
Bayesian Active Malware Analysis
Riccardo Sartea
University of Verona

Department of Computer Science
Verona, Italy

riccardo.sartea@univr.it

Georgios Chalkiadakis
Technical University of Crete

School of Electrical and Computer Engineering
Chania, Greece

gehalk@intelligence.tuc.gr

Alessandro Farinelli
University of Verona

Department of Computer Science
Verona, Italy

alessandro.farinelli@univr.it

Matteo Murari
University of Verona

Department of Computer Science
Verona, Italy

matteo.murari@univr.it

ABSTRACT
We propose a novel technique for Active Malware Analysis (AMA)
formalized as a Bayesian game between an analyzer agent and a
malware agent, focusing on the decision making strategy for the
analyzer. In our model, the analyzer performs an action on the
system to trigger the malware into showing a malicious behavior,
i.e., by activating its payload. The formalization is built upon the
link between malware families and the notion of types in Bayesian
games. A key point is the design of the utility function, which
reflects the amount of uncertainty on the type of the adversary
after the execution of an analyzer action. This allows us to devise
an algorithm to play the game with the aim of minimizing the
entropy of the analyzer’s belief at every stage of the game in a
myopic fashion. Empirical evaluation indicates that our approach
results in a significant improvement both in terms of learning speed
and classification score when compared to other state-of-the-art
AMA techniques.

ACM Reference Format:
Riccardo Sartea, Georgios Chalkiadakis, Alessandro Farinelli, and Matteo
Murari. 2020. Bayesian Active Malware Analysis. In Proc. of the 19th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
In recent years the number of security flaws exploited by cyber-
criminals has grown at an always increasing rate [25]. Among the
most common infection vectors there are malicious software, often
installed unknowingly by a legitimate user with the consequence
of exposing computer systems to external threats. Furthermore,
the increasing reliance on autonomous systems, e.g., cars, boats,
as well as the spreading of smart and tiny embedded systems as
part of the Internet of Things (IoT), resulted in billions of intercon-
nected devices that are potential targets of malicious attacks [25].
In particular, Android is one of the most diffused operating systems
employed not only in smartphones, but also in IoT, making it the
preferred platform for cyber-criminals due to its huge market share
[4]. In order to analyze the great amount of applications released

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

every year, human cyber-security experts must rely on automated
techniques to keep pace with the new threats discovered daily, since
a manual analysis of every single one would be impossible.

A widely adopted methodology is dynamic analysis, in which
an unknown application is safely executed within a sandbox and
its runtime behavior is observed. In this context, much focus is
on techniques that attempt to trigger a malicious application, i.e.,
a “malware”, into showing core behaviors that would otherwise
remain invisible without an interaction [16]. This kind of active
dynamic malware analysis, known as AMA, has been shown to
be more informative than the classical passive dynamic analysis
[30], especially for systems that heavily rely on user input, such
as smartphones [15, 19, 23]. Usually, the goal is to group unknown
applications with respect to common behaviors or to a predefined
set of classes. Indeed, malware can be grouped in families (or types),
that are behavioral categories in which malicious applications fall
into [6]. This grouping applies also to actions that trigger malicious
behaviors: every family responds to a certain set of triggers, many
of which are shared across different families. For example, both a
spyware and a ransomware may react to an incoming sms: the first
forwarding it to a third party, whereas the second encrypting its
content. Previous works however do not use the concept of families
to improve the analysis process adapting the analyzer strategy
at runtime. By contrast, we use the available information on the
families and on the characteristics of behaviors they contain, i.e.,
triggers, to guide the analyzer in selecting triggering actions that
reflect the current belief regarding which family the malware being
analyzed belongs to.

There exists an extensive literature that takes into account the
type of the other agents to perform inference, with one key frame-
work being that of Bayesian games [8]. These are used to model
many domains, such as security games [9, 24, 31], coalitional games
[2, 3], or network security solutions [10, 12]. In our proposed
Bayesian Active Malware Analysis (BAMA) approach we build the
formalization upon the link between malware families and the no-
tion of types in Bayesian games. In particular, we formalize the anal-
ysis as a Bayesian game between an analyzer agent and a malware
agent, focusing on the decision making strategy for the analyzer.
Such strategy is guided by a utility function specifically designed
to reflect the amount of uncertainty on the type of the adversary,
according to the analyzer’s belief. The aim is to be able to select

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1206

triggering actions that allow one to infer the type of malware with
increasing accuracy at every stage of the game while it progresses.

We test our approach on a public dataset of real Android malware
[29] comparing with other state-of-the-art AMA techniques [15, 19,
30] geared to solve the same problem ofmalware analysis and family
matching that we are considering. Empirical evaluation shows that
BAMA favourably compares to the other methodologies both in
terms of learning speed and classification score.

In summary, our contributions are the following:

(1) We propose BAMA, a novel technique for dynamic active
malware analysis, formalized as a Bayesian game between
an analyzer agent and a malware agent, focusing on the
decision making strategy for the analyzer. A key point is the
design of the utility function, which reflects the amount of
uncertainty on the type of the adversary after the execution
of an analyzer action.

(2) The algorithm we devise to exploit the formalization is based
on an entropy minimization principle applied in a myopic
fashion to the Dirichlet prior that corresponds to the an-
alyzer’s belief. This allows us to successfully reduce her
uncertainty on the type of the adversary at every stage of
the game.

(3) We empirically evaluate BAMA on a public dataset of real
Android malware. Results show a significant improvement
in (a) the learning speed in terms of the number of analyzer
actions required to reach the best classification score, as
well as in (b) the best classification score, when compared to
state-of-the-art AMA techniques.

2 RELATEDWORK
AMA has attracted significant attention in recent years. For ex-
ample in the work by [23], authors build an analyzer that tries to
reproduce very specific activation conditions to trigger malicious
payloads relying on stochastic models extracted by past samples of
user execution behaviors. The analyzer described in the work of
[15] instead, randomly interacts with the Graphical User Interface
(GUI) performing thousands of actions in order to trigger malicious
behaviors. The main limitation of such approaches is that the strat-
egy of the analyzer does not adapt to what is observed during the
analysis as it either reproduces past user execution traces or ran-
domly selects the next analyzer action. A first step toward adapting
the analyzer strategy to the malware reactions is taken in [30],
where authors propose a game-theoretic framework for malware
analysis. In particular, the analysis is formalized as a stochastic
game between two players: an analyzer and a malware. The goal of
the analyzer is to select the best action to perform on the system in
order to trigger a reaction of the malware by using the information
gathered during the analysis so far. In order to achieve such objec-
tive, the analyzer is given a fixed and manually pre-specified model
of the behavioral patterns she aims to capture (based on the system
on which the analysis is going to be performed). The model, that
requires expert’s knowledge to be created, is then used at runtime
to store the observed transition probabilities between states that
describe the behaviors of the malware, i.e., its policy extracted via
interaction.

