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ABSTRACT

We initiate the study of the social welfare loss caused by corrupt auc-
tioneers, both in single-item and multi-unit auctions. In our model,
the auctioneer may collude with the winning bidders by letting
them lower their bids in exchange for a (possibly bidder-dependent)
fraction 𝛾 of the surplus. We consider different corruption schemes.
In the most basic one, all winning bidders lower their bid to the
highest losing bid. We show that this setting is equivalent to a
𝛾-hybrid auction in which the payments are a convex combination
of first-price and the second-price payments. More generally, we
consider corruption schemes that can be related to 𝛾-approximate

first-price auctions (𝛾-FPA), where the payments recover at least
a 𝛾-fraction of the first-price payments. Our goal is to obtain a
precise understanding of the robust price of anarchy (POA) of such
auctions. If no restrictions are imposed on the bids, we prove a
bound on the robust POA of 𝛾-FPA which is tight (over the entire
range of 𝛾 ) for the single-item and the multi-unit auction setting.
On the other hand, if the bids satisfy the no-overbidding assump-
tion a more fine-grained landscape of the price of anarchy emerges,
depending on the auction setting and the equilibrium notion. Albeit
being more challenging, we derive (almost) tight bounds for both
auction settings and several equilibrium notions, basically leaving
open some (small) gaps for the coarse-correlated price of anarchy
only.
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1 INTRODUCTION

Motivation and Background. We consider auction settings where
a seller wants to sell some items and for this purpose recruits an
auctioneer to organize an auction on their behalf.1 Such settings
are widely prevalent in practice as they emerge naturally whenever
the seller lacks the expertise (or facilities, time, etc.) to host the
auction themselves. For example, individual sellers usually involve
1Throughout this paper, we use “they” as the gender-neutral form for third-person
singular pronouns.
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dedicated auctioneers or auction houses when they want to sell
particular objects (such as real estate, cars, artwork, etc.). In pri-
vate companies, the responsible finance officers are typically in
charge of handling the procurement auctions. Similarly, govern-
ment procurement is usually executed by some entity that acts on
behalf of the government. The dilemma in such settings is that
the incentives of the seller and the auctioneer are rather diverse
in general: while the seller is interested in extracting the highest
payments for the objects (or getting service at the lowest cost),
the agent primarily cares about maximizing their own gains from
hosting the auction. Although undesirably, this misalignment leads
(unavoidably) to fraudulent schemes which might be used by the
auctioneer to manipulate the auction to their own benefit.

Corruption in auctions, where an auctioneer engages in bid rig-
ging with one (or several) of the bidders, occurs rather frequently
in practice, especially in the public sector (e.g., in construction and
procurement auctions). For example, in 1999 the procurement auc-
tion for the construction of the new Berlin Brandenburg airport had
to be rerun after investigations revealed that the initial winner was
able to change the bid after they had illegally acquired information
about the application of one of their main competitors (see [20]). As
another example, in 1993 the New York City School Construction
Authority caused a scandal when investigation revealed that they
used a simple (but effective) bid-rigging scheme in a procurement
auction setting (see [15]):

“In what one investigator described as a nervy scheme,

that worker would unseal envelopes at a public bid open-

ing, saving for last the bid submitted by the contractor

who had paid him off. At that point, knowing the pre-

vious bids, the authority worker would misstate the

contractor’s bid, insuring that it was low enough to se-

cure the contract but as close as possible to the next

highest bid so that the contractor would get the largest

possible price.”

This kind of bid rigging, where the winning bid “magically”
aligns with the highest losing bid, is also known as magic number

cheating (see [8]). We refer the reader to [10, 14] (and the refer-
ences therein) for several other bid rigging examples. Despite the
fact that this form of corruption occurs frequently in practice, its
negative impact is still poorly understood theoretically and only a
few studies exist (mostly in the economics literature, see the related
work section).

Our goal is to initiate the study of the social welfare loss caused
by corrupt auctioneers in fundamental auction settings.We focus on
a basic model that captures the magic number cheating mentioned
above and generalizations thereof. Clearly, more sophisticated bid
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Figure 1: Overview of our upper bounds on the POA (𝑦-axis) for 𝛾-FPA and 𝛾-HYA, respectively, as a function of 𝛾 (𝑥-axis). (a) CCE-POA
for multi-unit 𝛾-FPA with overbidding (Theorem 4). (b) CCE-POA for multi-unit 𝛾-FPA without overbidding (Theorems 4 & 5). (c) CCE-POA
for single-item 𝛾-HYA without overbidding (Theorems 4, 5 & 7). (d) CCE-POA for single-item 𝛾-HYA without overbidding and 𝑛 = 2 bidders
(Theorems 7, 8 & 9).

rigging models are conceivable and we hope that our work will
trigger some future work along these lines.

Capturing Corruption with Hybrid Auctions. Consider the single-
item auction setting and suppose the auctioneer runs a sealed
bid first-price auction. After receipt of all bids, the auctioneer ap-
proaches the highest bidder with the offer that they can lower their
bid to the second highest bid in exchange for a bribe. If the highest
bidder agrees, they win the auction and pay the second-highest bid
for the items plus the corresponding bribe to the auctioneer. If the
highest bidder disagrees, they still win the auction but pay their
bid for the item according to the first-price auction format. We as-
sume that the bribe to be paid to the auctioneer is a pre-determined
fraction 𝛾 ∈ [0, 1] of the savings of the highest bidder, i.e., the
auctioneer’s bribe amounts to 𝛾 times the difference between the
highest and second highest bid. In case of the multi-unit auction
setting, the procedure described above is adapted accordingly by of-
fering the winning bidders to lower their bids to the highest losing
bid.

Observe that the payment scheme described above essentially
reduces to the winning bidders paying a convex combination of 𝛾
times their bids and (1 −𝛾) times the highest losing bid. As we will
argue below, this setting is tantamount to studying a hybrid auction
(𝛾-HYA), where the items are assigned to the highest bidders (ac-
cording to the respective single-item or multi-unit auction scheme)
and the payments are a convex combination of the first-price and
the second-price payments. By varying the parameter 𝛾 ∈ [0, 1],

𝛾-HYA thus interpolates between the respective second-price auc-
tion (𝛾 = 0) and the first-price auction (𝛾 = 1) schemes.

More elaborate corruption schemes are of course conceivable.
For example, the auctioneer might ask for a fixed amount rather
than a fraction of the gains. Or, to avoid setting all bids to the
magic number, the auctioneer may want to announce different
(bribed) bids for every winning bidder. To capture more general
corruption schemes, we also study what we term 𝛾-approximate

first-price auctions (𝛾-FPA) in this paper. Basically, these auctions
implement a payment scheme that recovers at least a fraction of
𝛾 ∈ [0, 1] of the first-price payment rule (formalized below). The
𝛾-HYA also belongs to this class. Not only does this capture more
elaborate bribing schemes, it also handles the situation where some
bidders have moral objections against partaking in such a scheme
and do not accept the bribe. Additionally, this also enables us to
capture corruption schemes with heterogeneous bidders, i.e., where
the auctioneer handles a different 𝛾𝑖 for each bidder 𝑖 .

