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ABSTRACT
Evolutionary Game Theory is an application of game theory to
evolving populations of organisms. Of recent interest are EGT mod-
els situated on structured populations or spatial evolutionary games.
Due to the complexity added by introducing a population struc-
ture, model analysis is usually performed through agent-based
Monte-Carlo simulations. However, it can be difficult to obtain
desired quantities of interest from these simulations due to sto-
chastic effects. We define a framework for modeling spatial evo-
lutionary games using Dynamic Bayesian Networks that capture
the underlying stochastic process. The resulting Dynamic Bayesian
Networks can be queried for quantities of interest by performing
exact inference on the network. We then propose a method for pro-
ducing approximations of the spatial evolutionary game through
the truncation of the corresponding DBN, taking advantage of the
high symmetry of the model. This method generalizes mean-field
and pair approximations in the literature for spatial evolutionary
games. Furthermore, we show empirical results demonstrating the
capability of the method to obtain much better accuracy than pair
approximation with respect to stochastic simulations.
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1 INTRODUCTION
Evolutionary Game Theory (EGT) was initially developed to model
biological evolution [19] but has found additional use in research
on the evolution of cultural phenomena [6], and a variety of multi-
agent systems topics [2, 23, 26, 27, 31]. While far from an exact
description of human interactions, EGT models can be used to find
trends that capture essential characteristics of modeled interactions
[5, 7]. One can rely on agent-based stochastic simulations [1] to
obtain insights. However, these simulations come with their own
limitations in validation [18] and variability [21]. A commonly used
alternative is pair approximation [13, 17] which has been used to
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obtain qualitative insight into EGT models [12, 13, 20, 24] even if is
not very accurate to the underlying stochastic model [15, 16, 25, 29].

We propose a framework for exact modeling of spatial evolu-
tionary games using a Dynamic Bayesian Network (DBN) [4], thus
making the whole toolbox of probabilistic inference algorithms ap-
plicable to such stochastic games [3, 8–11, 14, 22]. Then we develop
a method for producing approximations of stochastic spatial evolu-
tionary games, by exploiting symmetry, through the truncation of
the corresponding DBN. This provides a flexible framework for the
exploration of higher order approximations beyond pair approxima-
tion that allow for better accuracy with respect to the underlying
stochastic model. Finally, we provide preliminary empirical results
illustrating the potential of our approach in modeling stochastic
simulations and its advantages over existing approximations.

2 DBN EVOLUTIONARY-GAME MODEL
We consider a population of𝑀 agents {1, ..., 𝑀} placed on evenly-
spaced points in a grid with circulatory boundary conditions. An
evolutionary game consists of 𝑇 iterations, each having an interac-
tion phase followed by an update phase. In the interaction phase,
each agent 𝑖 chooses some action 𝑠𝑖 ∈ 𝑆 and receives a payoff 𝜋𝑖 as
the sum of the payoffs received from playing a normal-form game
with payoff matrix U against each of its neighbors 𝑁 (𝑖). Each time
the update phase occurs, a percentage of agents 𝛾 in the population
use an update rule to decide how to change their strategies. For
example, in the Fermi rule agents choose a random neighbor to
compare their payoff with. Agents may also have a probability 𝜇 of
mutating to a random strategy during the update phase [30].

We next define a model that fully captures our spatial evolution-
ary game using a Dynamic Bayesian Network (DBN). The DBN is
(𝑋 (𝑡), 𝐷 (𝑡), 𝑃 (𝑡)). The variable set 𝑋 (𝑡) = 𝑋 is split into two sets
of variables 𝑋 = 𝐴 ∪ 𝑃𝑎𝑦, where

• 𝐴𝑖, 𝑗 (𝑡) ∈ 𝐴: the strategy of the agent at coordinate (𝑖, 𝑗) on
the grid at the start of each iteration 𝑡 .

• 𝑃𝑎𝑦𝑖, 𝑗 (𝑡) ∈ 𝑃𝑎𝑦: the payoff received by the agent at (𝑖, 𝑗)
during the interaction phase at time 𝑡 .

CPT for Payoff Nodes Each node 𝑃𝑎𝑦𝑖, 𝑗 (𝑡) has 𝑑 + 1 parents
consisting of 𝐴𝑖, 𝑗 (𝑡) and its 𝑑 neighbors 𝑁 (𝐴𝑖, 𝑗 ) = {𝐴𝑘,𝑙 | (𝑘, 𝑙) ∈
𝑁 (𝑖, 𝑗)}. The conditional probability function 𝑃 (𝑃𝑎𝑦)𝑖, 𝑗 (𝑡) | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠)
is constructed from the payoff matrix U, expressed as a CPT:

Pr(𝑃𝑎𝑦𝑖, 𝑗 (𝑡) | 𝐴𝑖, 𝑗 (𝑡), 𝑁 (𝐴𝑖, 𝑗 (𝑡)))

