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ABSTRACT
As artificial agents become increasingly prevalent in our daily lives,
it becomes imperative to equip them with an awareness of societal
norms; specifically, the ability to account for and be considerate
towards others they may cohabit with. In this work, we explore
the ability for an agent trained through reinforcement learning
to exhibit sympathetic behaviours towards another (independent)
agent in the environment. We propose to achieve such behaviours
by first inferring the reward function of the independent agent,
through inverse reinforcement learning, and subsequently learning
a policy based on a sympathetic reward function - a convex combi-
nation of the inferred rewards and the agent’s own rewards. The
corresponding weighting is determined by a sympathy function
which is computed based on the estimated return of the agent’s
current action relative to that of all possible actions it could have
taken. We evaluate our approach on adversarial as well as assistive
environment settings, and demonstrate the ability of our sympa-
thetic agent to perform well at its own goal, while simultaneously
giving due consideration to another agent in its environment. We
also empirically examine and report the sensitivity of our agent’s
performance to the hyperparameters introduced in our proposed
framework.
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1 INTRODUCTION
Emotions such as empathy and sympathy compel us to feel con-
cern towards others and consider the consequences of our actions
towards them. With the prevalence of artificial intelligence [16],
particularly in the domain of assistive technologies (robotic or digi-
tal assistants [6]), there is a need to incorporate agents with similar
considerations towards others they may interact with [2, 10]. In
contrast, most interactive agents are primarily trained with a focus
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on reward maximisation, with little to no awareness of the poten-
tial implications of their actions to others in the environment. This
continues to be an open problem, and we seek to address it through
a sympathy-based framework proposed in this work.

Our framework presents an approach to design agents that be-
have sympathetically towards other agents (which we refer to as
independent agents), while simultaneously completing its own tasks.
These sympathetic behaviours are achieved by modelling [7] the
goals and aversions of another agent, and taking them into account
while learning a policy.

We consider environments that consist of a learning agent (to
be trained) and an independent agent who behaves according to
its own fixed policy (similar to a human who has their own be-
haviours and values). In learning a sympathetic policy, we assume
there exists at least one suboptimal (with respect to reward max-
imisation) policy that can complete the agent’s own task whilst
helping or avoiding harm to the other. By observing transitions of
the independent agent, we estimate its value function and associ-
ated reward function through an inverse reinforcement learning
(IRL)[13] process. We subsequently train the learning agent on
a shaped sympathetic reward function, constructed as a convex
weighted sum of the inferred rewards and the learning agent’s own
rewards from the environment. Our key contribution is a sympa-
thy function which dynamically determines the convex weighting,
which can be interpreted as the degree of selfishness, the learning
agent should exhibit based on the situation. The dynamic and state-
action-dependent computation of the sympathy function allows the
learning agent to behave selfishly in some situations (e.g. protect-
ing itself from harm) and sympathetically in others (e.g. offering
assistance). Our proposed framework differs from previous works,
which use a constant degree of selfishness throughout training
[1, 3, 14]. Rather than simply considering the immediate implica-
tions (rewards) of an action, our sympathy function accounts for
the long term benefits (return) of an action to both agents, relative
to all future states (as computed using a state prediction model)
that could have resulted from alternative actions that the learning
agent could have taken.

We demonstrate the performance of our proposed framework
on two environmental settings. The first is an adversarial setting
involving agents that can potentially harm each other. In the next
setting (assistive setting), although the agents are incapable of harm-
ing each other, the environment is set up such that the independent
agent would benefit from assistance from the learning agent. We
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apply our framework in both these settings, and show that it in-
duces harm-avoiding and assistance-providing behaviours in the
learning agent without significantly affecting its performance on
its own tasks.

The contributions of this work are:

• A novel framework to train an agent to behave sympatheti-
cally towards another whilst working towards its own goals.

• A model-based sympathy function that discerns the degree
of selfishness to exhibit based on the situation.

• Empirical results demonstrating sympathetic behaviour in
both an adversarial and an assistive setting.

2 RELATED LITERATURE
There has been a growing interest in the design of agents that ex-
hibit considerate behaviour. Work by Franzmeyer et al. [5] designed
agents who are motivated to behave altruistically. The authors con-
sidered scenarios involving a lead agent and an altruistic agent,
which was trained to behave in a manner that maximised the lead
agent’s future choices (e.g., opening a door to increase the lead
agent’s accessible states). While our work also deals with learning
behaviours to account for the presence of another agent, it differs
considerably, as our learning agent is not altruistic - it has its own
goals, which it pursues while learning to behave sympathetically
towards the other agent. Inspired by the golden rule “Do unto oth-
ers as you would have them do unto you”, Bussmann et al. [3]
design an Empathetic DQN that avoids negative side effects. In
order to empathise with the independent agent, the authors impose
the value function of the learning agent on the independent agent,
examining how the learning agent would ‘feel’ if it was in the posi-
tion of the independent agent. A convex weighted sum of the value
functions of both itself and the other agent (through the imposed
value function) is used to construct an empathetic Q-value function.
A key limitation is the assumption that the other agent has the
same value function as the learning agent (implying the indepen-
dent agent has the same goals as the learning agent). In contrast,
the framework we propose in the present work is more general, as
it is free of such assumptions, and we employ IRL methods to infer
the value function of the independent agent. Due to this fact, our
framework is designed to handle a broader range of environments
where the goals of the agents differ (and at times conflict with
each other). Other papers have taken the approach of involving
humans in the process of training considerate agents. Noothigattu
et al. [14] trains an agent to act ethically via a contextual multi-arm
bandit approach. In the work the agent must select between two
pre-trained policies - a reward maximisation policy where the agent
behaves completely selfishly in the game, and a constraint policy.
The constraint policy is constructed through human demonstra-
tions of playing the game in a “socially acceptable behaviour”, the
rewards of which are extracted through IRL. A limitation of this
work is the need to involve a human to create the constraint pol-
icy, and new human demonstrations being required for each new
game. Additionally the work requires both policies to be trained
beforehand, with the algorithm focused only on learning which of
the policies to employ based on the situation. Alamdari et al. [1]
propose methods for training an agent to behave considerately of
another in both a sequential setting and a simultaneous setting. In