In our view, the corruption settings described above serve as
suitable motivations to analyze the resulting auctions 𝛾-HYA and
𝛾-FPA. But, at the same time, we feel that the study of such hybrid

auction formats is interesting in its own right, purely from an
auction design perspective. For example, tight bounds on the price
of anarchy (as a function of 𝛾 ) provide insights on which payment
rule should ideally be used to reduce the inefficiency.

Main Track AAMAS 2022, May 9–13, 2022, Online

1284



Our Contributions. We study the inefficiency of equilibria of
𝛾-FPA and 𝛾-HYA, both in the single-item and the multi-unit auc-
tion setting. More specifically, our goal is to obtain a precise un-
derstanding of the (robust) price of anarchy (POA) [9, 16, 19]. We
opt for the price of anarchy notion here because it is one of the
most appealing and widely accepted measures to assess the ef-
ficiency of equilibria, especially in the context of social welfare
analysis. We focus on the analysis of the robust price of anarchy
under the complete information setting, incorporating equilibrium
notions ranging from pure Nash equilibria (PNE) to coarse corre-
lated equilibria (CCE).2 Moreover, we analyze the price of anarchy
distinguishing between the case when bidders can overbid and
when they cannot overbid their actual valuations for the items.

The main results that we obtain in this paper are summarized
below (see Figure 1 for an overview). Without any restrictions on
the bids, we obtain the following result:

(1) We prove an upper bound of (1/𝛾) · 𝑒1/𝛾/(𝑒1/𝛾 − 1) on the
coarse correlated POA (CCE-POA) of any𝛾-FPA in the multi-
unit auction settingwhen bidders can overbid; see Figure 1(a).
Our upper bound follows from a suitable adaptation of the
smoothness technique formulti-unit auctions [3, 19]. Further,
by means of a single-item𝛾-HYA, we prove a matching lower
bound over the entire range 𝛾 ∈ [0, 1]. As a result, our bound
settles the CCE-POA of 𝛾-FPA exactly for both the single-
item and multi-unit auction setting over the entire range of
𝛾 ∈ [0, 1].

A standard assumption that often needs to be made to derive
meaningful bounds on the POA is that the bidders cannot overbid
(see also related work section). Under the no-overbidding assump-
tion, a more fine-grained landscape of the price of anarchy emerges:

(2) We show that the pure POA (PNE-POA) of 𝛾-HYA in the
multi-unit auction setting is 1 for 𝛾 ∈ (0, 1). This result is
complemented by PNE-POA = 2.1885 for 𝛾 = 0 [1] and
PNE-POA = 1 for 𝛾 = 1 [3]. Note that this reveals an inter-
esting transition at 𝛾 = 0.

(3) We prove that the CCE-POA of any 𝛾-FPA in the multi-unit
auction setting is upper bounded by

−(1 − 𝛾)𝒲−1

(
− 1
𝑒 (2−𝛾 )/(1−𝛾 )

)
,

for 𝛾 ⪅ 0.607 where 𝒲 is the Lambert-𝒲 function. Com-
bined with our upper bound (first contribution above) for
𝛾 > 0.607 (i.e. with overbidding), we obtain the combined
bound depicted in Figure 1(b).

(4) We prove that the correlated POA (CE-POA) of 𝛾-HYA in
the single-item auction setting is 1 for every 𝛾 ∈ (0, 1). This
result together with CE-POA = 1 for 𝛾 = 1 [5] and our next
result, shows that CE-POA = 1 for the entire range𝛾 ∈ [0, 1].

(5) We show that the CCE-POA of 𝛾-HYA in the single-item
auction setting with 𝑛 bidders is bounded as indicated in
Figure 1(c). Concretely, we prove an upper bound of 1/(1−𝛾)
and combine it with the multi-unit bounds from Figure 1(b).

(6) We show that the CCE-POA of 𝛾-HYA in the single-item
auction setting with 𝑛 = 2 bidders is bounded as indicated

2Several bounds are based on an adapted smoothness approach and extend to the
incomplete information setting; see the extensions section below for more details.

in Figure 1(d). This bound is derived by combining three
different upper bounds, one of which the 1/(1 − 𝛾) bound
from Figure 1(c). Technically, this is themost challenging part
of the paper as we use the cumulative distribution functions
(CDF) of equilibrium bids directly to derive these bounds.

Implications. Altogether, our bounds provide a rather complete
picture of the POA of 𝛾-FPA and, in particular, 𝛾-HYA, for different
equilibrium notions both in the single-item and the multi-unit
auction setting and with and without overbidding. If the bidders
can overbid then our (tight) bound on the CCE-POA (Figure 1(a))
shows that the POA increases from a small constant 𝑒/(𝑒 − 1) to
infinity as 𝛾 decreases from 1 to 0. Intuitively this makes sense: As 𝛾
decreases from 1 to 0, the auctioneer witholds a smaller fraction of
the surplus which incentivizes the bidders to exploit the corruption.

Our bounds reveal that there is a substantial difference in the
POA depending on whether or not bidders can overbid; e.g., com-
pare the bounds depicted in (a) and (b) (multi-unit setting), or (a)
and (c) (single-item setting) in Figure 1. In general, it is not well-
understood how the no-overbidding assumption influences the POA
of auctions; this question also relates to the price of undominated

anarchy studied by Feldman et al. [5] (see related work below). Our
bounds shed some light on this question for 𝛾-FPA.

Technical Merits. Our upper bounds for 𝛾-FPA are based on an
adapted smoothness notion which relates directly to the highest
marginal winning bids (i.e., first-price payments). In particular, our
smoothness argument does not exploit the second-price payments
of 𝛾-HYA at all. As it turns out, this allows us to derive tight bounds
for𝛾-HYA and, more generally, for𝛾-FPAwhen bidders can overbid.
On a high level, our results thus reveal that the (approximate) first-
price payments are the determining component of such composed
payment schemes. This triggers some interesting questions for
future research.

In contrast, when overbidding is not allowed it becomes crucial
to exploit the second-price payments of 𝛾-HYA to obtain improved
bounds. The price of anarchy of both the first-price auction and
the second-price auctions is well understood in the single-item
setting. However, it is not straightforward to extend these bounds
to the combined payment scheme of 𝛾-HYA. In fact, to prove our
bounds in Theorem 8 and Theorem 9, we exploit constraints on
the CDF of the first-price payments which are imposed by the CCE
conditions; but, additionally, we have to get a grip on the CDF of
the second-price payments. We need several new insights (and a
somewhat involved numerical analysis) to derive these bounds.

