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ABSTRACT
In modular reinforcement learning (MRL), a complex decision mak-

ing problem is decomposed into multiple simpler subproblems each

solved by a separatemodule. Often, these subproblems have conflict-

ing goals, and incomparable reward scales. A composable decision

making architecture requires that even the modules authored sep-

arately with possibly misaligned reward scales can be combined

coherently. An arbitrator should consider different module’s action

preferences to learn effective global action selection. We present

a novel framework called GRACIAS that assigns fine-grained im-

portance to the different modules based on their relevance in a

given state, and enables composable decision making based on

modern deep RL methods such as deep deterministic policy gra-

dient (DDPG) and deep Q-learning. We provide insights into the

convergence properties of GRACIAS and also show that previous

MRL algorithms reduce to special cases of our framework. We ex-

perimentally demonstrate on several standard MRL domains that

our approach works significantly better than the previous MRL

methods, and is highly robust to incomparable reward scales. Our

framework extends MRL to complex Atari games such as Qbert, and

has a better learning curve than the conventional RL algorithms.
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1 INTRODUCTION
In a reinforcement learning (RL) setting, an agent learns to make de-

cisions by repeatedly interacting with the environment to optimize

the long term reward [26]. Thanks to several advances in model-

free RL algorithms [13, 18], RL has been successfully applied to

several challenging domains in robotics [8], complex games [22, 31],

and industrial control [12]. Despite these advances, challenges such
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Figure 1: Bunny World Domain

as high sample complexity remain when scaling RL algorithms to

problems with large state spaces [8]. Fortunately, in several do-

mains, a significant structure exists that can be exploited to yield

scalable and sample efficient solution approaches. In hierarchical

RL (HRL), a complex problem is formulated using a hierarchy of

simpler subproblems via temporal decomposition of the problem

and modeling intermediate tasks as higher-level actions [2, 27].

In several settings, it is not possible to extract a hierarchy among

different subtasks for a given problem.Modular reinforcement learn-

ing (MRL) has been proposed to model settings where an agent’s

complex decision making problem is decomposed into multiple

simpler subproblems each solved by a separate module [10, 19, 24].
Each module learns (concurrently with other modules) to solve a

simpler subproblem using RL. Although modules solve different

subproblems, they are still linked as they share the action taken by

the agent. The MRL setting enables modeling problems where mod-

ules may have different and possibly conflicting goals. For example,

in the popular Bunny World domain [24, 25] shown in figure 1, an

agent (bunny) needs to avoid a predator and simultaneously eat

all the food particles in the environment. This task can be decom-

posed into two modules: a) module that learns to collect the food

particles, and b) module whose task is to avoid the predator. Each

module only deals with the observations and rewards relevant to

its subtask.

A key benefit of such a modular decomposition is that each

module solves a problem with a smaller state space (e.g., predator

module can ignore food locations), which helps address the curse
of dimensionality in RL [24]. Furthermore, it helps to address the

issue of structural credit assignment [1], as each module receives a

reward specific to its local subgoal. Such module specific rewards

Main Track AAMAS 2021, May 3-7, 2021, Online

565



provide a clearer signal about the contribution of different actions to

the individual subtasks as opposed to a single global reward signal

in the standard monolithic RL setting. Such improved credit assign-

ment helps in faster convergence of the learning algorithm leading

to lower sample complexity and a better learning curve, which we

also observe empirically. As highlighted in [23, 24], another major

benefit of MRL is towards enabling learning-based software engi-

neering whereby even the modules having separate authors can be

composed together to solve a larger and complex learning problem.

It also enables module reuse across different projects.

The modules in MRL, while learning concurrently, aim to solve

different goals that may be conflicting in nature [10]. Therefore,

the action preferences can be different across modules. One key

challenge in MRL is to learn a policy for an arbitrator (AR), that
takes as input the action preferences of differentmodules and selects

the action to be taken by the agent, which is then shared with all

the modules. This is called the action selection problem in MRL [10]

which is challenging since different techniques for combining the

action preferences of different modules give rise to a multitude of

policies. Another key challenge for effective action selection is that

although the module specific reward signals are consistent within

a module, they might be incomparable to the rewards used in other

modules [24]. Designing comparable rewards across all the modules

is burdensome for domain experts as defining a suitable reward

function is known to be challenging even in standard RL [7, 17]. This

further hinders the modularity and composability in MRL where

different modules can be authored separately (e.g., in a software

engineering context [23, 24]). Therefore, the arbitrator’s policy

should be able to select effective actions even in these challenging

circumstances.

Contributions: Our main contributions are as follows:

(1) We develop a novel framework, GRACIAS (Global Reward
AwareComposition of IndividualActionUtilitieS), based on
deep RL algorithms. It enables the arbitrator (AR) to assign

appropriate relative importance to the modules in differ-

ent states of the environment to address the action selec-

tion problem effectively. GRACIAS also allows concurrent

learning of action-value functions of different modules using

standard deep RL methods such as Double-DQN.

(2) We provide insights into convergence properties ofGRACIAS

by exploiting connections to the two timescale stochastic

approximation [4]. We also show that previous approaches

such as GM algorithms [10, 19], and Arbi-Q [24] reduce to

special cases of our framework.