the sequential setting the learning agent completes a task alone
and learns to leave the environment in a layout that is beneficial
to another (independent) agent who enters after it. In the simul-
taneous setting, a learning agent coexists within the environment
with multiple independent agents, with all agents having their own
goals. The work investigates the ability of learning agents to leave
behind tools (after using them) in locations that are beneficial to
the independent agent’s tasks. To do this the authors construct a
reward function that is a weighted composite of the learning agents
rewards and the rewards of the independent agents. Knowledge of
a set of possible reward functions and their associated probability
distributions to describe the rewards of each of the independent
agents is assumed. The weighting must be specified by the user
beforehand. Our work is most similar to the simultaneous agent
environment algorithm of Alamdari et al. [1] but differs in the fact
that instead of assuming foreknowledge of possible reward distri-
butions, we employ IRL to infer the reward function based on the
independent agent’s behaviour. Additionally the authors assume
a constant and pre-specified weighting for each agent’s reward
function. Our work obviates the need for such user specifications,
and instead, learns the situation-dependent weighting online via
the sympathy function.

2.1 Problem Formulation
We formulate our problem as a Markov Decision Process (MDP)
[15] < S,A,T ,R, 𝛾 >whereS is the state space,A is a finite set of
actions,T : S×A → S is the transition functionwhich governs the
probability of reaching the next state having taken an action in the
present state, R : S ×A → R is the reward function which defines
the reward an agent receives for taking an action in the present
state, and 𝛾 ∈ (0, 1] is the discount factor. We assume the reward
function for transitioning from state 𝑠 to 𝑠 ′ can be expressed as a
linear combination of binary features 𝑓𝑠𝑠 (𝑠, 𝑠 ′) with pre-specified
weights for each feature [12].

In reinforcement learning (RL) [17], the goal of the agent is to
learn the optimal policy 𝜋∗ (𝑠) by learning a Q-function 𝑄∗

𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ

that maps states to actions in order to maximise the expected long
term rewards. However, in this work, we aim to learn a sympathetic
policy 𝜋∗𝑠𝑦𝑚𝑝 by learning a corresponding Q-function 𝑄∗

𝑠𝑦𝑚𝑝 that
considers not only the agent’s own reward function (the weights of
which are known), but also the inferred rewards of an independent
agent. The features of the independent agent’s reward function are
assumed to be the same as that of the learning agent. However, the
feature weights are inferred through IRL, with the assumption that
the independent agent acts per an arbitrary fixed policy. Specifically,
we use the Cascaded Supervised Learning Approach [8], which
is well suited to an online setting whilst also producing a value
function corresponding to the agent’s behaviour in the process.

In our work the environment is comprised of two agents, a learn-
ing agent who works towards its own goal represented by a reward
function, and an independent agent who acts as per a pre-specified
fixed policy. The objective is to train the learning agent to complete
its task whilst acting sympathetically towards the other (indepen-
dent) agent. Note that our approach is not a method for multiagent
RL as only the learning agent is trained. The state and actions of
both agents are observable to the learning agent. However, the
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learning agent can only observe its own rewards (and not the inde-
pendent agent’s rewards) while interacting with the environment.
We assume the rewards of the learning agent are specified in a
comparable range to the inferred rewards (through IRL) of the inde-
pendent agent to ensure equitable comparison between the agents
for the same event. The agents take actions sequentially, meaning
when one is taking an action, the other is stationary.

Our proposed framework is illustrated in Figure 1.

2.2 Framework
Our proposed framework consists of four main functions being
learned concurrently. The first of these is the reward function of
the independent agent inferred via IRL, as described below.

2.2.1 Inferring the reward function of the independent agent: To in-
fer the independent agent’s reward function, we use the approach
of Cascaded Supervised Learning [8] which first learns a proxy
Q-function �̂�𝑖𝑛𝑑𝑒𝑝 (𝑠, 𝑎) corresponding to the independent agent’s
policy, using observations of the independent agent’s state, action,
next-state transitions via supervised learning (SL). The second stage
applies a rearrangement of the Bellman equation to infer the reward
feature weights, expressed by the vector r̂𝑖𝑛𝑑𝑒𝑝 ∈ R𝐷 . Algorithm
2 and 5 detail this process. As per Noothigattu et al. [14] the in-
ferred reward is scaled to have an ℓ1 norm equal to that of the
learning agent’s reward weights r ∈ R𝐷 to allow them to exist on
a comparable scale as shown in Equation 1. Scaling by the ℓ1 norm
was chosen for simplicity, however more sophisticated methods of
scaling the reward [11] can be utilised.