Init

open
File

open
Socket

read

write

close

sms: 0.7
wifi: 0.3

sms: 0.3
wifi: 0.7

sms: 1.0
wifi: 1.0

sms: 0.7
wifi: 0.7

sm
s:

 0
.9

w
ifi

:
0.

8

sms: 0.2
wifi: 0.1

sms: 0.1
wifi: 0.2

sm
s:

 0
.8

w
ifi

:
0.

9sms: 0.3
wifi: 0.3

Figure 1: Example of malware model

To remove the requirement of a pre-specified model, authors
of [19] propose Monte Carlo Analysis (MCA), an improved version
of AMA in which the malware model is generated at runtime, and
does not depend on the underlying system anymore. In particular,
the model is formalized as a composition of multiple Markov chains,
where each one represents the behavior of the malware in response
to a specific action executed by the analyzer. In more detail, states
are Application Programming Interface (API) calls extracted by
the execution trace of the malware, and edges are labeled with
transition probabilities conditioned by the analyzer action that
triggered such transition. An example is visible in Figure 1 where
the malware represented by that model transitions from state𝑤𝑟𝑖𝑡𝑒
to 𝑟𝑒𝑎𝑑 with probability value 0.8 in response to the action 𝑠𝑚𝑠 of
the analyzer. The same transition in response to𝑤𝑖𝑓 𝑖 instead has
probability value 0.9. The analyzer action selection is performed
withMonte Carlo Tree Search (MCTS), since without a pre-specified
model the analyzer has to consider a huge number of possible
malware responses in terms of execution traces. The reward of
the game is designed to be the entropy gain between the current
model and the one obtained at the end of the simulation step of
the MCTS. When the analysis terminates, the transition matrices
of the Markov chains representing the generated model are used
as features for standard classification or clustering techniques, in
order to group malware into their respective families.

Both works [19, 30] use an intelligent action selection strategy
for the analyzer that improves over a random or sequential strategy.
Nevertheless, if the number of possible analyzer actions is high,
many analysis steps may be required to converge to the best classi-
fication score. In fact, authors employ exploration methodologies
based on the information gathered so far, that however do not take
in consideration the type of the adversary. By contrast, our pro-
posed approach aims to exploit the intrinsic characteristics of the
malware families, where each one is known to respond to specific
stimuli depending on the malicious payload. With such information
at hand, we model the analysis in order to reason about the malware
family (type) at runtime, and to adapt the analyzer action selection
strategy accordingly.

3 BACKGROUND
A Bayesian game is a game of incomplete information where each
player can be of several types, each one corresponding to a possible
payoff function for that player.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1207

Definition 3.1 (Bayesian game). A Bayesian game with 𝑛 players
is a tuple
𝐺 = (𝑁,𝑨,𝚯, 𝒖, 𝑝) where
• 𝑁 is the finite set of 𝑛 players
• 𝑨 = 𝐴1 × · · · ×𝐴𝑛 where 𝐴𝑖 represents the actions available
for player 𝑖
• 𝚯 = Θ1 × · · · × Θ𝑛 where Θ𝑖 represents the types available
for player 𝑖
• 𝒖 = (𝑢1, ..., 𝑢𝑛) is a profile of utility functions with
𝑢𝑖 : 𝑨 × 𝚯→ R utility function for player 𝑖
• 𝑝 is the common prior over 𝚯

A player’s type 𝜃𝑖 is only observed by player 𝑖 and encodes all
relevant information about some important private characteristics
of such player. Utility functions, and consequently strategy con-
struction, take into account not only player’s actions but also their
types. To model a Bayesian game it is useful to introduce a special
player called nature that randomly chooses a type for each player
according to the prior probability distribution 𝑝 that is assumed to
be known by every player [8].

In our domain, a natural choice for prior is the Dirichlet [17]
since it is the conjugate prior of themultinomial distribution that we
employ as uncertainty measure over the possible malware families.

Definition 3.2 (Dirichlet distribution). A Dirichlet distribution
of order 𝑘 ≥ 2 with parameters 𝜶 = (𝛼1, . . . , 𝛼𝑘) ∈ (R>0)𝑘 is
denoted as 𝐷𝑖𝑟 (𝜶). A 𝑘-dimensional Dirichlet random variable
𝜽 = (𝜃1, . . . , 𝜃𝑘) with 𝜃 𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑘 and

∑𝑘
𝑗=1 𝜃 𝑗 = 1 has

probability density1

𝐷𝑖𝑟 (𝜽 | 𝜶) = 1
𝐵(𝜶)

𝑘∏
𝑖=1

𝜃
𝛼𝑖−1
𝑖

where

𝐵(𝜶) =
∏𝑘
𝑖=1 Γ(𝛼𝑖)
Γ(𝛼0)

and 𝛼0 =
𝑘∑
𝑖=1

𝛼𝑖

Γ is the Gamma function

Our proposed algorithm uses the entropy of a Dirichlet distribu-
tion, which can be computed as follows [5]:

Definition 3.3 (Entropy of a Dirichlet distribution). The (differen-
tial) entropy of a Dirichlet distribution 𝐷𝑖𝑟 (𝜶) of order 𝑘 is

𝐻𝐷 (𝜶) = log𝐵(𝜶) + (𝛼0 − 𝑘)𝜓 (𝛼0) −
𝑘∑
𝑖=1
(𝛼𝑖 − 1)𝜓 (𝛼𝑖)

where𝜓 is the Digamma function

There are some differences in the entropy between a discrete or
a continuous random variable (differential entropy). First of all,
differential entropy can assume negative values, and this is the case
for the Dirichlet distribution (visible also in Figure 3 of Section 5).
Secondly, in the discrete case, entropy quantifies randomness of
a system in an absolute way, whereas in the continuous case this
quantification has only a relative meaning. Consequently, differen-
tial entropy cannot represent the absolute amount of information
1There are some technicalities that for brevity we do not report here, such as the
fact that the support of a Dirichlet probability density function is actually the open
(𝑘 − 1)-dimensional simplex. We refer the interested reader to [17] for more details.

carried by a system, unless carefully interpreted. In this work, we
use the entropy value of a Dirichlet distribution to compare multi-
ple actions (therefore in a relative way) in order to select the most
promising one [22]. In particular, the entropy of the Dirichlet dis-
tribution is reflected in the entropy of the multinomial distribution
that is sampled: the lower (higher) the entropy of the Dirichlet
distribution, the lower (higher) the entropy of its expectation (the
multinomial distribution result of the average sampling) [7]. When
𝜶 = (𝛼1, . . . , 𝛼𝑘) with 𝛼𝑖 = 𝛼 𝑗 for all 𝑖, 𝑗 ∈ [1, 𝑘], the average multi-
nomial distribution obtained by sampling 𝜽 ∼ 𝐷𝑖𝑟 (𝜶) is uniform,
therefore carrying the maximum entropy value (and consequently
uncertainty).