Extensions. Although we focus on the complete information set-
ting in this paper, most of our bounds can be lifted to the incomplete
information setting as introduced by Harsanyi [7], where players
have private valuation functions drawn from a common prior. More
specifically, all bounds displayed in Figure 1(a–c) remain valid for
Bayes-Nash equilibria as well. We defer further details to the full
version of the paper.

Related Work. There is a large body of research in economics
studying collusion among bidders in auctions (see, e.g., [6, 13] for
some standard references). Collusion between the auctioneer and
the bidders in the form of bid rigging (as considered in this paper)
has also been studied in the literature, but less intensively. Most
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existing works study certain aspects of equilibrium outcomes (e.g.,
equilibrium structure, auctioneer surplus, seller revenue, optimal
bribe schemes, etc.); for an overview of the existing works along
these lines, see [10, 11, 14] and the references therein.

The specific bid rigging model that we consider here was first
studied by Menezes and Monteiro [14] and a slight generalization
thereof by Lengwiler and Wolfstetter [11], both for the single-item
auction setting. These works consider a Bayesian setting where
the valuations are independent draws from a common distribution
function. Menezes and Monteiro [14] prove the existence of sym-
metric equilibrium bidding strategies and derive an optimal bribe
function for the auctioneer. The authors also study a fixed-price

bribe scheme, where the auctioneer charges a fixed amount that is
independent of the gained surplus.

Subsequently, Lengwiler and Wolfstetter [10] study a more com-
plex bid rigging scheme for the single-item auction setting, where
the auctioneer additionally offers the second highest bidder to in-
crease their bid. To the best of our knowledge, none of the existing
works studied the price of anarchy of corrupt auctions.

Studying the price of anarchy in auctions has recently received
a lot of attention; we refer to the survey paper by Roughgarden
et al. [17] for an overview. A lot of work has gone into deriving
bounds on the price of anarchy for various auction formats, both in
the complete and incomplete information setting. The smoothness

notion, originally introduced by Roughgarden in [16] to analyze
the robust price of anarchy of strategic games, turned out to be
very useful in an auction context as well. Syrgkanis and Tardos [19]
build upon this notion and provide a powerful (smoothness-based)
toolbox for the analysis of a broad range of auctions that fall into
their composition framework.

With respect to the multi-unit auction setting, de Keijzer et
al. [3] use an adapted smoothness approach to derive bounds on
the POA of Bayes-Nash equilibria for the first-price and the second-
price multi-unit auction (mostly focussing on the setting with no
overbidding). Our bounds coincide with theirs for the extreme
points 𝛾 = 0 and 𝛾 = 1. For the more general class of subadditive
valuations, the POA of Bayes-Nash equilibria for the first-price
multi-unit auction is 2, which follows from [3] and [2]. Birmpas et
al. [1] recently settled the PNE-POA of the second-price multi-unit
auction and show that it is 2.1885.

Our bounds on the CCE-POA are also based on a smoothness
approach. We use an adapted smoothness notion (inspired by [3,
19]) to derive our bounds, both in the overbidding and the no-
overbidding setting. Interestingly, our smoothness proofs crucially
exploit that the payments recover at least a faction of 𝛾 of the first-
price payments (but never exceed them). As a side result, Syrgkanis
and Tardos [19] also derive a first bound on the CE-POA for 𝛾-HYA
in the single-item auction setting; our bound (significantly) im-
proves on theirs and exploits some additional ideas.

The POA of the first-price and second-price auction has been
investigated intensively for both the single-item and the multi-unit
auction setting. An assumption that often needs to be made to
derive meaningful bounds is that the bidders cannot overbid. For
example, it is folklore that the PNE-POA of the second-price single-
item auction is unbounded if the bidders can overbid. On the other
hand, it is one if bidders cannot overbid. In the second-price single-
item auction, overbidding is a dominated strategy for each bidder

and the no-overbidding assumption thus emerges naturally. But
this might not be true in general. For example, for the second-price
multi-unit auction, this analogy breaks already. We refer to [4] for
a more general discussion of the no-overbidding assumption.

In general, the impact that the no-overbidding assumption has on
the price of anarchy is not well-understood. This aspect also relates
to the price of undominated anarchy studied by Feldman et al. [5].
The authors prove a clear separation for the POA in single-item
first-price auctions: While the CE-POA is 1 (even with overbidding),
the CCE-POA increases to 1.229 (without overbidding) and 𝑒/(𝑒−1)
(with overbidding). A similar separation holds for the multi-unit
auction setting and the uniform price auction, where the PNE-POA
is (𝑒−1)/𝑒 (without overbidding) [12] and 2.1885 (with overbidding)
[1]. Our results contribute to this line of research also because
we show that the POA might improve significantly under the no-
overbidding assumption.

2 PRELIMINARIES

Standard Auction Formats.We focus on the description of the multi-
unit auction setting; the single-item auction setting follows as a
special case (choosing 𝑘 = 1 below). In the multi-unit auction
setting, there are 𝑘 ≥ 1 identical items (or goods) that we want to
sell to 𝑛 ≥ 2 bidders (or players). We identify the set of bidders
𝑁 with [𝑛] = {1, . . . , 𝑛}. Each bidder 𝑖 has a non-negative and
non-decreasing valuation function 𝑣𝑖 : {0, . . . , 𝑘} → R≥0 with
𝑣𝑖 (0) = 0, where 𝑣𝑖 ( 𝑗) specifies 𝑖’s valuation for receiving 𝑗 items.
We assume that for each bidder 𝑖 ∈ 𝑁 the valuation function 𝑣𝑖
is submodular or, equivalently, that the marginal valuations are
non-increasing, i.e., for every 𝑗 ∈ [𝑘 − 1], 𝑣𝑖 ( 𝑗) − 𝑣𝑖 ( 𝑗 − 1) ≥
𝑣𝑖 ( 𝑗 + 1) − 𝑣𝑖 ( 𝑗). The valuation function 𝑣𝑖 is assumed to be private
information, i.e., it is only known to bidder 𝑖 themselves. We use
𝒗 = (𝑣1, . . . , 𝑣𝑛) to denote the profile (or vector) of the valuation
functions of the bidders. We assume that the bidders submit their
bids according to the following standard format: Each bidder 𝑖
submits a bid vector 𝒃𝑖 = (𝑏𝑖 (1), . . . , 𝑏𝑖 (𝑘)) of 𝑘 non-negative and
non-increasing marginal bids, i.e., 𝑏𝑖 ( 𝑗) specifies the additional
amount 𝑖 is willing to pay for receiving 𝑗 instead of 𝑗 − 1 items. The
overall amount that 𝑖 bids for receiving 𝑞 items is thus

∑𝑞

𝑗=1 𝑏𝑖 ( 𝑗).
For 𝑘 = 1 we write 𝒃𝑖 = 𝑏𝑖 (1).