2.2.2 Value function learning: For the learning agent, two value
functions are trained. The first of these represents the value func-
tion from behaving selfishly (focusing on only maximising its own
rewards as dictated by r, without consideration to the independent
agent). This value function 𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ is trained using the rewards 𝑅
returned to the agent through its interaction with the environment.
Due to the sequential nature of the environment, these rewards
are derived from features activated between 𝑠𝑡 and 𝑠𝑡+2, with the
transition from 𝑠𝑡 to 𝑠𝑡+1 resulting from the learning agent’s ac-
tion, and the transition from 𝑠𝑡+1 to 𝑠𝑡+2 from the independent
agent’s action. The second value function 𝑄𝑠𝑦𝑚𝑝 is a sympathetic
value function trained on a sympathetic reward 𝑅𝑠𝑦𝑚𝑝 , constructed
through a convex combination of the inferred independent agent
reward 𝑅𝑖𝑛𝑑𝑒𝑝𝑡 = r̂𝑖𝑛𝑑𝑒𝑝 · 𝑓𝑠𝑠 (𝑠𝑡 , 𝑠𝑡+2) ∈ R and the agent’s own re-
ward 𝑅𝑡 = r · 𝑓𝑠𝑠 (𝑠𝑡 , 𝑠𝑡+2) ∈ R as shown in Equation (2). The convex
weighting is determined by a sympathy function 𝛽 (𝑠𝑡 , 𝑎𝑡 ) which
uses the transition from state 𝑠𝑡 to the state immediately after the
learning agent has acted 𝑎𝑡 . Details of the sympathy function will
be described in Section 2.2.3.

𝐿 =
∥r∥1r̂𝑖𝑛𝑑𝑒𝑝1 (1)

𝛽𝑡 = 𝛽 (𝑠𝑡 , 𝑎𝑡 )

𝑅𝑠𝑦𝑚𝑝𝑡 = 𝛽𝑡𝑅𝑡 + (1 − 𝛽𝑡 )𝐿𝑅𝑖𝑛𝑑𝑒𝑝𝑡 (2)

For clarity,𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ and𝑄𝑠𝑦𝑚𝑝 are trained simultaneously using
the same state and action input but differing rewards. The learning

agent selects actions based on its sympathetic value function𝑄𝑠𝑦𝑚𝑝 .
Algorithm 3 details the training of 𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ and 𝑄𝑠𝑦𝑚𝑝 .

Figure 1: Proposed Sympathy Framework. IRL is used to
infer the value function (�̂�𝑖𝑛𝑑𝑒𝑝 ) and associated rewards
(𝑅𝑖𝑛𝑑𝑒𝑝 ) of the independent agent. For the learning agent,
a selfish value function (𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ) is trained on rewards ob-
served from the environment (𝑅) and a sympathetic value
function (𝑄𝑠𝑦𝑚𝑝 ) is trained on sympathetic rewards (𝑅𝑠𝑦𝑚𝑝 ).
𝑅𝑠𝑦𝑚𝑝 is a convex weighted sum of 𝑅 and 𝑅𝑖𝑛𝑑𝑒𝑝 . The weight-
ing is determined by the sympathy function 𝛽 (𝑠, 𝑎) which
outputs the degree of selfishness 𝛽 . 𝛽 (𝑠, 𝑎) takes as inputs the
value functions of the independent agent and selfish learn-
ing agent, and utilised a state prediction model𝑀 (𝑠, 𝑎).

2.2.3 Computing the sympathy function. The convex weighting
in Equation (2) is determined by the sympathy function which
outputs 𝛽𝑡 which defines the degree of selfishness the agent should
exhibit for the current state and action. When the learning agent
is completely selfish, 𝛽𝑡 = 1, it takes only its own rewards into
consideration, while completely sympathetic behaviours, 𝛽𝑡 = 0,
take only the independent agent’s rewards into consideration (as
per Equation (2)).

Although 𝛽𝑡 can be varied to achieve a spectrum of sympathy
levels, in order to set its value dynamically, we consider the relative
difference in the value (expected returns) of a state-action pair for
the agent and the independent agent. The intuition for setting 𝛽𝑡
based on the relative difference in values is to ensure that the agent
avoids being overly sympathetic in scenarios where a given state-
action pair is simultaneously highly beneficial for the independent
agent and very harmful for the agent (such as being eaten by a
predator). In this work, we model this relative difference in values
using Equation (3) and (4).

𝛽 (𝑠𝑡 , 𝑎𝑡 ) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑐 · 𝜌𝑡 ) (3)

𝜌𝑡 =

max
𝑎′∈A

�̂�𝑖𝑛𝑑𝑒𝑝 (𝑠𝑡+1, 𝑎′) − max
𝑎′∈A

𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ (𝑠𝑡+1, 𝑎′)

max
𝑠𝑡+1∈𝑆𝑡+1

����max
𝑎′∈A

�̂�𝑖𝑛𝑑𝑒𝑝 (𝑠𝑡+1, 𝑎′) − max
𝑎′∈A

𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ (𝑠𝑡+1, 𝑎′)
���� (4)

where 𝑐 ≥ 0 is a user specified hyperparameter. The numerator in
Equation (4) computes the difference in the optimistic estimates of
the returns from the next state 𝑠𝑡+1 (resulting from the action taken
by the learning agent) for both agents.
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Algorithm 1 Sympathy Framework
Initialise:
Sympathetic value function 𝑄𝑠𝑦𝑚𝑝 with weights 𝜃𝑠𝑦𝑚𝑝

Sympathetic target value function �̂�𝑠𝑦𝑚𝑝 with weights
𝜃𝑠𝑦𝑚𝑝 = 𝜃𝑠𝑦𝑚𝑝

Selfish value function 𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ with weights 𝜃𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ
Selfish target value function �̂�𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ with weights
𝜃𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ = 𝜃𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ

Independent agent value function �̂�𝑖𝑛𝑑𝑒𝑝 with weights 𝜃𝑖𝑛𝑑𝑒𝑝
Replay memory 𝐷𝑠𝑦𝑚𝑝 , 𝐷𝑖𝑛𝑑𝑒𝑝 and 𝐷𝑈

𝑖𝑛𝑑𝑒𝑝
to capacity 𝑁

Next state model𝑀 with weights 𝜃𝑀
Indep Agent rewards weights r̂𝑖𝑛𝑑𝑒𝑝
𝑓𝑠𝑠 - function to return reward features activated between states
𝐶 number of episodes between updates of r̂𝑖𝑛𝑑𝑒𝑝 , �̂�𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ and
�̂�𝑠𝑦𝑚𝑝

𝑇𝑠 = samples before training begins
𝑁 = number of training episodes
𝑇 = termination
Parameter: 𝑐 ≥ 0, 𝜖 ∈ (0, 1)
1: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 = 1, 2, ..., 𝑁 do
2: obtain initial full game state 𝑠1
3: for 𝑡 = 1, 3, ...,𝑇 do
4: if random probability < 𝜖 then
5: select random action 𝑎

𝑠𝑦𝑚𝑝
𝑡

6: else
7: select 𝑎𝑠𝑦𝑚𝑝

𝑡 = argmax
a

𝑄𝑠𝑦𝑚𝑝 (𝑠𝑡 , 𝑎;𝜃𝑠𝑦𝑚𝑝 )

8: end if
9: Execute action 𝑎

𝑠𝑦𝑚𝑝
𝑡

10: Observe reward 𝑅𝑡
11: Observe state 𝑠𝑡+1
12: if 𝑠𝑡−1 exists then
13: Store transitions (𝑠𝑡−1, 𝑎𝑖𝑛𝑑𝑒𝑝𝑡−1 , 𝑠𝑡+1) in 𝐷𝑖𝑛𝑑𝑒𝑝

14: Store transitions (𝑠𝑡−1, 𝑎𝑖𝑛𝑑𝑒𝑝𝑡−1 , 𝑠𝑡+1) in 𝐷𝑈
𝑖𝑛𝑑𝑒𝑝

if unseen
15: end if
16: Observe 𝑎𝑖𝑛𝑑𝑒𝑝

𝑡+1 given 𝑠𝑡+1
17: Observe reward 𝑅𝑡+1
18: Observe state 𝑠𝑡+2
19: 𝑅𝑓 𝑒𝑎𝑡 = 𝑓𝑠𝑠 (𝑠𝑡 , 𝑠𝑡+2), 𝑅 = 𝑅𝑡 + 𝑅𝑡+1
20: Store (𝑠𝑡 , 𝑎𝑠𝑦𝑚𝑝

𝑡 , 𝑅, 𝑅𝑓 𝑒𝑎𝑡 , 𝑠𝑡+1, 𝑠𝑡+2) in 𝐷𝑠𝑦𝑚𝑝

21: Update �̂�𝑖𝑛𝑑𝑒𝑝 as per Algorithm 2
22: Update 𝑄𝑠𝑦𝑚𝑝 and 𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ as per Algorithm 3
23: Update𝑀 as per Algorithm 4
24:
25: Every 𝐶 steps:
26: Update �̂�𝑠𝑦𝑚𝑝 = 𝑄𝑠𝑦𝑚𝑝 and �̂�𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ = 𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ

27: Update r̂𝑖𝑛𝑑𝑒𝑝 as per Algorithm 5
28: end for
29: end for

The denominator of Equation (4) considers the possible next
states 𝑠𝑡+1 that could have resulted as a consequence of all possible
actions the learning agent could have taken from state 𝑠𝑡 . The next
possible states 𝑠𝑡+1 are predicted using a state prediction model

Algorithm 2 Independent agent Value Function Update

Inputs: 𝐷𝑖𝑛𝑑𝑒𝑝 , �̂�𝑖𝑛𝑑𝑒𝑝

1: Sample random batch of transitions from 𝐷𝑖𝑛𝑑𝑒𝑝

2: for 𝑗 = 1, 2, ..., 𝑏𝑎𝑡𝑐ℎ do
3: Set 𝑦 𝑗 = one hot(𝑎𝑖𝑛𝑑𝑒𝑝

𝑗
)

4: Perform gradient descent with respect to 𝜃𝑖𝑛𝑑𝑒𝑝 on

5: 𝜋 (𝑎𝑖𝑛𝑑𝑒𝑝
𝑗

|𝑠 𝑗 ) = 𝑒

ˆ
𝑄𝑖𝑛𝑑𝑒𝑝 (𝑠𝑗 ,𝑎

𝑖𝑛𝑑𝑒𝑝
𝑗

;𝜃𝑖𝑛𝑑𝑒𝑝 )∑
𝑎 𝑒

ˆ𝑄𝑖𝑛𝑑𝑒𝑝 (𝑠𝑗 ,𝑎;𝜃𝑖𝑛𝑑𝑒𝑝 )

6: 1
𝑛

∑ (
𝑦 𝑗 − 𝜋 (𝑎𝑖𝑛𝑑𝑒𝑝

𝑗
|𝑠 𝑗 )

)
7: end for

Algorithm 3 Learning Agent Value Function Update

Inputs: 𝐷𝑠𝑦𝑚𝑝 , 𝑄𝑠𝑦𝑚𝑝 , 𝑄𝑠𝑦𝑚𝑝 , �̂�𝑖𝑛𝑑𝑒𝑝 , r̂𝑖𝑛𝑑𝑒𝑝
1: Sample random batch of transitions from 𝐷𝑠𝑦𝑚𝑝

