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ABSTRACT
Research states that persuasion is subjective. Moreover, people use
behavioral cues all the time, very often even without noticing and
are often not aware of being persuaded by non-rational cues. In
order to draw attention to these effects, we want to enable virtual
agents to adapt their behavior during interaction to the listener in
order to increase their perceived power of persuasion.

In this paper, we introduce a novel multi-modal persuasive AI
system that presents arguments from an underlying logical argu-
ment structure to a user by means of a virtual agent and synthetic
speech. In doing so, the agent is able to adapt its multimodal behav-
ior to the user, based on his or her explicit feedback. To this end,
the feedback is used to predict the current user’s stance by consid-
ering the underlying argument structure using bi-polar weighted
argument graphs to later optimize the adaptation of the multimodal
presentation by means of Reinforcement Learning.

We report on results of a user study with 48 participants showing
the validity and practical potential of the proposed prediction model
and conclude by providing limitations and implications in detail.
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1 INTRODUCTION
The communication of opinions along with different pro- and
counter-arguments is an important factor in the process of opinion
building. Especially in political debates or public speeches, we of-
ten see that people without previous knowledge or opinion can be
persuaded very easily by arguments even though they are not valid
from a rational point of view. Presenting content-wise identical ar-
guments in different ways, such as changing body language, gazing
behavior, emotions or even the identity of the speaker can have a
different effect on the audience’s opinion towards this argument
and overall stance regarding the topic.

The effect of an argument and whether or not it is perceived as
persuasive does not only depend on the content itself but also the
presentation of it, the credibility of the speaker and the own beliefs
of the audience. Besides, in accordance with persuasive theory (see
Sec. 2.1), it is not only important, what is said (semantic content),
but also how something is said. This may include verbal, but also
non-verbal techniques, such as gaze, gestures, use of emotions as
well as rhetorical quality aspects, etc.

Wachsmuth et al. [36] state that argumentation quality aspects
include logical, rhetorical and dialectical quality aspects. They fur-
ther indicated that “rhetorical quality is reflected by the persuasive
effectiveness”, which means persuading the persuadee successfully.

Studies with humans and robots have already shown that non-
verbal cues affect the persuasive effectiveness [4, 7, 13, 31]. While
most persuasive dialog systems refer to logical and verbal aspects
(see Sec. 2.2), to our best knowledge, non-verbal aspects influencing
effectiveness are fairly neglected in such systems.

However, Fogg et al. [12] claimed that, in order to successfully
persuade individuals, three factors must be satisfied: 1) the right
content, 2) at the right time as well as 3) the right strategy. In
most systems, the first two aspects are mostly fixed [18], thus,
researchers suggested that the adaptation of the way should be the
main focus at the individual level [19]. In addition to that, O’Keefe
and Jackson [22] pointed out that effectiveness is subjective. This
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is in line with Kaptain et al. [19] who found that “effectiveness of
influence strategies varies from one person to another”.

To build such a continuously adaptive system, we encountered
the following key challenges: (i) Defining a model to correctly pre-
dict the user’s current stance considering the underlying argument
structure and the feedback, (ii) enabling an agent to learn a behavior
strategy that allows it to be perceived differently depending on its
applied behavior and, (iii) allowing the agent for adapting to the
audience in real-time based on explicit user feedback.

Within this work, we investigate a fine-grainedmodel for predict-
ing the user’s stance based on bi-polar weighted argument graphs
and explicit user’s feedback and discuss a Reinforcement-Learning-
based approach to utilize this information for real-time adaptation
of the multi-modal behavior. Both aspects are evaluated in separate
setups in order to verify their feasibility for the task at hand. Con-
sequently, we include a user study with 48 participants to verify
the predictive capability of the stance model as well as simulation
results for the adaptation. To illustrate the adaptive feasibility of our
prototype, the behavior of our adaptable agent is expressed through
different emotional expressions (Section 2.1.2). Section 2 outlines
research covering the theory of persuasion and non-verbal signals
along with persuasion and argumentative persuasive systems in
general. Section 3 gives an overview over the utilized argument
structure while Section 4 describes our prototype and the proposed
model in detail. In Section 5 and 6, we present the results of simu-
lated users showing the adaptive feasibility, and a user study with
48 participants. Finally, we provide detailed lessons learned and
insights into our future work of this research in Section 7.

2 RELATEDWORK
Related research can be separated into two streams: (1) research
focusing on persuasion and (2) research on persuasive systems:

2.1 Research Referring to Persuasion
2.1.1 Theory of Persuasion. The theory of persuasion goes back

to Aristotle, who identified three means of persuasion: λόγος (lo-
gos), ἦϑος (ethos) and πάϑος (pathos) [21]. The term logos includes
“[1.] the process of identifying the issues at the heart of debate; [2.]
the range of diverse arguments in the discourse; [3.] the structure of
thoughts these arguments compose and [4.] the sequencing, coherence
and logical value of these arguments”. [9, p.18].