Consider a multi-unit auction setting and suppose the auction-
eer uses an auction mechanismℳ to determine an assignment of
the items and the respective payments of the bidders. Each bidder
submits their bid vector 𝒃𝑖 to the mechanism. Based on the bidding
profile 𝒃 = (𝒃1, . . . , 𝒃𝑛), the mechanism ℳ orders the submitted
marginal bids non-increasingly (breaking ties in an arbitrary but
consistent way) and assigns the 𝑘 items to the bidders who submit-
ted the 𝑘 highest marginal bids (according to this order). We use
𝛽 𝑗 (𝒃) to refer to the 𝑗-th lowest winning (marginal) bid in 𝒃 , i.e.,
𝛽𝑘 (𝒃) ≥ . . . ≥ 𝛽1 (𝒃). We use 𝒙 (𝒃) = (𝑥1 (𝒃), . . . , 𝑥𝑛 (𝒃)) to refer to
the resulting allocation, where 𝑥𝑖 (𝒃) specifies the number of items
that bidder 𝑖 receives; 𝑥𝑖 (𝒃) = 0 if 𝑖 does not receive any item. Each
bidder 𝑖 who receives at least one item is called a winner.

There are two standard payment schemes that determine for each
winner 𝑖 the respective payment 𝑝𝑖 (𝒃); we adopt the convention
that 𝑝𝑖 (𝒃) = 0 for each bidder 𝑖 who is not a winner.
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• First-price payment scheme: Every bidder 𝑖 pays their bid for
the received items, i.e., 𝑝𝑖 (𝒃) =

∑𝑥𝑖 (𝒃)
𝑗=1 𝑏𝑖 ( 𝑗)

• Second-price payment scheme: Every bidder 𝑖 pays the highest
losing bid 𝑝 (𝒃) for each received item, i.e., 𝑝𝑖 (𝒃) = 𝑥𝑖 (𝒃)𝑝 (𝒃)

Suppose we fix the payment scheme of mechanismℳ according
to one of these schemes. We refer to mechanism ℳ with the first-
price payment or the second-price payment scheme, respectively,
as FP-Auction or SP-Auction.3

The utility 𝑢𝑣𝑖
𝑖
(𝒃) of bidder 𝑖 is defined as the total valuation mi-

nus the payment for receiving 𝑥𝑖 (𝒃) items, i.e.,𝑢𝑣𝑖
𝑖
(𝒃) = 𝑣𝑖 (𝑥𝑖 (𝒃)) −

𝑝𝑖 (𝒃); note that 𝑢𝑣𝑖𝑖 (𝒃) = 0 by definition if bidder 𝑖 is not a winner.
Whenever 𝑣𝑖 is clear from the context, we simply denote the utility
of bidder 𝑖 by𝑢𝑖 (𝒃). We assume that each bidder strives to maximize
their utility.

Finally, we introduce some standard assumptions that we use
throughout this paper; we adopt the convention that the first two
must always be satisfied by a mechanism.

(1) No positive transfers (NPT): The payment of each bidder 𝑖 is
non-negative, i.e., 𝑝𝑖 (𝒃) ≥ 0.

(2) Individual rationality (IR): The payment of each bidder 𝑖 does
not exceed their bid, i.e., 𝑝𝑖 (𝒃) ≤

∑𝑥𝑖 (𝒃)
𝑗=1 𝑏𝑖 ( 𝑗).

(3) No overbidding (NOB): The bid vector of each bidder 𝑖 does
not exceed their valuations, i.e., for every 𝑞 ∈ [𝑘],∑𝑞

𝑗=1 𝑏𝑖 ( 𝑗)
≤ 𝑣𝑖 (𝑞).

Approximate First-Price Auctions. In this paper, we also consider
auctions with first-price approximate payment schemes. The al-
location is still determined as above, but the payment scheme is
relaxed as follows: We say that a mechanism ℳ with payment
rule 𝒑 = (𝑝1 (𝒃), . . . , 𝑝𝑛 (𝒃)) is a 𝛾-approximate first-price auction

(𝛾-FPA) for some 𝛾 ∈ [0, 1] if it always recovers at least a fraction
of 𝛾 of the first-price payments, i.e., for every bidding profile 𝒃 ,∑
𝑖∈𝑁 𝑝𝑖 (𝒃) ≥ 𝛾

∑𝑘
𝑗=1 𝛽 𝑗 (𝒃). Further, if for every bidding profile

𝒃 it holds that
∑
𝑖∈𝑁 𝑝𝑖 (𝒃) ≤

∑𝑘
𝑗=1 𝛽 𝑗 (𝒃) then we call the mecha-

nism first-price dominated. Note that every mechanism that satisfies
individual rationality must be first-price dominated.

Equilibrium Notions and the Price of Anarchy. We focus on the
complete information setting here. Below, we briefly review the
different equilibrium notions used in this paper. A bidding profile
𝒃 = (𝒃1, . . . , 𝒃𝑛) is a pure Nash equilibrium (PNE) if no bidder has
an incentive to deviate unilaterally; more formally, 𝒃 is a PNE if
for every bidder 𝑖 and every bidding profile 𝒃 ′

𝑖
of 𝑖 it holds that

𝑢𝑖 (𝒃) ≥ 𝑢𝑖 (𝒃 ′𝑖 , 𝒃−𝑖 ). Here we use the standard notation 𝒃−𝑖 to refer
to the bid vector 𝒃 with the 𝑖th component being removed; (𝒃 ′

𝑖
, 𝒃−𝑖 )

then refers to the bid vector 𝒃 with the 𝑖th component being replaced
by 𝒃 ′

𝑖
.

We also consider randomized bid vectors. Suppose bidder 𝑖 chooses
their bid vectors randomly according to a probability distribution
𝝈𝑖 , independently of the other bidders. Let 𝝈 =

∏
𝑖∈𝑁 𝝈𝑖 be the

respective product distribution. Then 𝝈 is amixed Nash equilibrium

(MNE) if for every bidder 𝑖 and every bid vector 𝒃 ′
𝑖
it holds that

E𝒃∼𝝈 [𝑢𝑖 (𝒃)] ≥ E𝒃∼𝝈 [𝑢𝑖 (𝒃 ′𝑖 , 𝒃−𝑖 )]. We may also allow correlation
3We remark that in the multi-unit auction setting these auctions are usually referred to
as discriminatory price auction and uniform price auction; however, here we stick to the
given naming convention to align it with the common terminology of the single-item
auction setting.