2: for 𝑗 = 1, 2, ..., 𝑏𝑎𝑡𝑐ℎ do
3: Determine selfishness 𝛽 𝑗 from Equation (3)
4: Determine 𝑅𝑠𝑦𝑚𝑝 𝑗

from Equation (2), where 𝑅𝑖𝑛𝑑𝑒𝑝 =

r̂𝑖𝑛𝑑𝑒𝑝 · 𝑅𝑓 𝑒𝑎𝑡 𝑗
5: Set 𝑦𝑠𝑦𝑚𝑝 𝑗

= 𝑅𝑠𝑦𝑚𝑝 𝑗
+ 𝛾max

a′
�̂�𝑠𝑦𝑚𝑝 (𝑠 𝑗+1, 𝑎′;𝜃𝑠𝑦𝑚𝑝 ))

6: Set 𝑦 𝑗 = 𝑅 𝑗 + 𝛾max
a′

�̂�𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ (𝑠 𝑗+1, 𝑎′;𝜃𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ))
7: Perform gradient descent with respect to 𝜃𝑠𝑦𝑚𝑝 on
8: (𝑦𝑠𝑦𝑚𝑝 𝑗

−𝑄𝑠𝑦𝑚𝑝 (𝑠 𝑗 , 𝑎𝑠𝑦𝑚𝑝

𝑗
;𝜃𝑠𝑦𝑚𝑝 ))2

9: Perform gradient descent with respect to 𝜃𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ on
10: (𝑦 𝑗 −𝑄𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ (𝑠 𝑗 , 𝑎

𝑠𝑦𝑚𝑝

𝑗
;𝜃𝑠𝑒𝑙 𝑓 𝑖𝑠ℎ))2

11: end for

Algorithm 4 Updating state prediction model
Inputs: 𝐷𝑠𝑦𝑚𝑝 ,𝑀
1: Sample random batch of transitions from 𝐷𝑠𝑦𝑚𝑝

2: for 𝑗 = 1, 2, ..., 𝑏𝑎𝑡𝑐ℎ do
3: 𝑦 𝑗 = 𝑠 𝑗+1
4: Perform gradient descent with respect to 𝜃𝑀 on
5: 1

𝑛

∑ (
𝑦 𝑗 −𝑀 (𝑠 𝑗 , 𝑎𝑠𝑦𝑚𝑝

𝑗
;𝜃𝑀 )

)2
6: end for

Algorithm 5 Updating Independent Agent Rewards

Inputs: 𝐷𝑈
𝑖𝑛𝑑𝑒𝑝

, �̂�𝑖𝑛𝑑𝑒𝑝 , r̂𝑖𝑛𝑑𝑒𝑝
1: Sample random batch of transitions from 𝐷𝑈

𝑖𝑛𝑑𝑒𝑝

2: for 𝑗 = 1, 2, ..., 𝑏𝑎𝑡𝑐ℎ do
3: 𝑅𝑓 𝑒𝑎𝑡 𝑗 = 𝑓𝑠𝑠 (𝑠 𝑗 , 𝑠 𝑗+2)
4: 𝑦 𝑗 = �̂�𝑖𝑛𝑑𝑒𝑝 (𝑠 𝑗 , 𝑎

𝑖𝑛𝑑𝑒𝑝

𝑗
) − 𝛾max

a′
�̂�𝑖𝑛𝑑𝑒𝑝 (𝑠 𝑗+2, 𝑎′)

5: Perform gradient descent with respect to r̂𝑖𝑛𝑑𝑒𝑝 on

6:
(
𝑦 𝑗 − r̂𝑖𝑛𝑑𝑒𝑝 · 𝑅𝑓 𝑒𝑎𝑡 𝑗

)2
7: end for

𝑀 (𝑠𝑡 , 𝑎), which is trained in parallel, more details discussed in 2.2.4.
In addition, the denominator plays a normalising role in scaling
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𝜌 to the range [−1, 1] (assuming a well trained𝑀 (𝑠𝑡 , 𝑎)). 𝛽 (𝑠𝑡 , 𝑎𝑡 )
conveys a measure of the degree to which the action that was
actually taken by the learning agent compares to all other actions it
could have taken from the state 𝑠𝑡 . Intuitively, Equation (4) captures
the “goodness” of an action for the independent agent compared
to the learning agent. If 𝜌 is a large positive number (indicating
that the next state for the independent agent is much better than
for the learning agent), then 𝛽𝑡 tends towards 1 (encouraging the
learning agent to bemore selfish). Conversely, if 𝜌 is a large negative
(indicating a situation that is significantlyworse for the independent
agent than for the learning agent) 𝛽𝑡 is closer to 0 (encouraging the
learning agent to behave sympathetically). If the outcomes are is
equivalent for both agents, 𝛽𝑡 = 0.5 and the rewards of both agents
are equally weighted. This normalised “goodness” 𝜌 is scaled by 𝑐
and fed into a sigmoid function to ensure the value of 𝛽𝑡 ranges
between 0 and 1. Additionally the function is centred, such that
when the input is 0 (neutral sympathy), their rewards are weighted
equally with 𝛽𝑡 = 0.5. 𝑐 is set such that volatile switching in 𝛽𝑡
values for small changes in 𝜌 are avoided. More details in Section
3.4.