=

{
1 if 𝑃𝑎𝑦𝑖, 𝑗 (𝑡) =

∑
(𝑘,𝑙) ∈𝑁 (𝑖, 𝑗) U(𝐴𝑖, 𝑗 (𝑡), 𝐴𝑘,𝑙 (𝑡))

0 otherwise
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CPT for StrategyVariables. Each𝐴𝑖, 𝑗 (𝑡+1) has 2(d+1) parents:
𝐴𝑖, 𝑗 (𝑡), 𝑃𝑎𝑦𝑖, 𝑗 (𝑡) and the 𝐴(𝑡) and 𝑃𝑎𝑦 (𝑡) variables for each of the
𝑑 neighboring 𝑁 (𝑖, 𝑗) agents. Our goal is to define Pr(𝐴𝑖, 𝑗 (𝑡 + 1) |
𝑝𝑎𝑟𝑒𝑛𝑡𝑠). We break up this probability into cases controlled by
three variables:

• update: did an update happen (yes, with probability 𝛾 )?
• mut: did mutation happen (yes, with probability 𝜇)?
• rand: which neighbor was chosen ((𝑘, 𝑙), with probability 1

𝑑
)?

We use indicator functions to define

Pr𝛿 = 1𝐴𝑖,𝑗 (𝑡+1)=𝐴𝑘,𝑙 (𝑡 ) , Pr∅ = 1𝐴𝑖,𝑗 (𝑡+1)=𝐴𝑖,𝑗 (𝑡 )

For example, if (update = 1) and (mut = 0), we can write:

Pr(𝐴(𝑡 + 1)𝑖, 𝑗 = 𝑠𝑡+1 | 𝐴𝑖, 𝑗 (𝑡) = 𝑠𝑡 , other parents) =∑︁
(𝑘,𝑙) ∈𝑁 (𝑖, 𝑗)

1
𝑑
Pr𝑢 (𝑃𝑎𝑦𝑖, 𝑗 , 𝑃𝑎𝑦𝑘,𝑙 )Pr𝛿 (1 − Pr∅) + Pr∅

where Pr𝑢 (𝑃𝑎𝑦𝑖, 𝑗 , 𝑃𝑎𝑦𝑘,𝑙 ) is the probability that the agent (𝑖, 𝑗)
switches to strategy of the neighboring agent (𝑘, 𝑙).

The resulting DBN formulation fully encodes the stochastic pro-
cess of the spatial evolutionary game. However, it is well known
that exact inference is exponential in the tree-width of the network.
To address this computation issue we propose a novel method for
truncating the full DBN taking inspiration from moment-closure
methods in the mean-field approximation literature.

3 TRUNCATION APPROXIMATION
We construct a Bayesian Network for each iteration that takes the
states of each agent from input nodes at time 𝑡 to output nodes at
time 𝑡+1. Since the marginal distributions for each agent node in the
exact model are identical, we can exploit symmetry by looking at the
distribution of a few representative nodes. The idea is to truncate
the DBN around a single focal agent and some of its neighbors. The
input nodes consist of agents in the truncation neighborhood and
the output nodes will be a few (e.g. one or two) nodes. We then
use the transition probabilities in the exact model to link the input
nodes to the output nodes. Since there are less output nodes than
input nodes at the next time step, we must also approximate the
joint distribution of the truncation neighborhood at the start of
each iteration. There are three steps:

Truncation Neighborhood First, we choose some subset of
agent nodes 𝐵 ⊂ 𝐴 (examples shown in Fig. 2). We construct the

Figure 1: Slice of Dynamic Bayesian Network for the Fermi
update rule centered at the agent located at position (1,1)

Bayesian Network from time 𝑡 to time 𝑡 + 1 for just the nodes in 𝐵.
On the truncated DBN, we can now run exact inference algorithms
in a reasonable amount of time in order to compute the marginal
and pair-wise conditional distributions of the output nodes at 𝑡 + 1.

Output query Second, we query a selection of lower order
distributions from the output nodes at time 𝑡 + 1: 𝑃𝑠𝑖 , 𝑃𝑠𝑖 |𝑠 𝑗 .

Input definition Finally, we approximate the joint distribution
over the truncation neighborhood at the next iteration using a
function of the single variable and pair distributions obtained during
the output query step. We can approximate this using a tree-like
Bayesian Network. We refer to our full paper for details.

Figure 2: Example Truncation Neighborhoods

4 EMPIRICAL EVALUATION
We run empirical experiments on several games from the evolu-
tionary game theory literature. We test four different cases (BN-MF,
BN-PA, BN-Medium, BN-Large) with increasing truncation neigh-
borhoods. Approximation results are compared to the average of
20 simulations on a 50x50 grid. Figure 3 shows two examples.

Figure 3: Proportion of agents playing the second strategy
in a Prisoner’s Dilemma game (left) and a Snowdrift game
(right) for different approximations.

Our results show that larger approximation neighborhoods re-
duce the error in the time evolution graphs, even in games such
as Snowdrift (see [28, Section 3.8]) where pair approximation does
not have good quantitative agreement with simulation results.
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