
Towards an Enthymeme-Based Communication Framework
Extended Abstract

Alison R. Panisson
Department of Computing – UFSC

Araranguá, Brazil
alison.panisson@ufsc.br

Peter McBurney
Department of Informatics – KCL

London, UK
peter.mcburney@kcl.uk

Rafael H. Bordini
School of Technology – PUCRS

Porto Alegre, Brazil
rafael.bordini@pucrs.br

ABSTRACT

In this work, we give an operational semantics for speech acts that
BDI agents can use to communicate enthymemes. The approach
uses argumentation schemes as common organisational knowledge
to guide the construction of enthymemes by the proponents of
arguments. Such schemes are also used to guide the reconstruction
of the intended argument by the recipients of such enthymemes.

KEYWORDS

Mulit-agent systems, Argumentation, Enthymemes

ACM Reference Format:

Alison R. Panisson, Peter McBurney, and Rafael H. Bordini. 2022. Towards an
Enthymeme-Based Communication Framework: Extended Abstract. In Proc.
of the 21st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION

Enthymemes are arguments inwhich one ormore statements (which
are part of the argument) are not explicitly stated [17]. They repre-
sent more realistic arguments, in the sense that arguments made by
humans usually do not have enough explicitly stated premises for
the entailment of the claim. This is because there is common knowl-
edge that can be assumed by the arguers, which allows them to
encode arguments into a shorter message by ignoring the common
knowledge [1]. In particular, in this work, we use Argumentation
Schemes (AS) [17] as common organisational knowledge to guide
the construction of enthymemes by the proponents of arguments,
as well as to guide the reconstruction of the intended argument by
the recipients of such enthymemes.

Definition 1 (Argumentation Scheme). An argumentation
scheme is a tuple ⟨SN , C,P, CQ⟩ with SN the argumentation
scheme name (which must be unique within the system), C the con-
clusion of the argumentation scheme, P the premises, and CQ the
associated critical questions.

Definition 2 (Argument). An argument is a tuple
⟨𝑆, 𝑐⟩𝜃sni , where sni is the name of the argumentation scheme
⟨sni, C,P, CQ⟩ ∈ ΔAS, 𝜃 is a most general unifier for the premises
in P and the agent’s current belief base, 𝑆 is the set of premises and
the inference rule of the scheme used to draw 𝑐 (the conclusion).
That is, 𝑆 includes all instantiated premises from P — i.e., for all
𝑝 ∈ P, 𝑝𝜃 ∈ S — and the inference rule corresponding to the scheme
(P ⇒ C); the conclusion 𝑐 is the instantiation C𝜃 such that 𝑆 |= 𝑐 .

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

In our approach, AS are specified on top of a MAS as part of
an organisational model [6], therefore they are shared by agents.
Also, agents are able to instantiate and evaluate arguments based
on [5, 8, 10, 11]. Furthermore, agents share knowledge regarding
the organisational structure of the system, such as roles, authority
links, etc. We denote all knowledge coming from the organisational
infrastructure available to agents as ΔOrg, and we emphasise that
all agents are aware of the information in ΔOrg. We denote all AS
available for agents to instantiate arguments in the MAS as ΔAS.
Finally, we denote all knowledge available to an agent agi as Δagi ,
where (ΔOrg ∪ ΔAS) ⊂ Δagi . Enthymemes are defined as follow:

Definition 3 (Enthymeme). Let ⟨𝑆, 𝑐⟩𝜃sn be an argument to agent
agi. An enthymeme for ⟨𝑆, 𝑐⟩𝜃sn is a tuple ⟨𝑆 ′, 𝑐⟩𝜃sn, where 𝑆 ′ = (𝑆 \
(ΔOrg ∪ ΔAS)).

2 SEMANTICS FOR ENTHYMEMES

Considering the performatives assert, question, justify,
refuse, and accept [3, 4], we gave the operational semantics
that formalises the construction (encoding) and reconstruction (de-
coding) of enthymemes associated with the speech act used by
agents during dialogues. We define the semantics of speech acts
for argumentation-based dialogues using enthymemes in AgentS-
peak [15] (and in particular the Jason dialect [2]) using a widely-
known method for giving operational semantics to programming
languages [14].

