio. In comparison, IST has the worst undersampling capability,

34



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Undersampling Ratio (m/n)

R
S

N
R

 (
d

B
)

 

 

IPM
OMP
Homotopy
IST
AMP

Figure 3.3: RSNR performance of the SA algorithms for a low signal sparsity ratio (k/n =

0.2) in the high-SNR case (SNR=100 dB).

which results in a low RSNR performance for recovering low-sparsity signals.

The comparisons of RSNR performance in the low-SNR case (SNR=20 dB) are shown

in Figs. 3.4, 3.5, and 3.6. In this case, IMP fails the recovery test in most trials. In

addition, higher undersampling ratio will always improve the SNR performance for the other

algorithms except for recovering low-sparsity signals. For a high signal sparsity ratio (k/n =

0.03), OMP, Homotopy, IST, and AMP is able to achieve a RSNR of over 10 dB at the

undersampling ratio of 0.15, 0.25, 0.2, and 0.15, respectively. For a medium signal sparsity

ratio (k/n = 0.1), OMP, Homotopy, IST, and AMP achieves a RSNR of over 10 dB at

the undersampling ratio of 0.35, 0.45, 0.45, and 0.3, respectively. For a low signal sparsity

ratio (k/n = 0.2), OMP, Homotopy, and AMP achieves a RSNR of over 10 dB at the

undersampling ratio of 0.55, 0.6, 0.75, and 0.45, respectively. Overall, AMP still shows the
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Figure 3.4: RSNR performance of the SA algorithms for a high signal sparsity ratio (k/n =

0.03) in the high-SNR case (SNR=20 dB).

best undersampling capability. Different from the high-SNR case, none of the algorithms

shows a perfect denoising capability (close to 20 dB RSNR). In comparison, AMP has a

slightly better RSNR performance than the other algorithms.

In the context of CS, a successful recovery with a lower undersampling ratio generally

indicates that the data acquisition can be performed at a lower sampling rate with less

energy consumption. Therefore, a good undersampling capability of the SA algorithm is

especially attractive from the application perspective. In addition, for efficient hardware

implementations, a low computational complexity of the SA algorithm is also preferred.

Figure 3.7 compares the SA algorithms on the plane of undersampling capability versus

computational complexity in different signal SNR and sparsity ratio cases. The undersampling
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Figure 3.5: RSNR performance of the SA algorithms for a medium signal sparsity ratio

(k/n = 0.1) in the high-SNR case (SNR=20 dB).

capability is measured as the lowest m/n ratio required for achieving the best or a target

RSNR for each algorithm. As previously mentioned in Section 3.2.1, the computational

complexity is generally indicated by the execution time of each algorithm on the CPU. For

comparison purposes, all the numbers are normalized to those of the IPM algorithm.

The benchmarking results show that OMP is the preferred algorithm for recovering high-

and medium-sparsity signals due to 1) the high RSNR performance, 2) the low computational

complexity, and 3) the good undersampling capability. For recovering low-sparsity signals,

AMP is the preferred algorithm because of 1) the high RSNR performance especially under

a low SNR condition, 2) the lower computational complexity in this case, and 3) the best

undersampling capability overall.
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Figure 3.6: RSNR performance of the SA algorithms for a low signal sparsity ratio (k/n =

0.2) in the high-SNR case (SNR=20 dB).

In this work, the OMP algorithm is chosen for the hardware implementation for two main

reasons. First, the main target application of this work deals with bio-medical signals that

generally have a high or medium signal sparsity (see Section 1.2 for discussions), where OMP

shows the best overall performance. Second, the OMP algorithm does not depend on the

tuning of step-size variables or the prior knowledge about the signal’s distribution model for

achieving the best RSNR performance, making it very convenient to use in our application

scenarios.
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CHAPTER 4

Algorithm Design

For achieving the best efficiency-flexibility trade-off of the VLSI implementation of a complex

algorithm, such as OMP, algorithm and architecture must be co-designed in an intertwined

way rather than either domain being optimized separately. In this chapter, we present the

algorithm design of the reformulated OMP. Specifically, the complexity characteristic of the

original OMP algorithm is first analyzed. Then, three algorithm reformulation techniques

are incorporated to (1) reduce the computational complexity of the LS task from O(mk3)

to O(mk2) and (2) break down and simplify the LS task into 4 basic linear algebra (BLA)

operations per iteration. Additionally, a hierarchical atom searching method is proposed to

greatly reduce the computational complexity of the atom searching (AS) task.

4.1 Complexity Analysis of OMP

There are three main tasks performed in each iteration of OMP: the AS task for updating

the active set (Step 2 in Table 3.1), the LS task for computing the updating direction (Step

3 in Table 3.1), and the estimation update (EU) task for updating the estimation along that

direction (Step 4 in Table 3.1). Table 4.1 summarizes the number of floating-point operations

(FLOPs) involved in each task at the iteration t, where t = {1, 2, · · · , k} for x ∈ Snk . Note

that the FLOP count is calculated assuming that Cholesky factorization is used for solving

the LS problem in (3.3) [Van13]. As shown in Table 4.1, the AS task involves 2nm FLOPs

in each iteration. Note that n > m � k in the context of CS. Therefore, the AS task

constantly contributes a significant portion of the computations. On the other hand, the

1Only the dominant factors are shown.
2Assuming Cholesky Factorization is used to solve the LS problem.
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Table 4.1: Computations of OMP at Iteration t

Task FLOPs 1

AS 2nm

LS2 mt2 + t3/3

EU 2mt

FLOPs involved in the LS task increase quadratically with t as mt2 + t3/3. Consequently,

the computations in the LS task become dominant when t >
√

2n. The computations in the

EU task only increase linearly with t as 2mt. Overall, the total computational complexity

of OMP (over k iterations) is given by 2mnk +mk2 +mk3/3 + k4/12.

An example of the computation breakdown of OMP with a problem setting of n =

500,m = 175, k = 50 is illustrated in Fig. 4.1. In this example, the computations in the LS

task grow dramatically as iteration t goes up and surpass that of the AS task when t ≥ 32.

In terms of total FLOPs, the AS task is the main contributor, which is almost on par with

the LS task, and the EU task is negligible. Specifically, the AS, LS, and EU task contributes

to 51%, 46%, and 3% of the total computation in this example.

Computational complexity indicates the total computation workload, but not necessarily

the actual hardware complexity. As VLSI design also includes memory and control units,

the complexity of VLSI implementations also depends on the diversity of operation and the

complexity of data flow control and scheduling. In our analysis, these factors are qualitatively

referred to as operational complexity. The main operation in the AS and EU tasks is simply

inner product, which has low operational complexity. On the contrary, the LS task requires

complex operations such as matrix factorization, which involves a variety of basic operations

in series with a complicated data flow pattern and a high data dependency, thereby having

high operational complexity.

Figure 4.2 illustrates the overall complexity characteristic of the OMP algorithm. Note

41



0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 10

5

Iteration t

FL
O
P
s

 

 

AS

LS

EU 51% 46%

3%

Total FLOPs

Figure 4.1: Illustration of the computation breakdown of OMP (n = 500,m = 175, k = 50).

that the AS and LS tasks both have high computational complexity. In addition, the LS

task also features high operational complexity, creating a great challenge for the hardware

design. High computational complexity indicates a large computation load for the processing

unit and potentially a low system throughput. High operational complexity implies 1) large

memory space and complicated memory control scheme are needed, 2) specialized processing

units are needed, and 3) hardware resource sharing is difficult. In order to achieve an efficient

VLSI implementation, actions must taken on the algorithm level to further simplify the

complexity characteristic of OMP before going into the architecture design.
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Figure 4.2: Complexity characteristic of OMP.

4.2 Algorithm Reformulation

4.2.1 Square-Root-Free OMP

There are two steps in the OMP algorithm involving square-root operations. Specifically, at

iteration t, t square-root operations are required for computing the Cholesky factorization

matrices in the LS task, and a single square-root operation is involved in computing the

stopping criterion (Step 5 in Table 3.1). An explicit implementation of such non-linear

operation is not cost-effective, as it cannot be reused by the other tasks and will have a

very low utilization rate. Therefore, we choose to eliminate the square-root operations in

the reformulated algorithm.

The solution to the LS problem in (3.3) can be computed by solving the equivalent normal

equation given by

Φx(Λ) = AT
Λy, (4.1)
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where Φ ∈ Rk×k = AT
ΛAΛ is a positive-definite matrix. By using Cholesky factorization, Φ

can be decomposed as

Φ=L′L′
T
, (4.2)

where L′ ∈ Rk×k is a lower-triangular matrix. Note that square-root operations are involved

in computing the diagonal elements of L′ in the conventional Cholesky factorization method

[Van13]. To avoid this, we adopt an alternative Cholesky factorization method [Yan11],

which essentially eliminates square-root operations by taking out the square-rooted factors

from both L′ and L′T as

Φ=(L′D′
−1

)(D′D′)(D′
−1
L′

T
)=LDLT , (4.3)

whereD′ ∈ Rk×k is a diagonal matrix that contains all the square-rooted factors and satisfies

diag(D′) = diag(L′), L ∈ Rk×k is a lower-triangular matrix whose diagonal elements are all

ones with L=L′D′−1, and D ∈ Rk×k is a diagonal matrix that is free of square roots with

D=D′2. By substituting Φ with (4.3), the normal equation in (4.1) becomes

LDLTx(Λ) = AT
Λy. (4.4)

Equation (4.4) can be solved through a series of vector operations. First, matrix-vector

multiplications are required to compute

u = AΛ
Ty. (4.5)

Then, forward substitution (FS) is needed for solving v from

Lv = u. (4.6)

As D is a diagonal matrix, divisions are involved in computing

w = D−1v. (4.7)

Lastly, backward substitution (BS) is required for computing x(Λ) from

LTx(Λ) = w. (4.8)

The stopping criterion ‖rt‖2 ≤ ε can be reformulated as rt
T rt ≤ ε2. Overall, the OMP

algorithm is free of square-root operations after the reformulation.
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4.2.2 Incremental Cholesky Factorization

