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Abstract—We put forward Machine Learning methods to
predict the decodability of a received message before the end
of the actual transmission in an Early Hybrid Automatic Re-
peat reQuest (E-HARQ) feedback scheme. Here we focus on a
single retransmission setting for ultra-reliable and low-latency
communication (URLLC) and demonstrate how more elaborate
classification approaches can significantly improve the effective
bit error rate towards the URLLC requirement of 10−5 with
only small latency overhead. We stress the importance of a
careful determination of the classifier’s working point and discuss
appropriate ways of discriminating between different classifiers.
We demonstrate the feasibility of our procedure for different
signal-to-noise ratios as well as subcode lengths and discuss
practical implications of our findings.

Index Terms—Communication systems, ultra-reliable and low-
latency communication, physical layer, Hybrid Automatic Repeat
reQuest, Machine Learning, imbalanced classification

I. INTRODUCTION

The next generation 5G wireless mobile networks is driven
by new emerging use cases, such as Ultra-Reliable Low
Latency Communication (URLLC) [1]. To mention a few
URLLC applications, tactile internet, industrial automation
and smart grids contribute to increasing demands on the
underlying communication system which have not existed as
such before [2]. Depending on the actual application either
very low-latency or high reliability or a combination of both
are required. In contrast to Long Term Evolution (LTE),
where services were provided in a best effort manner, 5G net-
works have to guarantee these requirements. In particular for
URLLC, the ITU proposed an end-to-end latency of 1 ms and
a packet error rate of 10−5 [3]. These demanding requirements
have emerged discussions in the 3GPP Rel. 16 standardization
process on how to fulfill these. Self-contained subframes
and grant-free access have been proposed to address these
requirements on the air interface side [4]. However, the impact
on well-known mechanisms in wireless mobile networks, such
as LTE, is still unclear. In particular, the Hybrid Automatic
Repeat reQuest (HARQ) procedure poses a bottleneck for
achieving aforementioned latencies. HARQ is a physical layer
mechanism that employs feedback to transmit at aggressive
target Block Error Rates (BLERs), while achieving robustness
of the transmission. However, it imposes an additional delay
on the transmission, designated as HARQ Round Trip Time
(RTT). This leads to the abandonment of HARQ for the 1 ms
end-to-end latency use case of URLLC [5]. This decision

implies that the code rate is lowered such that a single shot
transmission is possible. On the one hand, this simplifies the
system design, however on the other hand it sacrifices the
overall spectral efficiency of URLLC transmissions. Hence,
reducing the RTT to enable HARQ for URLLC becomes a
critical issue.

The paper is organized as follows: In Sec. II, we give a
short overview on state-of-the-art early HARQ enhancements
based on the Variable Node Reliability (VNR) metric. In the
following Sec. III, we present a novel Machine Learning
method to exploit full VNR information for early HARQ
prediction. In Sec. IV, we evaluate the Machine Learning
based approaches and compare them to state-of-the-art early
HARQ schemes. We summarize and conclude in Sec. V.

II. EARLY HARQ FEEDBACK - OVERVIEW

Early HARQ (E-HARQ) approaches aim to reduce the
HARQ RTT by providing the feedback on the decodability of
the received signal at an earlier stage, e.g. during transmission
of the transport block. This enables the original transmitter to
react faster to the current channel situation and to provide
additional redundancy at an earlier point. In regular HARQ,
the feedback generation is strongly coupled to the decod-
ing process. In particular, the receiver waits for the whole
signal representing the total codeword to apply a decoder.
An embedded Cyclic Redundancy Check (CRC) enables to
check the integrity of the decoded bit stream. The result
of this check is transmitted back as HARQ feedback, either
acknowledging correct reception (ACK) or asking for further
redundancy (NACK). Providing early feedback (E-HARQ)
implies decoupling the feedback generation from the decoding
process, which introduces a misprediction probability since the
actual outcome is not known afore. By taking that step, it is
possible to use only a portion of the transmission time interval
(TTI), designated as sub-TTI, and thus reducing the time from
initial reception to transmitting the feedback (T1). The sub-
TTI which is used for feedback prediction, contains a subset
of OFDM symbols out of the total number of OFDM symbols
making up the TTI which is then used for the actual decoding
of the transmission. The outcome of the actual decoding of
the TTI corresponds to the ground truth for the feedback
prediction. In total, the retransmission is scheduled earlier,
hence also reducing the HARQ RTT, see Fig. 1. The time
T2 which corresponds to the remaining time after feedback
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Fig. 1. Timeline of regular HARQ compared to early HARQ. (HARQ RTT: HARQ round trip time; TTI: transmission time interval; TRX: processing time
at the receiver; A/N: ACK/NACK feedback transmission; Re-TX: retransmission; T1: time from initial reception to feedback transmission T2: time from
transmission of feedback to the end of the processing of the retransmission at the receiver)