(3) Empirically, we demonstrate the effectiveness of our ap-

proach on two well known MRL domains, namely "Bunny

World" [24] and "Racetrack" [19]. Besides these, we also use

a complex domain named Qbert (from the Arcade Learning

Environment [3]) and propose to use it as a new benchmark

for performance comparisons in MRL.

We compare our approach with popular MRL techniques GM-Q

and Arbi-Q. Our approach is highly robust to different reward scales

across modules, whereas previous approaches significantly degrade

in performance. On Qbert, when compared against Double-DQN,

our approach provides similar solution quality while having better

sample complexity. To further illustrate composable learning, we

pre-train some modules which are made available to the agent be-

forehand. Empirically, GRACIAS fully leverages the advantage of

pre-trained modules, has faster convergence, and significantly out-

performs existing approaches. In contrast, conventional RLmethods

are not able to leverage the availability of such pre-trained modules.

2 RELATEDWORK
In the command arbitration paradigm [6, 9, 10, 24], an arbitration

policy is defined that selects a single module to execute the agent’s

action in a given state. This module obtains complete control of the

agent in that state, and its most preferred action is executed by the

agent. The MRL literature has witnessed a variety of command arbi-
tration policies. Top-Q [10] uses a simple arbitration policy, where

each module suggests the value of its most preferred action, and

the module with the highest action-value gets selected. W-learning

[6, 9] selects the module that would suffer the most if its most

preferred action is not executed. Arbi-Q models an intelligent arbi-

trator that tries to maximize the global reward by selecting the most

relevant module in a given state [24]. All the command arbitration

algorithms give complete control to a single module in any given

state. As highlighted in previous works [19], these approaches fail

to identify compromise actions (i.e., actions agreeable for all the
modules) and hence, generally lead to suboptimal policies.

Command fusion techniques [5, 20, 21] try to address this issue

by performing a combination (like average) of the most preferred

action of each module. However, these techniques converge to sub-

optimal policies that suffer from oscillations and instability [11].

GM algorithms [10] address this issue by considering the action

preferences of all the modules. In particular, for each action, the cu-

mulative value (or expected long term reward) is obtained by adding

action values for this action across all the modules. The action with

the highest aggregate is executed by the agent. This procedure

enables the agent to find the action which can be reasonable for

all the modules. One of the major drawbacks of GM-algorithms is

that action selection is completely based on the individual modules’

action-values, without considering the global reward. It makes these

algorithms sensitive to the modules’ reward scales and necessitates

careful crafting of reward functions of each module.

GRACIAS addresses all the major concerns mentioned above.

Unlike GM algorithms, it is not sensitive to the modules’ reward

scales and considers the global reward signals. Simultaneously,

unlike command arbitration algorithms, it considers the individual

action preferences of the modules and can find actions reasonable

from every modules’ perspective.

3 MODULAR REINFORCEMENT LEARNING
The standard RL problem is modeled using a Markov decision pro-

cess (MDP). AnMDP is defined using a tuple ⟨𝑆,𝐴,𝑇 , 𝑟, 𝛾⟩. An agent
can be in one of the states 𝑠 ∈ 𝑆 , and takes an action 𝑎 ∈ 𝐴. As a
result of the action, the agent transitions stochastically to a new

state 𝑠 ′ with probability Pr(𝑠 ′ |𝑠, 𝑎) = 𝑇 (𝑠, 𝑎, 𝑠 ′) and receives a re-

ward 𝑟 (𝑠, 𝑎). We assume an infinite-horizon setting with reward

discounting factor 𝛾 < 1. In the model-free RL setting, an agent

only observes the tuple ⟨𝑠, 𝑎, 𝑠 ′, 𝑟 ⟩ after each interaction with the

environment. The policy of the agent is denoted using 𝜋 (𝑎 |𝑠) de-
noting the probability Pr(𝑎 |𝑠). Let the discounted future return be
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denoted by 𝑅𝑡 =
∑∞
𝑘=0

𝛾𝑘𝑟𝑘+𝑡 . The value function induced by policy

𝜋 is denoted as:

𝑉 𝜋 (𝑠𝑡 ) = E𝑠𝑡+1:∞,𝑎𝑡 :∞
[
𝑅𝑡 |𝑠𝑡 , 𝑎𝑡

]
(1)

The action-value function is denoted as:

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1:∞,𝑎𝑡+1:∞
[
𝑅𝑡 |𝑠𝑡 , 𝑎𝑡

]
(2)

The goal is to find the best policy 𝜋 to maximize the value for the

starting belief 𝑏0:

𝐽 (𝜋) =
∑
𝑠

𝑏0 (𝑠)𝑉 𝜋 (𝑠) (3)

Modular RL: We follow the MRL framework as presented in [24].