The operational semantics is given by a set of inference rules
that define a transition relation between agent configurations
⟨ag,𝐶,𝑀,𝑇 , 𝑠⟩ [16], where1: i) An agent ag is a set of beliefs bs and
a set of plans 𝑝𝑠 ; ii) An agent circumstance𝐶 is a tuple ⟨𝐼 , 𝐸⟩ where 𝐼
is a set of intentions {𝑖, 𝑖 ′, . . .}. Each intention 𝑖 is a stack of partially
instantiated plans and 𝐸 is a set of events {(te, 𝑖), (te′, 𝑖 ′), . . .}, in
which each event is a pair (te, 𝑖), where te is a triggering event and
𝑖 is an intention — a stack of plans in the case of an internal event,
or the empty intention T in the case of an external event; iii)𝑀 is a
tuple ⟨𝐼𝑛,𝑂𝑢𝑡⟩ whose components characterise the aspects of com-
municating agents (typically asynchronous). 𝐼𝑛 is the mail inbox,
which includes all messages addressed to this agent. Elements 𝐼𝑛
have the form ⟨mid, id, ilf , cnt⟩, where mid is a message identifier,
id identifies the sender of the message, ilf is the illocutionary force
of the message, and cnt its content; 𝑂𝑢𝑡 is where the agent posts
messages it wishes to send; messages in this set have exactly the
same format as above, except that here id refers to the agent to
which the message is to be sent; iv) 𝑇 is a tuple with temporary
information originally defined in [16]; in this paper, we only need
the 𝜄 component, which keeps track of a particular intention being

1We use here only the components that are needed to define our semantics.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1708



considered along the execution of a reasoning cycle; v) The current
step within an agent’s reasoning cycle is symbolically annotated
by 𝑠 ∈ {ProcMsg, ExecInt}, with ProcMsg the step for processing a
message from𝑀 , and ExecInt for executing the selected intention.

The semantics of AgentSpeak makes use of “selection functions”
which allow for user-defined components of the agent architecture.
We use here only the 𝑆𝑀 function, which is used to select one
message from an agent’s mail inbox, as originally defined in [16].
In the interest of readability, we adopt the following notational
conventions in our semantic rules: i) If 𝐶 is an AgentSpeak agent
circumstance, we write𝐶𝐸 to make reference to the 𝐸 component of
𝐶(similarly for other components); ii) We write: 𝑏 [𝑠 (id)] to identify
the origin of a belief 𝑏, where id is an agent identifier (𝑠 is an
abbreviation for 𝑠𝑜𝑢𝑟𝑐𝑒); and 𝑏 [𝑑𝑒𝑐 (sni)] to identify information
that was decoded from an enthymeme, guided by the AS sni; iii) We
use a function prem(S) which returns all premises in the support
of the argument ⟨𝑆, 𝑐⟩.

(ExActSndAssert)
𝑇𝜄 = 𝑖 [ℎ𝑒𝑎𝑑 ← .send(id, assert, 𝑐) ;ℎ]

⟨ag,𝐶,𝑀,𝑇 , ExecInt⟩ −→ ⟨ag,𝐶′, 𝑀′,𝑇 , ProcMsg⟩
where:

𝑀′Out = 𝑀Out ∪ {⟨mid, id, assert, 𝑐 ⟩ }
𝐶′
𝐼

= (𝐶𝐼 \ {𝑇𝜄 }) ∪ {𝑖 [ℎ𝑒𝑎𝑑 ← ℎ] }

(ExActSndJustify)
𝑇𝜄 = 𝑖 [ℎ𝑒𝑎𝑑 ← .send(id, justify, ⟨𝑆, 𝑐 ⟩𝜃sni ) ;ℎ]
𝑆 ⊂ Δag Δag |= 𝑐 ⟨sni, C, P, CQ⟩ ∈ ΔAS

∀𝑝 ∈ P, 𝑝𝜃 ∈ prem(𝑆) 𝑐 = C𝜃
⟨ag,𝐶,𝑀,𝑇 , ExecInt⟩ −→ ⟨ag,𝐶′, 𝑀′,𝑇 , ProcMsg⟩

where:
𝑀′Out = 𝑀Out ∪ {⟨mid, id, justify, ⟨𝑆′, 𝑐 ⟩𝜃sni ⟩ }

with 𝑆′ = 𝑆 \ (𝑆 ∩ (ΔOrg ∪ ΔAS))
𝐶′
𝐼

= (𝐶𝐼 \ {𝑇𝜄 }) ∪ {𝑖 [ℎ𝑒𝑎𝑑 ← ℎ] }

Sending an assert, question, accept, and refuse message:

when an agent executes the internal action for sending a message
with these performatives, that message is posted in the agent mail-
box,𝑀Out , and the current agent intention is updated, removing the
internal action, given that its execution is completed. In the seman-
tic rule ExActSndAssert, the intention being considered is given
by 𝑇𝜄 , and it corresponds to 𝑖 [ℎ𝑒𝑎𝑑 ← .send(id, assert, 𝑐);ℎ], in
which the current step of the plan adopted to reach that particular
goal is to execute the action .send(id, assert, 𝑐). Thus, after execut-
ing that action, that particular intention is updated to 𝑖 [ℎ𝑒𝑎𝑑 ← ℎ],
given that action has already been executed by the agent2.
Sending a justify message: when an agent executes the inter-
nal action for sending a message with the performative justify,
the agent needs to have an argument for that particular conclu-
sion3 that was drawn using the AS sni, according to Definition 2.
Such argument is encoded into an enthymeme ⟨𝑆 ′, 𝑐⟩𝜃sni , where all
common knowledge is removed from the argument support, i.e.,
the organisational knowledge ΔOrg and the contents of the used
AS ΔAS are removed. The corresponding message is posted in the
agent’s mailbox,𝑀Out , and the current agent intention is updated,
removing the internal action, given that its execution is completed.
The semantic rule ExActSndJustify implements the process for
encoding an argument as an enthymeme.
2Note that the semantic rules for the performatives question, accept, and refuse
are similar to rule ExActSndAssert, thus they were omitted.
3While we use, in this work, the thoughtful attitude [12, 13], other agent attitudes
could be used just as well.

(Question)
𝑆𝑀 (𝑀In) = ⟨mid, 𝑠𝑖𝑑, question, 𝑞⟩

⟨ag,𝐶,𝑀,𝑇 , ProcMsg⟩ −→ ⟨ag,𝐶′, 𝑀′,𝑇 , ExecInt⟩
where:

𝑀′In = 𝑀In \ { ⟨mid, 𝑠𝑖𝑑, question, 𝑞⟩ }
𝐶′
𝐸

= 𝐶𝐸 ∪ {⟨+questions (𝑠𝑖𝑑, 𝑞), T⟩ }

(Assert)
𝑆𝑀 (𝑀In) = ⟨mid, 𝑠𝑖𝑑, assert, 𝑝 ⟩

⟨ag,𝐶,𝑀,𝑇 , ProcMsg⟩ −→ ⟨ag′,𝐶′, 𝑀′,𝑇 , ExecInt⟩
where:

ag′bs = agbs ∪ {𝑝 [𝑠 (𝑠𝑖𝑑) ] }
𝑀′In = 𝑀In \ { ⟨mid, 𝑠𝑖𝑑, assert, 𝑝 ⟩ }
𝐶′
𝐸

= 𝐶𝐸 ∪ {⟨+asserts (𝑠𝑖𝑑, 𝑝), T⟩ }

(Justify)
𝑆𝑀 (𝑀In) = ⟨mid, 𝑠𝑖𝑑, justify, ⟨𝑆′, 𝑐 ⟩𝜃sni ⟩

⟨sni, C, P, CQ⟩ ∈ ΔAS ∀𝑝𝜃 ∈ 𝑆′, 𝑝 ∈ P 𝑐 = C𝜃
⟨ag,𝐶,𝑀,𝑇 , ProcMsg⟩ −→ ⟨ag′,𝐶′, 𝑀′,𝑇 , ExecInt⟩

where:
𝑀′In = 𝑀In \ { ⟨mid, 𝑠𝑖𝑑, justify, ⟨𝑆′, 𝑐 ⟩𝜃sni ⟩ }
ag′bs = agbs ∪ {𝑝 [𝑠 (𝑠𝑖𝑑) ]𝜃 | for all 𝑝 ∈ P and 𝑝𝜃 ∈ 𝑆′ } ∪

{𝑝 [𝑠 (𝑠𝑖𝑑), 𝑑𝑒𝑐 (sni) ]𝜃 |for all 𝑝 ∈ P and 𝑝𝜃 ∉ 𝑆′ }
∪ {(P ⇒ C) [𝑠 (𝑠𝑖𝑑), 𝑑𝑒𝑐 (sni) ] }

𝐶′
𝐸

= 𝐶𝐸 ∪ {⟨+justifies (𝑠𝑖𝑑, ⟨𝑆′, 𝑐 ⟩𝜃sni ), T⟩ }

Receiving question or refuse messages: the agent receiving
the message will just remove the message from its mailbox and
an event will be generated for that. The event is handled as usual
by the agent’s plans, which determine its strategy in the dialogue.
Receiving assert or acceptmessages: the agent receiving the
message will remove the message from its mailbox, update its belief
base with the message content properly annotated with the sender
as the source of that information, and an event will be generated
for that. The event is handled by the agent’s plans according to its
strategy in the dialogue.
Receiving a justify message: when an agent selects a justify
message from its mailbox, the message is removed from the mailbox,
the agent’s belief base is updated with all information contained
in the support of the intended argument, annotating clearly which
formulæ have been received from the sender and which have been
decoded, and an event +justifies(𝑠𝑖𝑑, ⟨𝑆 ′, 𝑐⟩𝜃sni ) is generated for that.
The event can be handled by the agent’s plans according to its
strategy in the dialogue. It is important to mention that, when the
agent receives a justify message, the content is an enthymeme. Thus,
the enthymeme is decoded into the original sender’s argument,
guided by the AS.