generation, i.e. transmission time for feedback, scheduling and
transmission of the retransmission, is assumed to be constant
in this work. Hence, the improvement of HARQ RTT is limited
to the reduction of T1.

E-HARQ approaches to reduce the HARQ RTT have been
first discussed in [6] and [7]. This approach estimates the Bit
Error Rate (BER) based on the Log-Likelihood Ratios (LLRs)
and utilizes a hard threshold to predict the decodability of the
received signal. The LLR gives information on the likelihood
of a bit being either 1 or 0. Denoting y as the observed
sequence at the receiver, the LLR of the kth bit bk is defined
as:

L(bk) = log
P (bk = 1|y)
P (bk = 0|y)

. (1)

Having the LLRs of a subcode or the whole codeword allows
to calculate an estimated BER for the received signal vector,
as stated here:

ˆBER =
1

M

M∑
k=1

1

1 + |L(bk)|
, (2)

where M is the length of the LLR vector. Based on this metric
the decoding outcome is predicted, where a higher ˆBER means
a lower probability of successful decoding.

A further improved approach has been presented in [8]
and [9]. The authors propose to exploit the code structure to
improve the prediction performance. In case of Low-Density
Parity-Check (LDPC) codes, this is realized by constructing
so-called subcodes from the parity-check matrix. Using a
belief-propagation-based decoder on the LLRs of the subcode-
word results in a posteriori LLRs defined iteratively via

Λ
(j)
k = Λ

(j−1)
k +

∑
m∈M(k)

β
(j)
m,k , (3)

where Λ
(0)
k ≡ L(bk), M(k) is the set of check nodes which

are associated to the variable node of k and β
(j)
m,k is the check-

to-variable node message from check node m to variable k of
the jth iteration. Here we use the superscript j in Λ

(j)
k to

denote the decoder iteration after which the posteriori LLRs
were extracted. Again, the a posteriori LLRs are mapped to the
same metric for each decoder iteration, designated as VNR:

VNRj =
1

M

M∑
k=1

1

1 + |Λ(j)
k |

, (4)

where M is the length of the subcodeword and VNRj is
the VNR corresponding to a certain decoder iteration. Hence,
VNR0 corresponds to ˆBER. In [8], the authors applied a hard
threshold to the VNR of the last decoder iteration, i.e. , VNR5.

However, these schemes loose significant information since
only a single value is applied to a threshold. The evolution
of VNRs is expected to provide improved prediction accuracy
compared to the state-of-the-art schemes.

III. MACHINE LEARNING FOR EARLY HARQ
We aim to optimize E-HARQ by means of Machine Learn-

ing techniques. This includes more complex input features as
well as more involved classification algorithms.