According to Wachsmuth et al. [36], several aspects need to be
considered in order to make arguments persuasive in general, that
are logical quality (including cogency, fallaciousness, and the ar-
gument’s strength), rethorical quality (including effectiveness) and
dialectical quality (including convincingness, reasonableness, and
global sufficiency). Thus, logos and logical quality aspects refer to
what is said (semantic content), whereas rhetorical quality refers to
how something is said (the ways to express). The latter is covered
by ἦϑος (ethos) as well as πάϑος (pathos), where ethos includes
personality and stance [9], and pathos describes the emotional en-
gagement between the persuader and the persuadee, which means
appealing to the persuadees’ (listener’s) emotions.

Psychological persuasion models developed by Petty and Ca-
cioppo [23] (Elaboration Likelihood Model – ELM) and Chaiken et
al. [6] (Heuristic-Systematic Model – HSM) describe the influence

of information processing on the result of persuasive messages. A
persuasive message can be processed via two different cognitive
routes, namely central and peripheral processing. Central process-
ing focuses on the content of the message communicated by the
persuader/agent, while peripheral processing focuses on the expres-
sion of the agent. However, people do not process information in
isolation via the central or peripheral route [6]. Rather, peripheral
processing is always carried out, in addition to which, if an elab-
oration threshold is reached, central processing also takes place.
In this situation, the two processing paths are used with different
intensities depending on the audience’s “need for cognition” [23]).

In summary, persuasion is a complex process consisting of more
than just logical aspects. Thus, the development of persuasive sys-
tems is a difficult task considering all these aspects. The complexity
of these along with the subjectivity of effectiveness motivates the
need for adaptation approaches to enhance the persuasive effec-
tiveness of virtual agents autonomously during interaction.

2.1.2 Non-verbal Signals and Persuasion. Non-verbal signals and
their impact on persuasion have been extensively explored by other
researchers. It has been shown that robots using vocal cues and
behavior language, such as gaze and gestures, tend to be more
persuasive than robots not using them. Chidambaram et al. [7]
compared the effect of non-verbal cues (gesture, gaze, etc.) to vo-
cal cues showing a higher persuasive effect for non-verbal cues.
Ham et al. [13] showed that communication through gaze led to a
higher persuasive effect than gestures did. Siegel et al. [31] investi-
gated the effect of gender aspects, while Andrist et al. [4] compared
the persuasive effect of practical knowledge and rhetorical ability.
DeSteno et al. [10] showed that persuasive messages were more
successful when framed with emotional overtones appropriate to
the emotional state of the recipient. They say that “emotions can
alter the persuasive impact of messages as a function of the emotional
framing of persuasive appeals”. Wang et al. [37] demonstrated the
effect of emotions depending on the level of power of expresser
and recipient, whereas Van Kleef et al. [35] showed that people
use the source’s emotions as information channel when forming
their own attitudes, i.e, different emotions led to different attitudes.
This finding is in line with the EASI theory [34], which states that
individuals are influenced by the emotional state of others. There
is a lot of evidence from the literature that the perceived persua-
siveness of arguments depends largely on emotions. We, therefore,
felt encourages to focus on emotions as a major component of our
adaptation approach. However, the herein discussed models do not
depend on a specific multi-modal behavior.

2.2 Persuasive Systems
Hunter states that “An automated persuasion is a system that can
engage in a dialogue with a user (the persuadee) in order to persuade
to do (or not do) some action or to believe (or not to believe) some-
thing” [16]. A lot of research on persuasive systems focuses on
the logical representation of arguments with the initiative solely
belonging to the system. Systems modeling the argumentative in-
teraction as a dialog game were introduced in [5, 40] and rely on
heuristics or predefined strategies for determining the next actions
(i.e., arguments). An argumentative dialog system for the exchange
of arguments with a speech interface was introduced in [15].
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Different setups utilizing Reinforcement Learning to optimize the
system logical strategy were introduced: Rosenfeld and Kraus [30]
described a persuasive agent that learns the optimal response from
a recorded corpus of arguments and employs a BipolarWeighted Ar-
gument Framework which only allows the exchange of arguments.
Alahmari et al. [2] investigated Reinforcement Learning in the con-
text of the dialog game. Multi-agent Reinforcement Learning in the
context of argumentation was addressed by Rach et al. [25]. The
authors included the derived strategies into a multimodal dialogue
system [26] with no adaptation of the behavior, though.

“Project Debater”, an advanced persuasive system by IBM1, can
debate humans on complex topics. It is based on three pioneer-
ing capabilities: data-driven speech writing, listing comprehension
as well as modeling of human dilemmas. Their system, however,
only provides speech output and completely neglects multi-modal
output, such as body language, as well as adaptation.

All of these listed works focus solely on the logical part of the
strategy, hence only addressing the question ofwhat to say whereas,
in contrast, the presented work also considers the question of how
to present an argument depending on the user’s preferences.