To distinguish between a 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 and a 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 execution trace,
hence to decide if a malware execution trace is actually a reactive
response to an analyzer action, we employ the Kullback-Leibler
divergence 𝐷𝐾𝐿 [11].

Definition 3.4 (Kullback-Leibler divergence). The Kullback-Leibler
divergence is a measure of how one probability distribution is
different from a second reference probability distribution

𝐷𝐾𝐿 (𝑃 ∥ 𝑄) = −
∑
𝑥 ∈X

𝑃 (𝑥) log
(
𝑄 (𝑥)
𝑃 (𝑥)

)
The Kullback-Leibler divergence 𝐷𝐾𝐿 measures how much a distri-
bution is different from another in terms of the quantity of infor-
mation that is lost when one distribution is approximated with the
other. We use it to compute the difference between the distribution
of the known passive execution trace of a malware sample and the
distribution of another execution trace.

4 PROPOSED METHODOLOGY
Our proposed methodology, BAMA, is to the best of our knowledge
the first to consider the link between malware families and the no-
tion of types in Bayesian games. The goal is to be able to match an
unknown malware sample to the family (class) in which it belongs,
by performing as few analyzer triggering actions as possible. In or-
der to achieve this goal, we make use of a priori information about
the malware families that BAMA employs, instead of requiring
underlying models to reason about as in [19, 30]. Such information
is represented as a list of all the malware families that respond to a
specific analyzer triggering action. Indeed, nowadays almost every
repository of malware reports detailed information for every fam-
ily, including the triggering mechanisms, such as the one we use
in the experiments [29]. Furthermore, in our application domain
(Android systems), the triggers we use are actions that an average
smartphone user would perform, e.g., sending an sms, making a call,
opening the browser etc., for which an application has to declare
listeners in the manifest to intercept, thus easily obtainable by an
analyzer. In contrast to previous works [15, 19], in order to devise
the strategy for the analyzer to identify the malware type, we do
not make use of detailed information, i.e., exact list of APIs, of an
execution trace, but rather only distinguish between a passive exe-
cution trace that could have been observed also without interacting
with the malware, and a reactive execution trace that is triggered
by the specific action performed by the analyzer. Before giving
the formalization of BAMA, we first explain the problems arising

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1208

from the uncertainty on the observations of malware behaviors as
execution traces, and how to solve them.

Our approach makes use of an Android sandbox emulator to
run malicious applications, to execute analyzer triggering actions,
and to observe and extract the corresponding execution traces.
However, uncertainty affects the readings of the execution traces
from the sandbox due to several reasons. The first is given by the
intrinsic slow nature of AMA: the emulator has to be reset to a clean
state and rebooted after every interaction, hence requiring time.
After executing a triggering action, the analyzer waits for a fixed
amount of time before registering the malware response.2 This is
motivated by the fact that in Android malicious applications it is
often the case that if a malware is reactive, it will probably respond
in a reasonable time after having been triggered. Nevertheless, for
this reason the very same execution trace can be “cut” in different
places when read multiple times as a response to a trigger. The
second reason of uncertainty is that malware also often employ
deception techniques that intentionally inject noise (random or non-
correlated APIs) within execution traces, to deceive an analyzer
by trying to hide their malicious behavior [14, 20]. In addition,
a malware could have been designed to activate the payload in
response to a specific trigger with some probability, instead of
being deterministic. Finally, malware samples belonging to the
same family may differ, possibly not responding to a trigger that
is instead common to other samples of the same family, due to
code repackaging and other changes inserted by criminals that
often modify existing malware rather than creating them from
scratch [26]. Hence, based on system workload, timing constraints,
deception techniques, and other factors, different execution traces
from the same malware could be retrieved in response to the same
triggering action, complicating the comparison.

As mentioned, we are only interested in distinguishing between
passive and reactive responses without analyzing in detail the con-
tent of the execution traces. A passive response is extracted before
starting the game by simply executing a malware and observing its
behavior without any interaction. Thus, we employ the Kullback-
Leibler divergence 𝐷𝐾𝐿 of Definition 3.4 between the distribution
of APIs 𝑃 of the passive execution trace, and the distribution of
APIs 𝑄 of another execution trace. In particular, we compute a
threshold value 𝜖 on a training set of Android applications (both
benign and malicious) by randomly executing triggering actions
and measuring the mean value of 𝐷𝐾𝐿 between the passive and the
reactive responses. Given 𝑃 and 𝑄 , if 𝐷𝐾𝐿 (𝑃 ∥ 𝑄) ≥ 𝜖 the trace
from which 𝑄 has been extracted is considered reactive, otherwise
it is considered passive.

4.1 BAMA formalization
The goal of our proposed technique is to analyze a malware by re-
peatedly interacting with it in order to infer its type. Thus, BAMA is
a game that we model from the point of view of the analyzer, mean-
ing that it reflects how the analyzer sees the whole process. In par-
ticular, the utility function is designed from an information-centric
perspective aimed at guiding the analyzer in acquiring information
on the type of the adversary faced during the game.

2The amount of time is a parameter of the analysis depending on the host system.
Usually varies between 10 and 30 seconds.

Definition 4.1 (BAMA game). The game of BAMA is a Bayesian
game with

• 𝑁 = {𝑛1, 𝑛2} where 𝑛1 is the analyzer and 𝑛2 is the malware
• 𝑨 = 𝐴1 ×𝐴2 where
– 𝐴1 = {𝑡1, ..., 𝑡𝑚} are all the possible triggering actions for
the analyzer (𝑐𝑎𝑙𝑙 ,𝑤𝑖𝑓 𝑖 , etc.)

– 𝐴2 = {𝑝𝑎𝑠𝑠𝑖𝑣𝑒 (𝑝), 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 (𝑟)} consists of a passive ex-
ecution trace or a reactive response to a trigger for the
malware

• 𝚯 = Θ1 × Θ2 where
– Θ1 = {𝜃1} the fixed type of the analyzer
– Θ2 = {𝑓1, ..., 𝑓𝑘 } where 𝑓𝑗 with 𝑗 = 1, . . . , 𝑘 is a malware
family

• 𝒖 = (𝑢1, 𝑢2) is a profile of utility functions with
𝑢1 : 𝑨 × 𝚯→ R≤0 utility function for the analyzer
• 𝑝 = 𝐷𝑖𝑟 (𝜶) is the Dirichlet prior over 𝚯