among the bidders. Let 𝝈 be a joint distribution over bidding pro-
files of the bidders. Then 𝝈 is a correlated equilibrium (CE) if for
every bidder 𝑖 ∈ 𝑁 and for every deviation function𝑚𝑖 (𝒃𝑖 ) it holds
that E𝒃∼𝝈 [𝑢𝑖 (𝒃)] ≥ E𝒃∼𝝈 [𝑢𝑖 (𝑚𝑖 (𝒃𝑖 ), 𝒃−𝑖 )]. Intuitively, conditional
on bid vector 𝒃𝑖 being realized, 𝑖 has no incentive to deviate to any
other bid vector𝑚𝑖 (𝒃𝑖 ). The most general equilibrium notion that
we consider in this paper is defined as follows: Let 𝝈 be a joint
distribution over bidding profiles of the bidders. Then 𝝈 is a coarse
correlated equilibrium (CCE) if for every bidder 𝑖 and every bid
vector 𝒃 ′

𝑖
it holds that E𝒃∼𝝈 [𝑢𝑖 (𝒃)] ≥ E𝒃∼𝝈 [𝑢𝑖 (𝒃 ′𝑖 , 𝒃−𝑖 )]. Below,

we also use PNE(𝒗), MNE(𝒗), CE(𝒗) and CCE(𝒗) to refer to the
sets of pure, mixed, correlated and coarse correlated equilibria with
respect to a valuation profile 𝒗 = (𝑣1, . . . , 𝑣𝑛), respectively.

We define the social welfare of a bidding profile 𝒃 = (𝒃1, . . . , 𝒃𝑛)
as the overall valuation obtained by the bidders, i.e., SW(𝒃) =∑
𝑖∈𝑁 𝑣𝑖 (𝑥𝑖 (𝒃)). Note that although social welfare is defined inde-

pendently of the payments, we can equivalently write 𝑆𝑊 (𝒃) =∑
𝑖∈𝑁 𝑢𝑖 (𝒃) + 𝑝𝑖 (𝒃). The expected social welfare of a joint distri-

bution 𝝈 over bidding profiles is then defined as E [SW(𝝈)] =

E𝒃∼𝝈 [SW(𝒃)]. We use 𝒙∗ (𝒗) to refer to an assignment that max-
imizes the social welfare with respect to the valuation functions
𝒗 = (𝑣1, . . . 𝑣𝑛); i.e., SW(𝒙∗ (𝒗)) = ∑

𝑖∈𝑁 𝑣𝑖 (𝑥𝑖 (𝒗)) is the maximum
social welfare achievable for the bidders. The assignment 𝒙∗ (𝒗) is
also called a social optimum.

The price of anarchy is defined as the maximum ratio of the social
welfare of the social optimum and the (expected) social welfare of
an equilibrium. Let𝑋 be a placeholder that refers to one of the equi-
librium notions above, i.e., 𝑋 ∈ {PNE,MNE,CE,CCE}. More for-
mally, given a valuation profile 𝒗 = (𝑣1, . . . , 𝑣𝑛), the price of anarchy
with respect to 𝑋 (or 𝑋 -POA for short) is defined as 𝑋 -POA(𝒗) =
sup𝝈 ∈𝑋 (𝒗) SW(𝒙∗ (𝒗))/E [SW(𝝈)]. The price of anarchy of an auc-
tion format then refers to the worst-case price of anarchy over
all possible valuation profiles, i.e., 𝑋 -POA = sup𝒗 𝑋 -POA(𝒗). We
use PNE-POA, MNE-POA, CE-POA and CCE-POA to refer to the
respective price of anarchy notions.

Due to page limitations, some proofs are sketched or omitted
from this extended abstract; all missing details can be found in the
full version of this paper.

3 CAPTURING CORRUPTIONWITH 𝛾-FPA
We give a formal description of the model that we consider and
elaborate on its relation to the 𝛾-hybrid auction. We also introduce
the adapted smoothness approach.

Corruption in Auctions. Suppose the bidders submit their bid
vectors 𝒃 = (𝒃1, . . . , 𝒃𝑛) in a “sealed manner”, i.e., at first only
the auctioneer sees the bidding profile 𝒃 .4 After receipt of the
bidding profile 𝒃 , the auctioneer runs a first-price multi-unit auc-
tion (see Section 2) to obtain the respective assignment 𝒙 (𝒃) =

(𝑥1 (𝒃), . . . , 𝑥𝑛 (𝒃)) and payments 𝒑(𝒃) = (𝑝1 (𝒃), . . . , 𝑝𝑛 (𝒃)) but
does not reveal this outcome yet. The auctioneer then approaches
each winning bidder 𝑖 individually with the offer that they can
lower all their 𝑥𝑖 (𝒃) winning bids to the highest losing bid 𝑝 (𝒃)
(while receiving the same number of items), in exchange for a fixed

4It is important to realize though that the final bids, which might not necessarily
correspond to the submitted ones, might have to be revealed eventually because the
bidders might want to verify the “soundness” of the outcome of the auction.
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fraction 𝛾 ∈ [0, 1] of the surplus gained by 𝑖 . The bidder can either
reject or accept this offer. If bidder 𝑖 rejects the offer, the allocation
𝑥𝑖 (𝒃) and respective payment 𝑝𝑖 (𝒃) remain unmodified. If bidder
𝑖 accepts the offer, they receive the 𝑥𝑖 (𝒃) items at a reduced price
of 𝑝 (𝒃) each, but additionally pay a fee 𝑓

𝛾

𝑖
of 𝛾 times the surplus

to the auctioneer; more formally, the total payment of a winning
bidder 𝑖 who accepts the offer is

𝑝
𝛾

𝑖
(𝒃) = 𝑥𝑖 (𝒃)𝑝 (𝒃) + 𝑓

𝛾

𝑖
(𝒃) where 𝑓

𝛾

𝑖
(𝒃) = 𝛾

𝑥𝑖 (𝒃)∑
𝑗=1

(𝑏𝑖 ( 𝑗) − 𝑝 (𝒃)) .

We also refer to this setting as the 𝛾-corrupt auction.5
Note that the change in the bid vector of player 𝑖 conforms to

the imposed bidding format, i.e., the modified marginal bids of
bidder 𝑖 are still non-negative and non-increasing. It is not hard
to show that it is a dominant strategy for every winning bidder to
accept the offer of the auctioneer, independently of the parameter 𝛾 .
Subsequently, we assume that each winning bidder always accepts
the offer.

Hybrid Auction Scheme. We introduce our novel hybrid auc-
tion scheme, which we term 𝛾-hybrid auction (or 𝛾-HYA for short):
𝛾-HYA uses the same allocation rule as in the multi-unit auction set-
ting (see Section 2), but uses a convex combination of the first-price
and second-price payment scheme (parameterized by 𝛾 ), i.e.,

𝑝
𝛾

𝑖
(𝒃) = 𝛾

𝑥𝑖 (𝒃)∑
𝑗=1

𝑏𝑖 ( 𝑗) + (1 − 𝛾)𝑥𝑖 (𝒃)𝑝 (𝒃) . (1)

Said differently, 𝛾-HYA interpolates between SP-Auction (𝛾 = 0)
and FP-Auction (𝛾 = 1) as 𝛾 varies from 0 to 1. It is immediate that
every 𝛾-HYA is a 𝛾-FPA. We also use 𝑝𝛾 (𝒃) to refer to the above
payment in the single-item auction setting.