2.2.4 State prediction model learning. As described in Section 2.2.3,
computing the sympathy function requires a state prediction model
𝑀 (𝑠, 𝑎). This model takes in as input, the current state 𝑠𝑡 , and for
each action possible from 𝑠𝑡 , predicts the next state 𝑠𝑡+1 ∈ 𝑆𝑡+1
where 𝑆𝑡+1 is the set of all possible future states from 𝑠𝑡 and taking
available actions. This model is trained in a supervised manner
using the state-action-next state (𝑠, 𝑎, 𝑠 ′) transitions of the learning
agent, behaving as per 𝑄𝑠𝑦𝑚𝑝 . Details of the model training is
described in Algorithm 4. Although it may not always be possible to
build an accurate model of the environments, we show in Appendix
A that our approach is robust to certain levels of model errors.

Details of the full framework is described in Algorithm 1.

3 EXPERIMENTS
In this work, we consider environments where a learning agent
cohabits with the independent agent, which is assumed to be fol-
lowing a fixed policy (e.g. a robot learning to share the environment
with a human). We consider two environment settings: an adver-
sarial setting, where both agents can harm each other (and the
learning agent is rewarded for doing so), and an assistive setting,
where the independent agent benefits from being helped by the
learning agent 1. Both environments are set up such that the agent
can only observe its immediate surroundings (controlled through a
field of vision around the agent), and auxiliary information such
as the position of the agent is shared with both agents. In both
settings, we evaluate our approach against (a) fully selfish agents,
(b) fully altruistic agents, and (c) the case where 𝛽𝑡 is set to con-
stant intermediate weightings, as per Alamdari et al. [1]. We now
describe each environment setting in greater detail.

3.1 Adversarial Setting
The adversarial setting was realised through the Pacman environ-
ment (adapted from The Pacman project2). As in Figure 2(a)-(c)

1Experimental code and supplementarymaterials found at https://tinyurl.com/4cj76pbs
2http://ai.berkeley.edu/project_overview.html

(showing three game sizes), the game consists of two agents, Pac-
man (learning agent) and a single ghost (independent agent). The
ghost behaves according to a fixed policy that actively aims to kill
Pacman with a probability of 0.8, and with a probability of 0.2, it
takes random actions. The goal of the learning agent (Pacman) is to
consume all of the pellets (+10 reward each) in order to win (+100),
while avoiding being killed (when their positions coincide) by the
independent agent, for which it receives a negative reward of −500.

Power pellets, when consumed by the learning agent, temporar-
ily allow it to harm the independent agent, awarding the learning
agent positive rewards (+50), and resetting the independent agent
to its starting point.A time penalty (−1) applies for each step taken
in the absence of other rewards.

The reward features for this game are: consuming a pellet (Pel-
let), harming the ghost (Harm), being killed by the ghost (Killed),
winning the game (Win), and taking a step (Step). When trained
using a standard reward maximising algorithm such as DQN [9],
the learning agent has an incentive to consume the power pellets
and harm the independent agent while attempting to consume all
the pellets. For the learning agent, an episode terminates when all
pellets are consumed, or if it is killed by the independent agent. For
each game size in Figure 2(a)-(c), the field of vision (representing
part of the agent’s state) is of size 7 × 7, centred around the agent.
Additional state information includes the position of both agents
as well as whether the power pellet is active.

3.1.1 Results. Trained with 𝑐 = 1, Figure 3(a) - (c) show the sympa-
thetic Pacman achieving high win rates, while reducing the number
of times the Ghost/independent agent is harmed in the process,
shown in Figure 3(d)-(f). Interestingly the sympathetic framework
has resulted in win rates and rewards that are higher than that
obtained by ‘selfish’ Pacman. We speculate this is likely due to the
simpler policy required when behaving sympathetically (i.e. learn-
ing to avoid crossing paths with the ghost regardless of whether
the power pellet is active). When comparing against the various
constant 𝛽𝑡 values, the results show that not all values of 𝛽𝑡 pro-
duced both high win rates and low harm to the ghost. Though there
are certain values of 𝛽𝑡 that produce the desired results, setting the
correct value before beginning experimentation can be difficult. In
our work, we alleviate the need to pre-specify a constant value of 𝛽𝑡 ,
and instead, allow the 𝛽𝑡 value to adapt dynamically depending on
the situation (state-dependent sympathy). Although the behaviour
of our agent depends on the hyperparameter 𝑐 , it is relatively easier
to set a reasonable value for 𝑐 , as discussed later in Section 3.4.

3.2 Assistive Setting
The second environment setting, we adapt from the MARLMinigrid
environment [4] and shown in Figures 2(d)-(e), is one in which the
the independent agent (yellow arrow) requires assistance from the
learning agent (red arrow) to achieve its goal (but not vice versa). In
this game, each agent is tasked with consuming their corresponding
coloured pellets. Similar to the adversarial setting, the independent
agent acts according to an 𝜖-greedy policy (where 𝜖 = 0.2). The
learning agent receives a reward for each red pellet consumed
(+10), a penalty for each move (−1) and reward for collecting all
the pellets (ending the game) (+5). A closed door is located in the
space which only the learning agent can open. However, it incurs a
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(a) Tiny (b) Small Classic (c) Medium Classic (d) Gridworld 1 (e) Gridworld 2

Figure 2: Adversarial Environments (a) - (c): Goal in each game is for Pacman (learning agent) to consume all the small white
pellets. A Ghost (independent agent) exists within the environment and behaves according to a fixed 𝜖-greedy policy where by
it chases after Pacman to kill him. Within the environment are power pellets (large dots) which, when consumed by Pacman,
endow him with the ability to harm the Ghost. In small classic and medium classic environments, two power pellets exist,
allowing Pacman two opportunities to harm the Ghost. Assistive environment (d) - (e): Goal of learning agent (red triangle)
and independent agent (yellow triangle) is to collect their corresponding coloured pellets. Closed door can only be opened by
learning agent (and inflicts a negative reward). Gridworld 1: Independent agent requires learning agent to open door to access
room and pellets. Gridworld 2: Independent agent requires learning agent to open door to access one of its pellets.