BAMA is clearly an instance of a Bayesian game of Definition 3.1 be-
tween two players: the analyzer 𝑛1 and the malware 𝑛2. The action
set 𝐴1 available to the analyzer comprises all the possible trigger-
ing actions that can be performed on the system (send/receive an
sms, make/receive a call, enable/disable wifi, etc.) and that could
possibly cause a reaction in the adversary. The malware action set
𝐴2 instead is an abstraction over all the concrete actions that can
be observed, i.e., the execution traces, that are grouped in either
𝑝𝑎𝑠𝑠𝑖𝑣𝑒 or 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 . The type of the analyzer 𝜃1 is fixed, whereas
for the type set Θ2 available to the malware we build a one-to-one
correspondence with the possible malware families. The player’s
type 𝜃𝑖 encodes all the relevant private information for player 𝑖 that
in our context maps to how a malware responds to the possible
analyzer triggering actions. Since |Θ2 | ≥ 2, giving a multinomial
probability distribution as uncertainty measure over the types, our
choice for prior 𝑝 is the Dirichlet distribution, which is the con-
jugate of the multinomial distribution. The initialization of 𝑝 can
either be a uniform distribution or else reflect the distribution of
the families in the dataset (or in the wild). The analyzer uses the
prior 𝑝 to reason about the next action to play during the game,
updating it accordingly to the observation of the outcomes. The
utility function is explained in Section 4.3 since it is based on the
prior update process, therefore we first present that in Section 4.2
for a better understanding.

BAMA is intended to be played as a repeated game in multiple
stages. In detail, every time a malware sample has to be analyzed,
the analyzer starts a BAMA game of length𝑛, i.e., of𝑛 stages in total.
At each stage 𝑙 , the analyzer selects a triggering action, observes
the malware response, obtains the reward, updates the prior 𝑝 into
𝑝 ′ accordingly and moves to stage 𝑙 + 1 against the same malware
sample but with the new prior (posterior) 𝑝 ′. At the end of stage 𝑛,
the prior 𝑝 is reset to its initial distribution and the analysis process
starts again with a new malware sample from stage 1. Figure 2
depicts a BAMA stage game. Formally, since the type of themalware
sample is initially unknown, we assume its type is drawn by nature
at stage 1 and remains fixed for the next 𝑛 stages (or rather that
nature always draws the same type for 𝑛 stages), until the game
resets to stage 1 again.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1209

u1(t1,p) u1(t1,r) u1(tm,p) u1(tm,r)

p r p r

t1 tm

f1

Nature

Analyzer

Malware

u1(t1,p) u1(t1,r) u1(tm,p) u1(tm,r)

p r p r

t1 tm

fk

Figure 2: A stage of the BAMA game

4.2 Prior update
The Dirichlet prior is updated into a posterior by adding to parame-
ters𝜶 (a vector of pseudo-counts) the count of the new observations
per class [17]. However, in contrast to many classical instances of
Bayesian games, after receiving a reward we are still uncertain
about the type of the adversary since more families can share the
same triggers, requiring observations to be treated accordingly. We
first define a function 𝑔() that maps each analyzer triggering action
to the set of families that are known to respond to it based on the a
priori available information:

𝑔 : 𝐴1 → P(Θ2) (1)
Given a prior 𝑝 with parameters 𝜶 = (𝛼1, . . . , 𝛼𝑘) at stage 𝑙 , the
posterior 𝑝 ′with parameters𝜶 ′ = (𝛼 ′1, . . . , 𝛼

′
𝑘
) at stage 𝑙+1 depends

on the action 𝑎2 of the malware after the analyzer played action 𝑎1
at 𝑙 . The 𝛼 𝑗 ’s are one per malware family 𝑓𝑗 . The prior update is
performed via function𝑤 ():

𝑤 (𝜶 , 𝑎1, 𝑎2) = 𝜶 ′

where

𝛼 ′𝑗 =

𝛼 𝑗 + 1

|𝑔 (𝑎1) | 𝑓𝑗 ∈ 𝑔(𝑎1) ∧ 𝑎2 = 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝛼 𝑗 + 1

|𝑔 (𝑎1) | 𝑓𝑗 ∉ 𝑔(𝑎1) ∧ 𝑎2 = 𝑝𝑎𝑠𝑠𝑖𝑣𝑒
𝛼 𝑗 otherwise

(2)

with 1 ≤ 𝑗 ≤ 𝑘 and 𝑓𝑗 ∈ Θ2. That is, if a malware actively responds
to a triggering action 𝑎1, i.e., 𝑎2 = 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 , we split the observation
across all the families that are known to respond to 𝑎1, which are
given by 𝑔(𝑎1). Conversely, if a malware does not respond to 𝑎1, i.e.,
𝑎2 = 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 , we split the observation across all the families that are
known to not respond to 𝑎1. Notice that, as explained before, given
the uncertainty in the readings from the emulator, we have to stay
conservative as an execution trace may be detected as 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 when
it was 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 instead or vice versa. As such, we never force 𝛼 ′

𝑗
to

be close to 0 as this can result in wrong inference in the remainder
of the game.

4.3 Utility function
The key point of our formalization is the utility function 𝑢1 for the
analyzer. This is designed with the aim of guiding the selection of
triggering actions so as to maximize the information acquired on
the type of the adversary. The current belief on the adversary type is
encoded by the prior 𝑝 = 𝐷𝑖𝑟 (𝜶), and the multinomial distribution
𝜽 ∼ 𝐷𝑖𝑟 (𝜶) has an uncertainty degree tied to the entropy 𝐻𝐷 (𝜶)

of Definition 3.3. The reward received by the analyzer then is the
entropy of the posterior obtained by updating 𝑝 (with Equation 2)
after 𝑎1 ∈ 𝐴1 and 𝑎2 ∈ 𝐴2 are performed:

𝑢1 (𝑎1, 𝑎2) = 𝐻𝐷 (𝑤 (𝜶 , 𝑎1, 𝑎2)) (3)

where𝑤 () is computed with Equation 2. Essentially, the utility is
a function that corresponds to the amount of uncertainty on the
type of the adversary resulting after the joint actions (𝑎1, 𝑎2) have
been played, hence on how the prior (and consequently the belief
on the type of malware) changes due to an analyzer action. Our
formalization allows to avoid the need to explicitly capture every
single factor that contributes to the uncertainty (time, deception,
etc., as mentioned in the first part of Section 4) by abstracting
between passive and reactive responses and maintaining a prior
probability distribution used in the utility function of the analyzer.

4.4 Analyzer strategy
BAMA is a game where the analyzer’s end goal is to infer the type
of the adversary. Indeed, knowing with enough confidence what
is the type of the current adversary, allows the analyzer to pick
the correct actions in order to trigger the malware and observe
its malicious behavior in response. Nonetheless, in the context
of malware analysis it is crucial to characterize the payload of a
malware and this is often done inferring its behavioral category
with respect to other known malicious samples. However, our aim
is not to reach full code coverage, i.e., to enumerate all the reactive
traces, but rather to acquire enough information that allows us to
correctly classify a malware into its family, and consequently to
infer its behavior by similarity to others of the same category. If
a malware family has 5 known triggers, and after executing 2 of
them the prior points precisely to that family, i.e., low uncertainty
in the resulting multinomial distribution, it is useless to perform
also the other 3 triggers and observe the corresponding new traces.