The following proposition follows immediately from the discus-
sion above and allows us to focus on the POA of 𝛾-HYA to study
𝛾-corrupt auctions.

Proposition 1. Fix some 𝛾 ∈ [0, 1]. Then the 𝛾-corrupt auction
and 𝛾-HYA admit the same set of equilibria and have identical so-

cial welfare objectives. Therefore, the price of anarchy for both these

settings is the same.

Other Corruption Models. In our basic bid rigging model intro-
duced above all winning bidders lower their bids to the highest
losing bid. While this magic number bidding phenomenon has been
observed in real-life for single-item auctions (as mentioned in the
introduction), it might seem somewhat awkward in the multi-unit
auction setting.6 We therefore consider more general corruption
schemes that also capture non-uniform bid rigging. More precisely,
most of our upper bounds hold for the more general class of 𝛾-FPA
introduced above. These auctions capture several additional cor-
ruption settings. For example, suppose some bidders never accept
the offer of the auctioneer (say due to moral objections) and their
payments thus remains the first-price payment. While this setting is
5As the final payments are dependent on 𝛾 , we (implicitly) assume that the bidders
are aware of this parameter when considering the complete information setting here
(much alike it is assumed that the bidders know the used payment scheme in other
auction formats).
6We refer to the full version for further discussion on how the auctioneer could
“camouflage” the magic number bidding in this case.

not covered by 𝛾-HYA, it is covered by 𝛾-FPA. As another example,
if the auctioneer handles a different fraction 𝛾𝑖 for each bidder 𝑖 ,
the resulting auction is 𝛾-FPA with 𝛾 = min𝑖∈𝑁 𝛾𝑖 .

Adapted Smoothness Notion.We introduce our adapted smooth-
ness notion to derive upper bounds on the coarse correlated price
of anarchy of 𝛾-FPA.7 Recall that, given a bidding profile 𝒃 , we use
𝛽 𝑗 (𝒃) to refer to the 𝑗th lowest winning bid under 𝒃 .

Definition 2. A mechanismℳ for the multi-unit auction setting
is (𝜆, 𝜇)-smooth for some 𝜆 > 0 and 𝜇 ≥ 0 if for every valuation pro-
file 𝒗 and for each bidder 𝑖 ∈ 𝑁 there exists a (possibly randomized)
deviation 𝝈 ′

𝑖
such that for every bidding profile 𝒃 we have∑

𝑖∈𝑁
E𝒃′

𝑖
∼𝝈 ′

𝑖

[
𝑢𝑖 (𝒃 ′𝑖 , 𝒃−𝑖 )

]
≥ 𝜆SW(𝒙∗ (𝒗)) − 𝜇

𝑘∑
𝑗=1

𝛽 𝑗 (𝒃).

By using the above smoothness definition together with the
properties that the payments in 𝛾-FPA are first-price dominated
and 𝛾-approximate, we obtain the following theorem.

Theorem 3. Let 𝛼 > 0 be fixed arbitrarily. The coarse correlated

price of anarchy of any 𝛾-FPA is

CCE-POA ≤ max{1, 1 + 𝛼 − 𝛾}
𝛼 (1 − 𝑒−1/𝛼 )

, (2)

where we need that the no-overbidding assumption holds if 𝛼 > 𝛾 .

4 OVERBIDDING

We derive a tight bound on the coarse correlated price of anarchy
of 𝛾-FPA for 𝛾 > 0 in the multi-unit auction setting when bidders
can overbid. Interestingly, tightness is already achieved by a single-
item 𝛾-HYA. It is known that the price of anarchy is unbounded
for SP-Auction (𝛾 = 0). The bound is displayed in Figure 1(a). We
give a sketch of the proof of Theorem 4 below.

Theorem 4. Consider a multi-unit𝛾-FPA and suppose that bidders

can overbid. For 𝛾 ∈ (0, 1], the coarse correlated price of anarchy is

CCE-POA ≤ 1
𝛾 (1−𝑒−1/𝛾 ) . Further, this bound is tight, even for single-

item 𝛾-HYA.

Proof sketch. The upper bound is based on Theorem 3. Recall
that for the second term in max{1, 1 + 𝛼 − 𝛾} from equation (2),
we need the no-overbidding assumption to hold. Since bidders
are allowed to overbid in this section, we restrict to 𝛼 ≤ 𝛾 . The
corresponding bound is minimized by setting 𝛼 = 𝛾 for any 𝛾 ∈
(0, 1].

This bound can be proven to be tight for all 𝛾 ∈ (0, 1] by general-
izing an example used by Syrgkanis [18] to provide a lower bound
on the CCE-POA for the first-price single-item auction:We consider
a single-item auction with two bidders and using the 𝛾-hybrid pric-
ing rule as defined above. We have 𝑣1 = 𝑣 for some 𝑣 > 0 and 𝑣2 = 0.
If both bidders bid 0, the tie is broken in favor of bidder 2, whereas
bidder 1 wins the auction if bidders tie with any positive bid. Let 𝑡 be
a random variable with support [0, (1− 𝑒−1/𝛾 )𝑣] whose cumulative
distribution function 𝐹 is given by 𝐹 (𝑡) = (1 −𝛾) + 𝑣/(𝑣 − 𝑡)𝛾𝑒−1/𝛾 .
7Our new notion comes close to the weak smoothness definition in [19], but relates
more directly to the winning bids in the multi-unit setting. A similar definition is also
used in [3], but there it is imposed on a per-player basis and used only for first-price
dominated payment schemes.
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Then, the bidding profile 𝝈 = (𝑡, 𝑡) is a CCE for which the welfare
loss matches the upper bound. □

5 NO OVERBIDDING

5.1 Multi-Unit Auction

In the previous section, we have completely settled the coarse
correlated price of anarchy of 𝛾-FPA when overbidding is allowed.
We see that especially when 𝛾 gets small this has an extremely
negative effect on the price of anarchy. In this section, we will
investigate how these bounds improve under the no-overbidding
assumption (NOB as defined above). It is a standard assumption to
make and we will see that it leads to a significant improvement of
the price of anarchy bounds, most notably for lower values of 𝛾 .

We can show that pure Nash equilibria of 𝛾-HYA without over-
bidding are always efficient for all 𝛾 ∈ (0, 1] (see the full version
for details). For coarse correlated equilibria, we can significantly
improve the upper bound derived in Theorem 4 for 𝛾 ⪅ 0.607.