The framework assumes that there are 𝑁 modules, each of which

addresses a smaller subproblem of the main RL task. To enable local

learning of action-value functions for modules, we assume that the

environment generates 𝑁 + 1 reward signals ⟨𝑟, 𝑟1, . . . , 𝑟𝑁 ⟩ where 𝑟
is the original global reward signal, and 𝑟𝑖 is the local reward signal

for module 𝑖 ∀𝑖=1...𝑁 . The global reward 𝑟 quantifies the actual

performance of the agent for the given state and action. Our goal

is still to find the policy that maximizes the value function defined

using this global reward 𝑟 analogous to (3). Each 𝑟𝑖 quantifies the

agent’s performance w.r.t. the specific subtask addressed by module

𝑖 . Notice that we do not require that 𝑟 =
∑𝑁
𝑖=1 𝑟𝑖 . Therefore, global

rewards need not be on the same scale as module rewards. Although

modules may receive different rewards, they are still coupled as

they share the action taken. Given the agent’s policy 𝜋 , we can also

define the action-value function for each module 𝑖 as:

𝑄𝜋
𝑖 (𝑠𝑡 , 𝑎𝑡 ) = E

[
𝑟𝑖 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑄𝜋

𝑖 (𝑠𝑡+1, 𝜋 (𝑠𝑡+1))
]

(4)

A key benefit of MRL is that since each module addresses a

smaller subtask, it may be sufficient to define their local action-value

functions using state abstraction 𝜙𝑖 (𝑠), which may have smaller di-

mensionality than the original state 𝑠 [10, 24]. Furthermore, having

access to local rewards 𝑟𝑖 enables better structural credit assign-

ment as it provides a clearer signal about the contribution of the

different actions to the individual subtasks as opposed to a single

global reward signal 𝑟 [1]. It can make the learning sample efficient,

resulting in a better learning curve than monolithic RL algorithms.

As in HRL, some domain expertise may be required to define the

subtasks addressed by different modules, and the local reward and

state abstraction functions. However, different modules are allowed

to interfere with each other and pursue different subgoals, and they

can have incomparable reward scales. Therefore, the overhead for

domain experts is relatively low.We also show that extracting such a

modular structure is possible even for complex Atari games such as

Qbert. In settings, such as in Qbert, hand coding of state abstraction

𝜙𝑖 is not possible as the state represents the game screen (i.e., pixels).

In such settings, state abstraction can also be automatically learned

using convolutional neural nets.

4 OUR APPROACH
Our goal is to find the agent’s policy 𝜋 that allows the agent to

select actions to optimize the objective (3). However, if we directly

define and optimize 𝜋 , it is not clear how to exploit the information

learned by the different modules. Therefore, we introduce arbitrator

+   wN * QN

Arbitrator

w1 * Q1   +

Module 1 Module N

Φ1(s)

argmaxa∈A Q joint (s, a; w )

ΦAR(s)

s

r

ΦN(s)

Environment

r1 rN

a*

a*

Figure 2: MRL and Arbitration Architecture. The arbitrator ob-
serves abstracted environment state 𝜙AR (𝑠) , global reward 𝑟 , and
modules’ state-action values 𝑄𝑖 (𝑄𝑖 denotes vector of state-action
values, one for each action). The arbitrator performs action selec-
tion to execute the action 𝑎★ in the environment (details in text).
This action is also communicated to each module. Each module ob-
serves the state features𝜙𝑖 (𝑠) and the local reward signal 𝑟𝑖 for their
specific subtask, and update their Q-values following Q-learning.

AR, which itself is a reinforcement learning module, and its policy

defines the action to be taken by the agent at each time step.

4.1 Arbitrator Architecture
GRACIAS uses an arbitrator (AR) to which each module communi-

cates its action preferences in the form of action-values𝑄𝑖 . Figure 2

shows the information flow from the modules and environment

to the AR. The arbitrator observes the global reward signal 𝑟 and

selects the action to maximize the expected long term reward (3).

It aims to learn the relative importance of each module 𝑖 in a given

state 𝑠 , denoted by appropriate weights. Using these weights, the

joint Q-value (Qjoint) is computed by taking a linear combination

of the action-values of the individual modules. Formally, the state,

action spaces and reward signal for AR are defined as:

• State: The AR observes the environment state 𝑠 . In several

settings, it may be possible to define a state abstraction func-

tion 𝜙AR (𝑠) that has lower dimensionality than 𝑠 , and is still

sufficient for making decisions by the AR. However, this

is not required; in complex domains such as Qbert, the AR

can learn 𝜙AR using standard convolution neural networks

(CNNs).

• Actions: The action space of AR is continuous and with 𝑁 -

dimensions, or𝒘 ∈ [0, 1]𝑁 (where𝒘 denotesAR’s action and

N is the number of modules). There is one action component

𝑤𝑖 ∈ [0, 1] for each module 𝑖 . Intuitively, 𝑤𝑖 corresponds

to the weight or importance assigned to module 𝑖 . We can

enforce additional constraints on 𝒘 such as normalization

(or

∑
𝑖 𝑤𝑖 =1).