As such, we devise the analyzer strategy with the aim of reducing
the entropy in the prior 𝑝 at every stage. The key point is that after
performing a trigger 𝑎1, the analyzer acquires information on the
response that changes the prior accordingly (Equation 2). Since the
aim is to reduce the uncertainty on adversary type when sampling
the prior, we base the analyzer strategy on the entropyminimization
principle for 𝑝 , employing a 1-step lookahead that considers the two
known possible updates from 𝑝 at stage 𝑙 to 𝑝 ′ at stage 𝑙 +1 (passive
or reactive response). Thus, the analyzer employs its current belief
on the type of adversary, and chooses the action that reduces the
entropy of 𝑝 ′ the most. Formally, action selection starts with a
sampling of the current prior 𝑝 giving 𝜽 ∼ 𝐷𝑖𝑟 (𝜶), and then picks
an entropy minimizing action, as follows:

argmin
𝑎1∈𝐴1

[𝑞 · 𝑢1 (𝑎1, 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒) + (1 − 𝑞) · 𝑢1 (𝑎1, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒)]

that is
argmin
𝑎1∈𝐴1

[𝑞 · 𝐻𝐷 (𝑤 (𝜶 , 𝑎1, 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒))

+ (1 − 𝑞) · 𝐻𝐷 (𝑤 (𝜶 , 𝑎1, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒))]
with

𝑞 =
∑

𝑓𝑗 ∈𝑔 (𝑎1)
𝜃 𝑗

(4)

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1210

where 𝑤 () is defined in Equation 2 and 𝐻𝐷 is the entropy of the
Dirichlet from Definition 3.3. The value of 𝑞 sums up to the proba-
bility for the adversary to respond to the analyzer triggering action
𝑎1, based on the current prior 𝑝 and the information on the families
and their triggers (function 𝑔() of Equation 1). Equation 4 then
corresponds to selecting the action that minimizes the expectation
over 𝐻𝐷 at the next stage. Now, if 𝑔() is imprecise, the analyzer
may not be able to pick actions that effectively lower the entropy
of the Dirichlet prior, with a negative impact on the final results.
Nonetheless, the amount of wrong mappings inside 𝑔() has to be
consistent for BAMA to be ineffective, since (as explained at the
beginning of Section 4) uncertainty is already taken into account
by the formalization.

After a BAMA game ends, the state of the prior 𝑝 should reveal
the type of the adversary the analyzer has been confronting. How-
ever, the very same set of triggers may be shared among multiple
malware families, making them to be seen as the same type in our
formalization. For this reason, we make use of Markov chain based
models (Figure 1) as a tie breaker. Specifically, such a model is gen-
erated using the execution traces observed while playing BAMA,
but it is not considered at all during the game: it is only used at the
end to clear the uncertainty in the prior, if so required. Moreover,
building such models allows us to compare with state-of-the-art
techniques in terms of model classification score, as detailed in
Section 5.

Algorithm 1 BAMA Analysis
Require:

𝑝 = 𝐷𝑖𝑟 (𝜶) - prior over Θ2
𝑛 - game length
𝜖 - threshold value for 𝐷𝐾𝐿

1: Retrieve distribution 𝑃 of passive trace
2: for 𝑛 times do
3: Sample 𝜽 ∼ 𝐷𝑖𝑟 (𝜶)
4: Select action 𝑎1 with Equation 4 using 𝜽
5: Execute 𝑎1 and retrieve distribution 𝑄 of the trace
6: if 𝐷𝐾𝐿 (𝑃 ∥ 𝑄) ≥ 𝜖 then
7: 𝑎2 ← 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

8: else
9: 𝑎2 ← 𝑝𝑎𝑠𝑠𝑖𝑣𝑒

10: 𝜶 ′ ← 𝑤 (𝜶 , 𝑎1, 𝑎2) ⊲ Update with Equation 2
11: Update 𝑝 with 𝜶 ← 𝜶 ′

Algorithm 1 details the BAMA analysis. The first step (line 1)
retrieves the distribution of the passive trace for the computation of
𝐷𝐾𝐿 later. At this point the game begins by sampling the prior 𝑝 for
action selection (lines 3-4). The selected action 𝑎1 is then executed
on the emulator and the subsequent execution trace of the malware
is retrieved along with its distribution𝑄 (line 5). Based on the value
of 𝐷𝐾𝐿 (𝑃 ∥ 𝑄) with respect to the threshold 𝜖 , action 𝑎2 of the
malware is assigned as 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 or 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 (lines 6-9). Finally, the
prior parameters 𝜶 are updated according to the outcome, and the
game progresses to the next stage (lines 10-11). At every stage 𝑙 the
analyzer selects the action that minimizes the entropy 𝐻𝐷 of the
prior 𝑝 at stage 𝑙 + 1. Reducing the entropy at every stage achieves

the result of reducing the uncertainty on the type of adversary
when sampling the prior, as confirmed by experiments and visible
in Figure 3.

5 EMPIRICAL EVALUATION
In the experimental setting we compare BAMA with other three
AMA techniques: MYOPIC [30], MCA [19] implemented in the
SECUR-AMA framework [21], and CANDYMAN [15]. The first step
to analyze an unknown application is to conduct a preliminary
analysis to assess whether it could be malicious [1, 13]. If that is
the case, a crucial task becomes the identification of the specific
malware family in order to use possibly already known counter-
measures to defend against the threat. All the techniques tested in
the experiments share the end goal of identifying the family of an
unknown malicious application by employing different strategies
for the analyzers (as previously detailed).

We use the same dataset of [29] in a subset composed of about
1400 real Android malware partitioned into 24 families. For instance,
the family Finspy concerns the logging and exfiltration of personal
information of the user on an Android device, thus it is sensitive to
calls, SMS activities, browser navigation history updates, etc. Fur-
thermore, some of the families included in this experiment can be
seen as challenging to correctly classify, since they employ specific
mechanisms aimed to deceive the analysis. In particular, Gorpo and
Kemoge employ a combination of anti-analysis techniques such
as the dynamic loading of the malicious code at runtime and the
execution of noisy unrelated API calls, i.e., that are not useful to
implement the malware payload but serve as a method to mislead
an analyzer that focuses on the sequence of actions performed by
the malicious sample. Hence, behaviors related to the damaging
payload interweaved by noisy APIs can induce an analyzer to over-
look malicious characteristics. Moreover, AndroRat and GoldDream
families distinguish themselves on the type of infection vector, as
they are composed by small malware injected into complex harm-
less applications such as games. This peculiar feature causes only a
small portion of the observed execution traces to depict malicious
behaviors, while the rest being related to the harmless application
that has been injected, thus making the malware identification hard.
Malware samples belonging to Opfake are designed to receive com-
mands from an external server controlled by an attacker in order to
be triggered and show their malicious behavior. This happens also
for samples of Tesbo that additionally also try to hide themselves
by not having a GUI for the user to see. The rest of the families
involved in the dataset can be considered less sophisticated because
they do not employ advanced anti-detection mechanisms and do
not hide themselves through injection into other applications.