From a Machine Learning perspective we are dealing with
an inherently imbalanced binary classification problem. The
task is to predict the decoding result of a given transmission
using data that is available after the first few decoder iter-
ations. Here we focus on VNRs from the zeroth up to the
fifth decoder iteration as input features in order to leverage
information about the evolution of the sub-codeword during
the decoding process. Concerning classification algorithms we
also restrict ourselves to two well-established algorithms with
fundamentally different underlying principles, regularized lo-
gistic regression and Random Forests leveraging [10]. Logistic
regression is a commonly used classification algorithm, where
the log-odds of a binary output variable is modeled as a
linear combination of the classifier’s input variable. A Ran-
dom Forest is an ensemble method that relies on combining
predictions from multiple decisions trees which in turn reach
a classification decision by a sequence of binary decisions
tracing a path from their root node down to one of their
terminal nodes, see e.g. [11] for a detailed description of both
algorithms. A more detailed treatment of the impact of both
the choice of input features and the choice of classification
algorithm is subject to future investigations.

The main complication arises from the heavily imbalanced
setting of the problem that results from the typical base block
error rates of the order of 10−3 or even smaller. A lot of
research has been devoted to developing effective ways of
dealing with imbalance, see e.g. [12] for a review, that can
be broadly subdivided into cost-sensitive learning, rebalancing
techniques and threshold moving. Here we focus in particular
on the latter, see e.g. [13] and references therein, which allows



to adapt any trained classifier that outputs probabilities for
the predicted classes by modifying the decision threshold.
If one varies the decision threshold rather than considering
a single fixed value, one can obtain for example Receiver-
Operation curves (ROC) or Precision-Recall (PR) curves. Here
we focus on Precision-Recall curves as these have been shown
to better reflect the classifier’s performance for highly skewed
datasets [14]. ROC- or PR-curves allow to discriminate be-
tween different classification algorithms consider their overall
discriminative power rather than focusing on a single decision
threshold.
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Fig. 2. Probabilistic model for single-retransmission HARQ (terminal nodes
marked in bold face lead to an effective block error). The random variable
e(e′) designates a block error in the initial transmission or retransmission,
respectively. Similarly the sent feedback is quantified using the random
variable f .

However, during the implementation a particular decision
threshold has to be fixed, which requires a careful considera-
tion between the classifier’s false negative rate (FNR) and false
positive rate (FPR) that counteract each other and that are the
key output figures of the classifier from the system point of
view. Here we follow the nomenclature in the Machine Learn-
ing community designating minority class i.e. non-decodable
examples as positive examples, even though the opposite
assignement is often used in the Communications literature.
Hence the FNR quantifies the error made by sending ACK
feedback given a non-decodable input, which has more severe
consequences from the system’s point of view compared to the
error arising from sending a NACK feedback for decodable
input. The reason is that the former results in a failure to
deliver the message within the latency constraint whereas the
latter represents an unnecessary retransmission, which only
degrades the spectral efficiency of the HARQ scheme. The
impact of FNR and FPR on the system performance is most
easily illustrated in a simple probabilistic model, see Fig. 2.
Designating the base code block error rate (BLER) by P ,
the block error probability after retransmission by P ′ ≃ P
and the conditional probability P (f = 0|e = 1), which
is to be identified empirically with the classifier’s FNR, by
p one straightforwardly derives the following relation for
the effective block error probability for single-retransmission
HARQ,

pBLE,eff = P · (p+ (1− p)P ′) , (5)

where we work with the simplifying assumption of a perfect
feedback channel. However, effects of an imperfect feedback
channel can be simply accommodated in this framework by
means of effective FNRs/FPRs. The restriction to a single
retransmission arises from the hard latency threshold of 1 ms
that allows at most one retransmission [8]. Soft latency or
reliability constraints might allow multiple retransmissions and
therefore further improvements of the effective error probabil-
ity but will not be considered in our setting. The FPR primarily
impacts the spectral efficiency, which we characterize for
simplicity by the expectation value ⟨T ⟩ of total transmissions
for single-retransmission HARQ relative to the baseline of
regular HARQ with 1+P retransmissions. Although, spectral
efficiency does not impact the reliability and latency directly,
in a practical system with limited amount of available re-
sources the latency constraint is hurt in the overloaded regime.
In the same model as before and designating the conditional
probability P (f = 1|e = 0), which is to be identified
empirically with the FPR, by q one finds