In each iteration of OMP, only a single atom is added to the active set. More specifically, at

iteration t, we have

Λt = Λt−1 ∪ ϕ, (4.9)

and

AΛt = [AΛt−1
aϕ], (4.10)

where ϕ is the index of the new active atom. According to (4.10), the square matrix Φt ∈

Rt×t in (4.1) has Φt = AΛt

TAΛt and can be partitioned as

Φt =

 Φt−1 AT
Λt−1

aϕ

aϕ
TAΛt−1

aϕ
Taϕ

 , (4.11)

where Φt−1 ∈ Rt−1×t−1 = AΛt−1

TAΛt−1
is from iteration t− 1, AT

Λt−1
aϕ ∈ Rt−1 is a column

vector, and aϕ
Taϕ is a scalar. Note that (4.11) indicates that at iteration t, the Φt in the

normal equation can be constructed from Φt−1 by adding both a new row and column. In

correspondence to (4.11), the Cholesky factorization matrices in (4.3) must hold the same

property, which leads to

LtDtLt
T=

 Lt−1 ~0

l21
T 1

 Dt−1 ~0

~0T d22

 Lt−1 ~0

l21
T 1

T , (4.12)

where l21 ∈ Rt−1 is a column vector and d22 is a scalar. By expanding the equation

Φt=LtDtLt
T with (4.11) and (4.12), we can derive

Lt−1Dt−1l21 = AT
Λt−1

aϕ, (4.13)

and

d22 = aϕ
Taϕ−l21

T
Dt−1l21, (4.14)

respectively. Note that l21 can be computed using the same method as (4.4) through a series

of matrix-vector multiplication, FS, and divisions. Equation (4.11) and (4.12) imply that the

Cholesky factorization in OMP can be computed in an incremental fashion: in iteration t,

the new elements of the factorization matrices (associated with the newly added active atom)

45



can be computed based upon the factorization matrices from iteration t − 1. Therefore, in

the reformulated OMP, the Cholesky factorization matrices are updated incrementally by

computing (4.13) and (4.14) only in each iteration.

4.2.3 Incremental Estimation Update

At iteration t of the original OMP algorithm, a new estimation xt is made by solving (4.1),

and the residual rt is updated by

rt = y −AΛtxt(Λt). (4.15)

According to (4.1) and (4.15), we can derive that

AΛt

T rt = AΛt

Ty −AΛt

TAΛtxt(Λt) = ~0. (4.16)

Equation (4.16) indicates that the updated residual rt is always orthogonal to the current

active atoms AΛt in OMP. In our design, we take into account this special property as prior

knowledge to further simplify the LS task.

By substituting y in (4.1) with rt−1 + AΛt−1
xt−1(Λt−1) according to (4.15) describing

iteration t− 1, we can deliver the equivalent (4.1) at iteration t as

Φtx(Λt) = AT
Λt
rt−1 +AT

Λt
AΛt−1

xt−1(Λt−1). (4.17)

From the superposition property of linear systems, we know that x(Λt) in (4.17) is the

superposition of the solution x1(Λt) and x2(Λt) to the separate equation

Φtx1(Λt) = AT
Λt
rt−1, (4.18)

and

Φtx2(Λt) = AT
Λt
AΛt−1

xt−1(Λt−1), (4.19)

respectively. Note that the right hand side (RHS) of (4.18) is part of the correlation

coefficient c(Λt) that is already computed in the AS task. Additionally, the left hand side

(LHS) of (4.19) is equivalent to the RHS. Therefore, the solution x2(Λt) to (4.19) is trivial
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and can be derived as

x2(Λt) =

 x(Λt−1)

0

 , (4.20)

Based upon the above observations, we derive an incremental estimation update method

as the following two steps. First, the updating direction d can be computed by solving the

new normal equation

Φtd(Λt) = c(Λt), (4.21)

where c(Λt) ∈ Rt = AΛt

T rt−1. Second, rt and xt can be updated based upon d and their

previous value rt−1 and xt−1 as

rt = rt−1 −AΛtd(Λt), (4.22)

and

xt = xt−1 + d, (4.23)

respectively. Note that from (4.10) and (4.16) describing iteration t− 1, we can derive that

c(Λt)=

 AΛt−1

T rt−1

aϕrt−1

 =

 ~0

aϕrt−1

 . (4.24)

Equation (4.24) indicates that c(Λt) must be a 1-sparse vector that has only one non-zero

element. By utilizing this prior knowledge, the computation step in solving (4.21) can be

greatly simplified. Specifically, the matrix-vector multiplications in (4.5) and the subsequent

FS and divisions in (4.6) and (4.7) can be completely bypassed.

With all of the introduced reformulation techniques applied, the pseudo-code of the

reformulated OMP algorithm is described in Table 4.2.

4.2.4 Complexity Reduction

Table 4.3 summarizes the FLOP count of the reformulated OMP at iteration t. Overall, the

total computational complexity of the reformulated OMP (over k iterations) gets reduced

3Assuming all the atoms in A are normalized.
4Step 6b is a memory operation.
5Only the dominant factors are shown.
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Table 4.2: Pseudo-Code of the Reformulated OMP Algorithm

Task Step Operation

1 Initialize: r0 = y, x0 = ~0, d = ~0, Λ0 = ∅, t = 1.

2 While ‖rt−1‖22 ≤ ε2 or t ≤ tmax, do

AS 33 c = AT rt−1, ϕ = arg maxi |c(i)|, Λt = Λt−1 ∪ ϕ.

LS

4 h = AT
Λt
aϕ

5 Lt−1w = h(1 : t− 1), l21 = w./diag(Dt−1)

6a d22 = h (t)− l21
Tw

6b4
Lt =

 Lt−1

l21
T

~0

1

, Dt =

 Dt−1

~0T

~0

d22


(L1=1, D1 = aϕ

Taϕ)

7 Lt
Td =

 ⇀

0

c(ϕ)/ d22


ES 8 xt = xt−1 + d, rt = rt−1 −AΛtd, t = t+ 1.

End while, return xt

to 2mnk + 2mk2 + 2
3
k3. In comparison to Tables 3.1 and 4.1, the algorithm reformulation

techniques applied not only reduce the computational complexity of the LS task (over k

iterations) from O(mk3) to O(mk2) but also break down the LS problem and simplify it into

4 BLA operations per iteration (Steps 4–7 in Table 4.2). Specifically, the reformulated LS

task only involves a few inner products, a single FS for updating the Cholesky factorization

matrices, and a single BS for computing the updating direction in each iteration.

For comparison purposes, the same example of the computation breakdown shown in Fig.

4.1 is re-plotted in Fig. 4.3 based upon the reformulated OMP algorithm (Table 4.2). By

taking advantage of the algorithm reformulations, the total computation of the LS task gets

reduced by almost 17× as compared to the original OMP algorithm in this example. As a

result, the LS task now has much reduced computational complexity, that is as low as the
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Table 4.3: Computations of the Reformulated OMP at Iteration t

Task FLOPs 5

AS 2nm

LS 2mt+ 2t2

EU 2mt

EU task, and the AS task dominates the total computation. Specifically, the AS, LS, and

EU task of the reformulated OMP contributes to 90%, 5%, and 5% of the total computation

in this example.

Figure 4.4 illustrates the overall complexity characteristic of the reformulated OMP

algorithm. The AS task contributes to over 90% of the total computation with simply inner

products, presenting high computational but low operational complexity. Consequently,

the AS part of the VLSI architecture design is the potential throughput bottleneck of

the system. Sufficient level of parallelization must be applied. Different from the case

in Fig. 4.2, the LS task in the reformulated OMP now has low computational and medium

operational complexity. This characteristic indicates that the LS part potentially limits the

efficiency of the VLSI design. This is because any specialized hardware unit designed for

performing the LS task will have a very low utilization rate but contributing leakage power

and silicon area. To improve both the area and energy efficiency, it is desired to share as

much computing resource for the LS task with the other tasks as possible. Fortunately, the

reduced complexity of the LS task resulting from the algorithm reformulation techniques

greatly facilitates resource sharing in the architecture design.

4.3 Hierarchical AS

In VLSI design, quantization is an important factor that has great impact on almost every

aspect of the hardware design. However, this factor is often overlooked at the algorithm
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Figure 4.3: Illustration of the computation breakdown of the reformulated OMP (n =

500,m = 175, k = 50).

level. To be more specific, quantization noise may have different impact on different

operations in the same algorithm. For instance, a comparison operation typically has much

higher tolerance to quantization noise than addition or multiplication. This is because in

a comparison operation, we only care about the relative magnitude rather than the exact

value of the operands.

One should note that although the AS task of the reformulated OMP contributes to over

90% of the total computation, all the information needed from this task is simply which atom

has the biggest correlation coefficient with the residue (see Step 3 in Table 4.2). In other

words, every inner product computed in the AS task is followed by a magnitude comparison.

Therefore, we can infer that the whole AS task is actually insensitive to quantization noise,
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Figure 4.4: Complexity characteristic of the reformulated OMP.

and large level of quantization can be applied to further reduce the computational complexity

of the AS task. The secret of quantization is that the magnitude information resides in the

most significant bit (MSB) of numbers. As shown by the example of comparing two inner

products in Fig. 4.5, by using only the MSB of each number to compute the inner product,

we are still able to tell that the top inner product has a bigger magnitude than the bottom

one, but of course, with slightly reduced confidence.

Based upon this observation, we propose a hierarchical AS method in two steps. The

pseudo-code of the hierarchical AS method is shown in Table 4.4. First, a coarse-grain

searching is performed by computing the full list of atoms inA with w MSB only (assuming a

fixed-point data format). The coarse-grain searching can effectively reduce the computational

complexity of the AS task for an efficient VLSI implementation. In order to guarantee the

accuracy, a second round of fine-grain searching is performed by computing a much shorter

list of atoms, which is essentially the top ranked j atoms from the coarse-grain searching,
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Figure 4.5: Illustration of comparing two inner products using MSB only.