Theorem 5. Consider a multi-unit𝛾-FPA and suppose that bidders

cannot overbid. For 𝛾 ⪅ 0.607, the coarse correlated price of anarchy
is

CCE-POA ≤ −(1 − 𝛾)𝒲−1

(
− 1
𝑒 (2−𝛾 )/(1−𝛾 )

)
. (3)

Proof sketch. Similar to the upper bound in Theorem 4, this
result is based on Theorem 3. However, since bidders cannot overbid,
we now also allow for 𝛼 > 𝛾 in the minimization of the bound. This
makes the optimization somewhat more involved, but leads to a
significantly better bound for 𝛾 ⪅ 0.607. □

Combining the improved bound of Theorem 5 with the bound
of Theorem 4 yields the upper bound displayed in Figure 1(b) for
all 𝛾 ∈ [0, 1]. In particular, we obtain CCE-POA ≤ −𝒲−1 (−𝑒−2) ≈
3.146 for 𝛾 = 0 and CCE-POA ≤ 𝑒/(𝑒 − 1) ≈ 1.582 for 𝛾 = 1.

5.2 Single-Item 𝛾-HYA

We can further improve the price of anarchy bounds for single-item
𝛾-HYA. It allows us to make more direct use of the payments giving
us more control. We start with the general 𝑛-player setting, for
which we show that the single-item 𝛾-HYA is fully efficient up to
correlated equilibria. For coarse correlated equilibria, we then derive
a strong bound for low values of 𝛾 , namely CCE-POA ≤ 1/(1 − 𝛾).
This bound can in turn be complemented by the bound we derived
for multi-unit auctions. Finally, to improve upon this multi-unit
bound for the higher range of 𝛾 , we derive two technically more
involved bounds that work specifically in a two-player setting.

We need some more notation. Given a bid vector 𝒃 , let HB(𝒃) =
max𝑖 𝒃𝑖 and SB(𝒃) denote the highest and second highest bid in 𝒃 ,
respectively, and letHB−𝑖 (𝒃) = max𝑗≠𝑖 𝒃 𝑗 be the highest bid exclud-
ing bid 𝒃𝑖 . For a randomized bid vector 𝝈 , let 𝐻𝐵(𝝈) be the random
variable equal to the highest bid when the bids are distributed
according to 𝝈 . We sometimes write E[HB(𝝈)] for E𝒃∼𝝈 [HB(𝒃)]
(similarly for SB(𝝈) and HB−𝑖 (𝝈)).

Correlated Price of Anarchy.We prove that𝛾-HYA is fully efficient
for all 𝛾 ∈ (0, 1] up to correlated equilibria. We extend a result in
[5], which only does it for 𝛾 = 1. Below we show that for 𝛾 = 0 even

coarse correlated equilibria are always efficient, so that Theorem 6
in fact holds for all 𝛾 ∈ [0, 1].

Theorem 6. Consider a single-item 𝛾-HYA and suppose that bid-

ders cannot overbid. Then, the correlated price of anarchy of 𝛾-HYA
is 1 for all 𝛾 ∈ (0, 1].

Proof sketch. Without loss of generality assume that player 1
has the highest valuation 𝑣1. Assume towards contradiction that the
CE-POA is not 1. Then, there must be a player 𝑖 with 𝑣𝑖 < 𝑣1 who
has a positive probability of winning. Let 𝑏∗ = inf{𝑏 | P[𝐻𝐵(𝜎) <
𝑏] > 0}. Since we assume that players cannot overbid, we would
need 𝑏∗ ≤ 𝑣𝑖 . However, we can show that 𝑏∗ ≤ 𝑣𝑖 always leads to a
contradiction with the CE conditions. □

Coarse Correlated Price of Anarchy. It is known that the coarse
correlated price of anarchy for the first-price auction is approxi-
mately 1.229 [5], which implies that the result of Theorem 6 does
not extend to coarse correlated equilibria. We derive the following
bound which is good for small values of 𝛾 .

Theorem 7. Consider a single-item 𝛾-HYA and suppose that bid-

ders cannot overbid. Then, the coarse correlated price of anarchy of

𝛾-HYA is at most 1/(1 − 𝛾) for all 𝛾 ∈ [0, 1).

Any upper bound for the multi-unit auction setting of course
also holds for the single-item setting. By combining the bounds of
Theorem 4, Theorem 5 and Theorem 7, we obtain the upper bound
displayed in Figure 1(c) for the coarse correlated price of anarchy
in the single-item auction setting.

Coarse Correlated Price of Anarchy for 2-player Auctions. We now
present a more fine-grained picture for the coarse correlated price
of anarchy for the 2-player setting. Ultimately, the upper bound
for CCE-POA for two players becomes a combination of three up-
per bounds, as represented by the three colors in Figure 1(d). We
already derived the bound we use for small values of 𝛾 in Theorem
7, corresponding to the green graph in the figure. To derive the two
remaining bounds, we use an approach inspired by [5]. The extra
difficulty we have is bounding the second-price component. The
first-price has a direct relation with winning the auction and so we
can use the CCE conditions to bound it while the second-price com-
ponent is more difficult to get a grip on. These bounds significantly
improve on the bounds of Theorem 4 and Theorem 5.

First we tackle the interval 𝛾 ∈ [ 1
2 , 1]. Note that for 𝛾 = 1 this

bound coincides with the (tight) bound in [5].

Theorem 8. Consider a 2-player single-item 𝛾-HYA and suppose

that bidders cannot overbid. For 𝛾 ∈ [ 1
2 , 1], the coarse correlated price

of anarchy of 𝛾-HYA is upper bounded by the blue graph in Figure

1(d) (with CCE-POA ≤ 1.295... for 𝛾 = 0.5 and CCE-POA ≤ 1.229...
for 𝛾 = 1).

Proof sketch. Without loss of generalitywe assume that player
1 has a valuation of 1 and player 2 has a valuation of 𝑣 ≤ 1. Fix𝛾 and
consider some coarse correlated equilibrium 𝝈 . Let 𝛼 = E[𝑢1 (𝝈)]
be the utility of player 1 and 𝛽 = E[𝑢2 (𝝈)] be the utility of player 2
in 𝝈 . The maximum social welfare is clearly 1, namely when player
1 wins all the time. Lower bounding the expected welfare of an
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arbitrary 𝝈 translates into an upper bound on the price of anarchy.
We have
E[SW(𝝈)] ≥ 𝛼+𝛽+E[𝑝𝛾 (𝝈)] = 𝛼+𝛽+𝛾E[HB(𝝈)]+(1−𝛾)E[SB(𝝈)] .
We try to find the 𝑣, 𝛼 and 𝛽 that minimize (a lower bound on) this
expression and this will then give a lower bound on the expected
social welfare. Let 𝐹𝑋 be the cumulative distribution function of
the random variable 𝑋 where 𝑋 ∈ {HB,HB−1,HB−2, SB}. Then by
the CCE conditions, and the fact that a CDF is always bounded by
1, we know that

𝐹
HB−1 (𝜎) (𝑥) ≤ min

{
𝛼

1−𝑥 , 1
}
, 𝐹

HB−2 (𝜎) (𝑥) ≤ min
{

𝛽
𝑣−𝑥 , 1

}
(4)

𝐹
HB(𝜎) (𝑥) ≤ min

{
𝛼

1−𝑥 ,
𝛽

𝑣−𝑥 , 1
}
. (5)

For example, if 𝐹
HB−1 (𝝈 ) (𝑥) >

𝛼
1−𝑥 and player 1 changes their bid

to 𝑥 their utility will be strictly greater than 𝛼
1−𝑥 · (1−𝑥) = 𝛼 which

is more than their current utility, contradicting the CCE conditions.
Also note that 𝛼 ≥ 1− 𝑣 because player 1 bidding 𝑣 + 𝜖 will yield

a utility of at least 1 − 𝑣 − 𝜖 for any positive 𝜖 . The other player is
not allowed to bid above 𝑣 , thus player 1 always wins when bidding
𝑣 + 𝜖 .