Another form of persuasive systems concerns recommendation
systems and personalized presentations of recommendations. For in-
stance, Hammer et al. [14] enabled systems to present personalized
recommendations in order to increase the perceived persuasiveness
of recommendations. Yet, no continuous adaptation was applied.

Ritschel et al. [29] developed a robotic health companion giving
health-related recommendations. In doing so, the robot dynamically
adapts the politeness of its linguistic style based on explicit user
feedback. However, the recommendations only consisted of single
term recommendations and were not, contrary to our approach,
based on argumentation structures.

The only and (to our best knowledge) first persuasive argumen-
tation system we are aware of using a continuous adaptation ap-
proach based on users’ preferences was introduced by Kang et
al. [18]. Their approach is based on the aforementioned ELM. They
enabled an agent to determine which route (central or peripheral)
of thinking is most likely used by the user based on the current
mental user state consisting of their ability as well as motivation.
Overall, their system consists of eleven different verbal strategies.

While their approach is able to learn a persuasive strategy based
on the most likely used route of thinking, they did not take into
account, in contrast to our approach, the underlying argument
structure, which is important to realize the full persuasive potential
of such systems. Further, they only used strategies in general, but
did not explicitly consider the influence of multi-modal strategies.

3 ARGUMENT STRUCTURE AND NLG
The arguments that are available to the system throughout the inter-
action are encoded in an argument structure based on the argument
annotation scheme introduced in [32]. It includes three types of
argument components (Major Claim, Claim, and Premise) and two
different directed relations (support and attack) between them. Re-
lations are allowed from Claims to the Major Claim, Premises to the
Major Claim, Premises to Claims and Premises to Premises. If a com-
ponent 𝜑𝑖 has a relation towards a component 𝜑 𝑗 , we say that 𝜑 𝑗 is

1https://www.research.ibm.com/artificial-intelligence/project-debater/

the target (of 𝜑𝑖 ) and each component (apart from the Major Claim
𝜑0) has exactly one target. Hence, the arguments arg𝑖 ∈ Args that
can be generated from such a structure have the form arg𝑖 = (𝜑𝑖
so 𝜑 𝑗 ) (=̂ support) or arg𝑖 = (𝜑𝑖 so ¬𝜑 𝑗 ) (=̂ attack). Since each
relation is unique and the difference between the three types of
components is characterized solely by the allowed relations, each
resulting structure can be represented as acyclic directed graph
with argument components as nodes and relations as edges (see
Figure 1). For the sake of simplicity, the Major Claim is defined as
arg0 = 𝜑0 throughout this work.

Major Claim
Args

arg0 = φ0

φ1 → ¬φ0 φ2 → φ0

arg2arg1

φ2φ1

Figure 1: Argument structure consisting of components 𝜑𝑖
and 𝜑 𝑗 as well as logical statements between them.

In addition, each argument arg ∈ Args refers to one of two
existing stances ∈ {+,−} of the topic. For the sake of simplicity, the
stance of arg0 is considered as + throughout this work. The other
arguments’ stances are computed with respect to the arguments’
relations, i.e., the stance of supporting arguments is always the
same as its target’s stance, while the stance of attacking arguments
is the opposite of the target’s one.

Throughout this work, we aim for non-opinion-based topics, i.e.,
topics for which we can assume a minimal bias of the user, as our
goal is to investigate the effect of the agent’s non-verbal behavior.
To this end, we utilize hotel reviews from the annotated SemEval-
2015 Task 12 Test Datasets [24] and infer the argument structure
for each hotel from the labels with a procedure adapted from the
argument mining approach described in [8]. This choice is due to
the fact that the corpus provides high-quality annotations on a
large data set that includes all the required information:

• An aspect category E#A consisting of and entity E (e.g. Hotel,
Service, Location) and an attribute A (e.g. Price, Quality).

• A polarity (positive, negative, neutral) of the category.
• An opinion target expression within the annotated sentence
that explicitly refers to the entity (if present).

The annotation is illustrated by the following example that includes
the original sentence as well as the annotated labels: Vending ma-
chines were out of everything except in the lobby. (target: Vending
machines, category: FACILITIES#GENERAL, polarity: negative)

The argument structures can be derived from this annotation as
follows. For each hotel, we generate a template consisting of the
Major Claim "This hotel is worth a visit" and one Claim for each
entity E. The polarity of each Claim is determined by comparing
the number of positive and negative sentences annotated with the
respective entity. All sentences that have consistent polarity an-
notations for at least one entity, are not marked as "OutOfScope",
and have an opinion target expression are then included into the
structure. To this end, we assume that sentences within one re-
view and with the same entity label build on each other, which
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means that the first sentence targets the respective Claim and the
following build a chain of arguments. For the remaining argument
components, we assume a direct relation to the respective Claim
unless the component in question has the same target expression
as a predecessor, in which case it is directly related to the same.
Finally, sentences that include multiple labels related to different
Claims are included in all related sub-structures and (if possible)
manually separated into different arguments. In all cases, the type
of relation is determined by the polarity.