Table 4.4: Pseudo-Code of the Hierarchical AS Method

Step Operation

1
Compute c = AT rt−1 with w MSB only,

c′ = sort(c), Ω = {the index set of the top j elements in c′ }

2
Compute c = A(Ω)T rt−1 with full precision,

ϕ = arg maxi |c(i)|, Λt = Λt−1 ∪ ϕ.

with full precision.

Note that the proposed method has two important user parameters. w is the data word-

length to use in the coarse-grain searching, and j is the size of the fine-grain searching.

For each signal recovery test, there exists a minimum size of j that guarantees the correct

searching result for a given value of w. Consequently, j can be considered as a random

variable for a given value of w in practical applications. For the best VLSI implementation

results, Monte Carlo simulations must be conducted by the designer in order to determine

the optimal values of w and j. Figure 4.6 shows an example of the design space of w and

j extracted from the reconstruction test of compressively sampled ECG signals. Figure 4.6

is a box plot that presents the statistics of j that guarantees the correct searching result
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Figure 4.6: The design space of the hierarchical atom searching method extracted from the

reconstruction test of compressively sampled ECG signals.

with respect to w when a fixed-point data format is used. Overall, by using only 4 MSB

(including 1 sign bit) in the coarse-grain searching, the proposed hierarchical AS method

effectively reduces the size of the fine-grain searching to only < 5% of the total atoms

without any degradation in accuracy.

The proposed hierarchical AS method presents two advantages for the VLSI implementation.

First, one could improve the throughput of the design by reconfiguring the same arithmetic

unit to take more data in parallel (each with MSB only). Alternatively, one could also

improve the efficiency of the design by reducing the logic complexity.
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CHAPTER 5

VLSI Architecture Design

In this chapter, we present a scalable VLSI architecture of a SA engine soft-IP core that

can be implemented on reconfigurable logic devices, such as field-programmable gate arrays

(FPGAs), or system-on-chips (SoCs) for performing real-time and energy-efficient SA. The

soft-IP core supports a floating-point data format and 10 design parameters, providing

the necessary flexibility for application-specific customization. Taking advantage of the

algorithm-architecture co-design based upon the reformulated OMP algorithm, the proposed

VLSI architecture features high parallelism, scalability, and configurability, in which all the

computing resources are completely reused for performing the AS, LS, and EU tasks. As a

result, the implementation of the SA engine achieves a 100% utilization of the computing

resources and high area efficiency.

5.1 System Architecture

The system architecture of the SA engine is shown in Fig. 5.1. The computing resources

in the system architecture include the vector and scalar processing cores (VC and SC).

In order to support a flexible throughput with high energy efficiency, multiple processing

elements (PEs) are coordinated in parallel through the interconnect block (IB) in the VC.

Increasing the parallelism of PEs allows the designer to trade-off supply voltage in the

circuit design to gain energy-efficiency while maintaining the real-time throughput. When

the IB is enabled, PEs are configured to perform inner product. Otherwise, PEs can be

configured to support element-wise addition, multiplication, multiply-accumulation (MAC),

and vector-scalar product. SC supports scalar comparison, addition, accumulation, and
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Figure 5.1: System architecture of the SA engine.

division. Depending on the top-level data-path configuration, SC can either post-process a

selective result from the VC through the VC-multiplexer (VC-MUX) or process independent

data from memories in parallel.

For efficient local memory access, a dedicated cache is assigned to each PE in the VC

and the SC, respectively. To facilitate the data communication between VC and SC in long

delay lines, such as carrying over intermediate results between different tasks or different

iterations of the algorithm, a shared cache that is accessible to all the PEs in the VC and

the SC is deployed. In addition, a core-level shift-register logic (SRL) unit (Core-SRL) is

used as a shortcut to connect the SC with all the PEs. This customized feedback path

effectively reduces the loop latency between VC and SC to 3–12 cycles (depending on the
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pipeline stage settings of multipliers and adders), thereby greatly accelerating the iterative

BLA operations such as FS and BS. A separate memory unit is dedicated for storing the

index of the active set. The controller of this memory unit is also responsible for accessing

the data in the sampling matrix A from external memories.

To allow the processing of different signal representations, a parallelized fixed-to-floating-

point conversion interface is available at the external input of the VC. The SA engine uses

first-in-first-out (FIFO) interfaces to handle the flow control at the data inputs and outputs.

Specifically, a handshaking protocol consisting of a “valid” and a “ready” signal is used to

avoid data over-flow. The “valid” signal is generated if the sender’s buffer is not (almost)

empty, indicating that the data is valid at the output port of the sender. The “ready” signal

is generated when the the receiver’s buffer is not (almost) full, implying that the data can

be captured at the next clock edge. Only when both the signals are asserted, data can be

transferred at the next clock edge.

Note that there are several data-paths bridging the VC and SC in the system architecture.

These include a feedthrough path realized via the VC-MUX, a feedback path realized using

the Core-SRL, and a bidirectional path realized through the shared cache. The complex

data flow of the reformulated OMP is enforced by the customized local memory controllers

(PE-$-CTRL and SC-$-CTRL), which are coordinated by a top-level finite-state machine

(FSM) (Controller). Note that the memory based data-flow-control schemes are efficient

in handling data reordering operations, such as matrix transpose, since most of the data

movements can be realized by pointer manipulations.

5.2 Computation Cores

5.2.1 Vector Core (VC)

The block diagram of the PE in the VC is shown in Fig. 5.2. The PE integrates two basic

arithmetic units in a pipeline: a multiplier and an adder. Flexible data-path connections are

realized by inserting multiplexers at each input of the arithmetic units. Therefore, the PE can
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Figure 5.2: Block diagram of the PE in the VC.

be dynamically configured to execute different operations or take different operands through

the control bits of the multiplexers. Note that the multiplier can be bypassed by setting

one of its input to 1, and the adder can be bypassed by resetting the SRL unit to output

0. Therefore, the PE can perform a selective set of operations, including multiplication,

recursive multiplication, power operation, addition, accumulation, and MAC.

On the VC level, multiple PEs are configured to support vector operations, such us

vector addition, element-wise multiplication, element-wise MAC, and vector-scalar product,

in a single-instruction-multiple-data (SIMD) fashion. To enable folded processing of long

vectors, a SRL unit is inserted in the feedback path of each PE. The folding factor of the

processing can be controlled by the latency of the SRL unit. In addition, the PEs can be

coordinated through the interconnects inside the IB for computing vector inner products

as illustrated in Fig. 5.3. Basically, the IB utilizes the built-in registers and multiplexers

inside the PEs to connect the adders in different PEs into a pipelined adder tree, so that the

element-wise products can be added up to a scalar. Note that the inner product computation

in this mode is highly scalable. For a different vector length, the corresponding result can be

selected by the VC-MUX at a different pipeline stage. Different from the other supported

vector operations, computing the folded inner product of long vectors needs an additional

accumulator at the output of VC-MUX, which is integrated into the SC.
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Figure 5.3: Illustration of the interconnects of 128 PEs for computing vector inner products.

5.2.2 Scalar Core (SC)

The block diagram of the SC is shown in Fig. 5.4. The SC integrates a comparator, a

sequential divider, and two adders with configurable data-paths. Similar to the VC, the

SC can also be configured to perform a variety of tasks through the control bits of the

multiplexers. When the SC is cascaded to the VC as a processing group, complex operations,

such as correlation sorting, FS, and BS can be executed.

The adder at the first stage that connects to the VC-MUX plays critical roles in two

tasks. First, it accumulates the result from the VC for performing folded inner product.

Second, it adds the RHS of a linear equation to the LHS for performing FS and BS. The

arithmetic units at the second stage are mainly used to post-process the results from the

VC. For example, the sequential divider can be used to handle the inverse of a diagonal

matrix as in (4.7). The comparator can be used to perform sorting tasks, such as sorting

the correlation coefficients in the (hierarchical) AS task. The other adder is responsible for

updating the results of folded inner product as in the Step 6a of Table 4.2, or to update

independent data as in (4.23).
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5.3 Data Memory

For the CS reconstruction of different bio-medical signals, the sampling matrix A is often

different due to the variety of their sparse domain. However, A serves as fixed coefficients

and needs not to be updated during the reconstruction for the same problem. In order to

accommodate the CS reconstruction on different basis, A must be explicitly stored in either

on-chip or external memory. Note that all the elements in A need to be fully accessed

once during the AS task in every iteration. This leads to a high memory access intensity.

Specifically, one data has to be accessed per two FLOPs on average. Consequently, the

memory bandwidth B required by the VC for parallel processing can be characterized as

B = fPE ·
NPE

2
·W · p, (5.1)

where fPE is the operating frequency of PEs, NPE is the number of FLOPs performed by

a single PE in each clock cycle (NPE = 2 in the reformulated OMP), W is the data word-

length, and p is the parallelism (number of PE) of the VC. Note that the system throughput
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will become memory-bounded if the RHS of (5.1) is greater than the LHS. In this case,

further increasing fPE or p will not boost the throughput but only degrade the power and

area efficiency of the design. On the other hand, when the LHS of (5.1) is greater, the

available memory bandwidth in the system is not fully utilized. Further speed-up can be

achieved through more parallelization of PE or more pipelining if applicable. Therefore,

it is critical to balance the memory bandwidth to match the system throughput following

(5.1) if on-chip memories are used. In our FPGA implementations, we utilize the abundant

block RAM (BRAM) resources on chip to realize a balanced system performance for parallel

processing.

Different from A, all the other variables in the reformulated OMP algorithm need to be

updated in every iteration. At iteration t, the residual rt, the active set Λt, the estimation

xt, and the Cholesky factorization matrices L, D are updated based upon their values from

iteration t− 1. Consequently, these variables cannot share the same memory space through

time-multiplexing as they all have to be carried over to the next iteration. In our design,

rt and L are stored in the PE caches since their parallel access is required. xt and Λt is

stored in the SC cache and the active set memory, respectively. Note that D is a special

case because its sequential access is needed for (4.13), while the parallel access is required by

(4.14). Therefore, the diagonal elements of D are stored both across PE caches and in SC

cache. Differently, the remaining variables in the reformulated OMP are all temporary. To

maximize the memory utilization, they are buffered as intermediate results that share the

same memory space in the shared cache.