⟨T ⟩ = 1 + (P (1− p) + (1− P )q) , (6)

with leading order contribution 1 + P + q.
In a system with unlimited resources it might be desirable to

choose an arbitrarily small FNR, which lets the effective block
error rate approach the lower bound P · P ′ corresponding to
perfect HARQ feedback in the sense that p = 0. However, this
comes in turn with a high FPR, which in the extreme case
amounts to predicting NACK for every single transmission.
This is obviously not a viable procedure in realistic setting
with limited resources. It even turns out that the system
characteristics determine an optimal working point for the
prediction algorithm. At this point we restrict ourselves to
the comparison of different FNR-FPR curves to discriminate
between different classifiers.

We can summarize the problem setting as follows: Given
the decoder outputs of the first five decoder iterations i.e.
(Λ

(0)
i,k=1...M ), . . . , (Λ

(5)
i,k=1...M ), where M denotes the length of

the subcode under consideration and the subscript i = 1 . . . N
enumerates the training samples, we aim to predict the final
outcome of the decoding process li of the full codeword. Our
solution involves the following steps:

1) For a given training sample we calculate the classifier’s
input features xi = (VNR0(Λ

(0)
i,k )), . . . ,VNR5(Λ

(5)
i,k )))

using Eq. 4.
2) We train a binary classifier (regularized logistic re-

gression/Random Forest) on tuples (xi, li), where i =
1 . . . N .

3) We assess classification performance on unseen test data
and estimate FNR p and FPR q empirically from the
classifier’s confusion matrix.

4) Finally, we analyze the system performance in terms of
effective block error rate pBLE,eff and expected number
of transmissions ⟨T ⟩ as defined by Eqs. 5 and 6.

We stress again that the advantage of the proposed solution
lies in decoupling the feedback generation from the final



(a) 4.0 dB subcode 5/6 (b) 4.0 dB subcode 1/2

Fig. 3. Evaluating prediction performance based on FNR-FPR curves: Comparing improved predictors (LR,RF) to baseline results (HT0,HT5).

TABLE I
LINK-LEVEL SIMULATION ASSUMPTIONS FOR TRAINING AND TEST SET

GENERATION.

Transport block size 360 bits
Channel Code Rate-1/5 LDPC BG2,

Z = 36, see [15]
Modulation order and algorithm QPSK, Approximated LLR
Waveform 3GPP OFDM, 1.4 MHz,

normal cyclic-prefix
Channel type 1 Tx 1 Rx, TDL-C 100 ns,

2.9 GHz, 3.0 km/h
Equalizer Frequency domain MMSE
Decoder type Min-Sum
Decoding iterations 50
VNR iterations 5

decoding process. As a consequence, the task of estimating the
outcome of the decoding process for a given codeword based
on the outcome of the first few decoder iterations applied to a
corresponding subcodeword is entirely different from the ac-
tual decoding process itself for which very efficient algorithms
exist. For a given SNR and channel model the classifier has
to be trained only once and there are no additional signaling
overheads compared to regular HARQ during runtime.

IV. RESULTS

A. Prediction Performance

We compare classification performance of different classi-
fiers based on the area under the PR curve (AUC-PR), where
a perfectly discriminative classifier would amount to a score
of 1, and FNR-FPR curves as discussed above. As external
parameters we vary the SNR between 3.5 dB and 4.0 dB
and subcodes 1/2 and 5/6 for a pedestrian channel model,
see Tab. I for detailed parameters. The two SNR-values were
chosen as the corresponding baseline BLERs are small enough
to allow us to reach effective BLERs of the order 10−5 as
required for URLLC services. On the other hand the baseline
BLER decreases and hence the imbalance in the classification
problem further increases with increasing SNR requiring even
larger training and test sets. For this reason we decided not to

consider SNRs beyond 4.0 dB in this study. The simulation
setup used to produce training and test data follows the one
reported in [8]. In all cases we use 1M transmissions with
independent channel realizations for training and evaluate on
a test set comprising 1M transmissions. Hyperparameter tuning
was performed once at 4.0 dB at subcodelength 5/6 on a
separate evaluation set comprising 1M records.