The annotated sentences serve as a template for the Natural Lan-
guage Generation (NLG) of the system. Grammatically incomplete
arguments were revised manually to form a stand-alone sentence
and repeated arguments were merged into one. In addition, con-
necting phrases between the arguments were included in a separate
template in order to ensure a fluent interaction. These additional
statements include a notification about the stance of the presented
argument (if the current argument attacks its target), a notification
if the presented argument refers not to the immediate predecessor
in the conversation, as well as an introduction and closing state-
ment. Apart from the introduction and closing statement, multiple
formulations for each case were included in the template from
which the system selects randomly for each utterance. The follow-
ing exemplary utterance includes a topic switch (ts1), the referenced
argument (a1), a notification about the stance (s1) and the new ar-
gument (a2): "The next argument is related to something I mentioned earlier. I said

(ts1): All in all, it is a nice and affordable spot for sightseeing in the area (a1). I also found

an opinion that disagrees with this aspect. The respective author wrote (s1): I think all in

all the price was way too high for such a poor accommodation (a2)."

4 ADAPTATION MODEL AND PROTOTYPE
In the following, we sketch the design of our prototype and, after-
wards, present the adaptation model in detail.

4.1 System overview

PersuaderPersuadee

Feedback buttons

Multimodal output

Control
 buttons

feedback

argument + emotion

Figure 2: Prototype of our web interface consisting of an
agent presenting her arguments to a user along with emo-
tional behavior. The user gives feedback (convincing, neu-
tral, not convincing) about the agent’s persuasive effective-
ness after each argument, which is used to train the strategy.

To allow users for interacting with our system, we extended the
web-interface of [26] as visualized in Figure 2. The agent’s task is to
talk about a topic (Major Claim, see Section 3) by giving arguments
that are either for or against the topic. To do so, the system first
assigns a stance to the agent, which is either pro (+) or con (-). Then,
the agent presents both pro- and counter-arguments about the topic
in different ways to convince the user to either change their belief
(if the user is against the agent’s stance) or to increase their beliefs
towards the corresponding stance. To influence the user, the agent
can underlie its argument with appropriate emotions.

At every interaction step, a random argument arg ∈ Args′′ is
selected from all possible next arguments Args′′ ⊂ Args. The subset
Args′′ denotes all arguments that have a direct link to any argument
already given before, denoted asArgs′ ⊂ Args. Then, an appropriate
emotion is selected depending on the agent’s policy 𝜋 and presented
to the user in combination with the selected arg (Figure 3).

Args''

Major Claim
Args

Set of available emotions

arg

emotion

Args'

policy 𝜋

Figure 3: Conceptual model: The agent selects an argument
arg ∈ Args′′ ⊂ Args connected to any previously given ar-
gument Args′ ⊂ Args as well as an emotion according to the
learned policy 𝜋 and presents it to the user.

After each argument, the user provides the agent with explicit
feedback by using the feedback buttons (convincing, neutral, not
convincing) as illustrated in Figure 2. This feedback is subsequently
used to determine the agent’s persuasive effectiveness (Definition
4.2) and to learn the policy 𝜋 that works best for the current user.

4.2 Multimodal Output

Figure 4: Example emotions: Angry, happy, and sad (fLTR).

To present the arguments via multimodal output to the user, we
employ the Charamel 3D character rendering engine2. In this work,
we use the Gloria avatar capable of performing social-cue based
interactions with the user as illustrated in Figure 2. The avatar can
perform lip-sync speech output using the Nuance TTS along with
the Amazon Polly voices. Further, the avatar comes with more than
50 motion-captured gestures as well as a set of facial expressions
2http://www.charamel.com
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(14), including the basic emotions defined by Ekman [11]. Some
examples of the avatar’s possible emotions are given in Figure 4.

4.3 Adaptation and Prediction Model
In the following section, we describe the RL method including the
employed prediction model in detail. As stated by Ritschel et al. [28]
and Weber et al. [38] an adaptation to human preferences should
work during interaction. Thus, some simplifications are needed for
our system in terms of state and action space.

To enable the agent to learn the user’s preferences (policy 𝜋 )
during interaction, we apply Reinforcement Learning (RL) based on
linear function approximation along with a basis transformation
using the Fourier Basis as proposed by Konidaris et al. [20]. This
approach has three advantages: (1) Reinforcement Learning allows
for learning a sophisticated policy 𝜋 based on trial and error (during
interaction). (2) A linear function approximator bears the advantage
that multiple similar states can be learned at the same time while
allowing for quick adaptation compared to non-linear methods.
(3) Using the Fourier Basis allows for learning explicit linear and
non-linear dependencies between state-input parameters.