• Reward and action selection: Notice thatAR’s action does
not directly provide the action taken by the agent in the

environment. Similarly, it is not clear what should be the

reward signal for the continuous action 𝒘 of AR. To allow
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AR to connect the modules’ preferences and global reward,

the (environment) action selection mechanism is defined as:

(1) TheAR computesQjoint (𝑠, 𝑎;𝒘) =
∑𝑁
𝑖=1𝑤𝑖𝑄𝑖 (𝜙𝑖 (𝑠), 𝑎) ∀𝑎 ∈

𝐴. Notice that 𝑎 is the environment action. Qjoint is a

weighted combination ofmodule action-valueswithweights

given by the AR action𝒘 .
(2) The action selected to execute in the environment is 𝑎★←

argmax𝑎∈𝐴 Qjoint (𝑠, 𝑎;𝒘)
(3) The action 𝑎★ is then executed in the environment, and

the global reward 𝑟 is the reward corresponding to AR’s

action𝒘 or 𝑟AR (𝑠,𝒘) = 𝑟 (𝑠, 𝑎★).
(4) After taking action 𝑎★, the environment transitions to a

new state 𝑠 ′.

Arbitrator training: Notice that the above action selection pro-

cess takes module preferences into account, by computing Qjoint

as the weighted combination of the module state-action values,

and also connects to the global reward signal 𝑟 . Since the reward

𝑟AR given to the arbitrator is essentially the global reward signal,

optimizing arbitrator’s actions 𝒘 would also optimize the global

objective (3). The arbitrator would therefore learn to weigh the dif-

ferent modules appropriately in different states such that it results

in the optimization of the long term global reward.

Using tuples ⟨𝑠,𝒘, 𝑠 ′, 𝑟AR⟩, we can now train the arbitrator policy

with standard deep RL techniques like DDPG [15] or SAC [8] that

are able to optimize continuous actions. Thus, our novel action

selection mechanism can exploit advances in deep RL methods, and

also exploits the modular nature of the underlying problem. Such

connections were not developed in previous MRL methods such as

GM-Q and Arbi-Q.

For our experiments, arbitrator is trained using DDPG approach

with policy 𝜇 (·;𝜃 ), and a critic 𝑄 (·;𝜃 ′) approximating the action

value function of the arbitrator. The gradient of the objective w.r.t.

policy parameters 𝜃 is given as [15]:

∇𝜃 𝐽 = E𝑠𝑡∼𝜌
[
∇𝒘𝑄 (𝑠,𝒘 ;𝜃 ′) |𝑠=𝑠𝑡 ,𝒘=𝜇 (𝑠𝑡 )∇𝜃 𝜇 (𝑠;𝜃 ) |𝑠=𝑠𝑡

]
(5)

where 𝜌 is the state-visitation distribution; critic 𝑄 can also be

trained using samples as shown in [15]. We use a publicly available

implementation of DDPG [33].

4.2 Module Architecture
Each interaction with the environment generates an experience

tuple ⟨𝜙𝑖 (𝑠), 𝑎★, 𝜙𝑖 (𝑠 ′), 𝑟𝑖 ⟩ for module 𝑖 as shown in figure 2, where

𝑎 is the action chosen by the arbitrator using the action selection

mechanism in section 4.1. We assume that each module implements

an RL approach such as Q-learning or SARSA [26], to learn its

local state-action value function 𝑄𝑖 . Notice that we allow the ar-

bitrator and the modules to learn concurrently. We will discuss

later how to make such concurrent learning stable by appropriately

choosing learning rates for the different RL modules by exploiting

connections to the two timescale stochastic approximation [4].

For our implementation, we chose Q-learning that updates the

module’s action-value function as:

𝑄𝑖 (𝜙𝑖 (𝑠𝑡 ), 𝑎𝑡 ) ← (1 − 𝛼𝑡𝑖 )𝑄𝑖 (𝜙𝑖 (𝑠𝑡 ), 𝑎𝑡 )+
𝛼𝑡𝑖

[
𝑟𝑖 + 𝛾 max

𝑎∈𝐴
𝑄𝑖 (𝜙𝑖 (𝑠𝑡+1), 𝑎)

]
(6)

where 𝛼𝑡
𝑖
is a learning rate that decays over time. Such updates

can be done in parallel for each module, and have been used in

previous MRL approaches as well [19]. Notice that this local Q-

learning gives the illusion of control to module 𝑖 since𝑄𝑖 is updated

under the assumption that in the future states, the agent’s policy

will be optimal from the perspective of module 𝑖 (indicated by

max𝑎∈𝐴𝑄𝑖 ). This is an approximate way of updating action-value

function of a module. It has been noted that SARSA is a better

choice for updating a module’s Q-values as SARSA is on-policy

and does not overestimate future returns unlike Q-learning [19, 25].

However, in our setting, we chose Q-learning for modules for the

following reasons.

First, Q-learning is an off-policy algorithm. Therefore, it is com-

patible with the experience replay mechanism, an integral part

of several modern deep RL algorithms such as DQN [16]. In con-

trast, since SARSA is on-policy, experience replay is not compatible

with it in a straightforward fashion. Second, under some standard

regularity assumptions, Q-learning updates in equation (6) will

converge to locally greedy estimates regardless of the arbitrator’s

policy [19, 29]. This makes learning stable even with multiple con-

currently learning modules. Third, previous MRL approaches that

used Q-learning, like GM-Q [10], did not employ an intelligent arbi-

trator. Only the modules’ action-values decided the agent’s policy.