(a) Tiny: Win Rate (b) Small: Win Rate (c) Medium: Win Rate

(d) Tiny: Times Ghost is harmed (e) Small: Times Ghost is harmed (f) Medium: Times Ghost is harmed

Figure 3: Results of Pacman environments. Comparison between Sympathetic Agent, Selfish Agent and various constant 𝛽𝑡
values.

negative reward (−1) for doing so. Once opened, the door remains
open, but no further negative penalty applies to the learning agent.
Episodes terminate when the learning agent has consumed all of
its pellets, or when the time limit of 1000 moves (between both
agents) is reached. The reward features for the games are: the
independent agent consuming a pellet (Indep Pellet), the learning
agent consuming a pellet (Learn Pellet), the door being opened (or
open status in Gridworld 2) (Door), the independent agent winning
the game (Win), and taking a step (Step). The field of vision around
each agent is of size 5 × 5, with additional state information being
the position of both agents and whether the door is open/closed.

We test our framework on two layouts, shown in Figure 2(d) and
(e). In the first (Gridworld 1), the independent agent is locked behind
the door and cannot access pellets unless the learning agent opens
the door. When opened, the reward function feature for the door
opening is only activated for the initial opening of the door. In the
second environment (Gridworld 2), one of the independent agent’s
pellets is behind the door and requires assistance from the learning
agent to reach it. In this environment the reward feature for the
open door remains active as long as the door is open. Gridworld
1 is designed to demonstrate a situation where the benefit from
the learning agent opening the door is realised immediately with
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Table 1: Scaled reward weights inferred via IRL

Gridworld Pacman
1 2 Tiny Small

Indep Pellet 1.2±0.4 3.2±0.7 Pellet -29±14 -17±20
Learn Pellet -1.7±0.5 -3.3±0.8 Win -14±18 -17±21

Door 10.8±1.3 -2.3±0.9 Harm -290±29 -150±38
Win -0.02±0.6 0.2±1.0 Kill 28±10 75±14
Step -1.9±0.6 -4.2±0.8 Step -257±26 -224±28

a high positive reward associated with opening the door. This is
observed in the IRL results in Table 1, where the Door feature
is associated with high reward values. Gridworld 2 highlights a
situation where the benefit of opening the door may not be realised
immediately (as the independent agent may be located anywhere
in the environment when the door is opened). This is reflected in
Table 1, showing a negative reward for actually opening the door,
but a positive reward for the independent agent consuming a pellet.

3.2.1 Results. Figure 4 illustrates the results of experimentation
on the Assistive environments. In both environments, if trained
to merely maximise rewards (𝛽 = 1), the learning agent has no
incentive to assist the independent agent, as indicated by the self-
ish baseline performance curves. In Gridworld 1, the sympathetic
framework results in an agent who not only completes its task
(and consumes all its own pellets), but also opens the door for the
independent agent (Figure 4(b)-(c)). In Gridworld 2, compared to
Gridworld 1, a similar win rate is seen, but the door opens a little
less frequently (Figure 4(e)-(f)). We attribute this difference to the
delay in observing a positive benefit gained by the independent
agent from the door being opened in Gridworld 2 compared to
Gridworld 1. When comparing performance of constant 𝛽 values,
although some resulted in the door being opened more frequently,
this also lead to behaviours associated with lower win rates.

3.3 Sympathy Function Values
It is of interest to examine the final learned values of selfishness 𝛽𝑡
for various events within the games. Table 2 shows the converged 𝛽𝑡
values (calculated as an average of the last 100 episodes of training)
for various events of significance. In the Pacman environment, both
sympathetic and selfish behaviours may be desirable, depending
on the situation. Examining the values for 𝑐 = 1 in the ‘Tiny’
Pacman environment, for actions that lead to Pacman harming the
ghost (harm column), a relatively low value of 𝛽𝑡 = 0.27 is learned,
indicating more importance placed on the Ghost’s inferred rewards
(as opposed to Pacman’s own rewards) for that action. In contrast,
a relatively high value of 𝛽𝑡 = 0.86 is learned for an action that
leads to Pacman being killed (Killed column) (more weight placed
on Pacman’s own reward).

The Assistive Gridworld environments require less drastic dif-
ferences in the 𝛽𝑡 values based on the situation (as there are no
scenarios in which the learning agent is harmed), and this is re-
flected in the differences in 𝛽𝑡 values for opening the door, the
independent agent consuming a pellet, and the independent agent
completing the game shown in Table 2. In the Gridworlds, the 𝛽𝑡 for

opening the door and consuming pellets is relatively low (less than
the 0.5 neutral value) and decreases further as 𝑐 increases, thereby
weighting the independent agent’s rewards more heavily than the
learning agent’s rewards. For the event of winning, the 𝛽𝑡 value
remains roughly consistent (Gridworld 1) or increases (Gridworld
2), placing higher weighting on the reward of the learning agent.