5.4 Memory Control Scheme for Handling Cholesky Factorization

In the LS task of the reformulated OMP algorithm, a FS and a BS (see (4.6) and (4.8)) need

to be performed in each iteration for realizing Cholesky factorization. Note that column and

row access of a triangular matrixL ∈ Rk×k is required for performing FS and BS, respectively.

As accessing a row of L is equivalent to accessing a column of LT , a straightforward memory

mapping scheme of PE-caches is to store both L and LT as a regular square matrix as
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Figure 5.5: Data mapping scheme of PE caches in the mirror mode for handling Cholesky

factorization.

illustrated in Fig. 5.5.

We refer to this memory mapping scheme as the mirror mode. In the mirror mode,

columns of L and LT can be accessed at the same address of each PE-cache in an ascending

and descending order, respectively. For the instance in Fig. 5.5, the column vectors l1, l2,

and l3 can be accessed in parallel by reading the data at address 0, 1, and 2 of each PE

cache, respectively. Also, the row vector lT1 , lT2 , and lT3 can be accessed in parallel by reading

the data at address 4, 3, and 2 of each PE cache, respectively. An advantage of the mirror

mode is that it allows a larger square matrix to fold into smaller p × p blocks so that a

larger-size (k > p) Cholesky factorization can be computed in a folded fashion with the help

of the PE-SRL and the Core-SRL units. An example folding scheme in the mirror mode is

illustrated in Fig. 5.6, where a folding factor of 1.5 is presented with p = 128 and k = 192.

However, this merit is enjoyed at the cost of doubled storage space for L. For the low-
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power implementation of the SA engine, where memory leakage dominates the total power

consumption, a data shuffling scheme that is more efficient in utilizing memory space should

be adopted. In the shuffle mode, each row of L is stored in a shuffled order across adjacent

PE-caches as illustrated in Fig. 5.7. As a result, the rows and columns of L can be accessed

at the same and at a different address of each PE-cache, respectively. Note that a circular

position shift must be performed to recover the data order correctly. For the example in

Fig. 5.7, the column vectorsS l1, l2, and l3 can be accessed in parallel by reading the data at

address 0, 1, and 2 of each PE cache with an up-shift in position by 0, 1, and 2, respectively.

Differently, the row vectors lT1 , lT2 , and lT3 can be accessed in parallel by reading the data

at the address set [APE−$0, APE−$1, APE−$2, APE−$3] of [0, 1, 2, 3], [X, 0, 1, 2], and

[X, X, 0, 1] with an up-shift in position by 0, 1, and 2, respectively.

Compared to the mirror-mode, a 2× memory size reduction can be achieved by adopting

the shuffle mode. Note that special folding scheme has be realized when the folded processing

of larger Cholesky factorization (k > p) is needed. An example folding scheme of the same

case as in Fig. 5.6 is illustrated in Fig. 5.8.
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factorization.

5.5 Dynamic Configuration of System Architecture

Taking advantages of the reformulated OMP algorithm that has a much simplified LS task, we

manage to reuse the same computing resources to perform all the tree tasks by dynamically

configuring the system architecture. Due to the intrinsic data dependency between the 6 BLA

operations in Table 4.2, such a resource sharing scheme maximizes the hardware utilization

rate and area efficiency without introducing throughput overhead.

Figure 5.9 illustrates the dynamic configuration of the system architecture in the AS task.

In the AS task, the VC is cascaded with the SC in pipeline. The VC accesses ai and rt−1 in

parallel from the sampling matrix and the PE caches, respectively. The PEs are configured

to compute their inner product as c(i) = ai
T rt−1. The SC accumulates the result when

folding is enabled and compares the absolute values of c(i) with that of c(i−1). The smaller

value is dropped, while the bigger value and the associated column index is buffered for the
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next comparison. After all the correlation coefficients are compared, the column index of

the maximum component is written into the active set memory.

Figure 5.10 illustrates the dynamic configuration of the system architecture in the LS

task. In the LS task, a series of matrix-vector multiplications, FS, divisions, and BS need to

be executed as shown in Step 4–7 in Table 4.2. For computing matrix-vector multiplications

in Step 4 and 6a, the same configuration as in the AS task is used. Differently, in order

to compute FS and BS using recursive vector operations, the Core-SRL is enabled to link

the adder in SC with the PEs in the VC into parallel loops. The SRL units in the PEs are

also enabled to support the folding capability for computing large-size FS and BS. Figure

5.11 illustrates the detail data-path configuration of the VC and SC for computing the FS

shown in (4.6). Note that performing FS and BS in an iterative fashion has little impact

on the system throughput. This is because (1) FS and BS are intrinsically iterative process

that has loop-carried data dependency, and (2) the LS task is not the throughput bottleneck

in the reformulated OMP as shown in Fig. 4.4. In addition, computing FS and BS using

vector based operations allows for the reutilization of the VC and improves the hardware

utilization rate. When the FS in (4.6) is executed iteratively using the configuration shown

in Fig. 5.11, the subsequent divisions can be then scheduled to the SC and executed by the
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Figure 5.9: Dynamic configuration of the system architecture in the AS task.

sequential divider in pipeline.

Figure 5.12 illustrates the dynamic configuration of the system architecture in the EU

task. In the EU task, the two computation cores are configured to update the estimation

results separately. The VC accesses AΛt and d(Λt) from the sampling matrix memory and

the shared cache, respectively. Note that the active atoms of A are accessed by using the

contents from the active set memory as the read address. One should also note that the

matrix-vector multiplication c(i) = Art−1 in the AS task is executed by computing the

independent inner products as airt−1. Differently, the v = AΛtd(Λt) in the EU task are

computed in a column-wise fashion by configuring the PEs to execute element-wise MAC.

Each clock cycle, one column of AΛt and a single element of d(Λt) are multiplied, and the
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Figure 5.10: Dynamic configuration of the system architecture in the LS task.

results are accumulated element-wise in the SRL units of each PE. After t×F cycles, where

F is the folding factor, the result v will be available in the SRLs. Then, the residual rt

is updated by the PEs in parallel as rt = rt−1 + v. In the meanwhile, the SC updates xt

element-wise as xt(i) = xt−1(i) + d(i) whenever d(i) is read out from the shared cache.

Overall, the dynamic configuration scheme of the system architecture is summarized in

Fig. 5.13.
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5.6 Data Format for Preserving Software-Level Accuracy

To make the soft-IP core more suitable for the intended application (see Section 1.2), we

are interested in applying the data format that can preserve the software-level accuracy

for recovering different bio-medical signals. Therefore, we investigate the dynamic range

requirement of each arithmetic unit in our design based upon the statistics extracted from

double-precision MATLAB simulations. In the simulations, different biomedical signals

are emulated by artificially generating their sparse coefficients on the selective orthogonal

basis. These include canonical basis, discrete wavelet transform (DWT) basis, discrete cosine

transform (DCT) basis, joint DWT-DCT basis, etc. Note that the sparse coefficients are

also scaled such that they follow the power-law decay described by (2.8). The generated

signals are sampled by Bernoulli random matrices and contaminated by AWGN. Then,

the dynamic range statistics in each step of the reformulated OMP algorithm is extracted

from the subsequent signal reconstructions. Note that the emulation method used in this
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Figure 5.12: Dynamic configuration of the system architecture in the EU task.

study is a first-order approach that estimates the worst-case dynamic range requirement

for recovering different bio-medical signals. To determine the optimized word-length for a

specific signal type, Monte Carlo simulations needs to be performed with more representative

signal samples.

Figure 5.14 shows the worst-case dynamic range required by each arithmetic unit for

preserving the software-level accuracy. When a fixed-point data format is used, the word-

length required by the MAC unit in the VC, and the adder, the divider, the comparator unit

in the SC is 78, 35, 73, and 39 bits, respectively. The large dynamic range requirement is

largely due to the solution searching characteristic of OMP: the scales of most variables are

gradually scaled down as the residual approaches zero. Additionally, sharing the computing

resources in different tasks also have negative impact on the dynamic range requirements.

68
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Figure 5.13: Summary of dynamic configuration scheme of the system architecture.

This is because the shared units must cover the worst case of all the three tasks. The results

in Fig. 5.14 indicate that a fixed-point implementation would incur large area overhead

mainly due to the need for building wide data memories. Alternatively, a floating-point

data format is able to provide the required dynamic range with much reduced word-length,

leading to significant area saving primarily from the data memories.

Nonetheless, the sampling matrix A is still stored in a fixed-point data format in our

design. This is because A serves as fixed coefficients and does not need to be updated

during the operations for the same problem. In addition, A often has higher tolerance to

quantization noise, especially when it is a random matrix. Therefore, A typically can be well

represented with a limited dynamic range. Note that for a different accuracy requirement,

the choice of data format should be reinvestigated accordingly.