It resulted in suboptimal policies due to the overestimation caused

by the illusion of control. In contrast, since GRACIAS’s arbitrator

directly optimizes the global reward, it can assign appropriate im-

portance to each module to learn good quality policies. Empirically,

we observed that the arbitrator in our case, was able to accurately

learn how to weight the Q-values of the different modules to maxi-

mize the long term global reward.

Algorithm 1 GRACIAS

Defines:
𝑁 ⊲ The number of modules

Requires:
Arbitrator ⊲ Central arbitrator AR

Modules ⊲ Array containing 𝑁 modules

𝜙AR (𝑠) ⊲ State abstraction function of the arbitrator

𝜙𝑖 (𝑠) ⊲ State abstraction function of module 𝑖

1: for each episode do
2: Receive the initial state 𝑠

3: for each time step do
4: 𝑠AR ← 𝜙AR (𝑠) ⊲ Abstracted state for the arbitrator

5: 𝒘 ← Arbitrator·getWeights(𝑠AR)
6: 𝑄𝑖 ← Modules[𝑖] . getActionValues(𝜙𝑖 (𝑠)) ∀𝑖 = 1 : 𝑁

7: Qjoint (𝑠, 𝑎;𝒘) =
∑𝑁
𝑖=1𝑤𝑖𝑄𝑖 (𝜙𝑖 (𝑠), 𝑎) ∀𝑎 ∈ 𝐴

8: 𝑎★← argmax

𝑎
Qjoint (𝑠, 𝑎;𝒘)

9: Execute 𝑎★, observe rewards ⟨𝑟, 𝑟𝑖∀𝑖 =1 :𝑁 ⟩, state 𝑠 ′

10: Arbitrator·update(𝜙AR (𝑠),𝒘 , 𝑟 , 𝜙AR (𝑠 ′))
11: for 𝑖 ∈ {1, . . . , 𝑁 } do
12: Modules[𝑖] . update(𝜙𝑖 (𝑠), 𝑎★, 𝑟𝑖 , 𝜙𝑖 (𝑠 ′))
13: end for
14: 𝑠 ← 𝑠 ′

15: end for
16: end for
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Pre-trained modules: To enable a truly modular and compos-

able RL, we also allow incorporating pre-trained modules in our

framework. The Q-values of such modules are not updated during

the learning process. Since GRACIAS does not require compara-

ble rewards across the different modules, our arbitrator can still

learn to weigh the state-action values of such pre-trained modules.

A key benefit is that, in some settings, a pre-trained module can

be reused across multiple RL tasks. This should make the learn-

ing faster and sample efficient. We also show the effects of such

pre-training empirically which confirms these observations.

Algorithm 1 provides the high level design of GRACIAS. The

modules and the arbitrator have their individual state abstraction

functions. In a given state 𝑠 , Arbitrator assigns a relative impor-

tance𝑤𝑖 to the action-values (𝑄𝑖 ) of each module 𝑖 . For each action

𝑎, Qjoint (𝑠, 𝑎;𝒘) is calculated as a linear weighted sum of the action-

value of the individual modules. The agent executes the action 𝑎★

having the maximum aggregate value. The agent then observes the

𝑁 +1 reward signals ⟨𝑟, 𝑟𝑖∀𝑖 =1 :𝑁 ⟩ and the next state 𝑠 ′. Using their
respective experience tuples, the Arbitrator and the modules can be

trained using the standard deep RL techniques. We use DDPG and

Double-DQN for training the Arbitrator and the modules respec-

tively. For completeness the updates for all the components, and two

routines: Arbitrator·getWeights and Modules[𝑖] . getActionValues
are provided in Appendix B.

4.3 Connections with GM-Q and Arbi-Q

Algorithm 2 Action selection in MRL

Defines:
ΠAR ⊲ Policy of the arbitrator

𝑄𝑖 ⊲ Q function of module 𝑖

1: 𝒘 ← ΠAR (𝑠)
2: Qjoint (𝑠, 𝑎) ←

∑𝑁
𝑖=1𝑤𝑖 ·𝑄𝑖 (𝑠, 𝑎); ∀𝑎 ∈ 𝐴

3: 𝑎★← argmax

𝑎
Qjoint (𝑠, 𝑎) ⊲ Action to execute in environment

We next show that the policies executed by the GM algorithms

like GM-Q as well as the command arbitration algorithms like

Arbi-Q can be reduced to special cases of GRACIAS. Algorithm 2

highlights the key steps in the action selection mechanisms of Arbi-

Q, GRACIAS and GM algorithms. At an abstract level, all the three

algorithms assign weights to the modules to compute Qjoint, the

joint value function, which is then used to select the agent’s action.

These algorithms differ in the possible values that can be assigned to

the weight vector𝒘 which in turn is defined by the action space of

the arbitrator. Intuitively, we show that the range of possible𝒘 for

Arbi-Q and GM algorithms are subsets of possible𝒘 in GRACIAS.

Proposition 1. Arbi-Q is a special case of GRACIAS.

Proposition 2. GM algorithms are a special case of GRACIAS.

Proofs are provided in appendix A.1 and A.2 in supplementary.