TABLE II
COMPARING CLASSIFICATION PERFORMANCE BASED ON AUC-PR.

model SNR SC BLER AUC-PR
HT0 4.0dB 5/6 0.001601 0.818
HT5 4.0dB 5/6 0.001601 0.900
LR 4.0dB 5/6 0.001601 0.903
RF 4.0dB 5/6 0.001601 0.905

HT0 4.0dB 1/2 0.001540 0.806
HT5 4.0dB 1/2 0.001540 0.806
LR 4.0dB 1/2 0.001540 0.835
RF 4.0dB 1/2 0.001540 0.837

HT0 3.5dB 5/6 0.002843 0.844
HT5 3.5dB 5/6 0.002843 0.921
LR 3.5dB 5/6 0.002843 0.921
RF 3.5dB 5/6 0.002843 0.924

HT0 3.5dB 1/2 0.002842 0.828
HT5 3.5dB 1/2 0.002842 0.821
LR 3.5dB 1/2 0.002842 0.858
RF 3.5dB 1/2 0.002842 0.855

We benchmark hard threshold classifiers on the zeroth
(HT0) [6] and fifth (HT5) decoder iteration [8] compared to
(L2-regularized) logistic regression (LR) and Random Forests
(RF) using VNRs from the zeroth to fifth decoder iteration as
input features. The results for test-set AUC-PR are compiled
in Tab. II. As reported in [8] for subcode 5/6 the usage of
the fifth decoder iteration rather than the initial VNR values
leads to an improved classification performance. Interestingly,
the converse applies to the case of subcode 1/2, where using
the VNRs from the fifth decoder iteration even worsens the
classification performance compared to the zeroth iteration
baseline. In all considered cases the algorithms operating on
the full set from zeroth to fifth decoder iteration show an
improved classification performance compared to the current



(a) 4.0 dB subcode 5/6 (b) 4.0 dB subcode 1/2

(c) 3.5 dB subcode 5/6 (d) 3.5 dB subcode 1/2

Fig. 4. Evaluating system performance based on pBLE,eff-⟨T ⟩ curves: Improvement from using more complex predictors (LR,RF) compared to baseline results
(HT0,HT5). Target perr,eff designates the URLLC target value of 10−5 and optimal perr,eff denotes the effective error probability for perfect feedback in the
sense of a vanishing FNR.

state-of-the-art HT5. Logistic Regression and Random Forests
reach a similar level of performance in all cases. The largest
performance gains for more complex prediction methods to
single VNR baselines are obtained for the subcode 1/2 cases.

Even though these AUC-PR results reflect the overall dis-
criminative power of the different classifiers on the given
dataset, the classifiers’ behavior in the FNR-region below 0.01
is of primary practical interest. In Fig. 3 we compare the
classification performance for SNR 4.0 dB at subcodelength
5/6 and 1/2. Fig. 3 reflects a similar ranking that already
emerged in Tab. II. However, the ranking based on FNR-
FPR curves allows a more finegrained discrimination between
different classifiers in dependence of the chosen working point.
This is illustrated for example in Fig. 3(a), where for small
FPR ranges HT5 is favored over HT0 whereas for larger FPRs
HT0 outperforms HT5.

Unfortunately in the extremely unbalanced regime it is
difficult to obtain reliable estimates of the FNR as both the
numerator (false negatives) and the denominator (sum of false
negatives and true positives) are small numbers requiring large

sample sizes for a stable evaluation. Apart from increasing
sample sizes this can only be circumvented by fitting appro-
priate parametric descriptions to the FNR-curve which could
then be used to extrapolate to very small FNR values. As a
matter of fact the FNR-curve in the small FNR range is well-
described by a power-law behavior.