4.3.1 State Space. Every RL state 𝑠 ∈ S is generated based on
the current argument arg ∈ Args. As aforementioned in Section
3, each argument has a stance ∈ {+, -} it refers to as well as a
relation ∈ {attack, support}. To enable the agent to further optimize
its behavior with respect to the conveyed sentiment of the argument,
we use the sentiment analysis tool vaderSentiment3 by Hutto et
al. [17] to compute information about the negativity, neutrality and
positivity and the respective compound score of an argument. A
state 𝑠arg ∈ S for an argument arg ∈ Args is defined as:

Definition 4.1 (State). Let stan : Args → {+, -} be the stance
and rel : Args → {attack, support} be the relation of an arbitrary
argument arg ∈ Args. Further let score : Args → [−1, 1] be
the normalized compound score of the sentiment analysis of an
argument. Then, the state 𝑠arg is defined as a 3-tuple

𝑠arg := (stan(arg), rel(arg), score(arg)) (1)

4.3.2 Action Space. As described above, we make use of the
agent’s provided emotions. Thus, the discrete action space A con-
sists of different emotions (facial expression and gestures), such as
happy, sad, angry, disappointed, etc., that can be displayed by the
agent with different discrete intensities ∈ {low,medium, high}.

4.3.3 PredictionModel and Reward Function. Defining an
appropriate reward signal can be challenging. As aforementioned,
the user gives feedback f (arg) for every arg ∈ Args (i.e., state 𝑠arg)
with f : Args → {1.0, 0.5, 0.0}, which translates to:

• Convincing, i.e., positive feedback (f = 1.0)
• Neutral (f = 0.5)
• Not convincing, i.e., negative feedback (f = 0.0)

Considering the argumentation structure (acyclic directed graph
with two types of relations, see Section 3), one cannot directly take
these feedback signals as reward since we have to consider the goal
of the agent, that is, as mentioned before, convincing the user of
the assigned stance (+, -). That means, if the user finds an argument

3https://github.com/cjhutto/vaderSentiment

convincing, we have to check the stance it belongs to and invert
the feedback signal 𝑥 = f (arg) using inv arg (𝑥) (see Equation 2)
respectively, if the argument’s stance does not match the agent’s
stance, i.e., stan(arg) ≠ assigned stance.

inv arg (𝑥) =
{
1.0 − 𝑥 𝑖 𝑓 stan(arg) ≠ 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑠𝑡𝑎𝑛𝑐𝑒

𝑥 𝑒𝑙𝑠𝑒
(2)

Even though, in theory, using inv arg (𝑥) as a reward would gen-
erally allow the agent for adaptation, this approach does not allow
the agent to observe to what extent the goal of convincing the
user of the assigned stance could already have been achieved com-
pared to the non-assigned stance. Further, not all arguments have
the same impact on the overall effectiveness of the Major Claim
(topic) because argument components are linked to each other and,
thereby, influence the effectiveness of others. Therefore, it seems
fairly unnatural that an argument component that has many nodes
between itself and the Major Claim has the same effect as argument
components that are directly linked to the Major Claim.

Thus, the opinion of the user does not only depend on howmany
arguments could be weakened/strengthened by other arguments
but also on the relations between the arguments. Consequently, it
would come in handy to have a reward signal giving a prediction of
the user’s current stance by considering these argument relations
and structure, which can be done using reward shaping [39].

Prediction Model. To define such a prediction model, we got
inspired by the work of Aicher et al.[1]. They recently presented
an interactive system to assist users in their opinion-forming pro-
cess by allowing them to give information about what arguments
they prefer over others and which they reject. They then com-
puted the user’s preferences based on bipolar weighted argument
graphs (BWAGS) by utilizing a linear Euler-based restricted seman-
tics introduced by Amgoud et al. [3]. BWAGS are generally used
for computing the strength of arguments (in an acyclic directed
argument graph) considering their own weight 𝜔 and the strengths
𝑠 of their child arguments [3] as visualized in Figure 5.

Child 
node 
level n

Child 
node 
level n+1

sm = g(ωm, sk, sk+1)

strength sk strength sk+1

ωk ωk+1

Figure 5: Sketch of a BWAG for an arbitrary argument𝑚 ∈
Args having two children 𝑘 and 𝑘 + 1. The strength 𝑠𝑚 for
argument𝑚 is computed by a function 𝑔 considering its own
weight 𝜔𝑚 and the strength of the child nodes 𝑠𝑘 and 𝑠𝑘+1.

Yet for our purpose, the Euler-based restricted semantics is not
suitable, as arguments with a weight equal to zero are considered
invalid and, thus, their children have no effect on the overall stance
(see [1], [3]). However, using this information to correctly predict
the user’s stance and to compute a reward signal, we are still in-
terested in arguments having a persuasive effect of zero as this
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affects the overall persuasive effect of the agent negatively (or pos-
itively, depending on the argument’s stance). Hence, we propose
the following definition of the persuasive effectiveness e𝑖 for an
argument 𝑖 ∈ Args for predicting the user’s current stance, which
avoids considering arguments as invalid having a weight 𝜔 = 0.