5.7 Compile-Time Scalability and Run-Time Configurability

The soft-IP core developed in Verilog-HDL is parameterized and features great scalability at

compile time. Table 5.1 summarizes all the user-defined parameters supported in the soft-IP

core. At the circuit level, the user can specify the word-length (WM , WE) and the pipeline

stages (SADD, SMULT , SDIV , SCMP ) of each arithmetic unit to meet different precision and

performance requirements. At the architecture level, the user can tune the parallelism of
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PE (P ) to adjust the scale of vector processing. A higher parallelism of PE can either

improve system throughput or allow the designer to scale down the supply voltage for the

same throughput to gain energy efficiency at the cost of increased area. In addition, the user

can specify the maximum problem size (N , M , K) to be supported by the SA engine. Since

the data memories are separated from the computation cores, the scaling of one part has

little dependency on the other given that the timing difference in control signals needs to be

handled by adjusting the FSM in local controllers. Therefore, the size of data memories and

the timing of controllers are adjusted coherently, according to the architecture parameters

(P , N , M , K) defined by the user. By customizing the parameters in Table 5.1, different

Verilog descriptions of the SA engine can be customized at compile time for driving different

applications.
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Table 5.1: User-defined Parameters in the SA Engine Soft-IP

Parameter Description

Circuit
{WM , WE} Word-length of mantissa and exponent

{SADD, SMULT , SDIV , SCMP} Pipeline stages of arithmetic units

Architecture

P Parallelism of PEs in the VC

N Maximum signal dimension n

M Maximum measurement dimension m

K Maximum signal sparsity level k

The VLSI architecture is also configurable at run time. Specifically, every compiled

instance of the SA engine can be configured through the dynamic control bits at the input

to handle flexible problem settings on the fly. The input control signals include signal and

measurement dimensions (m ≤ M and n ≤ K), signal sparsity level (k ≤ K), and error

tolerance (ε). These control inputs can be reconfigured during the data loading and result

unloading at the end of each SA run. But, they must remain static during the same SA

run. In addition, the reconstruction on the different basis can be performed by loading

different coefficients from the sampling matrix memory. Note that changing the control bits

will not affect the computing throughput (FLOPs/s) of the VC but can change the system

throughput (Samples/s) due to the resulting difference in total computational complexity.
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CHAPTER 6

FPGA Evaluation

In this chapter, we elaborate on the FPGA evaluation of the developed soft-IP core.

Specifically, the FPGA implementation results in comparison to prior designs is first reported.

Additionally, the accuracy and performance benchmarking results in comparison to an Intel

Core i7-4700MQ mobile processor are discussed.

6.1 Xilinx KC705 Hardware Evaluation Platform

The SA engine soft-IP is first implemented and tested on a Xilinx KC705 evaluation platform

as shown in Fig. 6.1 [Xil12]. This evaluation platform is equipped with a Kintex-7

XC7K325T-2FFG900C FPGA and a number of off-the-shell components for enhancing the

system capabilities in memory storage, connectivity, networking, etc.

Specifically, the hardware resources available on the XC7K325T-2FFG900C FPGA

include:

• 50,950 slices (equivalently 326,080 logic cells)

• 840 DSP slices

• 16,020 Kb block RAMs (BRAMs)

• 10 clock management tiles (CMTs)

• 1 PCI express (PCIe) module

• 16 Giga-bit transceivers (GTXs)
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Figure 6.1: Xilinx KC705 evaluation board (courtesy of Xilinx, Inc.).

• 1 Xilinx analog-to-digital converter (XADC)

• 10 input/output (I/O) banks with 500 maximum user I/Os

The memory resources available on the KC705 board include:

• 1GB DDR3 SODIMM 800MHz / 1600Mbps

• 128MB (1024Mb) Linear BPI Flash for PCIe Configuration

• 16MB (128Mb) Quad SPI Flash

• 8Kb IIC EEPROM

• SD Card Slot

The glue logic resources for communication and networking include:

• Gigabit Ethernet GMII, RGMII and SGMII

• SFP / SFP+ cage
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• GTX port (TX, RX) with four SMA connectors

• UART to USB Bridge

• PCI Express x8 edge connector

The expansion connectors for connecting customized PCB boards include:

• FMC-HPC (Partial Population) connector (4 GTX Transceiver, 116 single-ended or 58

differential (34 LA and 24 HA) user defined signals)

• FMC-LPC connector (1 GTX Transceiver, 68 single-ended or 34 differential user

defined signals)

• Supported I/O voltages of 1.8V, 2.5V, or 3.3V

• Dedicated IIC pins

The miscellaneous peripherals on the KC705 board include:

• Onboard JTAG configuration circuitry to enable configuration over USB

• JTAG header provided for use with Xilinx download cables

• 128MB (1024Mb) Linear BPI Flash for PCIe Configuration

• 16MB (128Mb) Quad SPI Flash

• HDMI Video output

• External Phy/codec device driving an HDMI Connector

• 2x16 LCD display

• 8x LEDs

• XADC header

• 5X Push Buttons
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• 4X DIP Switches

• Diff Pair I/O (1 SMA pair)

• AMS FAN Header (2 I/O)

• 7 I/O pins available through LCD header

6.2 Computer-Aided Design (CAD) Flow

bitgen promgen

.bin

coregen

User HDLHDL.ngc HDLHDL User HDLSA Engine HDL

.ucf .edf .ncf

ngdbuild

.ngd .bld

map

report .ncd .pcf

par

.ncd

.bit

Syn Libsynthesis

Xilinx Core 
Generator

Synopsys 
Synplify 
Premerier

Xilinx Vivado 
Design Suite

Figure 6.2: CAD flows for implementing the SA engine on the KC705 platform.
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The CAD flows for implementing the SA engine on the KC705 Platform is illustrated in

Fig. 6.2. The Xilinx CORE Generator System is first used to generate the data memory

macros that are mapped to the BRAM resources on the FPGA. The generated NGC files

contain both the design netlist and the constraints, while the generated Verilog files describe

the port definitions. Then, these files together with the RTL codes of the SA engine are

loaded to Synplify Premier for logic synthesis. Note that the floating-point arithmetic

units used in our design are from the Synopsys DesignWare library. The EDF file stores

the gate-level netlist in an electronic data interchange format (EDIF), and the UCF file

contains user-defined design constraints. Next, the generated files are passed to Xilinx Vivado

Design Suite to perform physical design and bit file generations. Specifically, the ”ngbbuild”

command reads in the netlist in EDIF format and creates a native generic database (NGD)

file that contains a logical description of the design reduced to Xilinx NGD primitives and

a description of the original design hierarchy. The ”map” command takes the NGD file,

maps the logic design to a specific Xilinx FPGA, and outputs the results to a native circuit

description (NCD) file. The ”par” command takes the NCD file, places and routes the design,

and produces a new NCD file, which is then used by the ”bitgen” command for generating

the bit file for FPGA programming. For a faster programming in the case of large design,

the ”promgen” command can be used to convert the bit file into a binary format.

6.3 Implementation Results

By efficiently utilizing the resources on the FPGA, we are able to deploy 128 single-precision

PEs in the VC, and the reconstruction engine can support a flexible problem size of n ≤ 1680,

m ≤ 640. In addition, our implementation can support up to k ≤ 300 sparse coefficients in

signal reconstruction, which is 10 times more than prior work [Sa10, Sa12, Ba12]. Supporting

more coefficients in reconstruction is equivalent to adding finer details to the recovered signal.

This is critical to achieving high reconstruction accuracy, especially when the signal is not

ideally sparse on the selective basis.

1DM: data-path memory
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Table 6.1: Implementation Results on FPGA

Usage Breakdown

System VC SC DM 1

Frequency 53.7 MHz

LUTs 186,799 (91%) 90% 3% 7%

DSP48s 258 (31%) 99% 0% 1%

BRAMs 435 (98%) 0% 0% 100%

Table 6.1 summarizes the system performance and reports the resource utilization of

the FPGA implementation. After inserting 1, 1, 1, and 6 pipeline stages into the adder,

multiplier, comparator, and sequential divider, respectively, and global retiming, a balanced

data-path delay distribution is observed. The critical paths are found to be part of the

floating-point multiplier, which is massively distributed in the VC. As a result, the whole

system achieves an operating frequency of 53.7 MHz. The implementation utilizes 91% of

the LUTs, 31% of the DSP48 slices, and 98% of the BRAMs on the FPGA. All the BRAMs

are used for building the data memories, where 65% of the usage is dedicated for storing

A in a 10-bit fixed-point data format. Two DSP48 slices are utilized in each floating-point

multiplier for performance improvement. Thus, a total of 256 DSP48 slices are used in the

realization of 128 PEs. Note that among the total LUT usage, 90% is contributed to building

the VC. This means the proposed architecture has a high area efficiency, which results from

the algorithm reformulation and resource sharing efforts. As a result, our design is able

to utilize 90% of the logic resources to parallelize the VC for achieving higher processing

throughput. A layout view of the FPGA with the SA engine fully implemented is shown in

Fig. 6.3.

In order to validate the flexibility of the soft IP, we implement multiple instances of the SA

engine for handling different problem settings. These implementations are evaluated based

on different FPGA platforms for comparison purposes. Table II summarizes the evaluation
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Figure 6.3: Layout view of the FPGA with the SA engine implemented.

results in comparison to prior FPGA designs [Sa10, Ma12, Ba12]. Taking advantage of

the flexibility of the soft-IP core, we are able to explore the design space on the FPGA

by comparing the mapping results of different parameter settings. Then, the one with the

maximal performance and resource utilization is selected for the final implementation. As a

result of the design space exploration, our implementations are able to outperform the prior

work with up to 30% higher throughput while providing larger dynamic range capability and

better flexibility.
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Design [Sa10]
Our

Work
[Ba12]

Our

Work
[Ma12]

Our

Work

Platforms Virtex‐5 Virtex‐6 Spartan‐6

N,M,K,P 128,32,5,32 1024,256,36,256 1024,512,64*,32

P 32 32 256 256 32 32

Data Format†
FP

(32)

FLP

(8,23)

FP

(25)

FLP

(8,16)

FP

(30)

FLP

(8,21)

Frequency 

(MHz)
39 59.3 100 77.6 41.2 64.4

Slices N/A 12,330 32,010 62,026 3,525 15,769

DSP48s N/A 64 261 256 132 98

Dec. Time ( ) 24 18.5 630 581.6 21,378 17,611

Throughput#

(Ksamples/s)
5,333 6,919 1,625 1,761 47.9 58.1

Figure 6.4: Implementation results in comparison to prior work.