The dateset employed for the experiments contains families
with more than 200 samples and others with as few as 5. Such
characteristic reflects how malicious software appear in the real
world in relation to their families: recently, the focus in malware
design has shifted from the creation of new types of malicious
payloads from scratch, i.e., the code slice of a malware aimed at
causing harm, to the engineering of the stealthy system3, while the
payload is reused from older deployed malware as is or with minor
modifications. As a consequence of this trend, most of the malware

3The code of a malware that makes it to remain undetected during its execution.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1211

0 2 4 6 8 10 12 14 16 18 20
Stage

−200

−190

−180

−170

−160

−150

−140

−130

Re
wa

rd

Reward Rate

Figure 3: Rewards obtained over time in a BAMA game

in the wild fall in few families with unbalanced proportions [27, 28].
The detailed report available for each family has been used to build
function 𝑔() of Equation 1 with the a priori information about
which families respond to which triggers; 𝑔() is used then in turn
to construct the initial Dirichlet prior for our experiments.

Results in Figure 3 show that rewards, i.e., the entropy of the
posterior Dirichlet distribution, clearly decrease at each stage of
BAMA, hence the analyzer progressively reduces the uncertainty
on the sampling of the type of adversary. Next, we perform a com-
parison by classifying, as in previous works, the transition matrices
of the Markov chain models (Figure 1) obtained after every step
of the analysis for each of the techniques employed in the experi-
ments. In particular, MCA outputs such model by default, we apply
the same model generation method to the MYOPIC algorithm, and
we build the model also while playing BAMA as explained before
(without using it in any way during the analysis). CANDYMAN
instead outputs models of the same kind but without the condi-
tioning of the probabilities based on the analyzer action, i.e., the
model is composed by a single Markov chain. This allows us to
fairly compare the different AMA techniques as they all share the
same type of output model. The set of triggering actions for the
analyzer is the same for BAMA, MCA and MYOPIC, and is com-
posed of 17 different actions that mimic a standard user’s behavior:
send/receive sms, make/receive call, switch on/off Wifi/GPS/screen,
charge/discharge battery, add/remove contact, install/remove app, set
clock. CANDYMAN instead uses different triggering actions that are
related to the GUI of every specific application, randomly selecting
up to 5000 of such actions in 5 minutes. Therefore, we are able to
show the classification score rate of BAMA, MCA and MYOPIC,
as the progression in terms of analyzer actions performed is com-
parable; while for CANDYMAN we can only show the score after
the analysis is complete, since the number and type of triggering
actions are of different nature.

We employed a Stratified K-Fold Cross Validation with 𝐾 = 5,
while the quality of results is assessed with unweighted standard
measures, i.e., precision, recall, and 𝐹1-score.4 Implementations of

4Due to space constraints we only report the values for the 𝐹1-score since it incorpo-
rates both precision and recall measures.

0 2 4 6 8 10 12 14 16 18 20
Analyzer actions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

Classification Score Rates

BAMA
SECUR-AMA
MYOPIC
CANDYMAN

0 40 80 120 160 200 240 280 320 360 400
Time (s)

Figure 4: Comparison of classification score rates

the classifier, i.e., a linear Support Vector Machine (SVM),5 quality
measures and cross-validation make use of Scikit-Learn [18].

Figure 4 shows the classification score rates in term of 𝐹1-score
obtained. It is clearly visible that BAMA learns faster compared to
the other techniques: it only requires 4 analyzer actions (about 80
seconds) to reach the same best overall classification score (0.87) of
MCA. Furthermore, BAMA also reaches the highest global classi-
fication score (0.92), due to the fact that by using the information
on the adversary type, final malware models contain less noise,
i.e., fewer Markov chains associated to reactions to triggers that
are not meaningful for that malware, augmenting the classification
process. The difference between BAMA and the other techniques
is statistically significant according to a Student’s paired two-tailed
t-test with 𝑝 < 0.05. It is clear that BAMA improves the strategy
of the analyzer: it allows her to pick a sequence of actions that
is shorter and more precise compared to the other techniques in
order to generate a good malware model based on the observation
of the traces. The SVM classifiers used on the models extracted
by MCA, MYOPIC and CANDYMAN reach a worse classification
score than when BAMA is used to create the models. Therefore,
the BAMA decision-making strategy is clearly of value in terms of
results. Table 1 shows the best overall 𝐹1-score classification results
for the best instance of each technique: 8 actions in 160 seconds
for BAMA, 14 actions in 280 seconds for MCA, 18 actions in 360
seconds for MYOPIC, and 310 seconds for CANDYMAN.

Results show that BAMA allows us to perform AMA more effec-
tively, not onlywith respect to the final average overall classification
score but, most importantly, in terms of speed (number of analyzer
actions required to reach that score), which is crucial in malware
analysis since security firms have to analyze a huge amount of
new malware discovered every day; thus, reducing the number of
analyzer actions required to identify a malware has a big impact
on the overall analysis time.

5We also tested other classifiers but the linear SVM gives the best results.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1212

Table 1: Best overall classification results

BAMA MCA MYOPIC CANDYMAN

Analyzer actions 8 14 18 -
Seconds 160 280 360 310
𝐹1-score 0.92 0.87 0.86 0.81

Although BAMA performs better overall when compared to the
other techniques, it does not perform better for every malware
family in the dataset. Table 2 details the per-family 𝐹1-score for
the best instance of each technique tested, i.e., the BAMA, MCA,
MYOPIC, and CANDYMAN instances reported in Table 1. In the
case of AndroRAT and GoldDream for example, the BAMA entropy
minimization of the prior strategy is able to overcome the injection
problem (mentioned at the beginning of this section) by executing a
limited subset of triggers that are specific to the injected malicious
part of the application, allowing it at the same time to identify the
correct family. For the other techniques that instead rely on the
model for their decision making strategy (whereas BAMA does not
use it at all), the presence of a small malicious behavior within a
bigger harmless application is harder to detect. The anti-analysis
routines employed by the Kemoge family make the samples load
the code at runtime when triggered by specific actions on the GUI:
since CANDYMAN triggering mechanism is specifically designed
around the GUI, it is more effective in stimulating the samples be-
longing to such family. On the other hand, since Tesbo does not
have a GUI, CANDYMAN is not able to trigger any behaviors from
such samples. Nevertheless, all the techniques perform badly on
Tesbo because of the code coverage problem of dynamic analysis:
some malicious behaviors are triggered by commands coming from
an external server, therefore they are never exhibited without de-
signing application specific triggers (this is the case also for the
Opfake family). A main reason for BAMA to perform worse with
some families lies in the stochasticity in the retrieval of malware
responses since the threshold value 𝜖 for the Kullback-Leibler di-
vergence may result in a wrong identification of the trace type
and hence impact on trigger selection. Another reason for errors
in classification comes from the fact, explained in Section 4, that
a specific malware sample may respond not only to the triggers
for which its family is known to respond to, but also to triggers of
other families as well. Conversely, a malware sample could also not
respond to some triggers listed for its family. All these factors con-
tribute to making the problem of malware analysis really complex,
and consequently the classification task difficult to solve perfectly
with any particular technique.