Definition 4.2 (Effectiveness). Let 𝑖 ∈ Args be an arbitrary argu-
ment, and let A𝑖 ⊂ Args be all child nodes of 𝑖 , i.e., all arguments
having 𝑖 as direct target. Further, we denoteA+

𝑖
⊆ A𝑖 as the subset of

all supporting andA−
𝑖
⊆ A𝑖 as the subset of all attacking arguments

of argument 𝑖 , respectively. We then compute the effectiveness level
e𝑖 ∈ [0, 1] of argument 𝑖 ∈ Args recursively as:

e𝑖 =
𝜔𝑖 +

∑
𝑗 ∈A𝑖 𝜄

−1 (e𝑗 )
1 + |A𝑖 |

(3)

where 𝜄−1 : [0, 1] → [0, 1] defines the inverse function of e𝑗 as

𝜄−1 (e𝑗 ) =
{
e𝑗 𝑖 𝑓 𝑗 ∈ A+

𝑖

1 − e𝑗 else
(4)

and where

𝜔𝑖 =

{
𝑓 (𝑖) 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑖 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑎𝑔𝑒𝑛𝑡

0.5 𝑒𝑙𝑠𝑒
(5)

Please note, that the effectiveness level e𝑗 is computed with
respect to the argument’s stance, not with respect to the agent’s
assigned stance, i.e., we only have to invert the effectiveness levels
of all arguments 𝑗 ∈ A−

𝑖
, i.e., all attacking arguments following the

general idea of bipolar weighted argument graphs.
As seen in equation 5, each weight in the argument graph is

initialized with 0.5, which consequently yields e0 = 0.5. The effec-
tiveness level is re-computed from bottom to top recursively after
every weight change. It is easy to verify that neutral user feedback
(f=0.5) does not change the effectiveness level e0.

The computed effectiveness can be used to get a prediction of
the user’s current stance using Definition 4.3.

Definition 4.3 (Prediction). Let e0 be the current computed effec-
tiveness, then the user’s stance is predicted as follows:

stan𝑢𝑠𝑒𝑟 =

{
+ e0 ≥ 0.5
- 𝑒𝑙𝑠𝑒

(6)

It is worth mentioning that no interval is defined for an unknown
stance. Instead, the effectiveness e0 can be used to determine the
confidence value of how sure the agent is about the prediction by
looking at how close the effectiveness is to the criterion value 0.5.

We, finally, define the reward R : S × A → [0, 1] based on the
predicted stance as:

Definition 4.4 (Reward Function). Let 𝑠𝑡 ∈ S be the current state
and 𝑎𝑡 ∈ A an action at RL time step 𝑡 , and let e0,𝑡 be the current ef-
fectiveness after performing action 𝑎𝑡 as well as e0,𝑡−1 the previous
one, then the reward R𝑡 (𝑠𝑡 , 𝑎𝑡 ) at time step 𝑡 is defined as:

R𝑡 (𝑠𝑡 , 𝑎𝑡 ) := 𝑛 ·
(
inv0 (e0,𝑡 ) − inv0 (e0,𝑡−1)

)
(7)

Initial tests have shown that 𝑛 ≈ |Args| works best. Equation 2
is applied because for the main stance always yields stan(0) = +
and, thus, we have to compare the assigned stance with stan(0) and
invert the effectiveness level accordingly.

4.3.4 Algorithm. At every time step 𝑡 , the agent selects one of
the available actions 𝑎 ∈ A according to the current state 𝑠𝑡 ∈ S for
argument arg ∈ Args and its policy 𝜋 (𝜖−greedy with 𝜖 = 0.05) and
uses the obtained feedback signal f (arg) to compute the current
effectiveness level e0,𝑡 and reward signal R𝑡 .

Since we use linear function approximation, the agent has to
learn a weight vector 𝝎 for every RL action 𝑎 ∈ A. The weight
vector allows the agent to compute a value 𝑄 (𝑠𝑡 , 𝑎𝑡 ,𝝎) for every
action 𝑎𝑡 ∈ A and 𝑠𝑡 ∈ S by calculating the dot product of the
vector 𝝎 and vectorial representation of the current state 𝝓 (𝑠𝑡 ), i.e.,

𝑄 (𝑠𝑡 , 𝑎𝑡 ,𝝎) := 𝝓 (𝑠𝑡 ) ◦ 𝝎,∀𝑠𝑡 ∈ S,∀𝑎𝑡 ∈ A (8)

The agent uses the reward R𝑡 to update the weight vector 𝝎𝑡 un-
til the policy 𝜋 converged to the optimal one 𝜋∗ (Sutton et al. [33]):
Δ𝝎𝑡 = 𝛼

(
R𝑡 + 𝛾 max

𝑎𝑡+1
𝑄 (𝑠𝑡+1, 𝑎𝑡+1,𝝎𝑡 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 ,𝝎𝑡 )

)
𝝓 (𝑠𝑡 ) (9)

5 INITIAL SIMULATION
In order to demonstrate the general adaptive feasibility of the Re-
inforcement Learning approach and to show that our system can
handle different types of users, we tested our system in a simula-
tion setup. We, thus, have run a simulation of 1000 simulated users
with different behavior preferences as well as stances (either for or
against the agent’s stance) that work best to persuade them indi-
vidually, e.g., users where the agent was the most effective when
looking sad while presenting negative arguments that are against
its own stance, and happy when presenting positive arguments that
are in favor to the agent’s stance and vice versa. Some simulated
users preferred higher intensities of the emotions, while others did
prefer lower ones. Further, we varied the agent’s assigned stance
ensuring that all possible combinations were tested.