6.4 Benchmarking Study

6.4.1 Testing Environment

Figure 6.5 illustrates the testing setup for the benchmarking study. The evaluation platform

is connected with a PC through both USB and Ethernet cables. The USB connection is used

to program the FPGA and monitor the chip status via the ChipScope IPs deployed. The

Ethernet connection supports high-speed data transfer between the PC and the evaluation

platform. In order to bridge the SA engine to Ethernet, several Xilinx LogiCORE IPs

are integrated on the FPGA as glue logic. Specifically, a tri-mode Ethernet media access

control (TEMAC) module is instantiated to drive the 10/100/1000 MHz Ethernet PHY

device equipped on the board through the Gigabit media independent interface (GMII). In

addition, two asynchronous FIFOs are used to link the SA engine and the TEMAC module

across different clock domains. To deal with the Ethernet frame format, customized FIFO

controllers are used to perform decapsulation and encapsulation for the incoming and the
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Figure 6.5: Testing environment on the Xilinx KC705 evaluation platform.

outgoing data streams, respectively. Overall, a full-duplex data communication channel that

has a data transfer rate of 1 Gbps is established between the SA engine and the PC through

the Ethernet cable. By utilizing the network infrastructure, the same setup can be also used

for remote testing. When the evaluation platform is connected to Ethernet, test vectors can

be sent to the SA engine in Ethernet frames from any terminal user belonging to the same

local area network (LAN) by specifying the MAC address of the TEMAC as the destination

address.

6.4.2 Accuracy Benchmarking

In order to evaluate the reconstruction accuracy, we use the ECG data from the MIT-BIH

database [Ma01] to perform CS sampling and reconstruction in the benchmarking study. In
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Figure 6.6: An example of (a) the ECG signal from MIT-BIH database and its top 100

sorted (b) DWT and (c) DCT coefficients.

the experiments, the ECG signals are segmented with a fixed window size of n = 1024 and

sampled by a Bernoulli random matrix with different undersampling (m/n) ratios. Recall

from the CS theorem that the signals can be uniformly sampled without specifying sparse

domain. However, such prior knowledge must be provided in the signal reconstruction.

Figure 6.6 shows an example of the ECG signal and its top 100 coefficients on the Haar

DWT and the DCT basis, respectively. Note that the coefficients follow a slightly faster

power-law decay on the DWT basis. Although the coefficients seems to follow a power-law

decay on the DCT basis also, the DCT basis is not suitable for ECG reconstruction. Figure

6.7 illustrates the ECG signal reconstructed on the DCT, the DWT, and a DWT-DCT joint

basis, respectively. Because the spike component in the ECG signal has a wide band in

the frequency domain, the algorithm fails to reconstruct the spike component that contains
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Figure 6.7: ECG signal reconstructed on (a) DCT, (b) DWT, and (c) DWT-DCT joint basis,

respectively.

critical information by pursuing the sparsest representation on the DCT basis. Differently,

on the DWT basis that is good at representing singularity, the spike component can be

reconstructed nicely. By performing the reconstruction on the DWT basis, a 20.5 dB RSNR

can be achieved in 80 iterations. In fact, an over-complete basis jointly composed by both

the DCT and DWT basis can better reconstruct the ECG signal with the fewer coefficients.

Since the periodic and the spike component has a sparse representation on the DCT and the

DWT basis, respectively, the ECG signal can be well reconstructed on the DWT-DCT joint

basis in much fewer iterations (with much fewer atoms). By performing the reconstruction
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Figure 6.8: An example of (a) the EEG signal from UCSD-EEGLAB database and its top

100 sorted (b) DWT and (c) DCT coefficients.

on the DWT-DCT joint basis, a 20.6 dB RSNR can be achieved in just 56 iterations.

Fig. 6.6 plots an example of the EEG signal from the UCSD-EEGLAB database [Da04].

In this case, the DCT coefficient of the EEG signal is much sparser than its DWT counterpart.

The two examples in Fig. 6.6 and 6.8 illustrate that different bio-medical signals often exhibit

the best sparsity on different basis. Therefore, it is crucial to keep a generic architecture in

hardware design so that different sampling matrix can be adopted for the reconstruction of

different bio-medical signals.

For comparison purposes, we reconstruct the ECG signals on the Haar DWT basis using

both C program and the SA engine on the FPGA. The reconstruction accuracy is measured

by RSNR defined in (3.16). Note that RSNR characterizes the energy ratio of original signal

and the reconstruction error in dB.
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Figure 6.9: Average RSNR performance measured from the ECG reconstruction in C

program and on the FPGA at different undersampling ratio (m/n).

Figure 6.9 shows the average RSNR performance measured from the double-precision C

program and the FPGA reconstruction. As a floating-point data format is used, the SA

engine on the FPGA is able to achieve the same level of accuracy as the software solver

running on the CPU. As the undersampling ratio increases from 0.2 to 0.3, the RSNR

performance is improved by over 2×. Beyond that, the RSNR gradually saturates to around

23 dB as m increases. On average, a RSNR of 15 dB can be achieved at the undersampling

ratio of 0.3 in the ECG reconstruction test.
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6.4.3 Performance Benchmarking

In this benchmarking study, we compare the performance of the FPGA reconstruction with

its software counterpart. To simplify the comparison, we use ideally sparse signals in the

reconstruction tests. First, k-sparse signals x ∈ Snk are generated with different problem size

n and sparsity level k. Specifically, for each n and k, 1000 signals are randomly generated

based on a Normal distribution N (0, 1). Note that the index of the nonzero elements in each

signal is also randomly selected. The generated signals are sampled by Gaussian random

matrices A ∈ Rm×n, where an empirical value of C = 1.8 is used for evaluating the required

measurement size m according to (2.18). Then, the sparse signals are directly recovered

using the SA engine on the FPGA and the C program running on a 2.4 GHz Intel Core

i7-4700MQ mobile processor, respectively.

Figure 6.10 presents the averaged FPGA reconstruction time in comparison to the

averaged CPU run time. Note that the performance of the software solver does not scale as

well as the FPGA implementation. In general-purpose computing platforms, accessing data

from the main memory has a relatively long latency in the case of cache misses. Such long

latency will become a dominating factor on the overall performance when the queue of data

access is short. Consequently, as n decreases, the reduction in CPU run time slows down

gradually. As shown in Fig. 6.10 (a), the top curve starts to flatten out as n ≤ 800. In

contrast, the SA engine on the FPGA has a better data locality since all the data memories

can be accessed locally. As a result, the memory access latency is minimized regardless of the

access pattern. As shown in Fig. 6.10, the FPGA reconstruction time drops at a constant

rate as n decreases.

Note that more iterations of the OMP algorithm need to be performed for recovering

x ∈ Snk with higher k. In addition, the computational complexity of the LS task increases

quadratically with k (Table 4.3). Figure 6.10 shows that as k increases, the FPGA

acceleration becomes less effective when n is small, but more effective when n is large.

For n = 100, an average speed-up of 71, 51, and 47 times can be achieved at the k/n ratio

of 0.1, 0.2, and 0.3, respectively. When n = 1600, the corresponding speed-up is 48, 76, and
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Figure 6.10: Averaged FPGA reconstruction time versus CPU run time measured from the

experiments at different problem size n. The reconstructed signal has a sparsity ratio of (a)

k/n = 0.1, (b) k/n = 0.2, (c) k/n = 0.3.

147 times, respectively. The difference comes from how the memory access latency affects

the overall performance. When k is small, the complexity of the LS task is limited. The

memory access latency affects the overall performance as a fixed overhead. Therefore, it

becomes less significant as the complexity of the LS task increases. Differently, when k is

large, the memory access latency expands the execution time as a scaling factor. Due to

the loop-carried data dependency of the FS and BS computation, the total execution time

of the LS task is proportional to the loop latency. In the CPU systems, the loop structure

is realized by reading from and writing back to the memory. Consequently, the memory

access latency becomes the bottleneck of the loop latency. Alternatively, the SA engine has

a low-latency loop structure as shown in Fig. 5.11 when computing the FS and BS, where
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Figure 6.11: Reconstruction throughput of the FPGA implementation.

no memory access is involved. Therefore, the FPGA acceleration becomes more effective as

the size of the LS task increases at large k.

Figure 6.11 shows the measured reconstruction throughput of the FPGA implementation.

Operating at 53.7 MHz with 128 PEs in parallel, the SA engine achieves the reconstruction

throughput of 796–9,368, 144–2,418, and 40–1,021 KS/s for the signal dimension (n) range of

100–1000 at the high (k/n = 0.03), medium(k/n = 0.1), and low (k/n = 0.2) signal sparsity

ratio, respectively.
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CHAPTER 7

A SA Engine Chip for Mobile ExG Data Aggregation

Compressive sensing (CS) is a promising solution for low-power on-body sensors for 24/7

wireless health monitoring [Ca12]. In such application, a mobile data aggregator performing

real-time signal reconstruction is desired for timely prediction and proactive prevention.

However, CS reconstruction requires solving a sparse approximation (SA) problem. Its

high computational complexity makes software solvers, consuming 2–50 W on CPUs, very

energy-inefficient for real-time processing. This chapter presents a 12-to-237 KS/s 12.8

mW SA engine chip integrated in 5.13 mm2 in 40-nm CMOS for energy-efficient mobile

data aggregation from compressively sampled biomedical signals. By using configurable

architecture, a 100% utilization of computing resources is achieved. An efficient data

shuffling scheme is implemented to reduce memory leakage by 40%. At the minimum energy

point (MEP), the SA engine chip achieves a real-time throughput for reconstructing 61–237

channels of ECG, EMG, and EEG (collectively referred to as ExG) signals simultaneously

with < 1% of a mobile device’s 2W power budget, which is 76–350× more energy-efficient

than prior hardware designs.

7.1 Chip Design

For achieving the best quality of results for ExG signal reconstructions, the SA engine must

be able to handle (1) a large dynamic range, (2) configurable problem setting at run time, and

(3) reconstructions on different basis. In addition, to support the real-time reconstruction

of multi-channel ExG data on a mobile platform without moving its energy needle, the SA

engine must meet the design specification of achieving a > 50 KS/s throughput with a power
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budget of < 20 mW (< 1% of a mobile device’s 2W power budget). Taking advantage of

the compile-time scalability and run-time configurability of our soft-IP design, a SA engine

chip that meets the above-mentioned requirements and specifications is realized in a 40-nm

1P8M CMOS process.