4.4 Convergence Properties
Notice that there are multiple components that are learning con-

currently (arbitrator and 𝑁 modules). It might lead to unstable and

non-stationary learning. Indeed, this seems to be the case for the ar-

bitrator’s learning. The reward function 𝑟AR for the arbitrator is not

stationary (especially in the initial learning epochs) as 𝑟AR depends

on the modules’ Q-values, which themselves are getting updated as

learning proceeds. Therefore, it is not clear why such interleaved

learning will converge. To provide clarity into this learning pro-

cess, we connect it to the two timescales stochastic approximation

that provides insights regarding learning rate schedules of differ-

ent components and other regularity assumptions necessary for

convergence [4, Chapter 6].

Two timescale approximation involves 𝑥 and 𝑦 as variables

(𝑥,𝑦 ∈ R𝑑 ) which are updated in the following fashion iteratively [4,
Chapter 6]:

𝑥𝑡+1 = 𝑥𝑡 + 𝜂1 (𝑡)
[
ℎ(𝑥𝑡 , 𝑦𝑡 ) + 𝜖 (1)𝑡+1

]
(7)

𝑦𝑡+1 = 𝑦𝑡 + 𝜂2 (𝑡)
[
𝑔(𝑥𝑡 , 𝑦𝑡 ) + 𝜖 (2)𝑡+1

]
(8)

where 𝜂1 (𝑡) and 𝜂2 (𝑡) are the learning rates, and 𝜖 is the noise. No-
tice that in this scheme, updates of both 𝑥 and 𝑦 are interleaved. As

noted in [4, Chapter 6], the intuition for these updates is as follows:

The setup involves an iterative algorithm. Let us assume that the

outer loop of the algorithm corresponds to updating the arbitrator’s

policy. For the current parameters 𝜃𝑡 of arbitrator’s policy, we run

another subroutine that updates action-values of each module until

(near) convergence. Using the converged Q-values of modules, a

stable estimate of 𝑟AR can be extracted, and we can update the arbi-

trator’s policy using policy gradient in equation (5). The theory of

two timescale approximation shows that we can achieve the same

effect by running the outer loop (for arbitrator policy update) and

inner loop (to update Q-values of modules) concurrently, but on
different timescales. Essentially, using higher learning rate for mod-

ules than the arbitrator, the arbitrator perceives modules’ Q-values

to be almost converged, and modules perceive arbitrator’s policy

to be quasi-static.

Let 𝜂1 (𝑡) and 𝜂2 (𝑡) be the learning rates for module Q-value

updates and the arbitrator policy update respectively at time 𝑡 . The

key assumption required for this two timescale approximation to

work is:

Assumption 1.∑
𝑡

𝜂1 (𝑡) =
∑
𝑡

𝜂2 (𝑡) = ∞,
∑
𝑡

(𝜂1 (𝑡)2 + 𝜂2 (𝑡)2) < ∞,
𝜂2 (𝑡)
𝜂1 (𝑡)

→ 0

(9)

Notice that the condition
𝜂2 (𝑡 )
𝜂1 (𝑡 ) → 0 implies that rate 𝜂1 (for

module learning) is higher than 𝜂2 (for arbitrator). Let 𝑥 denote 𝑸
(or the vector of Q-values for all modules, and states and actions),

and 𝑦 denote 𝜃 , the arbitrator policy. For simplicity, we assume

tabular action-value function for modules, proof can be extended

to parametric policies also [28]. We state the below result.

Proposition 3. Under assumption 1 and other standard assump-
tions for the stability of iterates and bounded noise [4, Chapter 6],
the iterates (𝜃𝑡 ,𝑸𝑡 ) converge to a fixed point (local optima) almost
surely.

We show additional results in the Appendix A.3 to prove the

above proposition. The connections to two timescale approximation

provides useful insights (e.g., about relation between learning rates
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of different components), and shows convergence properties under

some assumptions. In practical implementation, there are additional

details which we did not include for clarity of exposition (e.g., there

is a critic which is also learned for the arbitrator, Q-values for

modules are approximated using function approximators). The

above two timescale approximation analysis can also be extended

to such multi-timescale approximation also [28].

5 EXPERIMENTS
We showcase the effectiveness of GRACIAS on two well known

MRL domains, namely "Bunny World" [24, 25] and "Racetrack"

[19]. Besides these, we also use a complex Atari domain Qbert and

propose it as a new MRL benchmark. We compare against popular

MRL methods GM-Q and Arbi-Q as baselines. We also use Double-

DQN (DDQN) algorithm [30] as the standard deep RL baseline.

5.1 Hyperparameters and setup
Appendix G (in supplementary) describes all the three domains and

their respective subtasks in detail. The arbitrator in GRACIAS can

use any RL algorithm that can optimize continuous actions. For our

experiments, the arbitrator is trained using DDPG algorithm [14].

The modules for all the approaches (GM-Q, Arbi-Q, and GRACIAS)

use the Double-DQN [30] algorithm to learn their subtasks. All the

hyperparameters and components such as network architecture,

state abstraction functions and experience replay memory for the

modules were kept the same across all the algorithms. For Qbert,

the modules use the same network architecture as proposed in [16].

The network architecture used in the Racetrack and Bunny World

is explained in the Appendix E (supplementary).