Since deterministic user feedback is far from realistic [27], we
have run the same simulation with different levels of noise (5%, 10%
and 25%), where noise simulates random feedback from the user,
which not necessarily matches the optimal policy 𝜋∗.

Figure 6: Simulation results including 95% confidence inter-
vals showing the cumulative effectiveness level over time
with respect to the assigned stance showing a continuous
increase over time even for high noise.

Figure 6 depicts the results showing the effectiveness levels over
time with different degrees of noise where the shaded areas depict
a 95% confidence interval. The results reveal that the effectiveness
levels increased over time, as the agent managed to gradually move
the user towards its assigned stance by learning the most effective
behavior strategy. Even though the performance decreases due to
non-deterministic feedback when including noise, it shows that the
agent is still able to cope with such non-deterministic feedback and
find the strategy that increases the effectiveness level.
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6 USER STUDY
To evaluate the validity and accuracy of the proposed prediction
model, i.e., to verify that our model is able to correctly predict the
user’s stance, we conducted a between-subject user study.

6.1 Participants, apparatus, and procedure
We recruited 48 participants (32 male, 16 female, 18-30 years old)
from a university campus. All participants were students. At the
start of the study, they were informed about the general procedure
and asked to provide the agent with feedback using the interactive
system of Figure 2. After the session, they were asked, whether or
not they like to visit the hotel. To avoid bias effects beforehand,
they were not told about the system’s overall goal to predict their
decision but asked to provide feedback on whether or not they
find an argument helpful. Figure 7 depicts the general study setup
showing a participant interacting with the agent.

Figure 7: Evaluation setup with our interactive agent.

In each session, the agent presented 43 arguments for and against
the hotel, which took about 10-15 minutes. The agent computed
the effectiveness e0 based on the given feedback f (arg) for every
presented argument arg ∈ Args. The agent’s assigned stance was
counter-balanced, i.e., half of the participants were interacting with
an agent who was in favor of visiting the hotel and vice versa.
During the study, we collected the following data:

(1) Directly given user feedback f (arg), ∀arg ∈ Args.
(2) Computed effectiveness e0 using the given feedback.
(3) Subjective decision if users like to visit the hotel (post-study).

6.2 Results
In the following, we first plot collected data to explore trends in
data and afterward present statistical tests.
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Figure 8: Collected data: Effectiveness e0, percentage of pos.
(neg.) feedback f + (f −) with respect to the assigned stance.

6.2.1 General trends. Figure 8 summarizes the results for all
participants depicting the agent’s final effectiveness e0, the percent-
age of user feedback in favor of the agent’s assigned stance f + and
the percentage of user feedback not in favor of the agent’s assigned
stance f −. Neutral feedback is not depicted as it does not affect the
effectiveness (see 4.3.3). First, we notice two trends:

(1) The higher (lower) the positive feedback, the higher (lower)
the effectiveness e0.

(2) The lower (higher) the negative feedback, the higher (lower)
the effectiveness e0.

Thus, the positive feedback f + seems to positively correlate with
the effectiveness and the negative feedback f − seems to negatively
correlate with the effectiveness e0. As stated, the general idea of the
effectiveness e0 is to get a prediction of the user’s current stance. So,
we expect that a lot of positive feedback increases the effectiveness,
while a lot of negative feedback decreases the effectiveness. The
trends, therefore, are in line with our expectations.

6.2.2 Statistical Analysis. To verify the expected trends statis-
tically, we computed the correlation between feedback and effec-
tiveness showing a very strong and significant correlation (positive
correlation for positive feedback, negative correlation for negative
feedback).

𝑛 𝑟 𝑝

Pos. Feedback & effectiveness - Pearson correlation 48 0.92 <.001 ✓

Neg. Feedback & effectiveness - Pearson correlation 48 -0.83 <.001 ✓

Table 1: Correlation between feedback and effectiveness.

6.2.3 Prediction Accuracy. We then evaluated to what degree
the predicted user’s stance stan𝑢𝑠𝑒𝑟 (see Definition 4.3) and the
subjective user’s decision to visit the hotel match. We computed
the agent’s confidence in the predictions based on how close they
were on the criterion value (e0 = 0.5). To this end, we utilize a
modified sigmoid function to a) ensure that the extreme values of
0 and 1 correspond to a confidence of 100% and b) obtain a more
fine-grained prediction for the most common interval [0.3, 0.7].
Consequently, a confidence ≥ 80% means e0 ≥ 0.64 or e0 ≤ 0.36.
The results in Figure 9 show that the objective system’s prediction is
very accurate even for low confidence values proving the practical
potential of the model.
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Figure 9: Model accuracy of predicted user’s stance depend-
ing on different confidence values.