The RTL codes of SA engine are compiled with the following parameter settings (see

Table 5.1):

• {WM = 8, WE = 23}:

The single-precision data format is used to support a large dynamic range.

• {SADD = 1, SMULT = 2, SDIV = 5, SCMP = 1}:

A short pipeline stage that meets the timing specification is used to limit the loop-

latency of the SA engine (see Fig. 5.11) to 4–8 cycles, greatly accelerating the iterative

FS/BS computation.

• P = 128:

A PE parallelism of 128× allows the SA engine to operate at a scaled supply voltage and

frequency for additional energy efficiency gain while maintaining the target throughput.

• N = 1024:

A signal dimension of up to 1024 is supported.

• M = 512:

A measurement dimension of up to 512 (undersampling ratio ≥ 0.5) is supported.

• K = 192:

A signal sparsity level of up to 192 (sparsity ratio ≥ 0.1875) is supported.

The compiled RTL codes are synthesized in Synopsys Design Compiler using a standard-

cell based design flow. To achieve the target throughput, a setup time of 60 ns (16.7

MHz) evaluated at the worst case process, voltage, and temperature (PVT) corner is

used throughout the chip implementation. Taking into account the interconnect overhead

incurred by the subsequent physical design, a 22% timing slack is used during the synthesis.
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Specifically, the SA engine is synthesized at 16.7/(1 − 0.22) = 21.4 MHz. To reduce the

leakage power, the design is first synthesized using high-threshold (HVT) standard cells

only. Then, standard-threshold (SVT) standard cells are selectively inserted to the critical

paths for timing improvement. The PE, SC, and shared cache in the SA engine has a memory

size of 1.2 KB, 1.5 KB, and 768 B, respectively. Note that there are total 128 instances of the

PE caches in the design. To save area cost, the PE caches are realized using dual-port SRAM

hard macros. Differently, as only a single instance the SC and shared caches is needed, these

two data memories are realized using synthesized RAMs, which can be flattened during the

physical design to facilitate the floorplaning. For voltage scaling purposes, the SA engine

is split into two voltage domains. The PE caches realized by SRAM macros are under the

memory (high) voltage domain, while the rest of the design is under the logic (low) voltage

domain.

The physical design of the SA engine is performed in Cadence Encounter. To reduce the
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run time, a bottom-up hierarchical design method is adopted. Specifically, the PE and PE

cache are first placed and routed separately as sub-blocks at the bottom level. Then, these

two blocks are treated as hard macros, and the whole design is flattened and then placed

and routed at the top level. Figure 7.1 shows the layout of the PE block. Note that the PE

block is routed using M1 to M4 only so that the 128 instances will not block the routing

channels of M5 to M8 on the top level. Overall, the placed-and-routed PE block has a macro

size of 80.6×89.6 µm2.

Figure 7.1 shows the layout of the placed-and-routed PE cache block. Note that the

SRAM macro placed in the middle occupies over 90% of the core area. In order to enhance

the power delivery, horizontal and vertical power rails are routed over the SRAM macro

using M5 and M4, respectively. In addition, level shifters are placed at the bottom of the

SRAM macro to handle the voltage transition across different voltage domains. Overall, the

placed-and-routed PE cache block has a macro size of 78×260 µm2.

The layout view of the whole SA engine chip is shown in Fig. 7.3. To facilitate the

top-level routing, the PE and PE cache instances are grouped into 128 pairs, which are then

placed into 16 rows. In each row, 8 pairs of the PE group are placed evenly with a 50 µm

space in between. To simplify testing, additional memory macros are placed on the top and

the bottom slide of the chip for storing the sampling matrices. To enhance power delivery,
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Figure 7.3: Layout view of the SA engine chip.

a global power grid is routed across both of the voltage domains over the entire chip. To

minimize IR drops, the global power stripes are routed using the redistribution (AP) and the

M8 layers that have smaller resistance and higher current density. Overall, the SA engine

design occupies a core area of 2.25×2.28 mm2 with an aspect ratio of 0.99.

7.2 Chip Testing Environment

The chip testing environment is shown in Fig. 7.4, where a Kintex-7 KC705 evaluation

platform is used as the testbed. A customized printed circuit board (PCB) is designed to
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Figure 7.4: Chip testing environment.

host the SA engine chip for testing. The SA engine chip is wire-bonded to a 256-pin pin

grid array (PGA) package and then mounted to the host PCB through a zero insertion force

(ZIF) socket. The host PCB is connected to the KC705 board through the high-speed FPGA

Mezzanine Card (FMC) connectors. A clock generator is used as the external clock source

for both the FPGA and the SA engine chip. The clock is injected to the host PCB through

a SMA connector and then passed to the FPGA board through the dedicated clock pins

on the FMC connector. Note that in this FPGA-based testing environment, one is able to

utilize the reconfigurability of the FPGA to map different hardware test benches for testing.
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Figure 7.5: Customized control panel of the chip testing in the Xilinx Vivado Design Suite

environment.

In our test bench design, the ChipScope vitual I/O (VIO) IP is used as soft registers to

control both the SA engine chip and the test bench, while the ChipScope integrated logic

analyzer (ILA) IP is used to probe all the I/Os of the SA engine chip. Powered by the Xilinx

ChipScope IPs, the customized control panel in the Xilinx Vivado Design Suite environment

is illustrated in Fig. 7.5. The top half of the panel lists the soft registers that control the

testing process, which is realized by the VIO instances. The user can specify the values of

these registers in real-time. Note that the value change is reflected on the FPGA at the

JTAG scan rate. The bottom half of the panel shows the signal waveform probed by the

ILA instances. The waveform data is sampled at the clock rate of the ILA instances, while

the displayed values are updated at the JTAG scan rate.
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Figure 7.6: Die photo and chip summary.

7.3 Chip Measurement Results

The die photo of the SA engine chip is shown in Fig. 7.6. To summarize, the SA engine

occupies a core area of 5.13 mm2, integrated with 61 million transistors in a 40-nm 1P8M

CMOS process. To reduce the leakage power, high-threshold (HVT) transistors are used in

99.89% of the logic cells. In addition, 0.11% of standard-threshold (SVT) cells are inserted

into the critical paths to improve timing. The SA engine chip has a total of 42 digital

inputs, 58 digital outputs, and 156 power pads supplying 3 different power domains. The

I/O domain has a constant supply voltage of 2.5 V. The logic and memory domain both

have a nominal supply voltage of 0.9 V, while each operates up to 1 V and down to 0.5 and

0.7 V, respectively.
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Figure 7.7: Measured RSNR performance of ECG, EMG, and EEG signals reconstructed on

DWT, joint DWT-DCT, and DCT basis, respectively.

Several 1-minute recordings of real ExG signals downloaded from the PhysioBank

database are used in the signal reconstruction test [Aa13]. Specifically, the digital samples

of ExG signals are encoded by random Bernoulli matrices with a 5% overlapping window

applied. In order to observe the raw signal sparsity, no thesholding scheme is applied in our

test. The RSNR performance are measured on the SA engine chip with different problem

settings.

The measured RSNR performance of ExG signal reconstruction is shown in Fig. 7.7.

The best orthogonal basis for reconstructing ECG, EEG, and EMG are found to be the

Haar DWT, DCT, and DWT-DCT joint basis, respectively. It is also found that the RSNR

performance is sensitive to ε. Dynamically configuring ε to 3–5% of the energy of each CS
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Figure 7.8: Examples of the ExG signals reconstructed on the SA engine chip with a >15

dB RSNR. The ECG, EMG, EEG signals are reconstructed on the DWT, DWT-DCT joint,

and DCT basis, respectively.

sample results in the best RSNR performance. In general, higher unsersampling ratio (m/n)

improves the RSNR performance at the cost of higher sampling rate. In addition, for the same

undersampling ratio, using a higher signal dimension (n) in reconstruction improves RSNR

slightly at the cost of lower throughput and higher energy consumption. Therefore, given a

target RSNR, there exists an optimal chip setting for achieving the maximum throughput.

For reconstructing the chosen ECG, EMG, and EEG with a target RSNR of >15 dB, the

preferred chip setting is found to be {n = 256, m ≥ 90}, {n = 128, m ≥ 58}, and

{n = 512, m ≥ 205}, respectively. Figure 7.8 presents examples of the reconstructed ExG

signals with a >15 dB RSNR.
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Figure 7.9: Measured power versus frequency at different VDD supplies.

The measured power and operating frequency of the SA engine chip at different supply

voltages are shown in Fig. 7.9. The memory and logic domain of the SA engine chip can

operate down to 0.7 and 0.5 V respectively. The minimum energy point (MEP) for operation

is found at VDD=0.7 V, which is the minimum supply voltage the on-chip memories can

operate at. At the MEP, the chip has a operating frequency of 12.2 MHz and a power

consumption of 12.8 mW. Note that the SA engine chip is a memory-bounded design, where

the memory leakage power dominates the total power consumption. Therefore, lowering the

logic power supply below 0.7 V will only reduce the operating frequency without affecting the

power much, thereby degrading the energy efficiency. Compared to the MEP, a 2× higher

operating frequency can be achieved at the cost of 6× higher power at VDD=1 V, which

corresponds to a 3× lower energy efficiency.

The measured throughput and energy efficiency of the SA engine chip when operating

at the MEP for ExG signal reconstruction are summarized in Fig. 7.10. At the MEP, the

SA engine chip achieves a throughput of 237, 123, and 66 KS/s and an energy efficiency

of 54, 104, and 194 nJ/sample for reconstructing ECG, EMG, and EEG signals with a

>15 dB RSNR, respectively. This throughput performance corresponds to the simultaneous

reconstruction of 237, 61, and 132 channels of ECG, EMG, and EEG data, respectively. At
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Figure 7.10: Measured throughput and energy efficiency of the SA engine chip when

operating at the MEP for ExG signal reconstruction. The highlighted numbers are the

best performance for achieving a > 15 dB RSNR.