All the agents are trained using standard exploration techniques.

The DDQN baseline uses the epsilon-greedy exploration policy [32].

Similarly, GM-Q computesQjoint and uses the epsilon greedy policy

to select the action. InGRACIAS, the arbitrator outputs themodules’

weights, and adds a uniform random noise to these weights with

epsilon probability. The Qjoint is calculated using these weights,

and the action with the highest aggregate is executed.

We perform a set of four experiments (sections 5.2-5.5), each

highlighting a specific aspect of our algorithm. Five different in-

stances of each algorithm were trained using different random

seeds. The x-axis represents the training epochs, while the y-axis

represents the average episode reward over 15 trials based on the

fixed policy at that point (averaged over 5 random seeds). The solid

curves correspond to the mean, and the shaded regions capture

the minimum and maximum returns over five trials (plots with

min/max returns are shown in Appendix F). A running average of

15 was used in plotting the results.

5.2 Incomparable Reward Scales Setting
Figure 3 shows the performance comparison among different algo-

rithms when the modules have incomparable or misaligned reward

scales. As defined in Appendix C, incomparable rewards imply that

rewards for individual modules are internally consistent, but are

incomparable to other modules’ reward scales. Designing compa-

rable rewards across all the modules is burdensome for domain

experts [24] and becomes even harder with a large number of

modules. We generated several candidate reward settings (shown

in tables 1, 2, 3 in supplementary). Only the GM-Q algorithm is

known to be highly sensitive to modules’ reward scales; GRACIAS

and Arbi-Q are robust to different reward scales (also shown in

section 5.5). Therefore, we selected a reward setting (indexed #5 in

table 1 and indexed #2 in table 2 and 3 in supplementary) for which

GM-Q did not perform well.

We observe that GM-Q cannot adapt to the misaligned reward

scale and converges to a suboptimal solution. Although both Arbi-

Q and GRACIAS are robust to reward scales, Arbi-Q has a slower

learning curve and converges to a suboptimal solution. In contrast,

GRACIAS can learn a good policy and converge faster than other

approaches. The graphs also show that even with a slow learning

curve DDQN baseline can eventually converge to a similar solution

as GRACIAS. We present below some insights for these results.

GM algorithms are unable to learn the importance of different

modules and assign equal weight to them. With misaligned re-

ward scales, some modules might overpower the contribution of

other modules in deciding the joint policy. For instance, in the

Bunny World domain, if the rewards of the 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝐹𝑜𝑜𝑑 module

are much larger compared to those of the 𝐴𝑣𝑜𝑖𝑑𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 module

(which is the case for the chosen reward setting), then the agent

will tend to ignore the action-values (and hence the preferences)

of the 𝐴𝑣𝑜𝑖𝑑𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 module. Therefore, the overall policy will be

unable to dodge the predator, and the agent will die quickly. As

shown in the graphs, such behavior causes the agent to converge

to a suboptimal policy.

As discussed earlier, Arbi-Q transfers the agent’s complete con-

trol to a single module and fails to find actions reasonable to all

modules. For instance, in the Bunny World domain, the predator

follows the agent almost always; hence the agent can not ignore

it in any state. If the control is given to the food module in any

state, the agent will completely ignore the predator, which can

lead to its death. On the other hand, if the control always remains

with the predator module, the agent ignores collecting food. This

behavior can be observed in the graphs where Arbi-Q converges

to suboptimal policies. It also has a much slower learning curve

compared to other algorithms. Similar trends can also be observed

in the experiments conducted in figures 2 & 3 of [24]. Note that

the figures for GM-SARSA and Arbi-Q have different scales on the

x-axis. Arbi-Q is slower than GM-SARSA by orders of magnitude,

the reasons for which were not discussed in that paper.

GRACIAS explores different weights for the modules and learns

to find a weight𝒘 that results in a good action selection that also

optimizes the global reward. By assigning appropriate importance

to different modules,GRACIAS can handle cases where the rewards

of some of the modules are very high and prevent them from dom-

inating the joint policy. Results in figure 3 for different domains

validate this observation. Experiments show that our approach

adapts well even to misaligned reward scales and converges to a

good quality policy.

In DDQN, a monolithic agent deals with the joint state space

containing complete information about all the subtasks. State space

grows exponentially in the number of state features due to the

curse of dimensionality, resulting in slower learning. However, the

availability of all this information also enables DDQN to converge to

a good policy eventually. On the other hand, in MRL, each module

solves a problem with a smaller state space resulting in better
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(a) Racetrack (b) Bunny World (c) Qbert

Figure 3: Training curves of different algorithms having modules with incomparable reward scales

(a) Racetrack (b) Bunny World (c) Qbert

Figure 4: Training curves of different algorithms having modules with comparable reward scales

(a) Racetrack (b) Bunny World (c) Qbert

Figure 5: Training curves of different algorithms when one module is pre-trained. All components of DDQN and
GRACIAS-LFS are "Learning From Scratch" and have been added for comparison.

(a) GRACIAS (b) GM-Q (c) Arbi-Q

Figure 6: Training curves of different MRL algorithms with different reward scales of the modules on Bunny World
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learning curves. Even for Qbert, where each module’s state space is

the same as DDQN, GRACIAS has better convergence than DDQN

as each module receives its subtask specific reward signal, which

results in better credit assignment and faster learning.