6 CONCLUSIONS
We propose BAMA, a novel technique for dynamic malware anal-
ysis formalized as a Bayesian game between an analyzer and a
malware agent. To guide the analyzer we design a utility function
that expresses the amount of uncertainty on the type of the ad-
versary after the execution of an action. The algorithm devised
to play BAMA aims at minimizing the entropy of the analyzer’s
belief, a Dirichlet prior, at every stage of the game in a myopic
fashion. Experiments on a dataset of real Android malware show

Table 2: Per-family 𝐹1-score classification for the best in-
stance of each technique as reported in Table 1

Family BAMA MCA MYOPIC CANDYMAN

AndroRAT 0.93 0.84 0.84 0.85
Boqx 0.95 0.96 0.93 0.90
Cova 0.97 0.94 0.89 0.92
FakeAV 0.89 0.89 0.89 0.89
FakeDoc 1.00 1.00 1.00 0.98
Finspy 1.00 1.00 1.00 1.00
Fjcon 0.94 0.87 0.79 0.55
GoldDream 0.94 0.92 0.87 0.68
Gorpo 0.87 0.81 0.82 0.81
Kemoge 0.70 0.44 0.35 0.76
Kuguo 0.94 0.93 0.91 0.84
Leech 0.99 1.00 0.98 0.98
Mseg 0.99 0.98 0.97 0.93
Obad 1.00 1.00 1.00 1.00
Opfake 0.75 0.63 0.67 0.57
SmsZombie 1.00 1.00 1.00 1.00
SpyBubble 0.95 0.63 0.46 0.36
Stealer 1.00 1.00 1.00 1.00
Svpeng 1.00 1.00 1.00 0.96
Tesbo 0.57 0.33 0.57 0.00
Triada 0.91 0.81 0.84 0.74
Vidro 0.96 1.00 1.00 1.00
Vmvol 1.00 1.00 1.00 0.92
Winge 1.00 0.88 0.91 0.76

that, when compared to other state-of-the-art techniques, BAMA
requires fewer actions (and consequently time) to reach a satis-
fying classification score for malware identification. As such, our
approach paves the way for using Bayesian malware analysis in a
large and significant scale.

In future work we aim to evaluate how different levels of wrong
information inside 𝑔() impact the BAMA process in terms of clas-
sification results. Furthermore, we plan to also consider malware
that actively tries to counter a strategic, e.g., a BAMA, analyzer.
By this we do not mean malware that use simple anti-emulation
mechanisms, but rather malware that, on top of the usual goal and
ability to release the payload, also strategize to counter an ana-
lyzer’s attempts to reveal their family. Of course, malware of such
level of sophistication are not common yet in the real world, but
the existing few are arguably among the most dangerous ones. Our
formalization allows the easy modeling of such malware, requiring
only the careful design of the utility function so that it accurately
represents the adversary goals and abilities. Other future direc-
tions include the application of our approach to various fields of
cyber-security, e.g., network security and honeypot configuration.

ACKNOWLEDGMENTS
The research reported in this publication has been partially sup-
ported by the project “Dipartimenti di Eccellenza 2018-2022” funded
by the ItalianMinistry of Education, University and Research (MIUR).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1213

REFERENCES
[1] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. DroidAPIMiner: Mining API-

Level Features for Robust Malware Detection in Android. In Security and Privacy
in Communication Networks, Tanveer Zia, Albert Zomaya, Vijay Varadharajan,
and Morley Mao (Eds.). Springer International Publishing, Cham, 86–103.

[2] Georgios Chalkiadakis and Craig Boutilier. 2007. Coalitional Bargaining with
Agent Type Uncertainty. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence (IJCAI’07). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1227–1232. http://dl.acm.org/citation.cfm?id=1625275.1625474

[3] Georgios Chalkiadakis, Evangelos Markakis, and Craig Boutilier. 2007. Coalition
Formation Under Uncertainty: Bargaining Equilibria and the Bayesian Core
Stability Concept. In Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’07). ACM, New York, NY,
USA, Article 64, 8 pages. https://doi.org/10.1145/1329125.1329203

[4] Matthew Cheung. 2018. Market Share: Operating Sys-
tems, Worldwide, 2017. https://www.gartner.com/doc/3879167/
market-share-operating-systems-worldwide. (6 2018). Gartner, Inc.

[5] Nader Ebrahimi, Ehsan S. Soofi, and Shaoqiong (Annie) Zhao. 2011. Information
Measures of Dirichlet Distribution with Applications. Appl. Stoch. Model. Bus.
Ind. 27, 2 (March 2011), 131–150. https://doi.org/10.1002/asmb.870

[6] C.C. Elisan. 2015. Advanced Malware Analysis. McGraw-Hill Education. https:
//books.google.it/books?id=17SUAwAAQBAJ

[7] Piotr Garbaczewski. 2006. Differential Entropy and Dynamics of Uncertainty.
Journal of Statistical Physics 123, 2 (14 April 2006), 315. https://doi.org/10.1007/
s10955-006-9058-2

[8] John C. Harsanyi. 1967. Games with Incomplete Information Played by “Bayesian”
Players, I–III Part I. The Basic Model. Management Science 14, 3 (1967), 159–182.
https://doi.org/10.1287/mnsc.14.3.159 arXiv:https://doi.org/10.1287/mnsc.14.3.159

[9] Manish Jain, James Pita, Milind Tambe, Fernando Ordóñez, Praveen Paruchuri,
and Sarit Kraus. 2008. Bayesian Stackelberg Games and Their Application for
Security at Los Angeles International Airport. SIGecom Exch. 7, 2, Article 10
(June 2008), 3 pages. https://doi.org/10.1145/1399589.1399599

[10] Xinyu Jin, Niki Pissinou, Sitthapon Pumpichet, Charles A. Kamhoua, and Kevin A.
Kwiat. 2013. Modeling cooperative, selfish and malicious behaviors for Trajectory
Privacy Preservation using Bayesian game theory. In 38th Annual IEEE Conference
on Local Computer Networks, Sydney, Australia, October 21-24, 2013. 835–842.
https://doi.org/10.1109/LCN.2013.6761339

[11] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[12] Xinxin Liu, Kaikai Liu, Linke Guo, Xiaolin Li, and Yuguang Fang. 2013. A game-
theoretic approach for achieving k-anonymity in Location Based Services.. In IN-
FOCOM. IEEE, 2985–2993. http://dblp.uni-trier.de/db/conf/infocom/infocom2013.
html#LiuLG0F13

[13] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon J. Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models. In NDSS.
The Internet Society.