To verify the sensitivity and precision of the predictions, we
computed the F1 score for both the positive and negative stance
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depending on the prediction confidence as summarized in Table 2.
The results show that the F1 score increaseswith higher confidences,
thus, proving both the sensitivity and precision of the prediction.

Confidence

Stance ≥ 60% ≥ 80% ≥ 85% ≥ 90%

+ 0.67 0.73 0.77 0.86

- 0.62 0.70 0.80 0.89

Table 2: F1 score for different prediction confidences.

7 DISCUSSION
In the beginning, we have argued that persuasion is subjective and,
thus, an adaptation of behavior leads to an increased persuasive
effectiveness of virtual agents. To this end, we have presented a
model of a dynamically adaptive virtual agent capable of learning
a behavior strategy during interaction with a human to increase its
perceived persuasive effectiveness. We have further argued that it is
important to consider the underlying argument structure to define
a reward signal, which allows the agent to compute the degree of
its persuasive effectiveness. Hence, we have presented a model that
is able to predict the user’s current stance based on the underly-
ing argument structure and bi-polar weighted argument graphs,
which serves as the basis for the adaptation process. The adaptive
feasibility could be proven in a carried out simulation beforehand.
However, to justify the usage of the underlying prediction model
for our adaptation process, we presented a thorough evaluation of
the model. In a user study, conducted with 48 participants, we have
found a very strong and significant correlation between feedback
and effectiveness and have shown that our system is able to cor-
rectly predict the user’s stance proving the validity and practical
potential of the model.

Argument structure as information source. In the begin-
ning, we argued that different arguments can have different effects
on the current effectiveness and, thus, the user’s stance based on
their position in the argument structure. Despite the observed corre-
lation between overall feedback and effectiveness at the end of the
interaction, using bi-polar argument graphs as predictionmodel and
reward function bears several advantages in comparison to models
based solely on the statistics of the feedback: (i) The feedback for
different arguments is weighted differently in the graph and, hence,
differently affects the behavior strategy during the interaction, (ii)
additional argument-specific or structure-specific information can
be used in combination with the feedback to provide more fine-
grained information for learning and (iii) behavior learning can be
combined with fine-grained logical strategies [25, 30].

Predictive power of the model. It should be noted that the
given user’s feedback during the study does not necessarily lead
to their final decision for or against the hotel. Thus, it would not
have been surprising if the predictions of the model were incorrect.
However, the fact that we are able to predict the user’s current
stance using the provided feedback in an agent-user interaction
opens a lot of new possibilities in establishing successful persuasive
systems. For instance, the predicted stance can be used to determine

when the user is likely convinced and the system can stop the
persuasion process. Secondly, in persuasive debates between several
agents/humans, the predicted stance can be used to determine the
success of the whole debate during interaction and, thus, enables
the agents to adopt strategies of the agent that is more successful.

8 LIMITATIONS AND FUTUREWORK
Even though we have proven the validity and high predictive sensi-
tivity as well as precision, our approach still faces limitations that
should not be neglected. The impact that the user’s feedback has on
the effectiveness depends on the entire structure of arguments and,
most importantly, on the number of arguments targeting any single
argument. However, in the current version of the system, the feed-
back of arguments targeting the same parent argument arg𝑛 (also
known as siblings) is still equally weighted (unlike arguments tar-
geting different arguments). It should be investigated whether this
approach also works if there exists a too strong imbalance between
arguments regarding their strength. A possible solution would be
to enable users to provide additional information about how strong
their feedback should influence the overall effectiveness compared
to the sibling arguments or interval-scaled feedback could be used,
similar to Aicher et al. [1]. In our future work, we aim to build on
our results and explore the impact of adapting emotions expressed
through multiple channels (facial emotions, gestures, and voice) in
an extended user study that combines all discussed approaches.

9 CONCLUSION
We presented a novel multi-modal persuasive AI system with a
virtual agent capable of presenting arguments from an underly-
ing logical argument structure to a human user through synthetic
speech and multimodal behavior. As research states that persuasive
effectiveness is subjective, we enabled the agent to adapt its behav-
ior to the human on the granularity of single arguments to increase
its perceived persuasive effectiveness. To this end, we employ the
user’s provided feedback to predict the user’s stance taking into ac-
count the underlying argument structure. In a detailed simulation,
we showed the practical potential and the feasibility of our proto-
type. We have seen that the agent is able to adapt to a user during
interaction, even for non-deterministic feedback. We conducted
a user study to evaluate the validity and practicability of the un-
derlying prediction model. The validation of the underlying model
showed a significant correlation between feedback and computed
effectiveness level and that, using this model, the system is able
to correctly predict the user’s stance with high accuracy, even for
low confidences making this model a powerful tool for persuasive
systems. We have described lessons learned in detail including the
predictive power of the model. We hope those insights will help
fellow researchers in addressing future challenges in developing
multimodal persuasive systems.
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