5.3 Comparable Reward Scale Setting
Figure 4 shows the performance comparison of different algorithms

when all the modules have comparable reward scales. As discussed

above, only GM-Q is sensitive to the reward scales of the modules.

In Appendix C (supplementary), we do a grid search over the reward

scales of different modules (tables 1-3). We call a reward setting

comparable usingwhichGM-Q can achieve a solutionwhose quality

is similar to that achieved by DDQN on convergence. This set of

comparable rewards was then used for all the algorithms.

As evident from the graphs, both GRACIAS and GM-Q have bet-

ter learning curves and a faster rate of convergence as compared to

DDQN. Arbi-Q has a slow learning curve and converges to subopti-

mal policies. We can also see that despite the slower learning curve,

DDQN baseline is able to achieve good performance eventually. All

these observations are in line with the previous set of experiments.

A key observation is that even after prolonged training, GM-Q is

unable to learn a good policy in Qbert. We believe that this happens

because the GM algorithms fail to assign state-specific importance

to modules. Different modules fulfill different subtasks, and there-

fore, their importance across states might vary. Hence, assigning a

fixed importance to a module across all the states might hamper

the agent’s performance. However, in some domains like the Bunny

World, this phenomenon might not cause any significant perfor-

mance degradation. In the Bunny World, the agent has to dodge

the predator and consume all the food particles. It can not afford to

ignore the predator since that might cause its death. Moreover, the

predator module is indifferent between all the actions which do not

lead to its immediate death. An optimal policy would choose from

only these actions. This can be achieved by giving importance to

the𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝐹𝑜𝑜𝑑 module that is just enough to break the tie between

these actions. Any static scaling that assigns adequate importance

to the 𝐴𝑣𝑜𝑖𝑑𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟 module satisfies this requirement. Therefore

a single scaling might work equally well in Bunny World.

We also notice that GRACIAS is slightly slower than GM-Q in

the initial phases. It is because the GRACIAS’ arbitrator has to

learn the weights of different modules from scratch. It does so by

exploring different weight assignments𝒘 before converging to a

good policy. GM-Q on the other hand simply adds up the action

values of the modules and does not require any learning.

5.4 Learning with Pre-trained Modules
The modules of a given complex task can be authored by different

dedicated experts. To realise the complete potential of MRL, the

knowledge from these modules should be composable, and the

components usable without any modification. In many cases, a

module might have been trained for a particular use case and made

available to the agent in a completely different context. An ideal

arbitrator would directly incorporate such modules and result in

sample efficient training. Therefore, we test the setting wherein

some of the modules are pre-trained and made available to the

arbitrator beforehand.

Figure 5 shows performance comparisons of different algorithms.

Conventional RL techniques for solving the monolithic RL tasks fail

to leverage pre-trainedmodules. The plots for DDQN andGRACIAS

("Learning From Scratch" in the normal setting) have been added

for comparisons. As in previous experiments, Arbi-Q converges

to suboptimal policies, and GM-Q suffers from the reward scale

incomparability and converges to suboptimal solutions. This exper-

iment highlights that GRACIAS can synchronize different modules

even when they are at different stages of their individual learning,

and fully leverages pre-trained modules for faster convergence.

We observe similar performance boost in GRACIAS when all the

modules are pre-trained and provided to the agent beforehand, and

only the arbitrator’s policy is learned (Appendix D, supplementary).

Even in this setting, GRACIAS learns a good policy.

5.5 Sensitivity to Modules’ Reward Scales
Figure 6 shows the training curves of each MRL algorithm when

trained across a spectrum of five different reward scales of the

modules on Bunny World. The graphs for Racetrack and Qbert, the

reward settings used for this experiment and the process of selecting

those rewards is described in Appendix C in supplementary.

We observe that GM-Q is unstable and converges to a lower

score on many reward scales. Arbi-Q, although indifferent to the

reward scales, consistently has slower learning curves and con-

verges to suboptimal policies. In contrast, GRACIAS is robust and

adapts well to even highly skewed reward scales. This robustness of

GRACIAS is the chief enabler of the truly modular RL framework

allowing modules to be transferred across different systems without

re-engineering their reward signals.

6 CONCLUSION
This work is a first step towards making MRL scalable and com-

patible with modern deep RL approaches. We developed a novel

framework called GRACIAS for modular RL to solve complex real

world problems by decomposing it into simpler subtasks. GRACIAS

allows concurrent learning for such subtasks via separate modules,

which may have different subgoals. It can also leverage the knowl-

edge of pre-trained modules. A key enabler of such composable and

modular learning is our novel technique to train the arbitrator us-

ing deep RL algorithms by considering both the global reward and

the modules’ action preferences. Empirically, we demonstrate the

efficacy of GRACIAS on a range of problems against several MRL

algorithms. GRACIAS is able to overcome all the major limitations

of the existing MRL approaches and was observed to be highly

robust even when the rewards of the modules were incompara-

ble. Thus, our framework provides significant benefits for practical

applications of MRL for large scale learning problems.
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