[14] J. A. P. Marpaung, M. Sain, and Hoon-Jae Lee. 2012. Survey on malware evasion
techniques: State of the art and challenges. In 2012 14th International Conference
on Advanced Communication Technology (ICACT). 744–749.

[15] Alejandro Martín, Víctor Rodríguez-Fernández, and David Camacho. 2018. CAN-
DYMAN: Classifying Android malware families by modelling dynamic traces
with Markov chains. Engineering Applications of Artificial Intelligence 74 (2018),
121 – 133. https://doi.org/10.1016/j.engappai.2018.06.006

[16] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring Multiple
Execution Paths for Malware Analysis. In Proceedings of the 2007 IEEE Symposium

on Security and Privacy (SP ’07). IEEE Computer Society, Washington, DC, USA,
231–245.

[17] K.W. Ng, G.L. Tian, and M.L. Tang. 2011. Dirichlet and Related Distributions:
Theory, Methods and Applications. Wiley. https://books.google.it/books?id=
k8GS868oyo4C

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[19] Riccardo Sartea and Alessandro Farinelli. 2017. A Monte Carlo Tree Search
approach to Active Malware Analysis. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-17. 3831–3837. https:
//doi.org/10.24963/ijcai.2017/535

[20] Riccardo Sartea, Alessandro Farinelli, and Matteo Murari. 2019. Agent Behav-
ioral Analysis Based on Absorbing Markov Chains. In Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
’19). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 647–655. http://dl.acm.org/citation.cfm?id=3306127.3331752

[21] Riccardo Sartea, Alessandro Farinelli, and Matteo Murari. 2020. SECUR-AMA:
Active Malware Analysis Based on Monte Carlo Tree Search for Android Systems.
Engineering Applications of Artificial Intelligence 87 (2020), 103303. https://doi.
org/10.1016/j.engappai.2019.103303

[22] K. Sobczyk. 2001. Information Dynamics: Premises, Challenges and Results.
Mechanical Systems and Signal Processing 15, 3 (2001), 475 – 498. https://doi.org/
10.1006/mssp.2000.1378

[23] Guillermo Suarez-Tangil, Mauro Conti, Juan E. Tapiador, and Pedro Peris-Lopez.
2014. Detecting Targeted Smartphone Malware with Behavior-Triggering Stochastic
Models. Springer International Publishing, Cham, 183–201.

[24] Milind Tambe. 2011. Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned (1st ed.). Cambridge University Press, New York, NY, USA.

[25] Wiem Tounsi and Helmi Rais. 2018. A Survey on Technical Threat Intelligence in
the Age of Sophisticated Cyber Attacks. Comput. Secur. 72, C (Jan. 2018), 212–233.
https://doi.org/10.1016/j.cose.2017.09.001

[26] Jason Upchurch and Xiaobo Zhou. 2016. Malware Provenance: Code Reuse
Detection in Malicious Software at Scale. In 2016 11th International Conference
on Malicious and Unwanted Software (MALWARE). 1–9. https://doi.org/10.1109/
malware.2016.7888735

[27] Andrew Walenstein and Arun Lakhotia. 2006. The Software Similarity Problem
in Malware Analysis. In Duplication, Redundancy, and Similarity in Software.

[28] Andrew Walenstein, Michael Venable, Matthew Hayes, Christopher Thompson,
and Arun Lakhotia. 2007. Exploiting Similarity Between Variants to Defeat
Malware “ Vilo ” Method for Comparing and Searching Binary Programs.

[29] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
Ground Truth Analysis of Current Android Malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’17).
Springer, Bonn, Germany, 252–276.

[30] Simon A. Williamson, Pradeep Varakantham, Ong Chen Hui, and Debin Gao.
2012. Active Malware Analysis Using Stochastic Games. In Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems -
Volume 1 (AAMAS ’12). International Foundation for Autonomous Agents and
Multiagent Systems, 29–36. http://dl.acm.org/citation.cfm?id=2343576.2343580

[31] Haifeng Xu, Rupert Freeman, Vincent Conitzer, Shaddin Dughmi, and Milind
Tambe. 2016. Signaling in Bayesian Stackelberg Games. In Proceedings of the 2016
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
’16). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 150–158. http://dl.acm.org/citation.cfm?id=2936924.2936950

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1214

http://dl.acm.org/citation.cfm?id=1625275.1625474
https://doi.org/10.1145/1329125.1329203
https://www.gartner.com/doc/3879167/market-share-operating-systems-worldwide
https://www.gartner.com/doc/3879167/market-share-operating-systems-worldwide
https://doi.org/10.1002/asmb.870
https://books.google.it/books?id=17SUAwAAQBAJ
https://books.google.it/books?id=17SUAwAAQBAJ
https://doi.org/10.1007/s10955-006-9058-2
https://doi.org/10.1007/s10955-006-9058-2
https://doi.org/10.1287/mnsc.14.3.159
http://arxiv.org/abs/https://doi.org/10.1287/mnsc.14.3.159
https://doi.org/10.1145/1399589.1399599
https://doi.org/10.1109/LCN.2013.6761339
http://dblp.uni-trier.de/db/conf/infocom/infocom2013.html#LiuLG0F13
http://dblp.uni-trier.de/db/conf/infocom/infocom2013.html#LiuLG0F13
https://doi.org/10.1016/j.engappai.2018.06.006
https://books.google.it/books?id=k8GS868oyo4C
https://books.google.it/books?id=k8GS868oyo4C
https://doi.org/10.24963/ijcai.2017/535
https://doi.org/10.24963/ijcai.2017/535
http://dl.acm.org/citation.cfm?id=3306127.3331752
https://doi.org/10.1016/j.engappai.2019.103303
https://doi.org/10.1016/j.engappai.2019.103303
https://doi.org/10.1006/mssp.2000.1378
https://doi.org/10.1006/mssp.2000.1378
https://doi.org/10.1016/j.cose.2017.09.001
https://doi.org/10.1109/malware.2016.7888735
https://doi.org/10.1109/malware.2016.7888735
http://dl.acm.org/citation.cfm?id=2343576.2343580
http://dl.acm.org/citation.cfm?id=2936924.2936950

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Proposed methodology
	4.1 BAMA formalization
	4.2 Prior update
	4.3 Utility function
	4.4 Analyzer strategy

	5 Empirical Evaluation
	6 Conclusions
	Acknowledgments
	References