B. System Performance

For the evaluation of the system performance we focus on
the effective block error rates, as obtained from Eq. 5 that
can be reached in combination with different classification
algorithms, see Fig. 4. This is a valid consideration as long
as the system resources are able to properly accommodate the
retransmission overhead introduced by the FPR. To produce
Fig. 4 we approximated the conditional probabilities p and q
by the empirical FNR/FPR as extracted from the classifier’s
confusion matrix, which summarizes the classification perfor-
mance in terms of false/true positive/negative classification
results. The baseline block error probability P was also
estimated from test set statistics. For simplicity we assumed



that P ′ = P i.e. that the block error probability for the retrans-
mission coincides with that of the original transmission. Fig. 4
shows the expected behavior, the effective error probability
decreases with increasing latency and eventually approaches
the effective error probability for regular HARQ feedback.

A qualitatively consistent picture arises from the comparison
in Fig. 4: On the one hand, for the larger subcode 5/6 the
fifth decoder iteration HT5 is favored over the zeroth iteration
HT0 over most of the parameter range. The more complex
algorithms LR and RF represent a slight improvement over
the current state-of-the-art HT5, where LR seems to perform
slightly better than RF in particular in low FNR-regime that
is most relevant for applications. On the other hand, for the
smaller subcodelength 1/2 over most of the parameter range
HT0 is favored over HT5. Interestingly the HT0 results is only
marginally influenced by the subcodelength, which is most
likely related to the fact that it only estimates an effective error
rate across the codeword that is most likely even for subcode
1/2 long enough to give a reasonable estimate. In this setting
the largest improvement from using more complex prediction
methods is observed. This is consistent with expectations in
the sense that decreasing the subcodelength leads to a more
difficult prediction problem that can profit more from more
complex methods. At 4.0 dB an effective error probability is
achievable with the presented methods, whereas for 3.5 dB,
where the gap between the target and the optimal block
error probability is already much smaller, it is still achievable
albeit requiring considerably more HARQ overhead as the
effective error probabilities already start to flatten at this point.
However, it is worth stressing that the target error probability
of 10−5 should primarily seen as fixing the order of magnitude
rather than a hard threshold value. For example an effective
error probability of 2 · 10−5 is easily achievable at 3.5 dB.
Finally we can use Fig. 4 to estimate the HARQ overhead we
have to accept when decreasing the subcodelength from 5/6
to 1/2 while maintaining the same effective error probability.
Using the LR result and a threshold value of 1·10−5 or 2·10−5

at SNR 4.0 dB and SNR 3.5 dB we find that the expected
number of retransmissions increases by approximately 40%.

Our results clearly demonstrate that effective block error
rates of the order of 10−5 are achievable with a small loss com-
pared to the optimal block error rate at both investigated SNR
values and subcodelengths. In all cases and independently of
the algorithm the classifier profits from the information of the
VNR evolution with the decoder iterations. The evaluation
both for Random Forests as well as logistic regressions is
amenable to efficient implementations on hardware and are
therefore not only of theoretical but potentially also of practi-
cal interest.

V. CONCLUSION

In this work we explored the prospects of improving
subcode-based early HARQ as introduced in [8] by using more
elaborate classification methods to predict the decoding result

ahead of the final decoder iteration. We demonstrated that
quantitative improvements over baseline results are possible
by considering a larger set of input features in conjunction
with more complex classification algorithms. Furthermore we
showed that URLLC requirements can be satisfied for 3.5 and
4.0 dB at different subcodelengths and for different channel
models with only small latency overheads.

This work represents a first exploratory study towards
quantitatively improved prediction methods in this setting. The
most obvious extension from the system point of view is to
incorporate implications of limited system resources that even-
tually singles out an optimal working point on the FNR-FPR
curve that is determined by system properties. Furthermore,
exploiting more elaborate input features like intra-message
features such as LLRs or history features incorporating the
receiver’s knowledge about channel properties from earlier
transmissions might prove useful to further improve the clas-
sification performance, in particular on vehicular channels.
These issues are currently under investigation.
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