For 𝑛 = 2 players it holds that
𝐹
SB(𝝈 ) (𝑥) = P[SB(𝝈) ≤ 𝑥]

= 𝐹
HB−1 (𝝈 ) (𝑥) + 𝐹

HB−2 (𝝈 ) (𝑥) − 𝐹
HB(𝝈 ) (𝑥) . (6)

Let us get a more explicit expression for the expected payment
using (6)

E[𝑝𝛾 (𝝈)] = 𝛾E[HB(𝝈)] + (1 − 𝛾)E[SB(𝝈)]

= (2𝛾 − 1)
∫ 1
0 1 − 𝐹

HB(𝝈 ) (𝑥)𝑑𝑥

+ (1 − 𝛾)∑2
𝑖=1

∫ 1
0 1 − 𝐹

HB−𝑖 (𝝈 ) (𝑥)𝑑𝑥.
Using the two bounds in (4), we can lower bound the two integrals
in the summation∫ 1

0 1 − 𝐹
HB−1 (𝝈 ) (𝑥)𝑑𝑥 ≥ 1 − 𝛼 + 𝛼 ln(𝛼)∫ 1

0 1 − 𝐹
HB−2 (𝝈 ) (𝑥)𝑑𝑥 ≥ 𝑣 − 𝛽 + 𝛽 ln(𝛽/𝑣).

If 𝛾 ≥ 1
2 then 2𝛾 − 1 ≥ 0 and so we can use (5) to lower bound the

integral on the left by∫ 1
0 1 − 𝐹

HB(𝝈 ) (𝑥)𝑑𝑥 ≥
∫ 1
0 1 − min

{
𝛼

1−𝑥 ,
𝛽

𝑣−𝑥 , 1
}
𝑑𝑥 .

We do a case distinction on 𝛽 ≥ 𝑣𝛼 and 𝛽 < 𝑣𝛼 . In both cases we
can analytically reason that the social welfare is bounded below by
E[SW(𝝈)] ≥ 1 + 𝛾𝛽 + (2𝛾 − 1) (𝛼 − 𝛽) ln(𝛼 − 𝛽) + (2 − 3𝛾)𝛼 ln(𝛼)

+ (2𝛾 − 1)𝛽 ln(𝛼) + 𝛾𝛽 ln(𝛽) − 𝛾𝛽 ln(1 − 𝛼), (7)
where 𝛽 ≤ 𝛼 (1 − 𝛼).

The derivative of (7) with respect to 𝛽 becomes 0 when
𝛽𝛾

(𝛼−𝛽)2𝛾−1 − (1−𝛼)𝛾
𝑒𝛼2𝛾−1 = 0.

For fixed 𝛼 the expression on the left hand side is negative for 𝛽
close to 0, and positive for 𝛽 close to 𝛼 . Also the second derivative
with respect to 𝛽 is always positive on [0, 𝛽]. Thus we can use
binary search to quickly find 𝛽 satisfying the equality; call this 𝛽𝛼 .8

8𝛽𝛼 may violate 𝛽 ≤ 𝛼 (1 − 𝛼) , but removing this restriction can only decrease the
minimum value of the expected social welfare.

Then we have

E[SW(𝝈)] ≥ 1 + 𝛾𝛽𝛼 + (2𝛾 − 1) (𝛼 − 𝛽𝛼 ) ln(𝛼 − 𝛽𝛼 )
+ (2 − 3𝛾)𝛼 ln(𝛼) + (2𝛾 − 1)𝛽𝛼 ln(𝛼)
+ 𝛾𝛽𝛼 ln(𝛽𝛼 ) − 𝛾𝛽𝛼 ln(1 − 𝛼).

For 𝛾 = 1
2 we compute 𝛽𝛼 = 1−𝛼

𝑒2 and then the social welfare
is minimized for 𝛼 = 𝑒−1−1/𝑒2 ≈ 0.3213... with value 0.7716....
While for 𝛾 = 1 we have 𝛽𝛼 =

𝛼 (1−𝛼)
1−𝛼+𝑒𝛼 where the social welfare is

minimized for 𝛼 ≈ 0.2743... with value 0.8135.... In both these cases
(7) becomes a unimodal function. Plotting (7) for various values of
𝛼 , when doing binary search to find 𝛽𝛼 as a subroutine, suggests
that this is the case for all 𝛾 . Making this assumption we can use a
ternary search on 𝛼 with a binary search to find 𝛽𝛼 as a subroutine
to quickly find the minimum. Finally, taking 1 over this value gives
us an upper bound on the price of anarchy, presented as the blue
graph in Figure 1(d). □

The previous theorem holds for 𝛾 ∈ [ 1
2 , 1]. With a similar proof

template, making use of an upper bound on the highest bid, we can
derive an upper bound on the coarse correlated price of anarchy
for the lower to mid range of 𝛾

Theorem 9. Consider a 2-player single-item 𝛾-HYA and suppose

that bidders cannot overbid. For𝛾 ∈ (0.217..., 1
2 ], the coarse correlated

price of anarchy of 𝛾-HYA is upper bounded by the orange graph in

Figure 1(d) (with CCE-POA ≤ 1.515... for intersection point 𝛾 =

0.339... and CCE-POA ≤ 1.295... for 𝛾 = 0.5).

6 CONCLUSION AND FUTUREWORK

Our bound on the CCE-POA of 𝛾-FPA is tight over the entire range
of 𝛾 ∈ [0, 1] if players can overbid, both in the single-item and
multi-unit auction setting. Despite the fact that our bounds on the
CCE-POA are rather low already if players cannot overbid, further
improvementsmight still be possible.We consider this a challenging
open problem for future work.

On a more conceptual level, in this paper we considered a basic
bid rigging model where the auctioneer colludes with the winning
bidders only. It will be very interesting to study the price of anar-
chy of more complex bid rigging models; for example, the model
introduced in [10] (ideally generalized to the multi-unit auction
setting) might be a natural next step.
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