To understand the resulting behaviour due to the changing 𝛽𝑡 ,
it is important to also take into consideration the reward values
themselves (for both the learning agent and the inferred rewards of
the independent agent). In Gridworld 1, the inferred rewards of the
independent agent (r̂𝑖𝑛𝑑𝑒𝑝 ) associated with opening the door is a
strong positive (shown in Table 1), which together with the low 𝛽𝑡
value (Table 2), leads to door opening behaviours observed in Figure
4(b). In Gridworld 2, the door is also opened, but this is driven by
the positive reward associated with the consumption of pellets by
the independent agent. In Gridworld 2 however, the IRL associates
a negative reward for the learning agent consuming pellets, which,
together with the smaller 𝛽𝑡 observed with increasing 𝑐 (Table 2),
lead to lower win rates. As such it is clear that the sympathetic
behaviour induced is dependent not just on the reward values, but
the intensity of the 𝑐 hyperparameter (and subsequent 𝛽𝑡 values).

(a) Pacman (Tiny) 𝑐 values (b) Pacman (Small) 𝑐 values

Figure 5: Impact of varying the 𝑐 hyperparameter on ad-
versarial Tiny and Small classic games. Average (last 100
episodes) win rate and times ghost is harmed

3.4 𝑐 hyperparameter
We report the effect of the 𝑐 hyperparameter on the performance
of our sympathetic agent. This behaviour was discussed in the
previous section, and is illustrated in Figure 5 for the Pacman envi-
ronments, and Figure 4(c) and (f) for the Gridworld environments.
In Pacman, altering 𝑐 had little impact on the sympathetic behaviour
(except at the minimum value of 𝑐 = 0). For the Gridworld environ-
ments however, higher values of 𝑐 lead to increased opening of the
door, but reduced the win rate.

The 𝑐 hyperparameter governs the reactiveness and sensitivity of
the agent to inequalities in the long term returns between the two
agents. For low 𝑐 values, the agent is less sensitive to differences in
long term returns between the agents. With 𝑐 set to 0, the agent’s
behaviour can be described as emotionally neutral, applying a con-
stant and equal weighting to the reward functions of both agents
regardless of the situation. As c increases (forcing 𝛽 (𝑠, 𝑎) to tend
towards a step function), the agent becomes more volatile, reacting
to minute differences in 𝜌 in Equation 4 with extreme values (0 or
1) of 𝛽𝑡 . As a rule-of-thumb, we found setting 𝑐 = 1 provides an
effective balance for the environments considered in this work.
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(a) Gridworld 1: Win Rate (b) Gridworld 1: Times door was opened (c) Gridworld 1: Varying 𝑐

(d) Gridworld 2: Win Rate (e) Gridworld 2: Times door was opened (f) Gridworld 2: Varying 𝑐

Figure 4: Results of Gridworlds: Comparison between Sympathetic Agent, Selfish agent and various constant 𝛽𝑡 values. (c) and
(f) win rate and door open rate as 𝑐 is varied, averaged over the last 100 episodes.

Despite a drop inwin rate for values of 𝑐 that significantly deviate
from our recommendation (𝑐 = 1), we contend that our approach
achieves state and action dependent sympathetic behaviours, un-
like other approaches [1] that rely on a user-specified, constant
sympathy parameter. In addition, different values of 𝑐 only serve
to either amplify or reduce the agent’s sensitivity to the inferred
IRL rewards. In this sense, 𝑐 allows the user to tune the volatility of
the agent’s behaviour for the same inferred rewards, which is not
possible in other approaches that directly tune the sympathy value.

4 CONCLUSION
In this work, we presented a novel framework for training a re-
inforcement learning agent to behave sympathetically towards
another agent in its environment. This sympathetic behaviour was
achieved via a sympathetic reward function expressed as a convex
combination of the learning agent’s reward and the inferred reward
of the other agent, which we learned through inverse reinforcement
learning. We showed that the corresponding convex weight (the
sympathy function) can be computed online on the basis of the
difference in the estimated long term rewards of an action for both

agents, relative to all other actions that could have been taken. We
validated our proposed framework on the adversarial Pacman envi-
ronment, as well as on assistive Gridworld environments which we
introduced. In both environment settings, we empirically demon-
strated the ability of our learning agent to behave considerately,
while simultaneously pursuing its own goals. We discussed the
properties of our framework and described the influence of the
introduced hyperparameter through appropriate studies.

We believe our proposed framework could serve as a platform
for conducting research into other related directions for incorpo-
rating sympathetic behaviours. Our presented framework assumes
a discrete action space and shared reward feature space between
agents. Hence, extending our approach to continuous action spaces,
and heterogeneous feature spaces could enhance its practical fea-
sibility. In addition, our framework currently considers only one
independent agent. In the future, we seek to extend the framework
to accommodate multiple independent agents, each with their own
unique (and possibly conflicting) goals. Investigating model-free
alternatives to the sympathy function used in our framework could
also be a future line of research worth exploring.

Table 2: Learned 𝛽𝑡 values for key events in Tiny Pacman and Gridworld environments.

Gridworld 1 Gridworld 2 Pacman (Tiny)
c Door Pellet Win Door Pellet Win Harm Killed

0.5 0.39±0.001 0.4±0.001 0.55±0.01 0.56±0.01 0.41±0.001 0.58±0.01 0.37±0.05 0.72±0.04
1 0.29±0.001 0.32±0.001 0.54±0.01 0.57±0.02 0.32±0.001 0.66±0.02 0.27±0.07 0.86±0.02
3 0.09±0.001 0.1±0.001 0.57±0.01 0.11±0.01 0.08±0.01 0.63±0.02 0.06±0.05 0.98±0.05
5 0.02±0.001 0.04±0.001 0.56±0.01 0.01±0.001 0.01±0.001 0.71±0.03 0.05±0.05 0.99±0.05
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