VDD=1 V, the maximum operating frequency of the SA engine chip is 25.3 MHz. Compared

to MEP, a 2× higher throughput can be achieved at the cost of 3× lower energy efficiency.

The SA engine chip is compared to an Intel Core i7-4700MQ processor and prior chip

implementations [Ma10a, Ma12] of generic SA solvers in Fig. 7.11. While the reference

designs have a fixed problem setting and a limited dynamic range, our chip handles flexible

problem settings on the fly and supports a large dynamic range. Overall, the SA engine

chip achieves a 2× higher throughput with up to 14,100× better energy efficiency for ExG

signal reconstruction than the software solver running on the CPU. For high-sparsity signal

reconstruction, the SA engine is 76–350× more energy-efficient than prior hardware designs.

With a <1% power budget of mobile devices, the 5.13mm2 SA engine chip integrated in

40-nm CMOS can enable a 2–3× energy saving at CS-based sensor nodes while providing

timely feedback and bringing signal intelligence closer to the user.
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* Technology scaling to 40nm: Delay~1/S, Power~1/U2, where S=L/40nm, U=VDD/0.9V.
1 The supported problem size is 1024x512, but only half of the sampling matrix is generic.
2 ExG reconstruction throughput measured at MEP.
3 ExG reconstruction throughput measured in MATLAB simulation.
4,5 For fair comparison, the numbers are measured for the same problem size (m,n,k) as in 
[Ma12,Ma10a].  

Design This work[Ma10a][Ma12]
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Algorithm OMP, K-OMPAMPMP GP OMP

Signal dimension up to 1024512(1)256

Measurement dim. up to 512512200

Sparsity level up to 192-50 18 10

Core area (mm2) 5.130.6290.73 1.21 2.42

Dynamic range High (float-pt)Low (fix-pt)Low (fix-pt)

PE parallelism 128322 8

Local memory (KB) 1475.76-

Freq. (MHz) 27.4333140 128

Power (mW) 8.6 to 78177.588 209 200

Throughput (KS/s) 12 to 237(2)3972

Energy Efficiency* 
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32(4) (high sparsity)-2,444 5,778 11,222
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General
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Large

Large

174.4
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SSE4

7,424
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5 to 98(3)
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Figure 7.11: Comparison with an Intel Core i7-4700MQ processor and state-of-the-art chip

implementations of generic SA solvers.
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CHAPTER 8

Conclusion

This dissertation presents a scalable VLSI architecture of a sparse approximation (SA) engine

soft-IP core that can be implemented on FPGAs or SoCs to perform dedicated-hardware-

driven SA for supporting the real-time and energy-efficient processing of compressively

sampled data in compressive sensing (CS) systems. The soft-IP core supports a floating-point

data format with 10 design parameters, providing the high dynamic range and flexibility for

application-specific user customizations. Taking advantage of the algorithm-architecture

co-optimization based upon the reformulated OMP algorithm, the VLSI architecture of

the SA engine features high parallelizability, scalability, and configurability, in which all

the computing resources are shared for executing the entire algorithm, leading to a 100%

utilization of the computing resources and maximizing area efficiency.

The FPGA evaluation conducted on a Xilinx KC705 evaluation platform shows that our

single-precision based implementation can achieve the same level of accuracy as the software

solver based on double-precision C programs for the general reconstruction of compressive

sampled ECG signals. Operating at the maximum frequency of 53.7 MHz with a PE

parallelism of 128× (by fully utilizing the FPGA resources), the FPGA implementation of

the SA engine achieves 47–147× higher throughput than the software counterpart running

on an Intel Core i7-4700MQ mobile processor.

In order to enable timely prediction and proactive prevention in CS-based 24/7 wireless

health monitoring systems, a 12-to-237 KS/s 12.8 mW SA engine is implemented in 40-

nm CMOS technology for the mobile data aggregation of compressively sampled biomedical

signals. Overall, the SA engine chip achieves a 2× higher throughput with up to 14,100×

better energy efficiency for ExG (ECG, EMG, EEG) signal reconstruction than an Intel
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Core i7-4700MQ mobile processor. For high-sparsity signal reconstruction, the SA engine

is 76–350× more energy-efficient than prior hardware designs. With a < 1% power budget

of mobile devices, the 5.13 mm2 SA engine chip integrated in 40-nm CMOS can provide a

2–3× energy saving at CS-based sensor nodes while providing timely feedback and bringing

signal intelligence closer to the user.

8.1 Research Contributions

The goal of this research is to provide a VLSI-based computing solution for solving general

SA problems, especially for those with high or medium signal sparsity levels. The main

target is to develop a VLSI architecture that maintains the scalability, configurability, and

flexibility as software solvers, while offering the energy efficiency and performance gains

through hardware customizations. To address this goal, this dissertation made the following

key contributions.

• Conducted a benchmarking study to compare the potentials of different SA and `1-

based algorithms for efficient VLSI implementations, including IPM, OMP, Hotomopy,

IST, and AMP. The benchmarking results show that OMP has the best complexity-

undersampling trade-off for high- and medium-sparsity signals, while AMP is a better

choice for low-sparsity signals.

• Analyzed the complexity characteristic of the OMP algorithm to inform architecture

design. The LS task that has both high computational and operational complexity

must be simplified at the algorithm level for efficient VLSI implementations.

• Reformulated the OMP algorithm to (1) eliminate the square-root operations, (2)

reduce the computational complexity of the LS task from O(mk3) to O(mk2), and (3)

simplify the LS task to 4 BLA operations per iteration, which enables the hardware

resource sharing in the architecture design.

• Proposed a hierarchical AS method that significantly reduces the computational

complexity of the AS task through a coarse-grain searching with high-level quantization,
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while maintaining the result accuracy through another round of fine-grain searching

with a reduced search space.

• Designed a scalable VLSI architecture that efficiently maps the reformulated OMP

algorithm, where all the computing resources are shared for executing the AS, LS, and

EU tasks, resulting in a 100% of utilization of the computing resources.

• Proposed two different memory mapping schemes for handling the Cholesky factorization.

The mirror-mode-based scheme provides a great scalability for the soft-IP core, as it

allows large matrices to fold into smaller square matrices easily. Differently, the shuffle-

mode-based scheme is more efficient in utilizing the memory space. In comparison to

the mirror mode, the shuffle mode offers 2× memory size reduction, leading to a 40%

total power reduction for the chip implementation in 40-nm CMOS.

• Developed a soft-IP core based on the proposed VLSI architecture in Verilog-HDL,

which supports a floating-point data format with 10 design parameters, providing the

high dynamic range and flexibility for application-specific user customizations. The

soft-IP core can be implemented on FPGAs or SoCs to perform dedicated-hardware-

driven SA to support the real-time and energy-efficient processing of compressively

sampled data in CS systems.

• Evaluated the scalability and performance of the developed soft-IP core on a Xilinx

KC705 evaluation platform. Compared to prior FPGA design, our design can

achieve up to 30% higher throughput while offering a larger dynamic range capability

and better design flexibility. The benchmarking results show that the SA engine

implemented on the FPGA achieves the same level of accuracy as the double-precision

C programs running on an Intel Core i7-4700MQ mobile processor, while providing

47–147× higher throughput.

• Prototyped a configurable 12-to-237 KS/s 12.8 mW SA engine chip in 40-nm CMOS

for mobile data aggregation of compressively sampled biomedical signals, which enables

the timely feedback and brings signal intelligence closer to the user in CS-based 24/7
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wireless health monitoring systems.

• Demonstrated the real-time throughput for reconstructing 61–237 channels of ExG

signals simultaneously with <1% of a mobile device’s 2W power budget, which is

14,100× and 76–350× more energy-efficient than the CPU and prior hardware designs,

respectively.

8.2 Future Work

Stepping upon the results of this research, it will be interesting to investigate the cost of

supporting multiple SA or `1 based algorithms using a flexible VLSI architecture. The key for

achieving a better efficiency-flexility trade-off is the algorithm-architecture co-design rather

than optimizing either domain separately. For such a flexible VLSI architecture, an adaptive

configuration method should be also developed. The ultimate goal is to adaptively configure

the chip to choose the optimal algorithm for archiving the best performance at all times.

For instance, a possible scheme is to check the sparsity level of recovered signals periodically

to determine the algorithm. By arbitrating against a threshold, OMP and AMP can be

deployed when low- and high-sparsity signals are identified, respectively. Such a simple

scheme could limit the number of iterations of the executed algorithm, thereby maintaining

a high throughput of the recovery regardless of the signal types.

The hardware mapping of complex algorithms is an important research area as such

hardware customizations could offer unprecedented application opportunities on two aspects.

First, a typical performance boost on the order of 10-100× often enables the real-time

processing capability. Second, an energy efficiency gain on the order of 1,000-10,000× are

usually achievable, which makes it possible to deploy the whole processing system onto

mobile and wearable platforms. Taking these merits into account, a few possible directions

for applying smart VLSI customizations are as follows. Future research is needed on building

specialized accelerators and kernels for the most commonly used algorithms and computing

routines in big data analysis and cloud computing. According to the statistics from the

Department of Energy, almost 50% of the energy consumption in data centers are from
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the computing operations of server systems. Similar to the dark silicon in smart phone

SoCs, these specialized design will be able to offload a significant portion of the computing

tasks from general purpose processors and execute them with 3–4 orders of magnitude

better energy efficiency. It is of great interest to design domain-specific processors for

optimization algorithms. Similar to graphics processing units (GPUs) in computer systems,

optimization processing units (OPUs) can be built to serve as the programmable accelerators

for speeding-up various real-time optimization tasks in cyber-physical systems. Exciting

research opportunities also exist in building application-specific instruction-set processors

(ASIPs) for driving deep learning algorithms in real-time applications.
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