3 CONCLUSION

In this work, we proposed an operational semantics that specifies an
enthymeme-based communication approach for BDI agents. Our
approach is based on the idea that agents share AS and knowl-
edge from the organisation, using that information to construct
enthymemes from arguments, as well to reconstruct arguments
from the enthymemes communicated by agents. We defined our op-
erational semantics making reference to general components of the
BDI architecture, therefore any language based on concepts such
as beliefs, intentions, etc., could also benefit from our formalisation.
Our work moves towards an enthymeme-based communication
framework in MAS, extending our previews work [7], using the
framework for AS proposed in [8, 10]. In future work, we intend to
explore our approach for enthymemes in explainable MAS [9].

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1709



REFERENCES

[1] Elizabeth Black and Anthony Hunter. 2008. Using enthymemes in an inquiry
dialogue system. In Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 1. International Foundation for
Autonomous Agents and Multiagent Systems, 437–444.

[2] Rafael H. Bordini, Jomi Fred Hübner, andMichaelWooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology).
John Wiley & Sons.

[3] Peter McBurney and Simon Parsons. 2004. Locutions for Argumentation in
Agent Interaction Protocols.. In AC (Lecture Notes in Computer Science, Vol. 3396),
Rogier M. van Eijk, Marc-Philippe Huget, and Frank Dignum (Eds.). Springer,
209–225.

[4] Peter McBurney and Simon Parsons. 2009. Dialogue Games for Agent Argu-
mentation. In Argumentation in Artificial Intelligence, Guillermo Simari and Iyad
Rahwan (Eds.). Springer US, 261–280.

[5] Alison R. Panisson and Rafael H. Bordini. 2016. Knowledge Representation for
Argumentation in Agent-Oriented Programming Languages. In 2016 Brazilian
Conference on Intelligent Systems, BRACIS.

[6] Alison R Panisson and Rafael H Bordini. 2017. Argumentation schemes in multi-
agent systems: A social perspective. In International Workshop on Engineering
Multi-Agent Systems. Springer, 92–108.

[7] Alison R Panisson and Rafael Heitor Bordini. 2017. Uttering only what is needed:
Enthymemes in multi-agent systems. In Proceedings of the 16th International
Conference on Autonomous Agents & Multiagent Systems (AAMAS-2017), 2017,
Brasil.

[8] Alison R Panisson and Rafael H Bordini. 2020. Towards a computational model
of argumentation schemes in agent-oriented programming languages. In 2020
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent

Agent Technology (WI-IAT). IEEE, 9–16.
[9] Alison R Panisson, Débora C Engelmann, and Rafael H Bordini. 2021. Engineering

explainable agents: an argumentation-based approach. In International Workshop
on Engineering Multi-Agent Systems (EMAS).

[10] Alison R Panisson, Peter McBurney, and Rafael H Bordini. 2021. A computa-
tional model of argumentation schemes for multi-agent systems. Argument &
Computation 3 (2021), 357–395.

[11] Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini. 2014.
An Approach for Argumentation-based Reasoning Using Defeasible Logic in
Multi-Agent Programming Languages. In 11th International Workshop on Argu-
mentation in Multiagent Systems.

[12] Simon Parsons and Peter McBurney. 2003. Argumentation-based dialogues for
agent co-ordination. Group Decision and Negotiation 12, 5 (2003), 415–439.

[13] Simon Parsons, Michael Wooldridge, and Leila Amgoud. 2002. An analysis
of formal inter-agent dialogues. In Proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 1 (Bologna, Italy)
(AAMAS ’02). ACM, New York, NY, USA, 394–401.

[14] Gordon D Plotkin. 1981. A structural approach to operational semantics. (1981).
[15] Anand S. Rao. 1996. AgentSpeak(L): BDI agents speak out in a logical com-

putable language. In Proceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent world : agents breaking away: agents breaking
away (Einhoven, The Netherlands) (MAAMAW ’96). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 42–55.

[16] Renata Vieira, Álvaro Moreira, Michael Wooldridge, and Rafael H. Bordini. 2007.
On the Formal Semantics of Speech-act Based Communication in an Agent-
oriented Programming Language. J. Artif. Int. Res. 29, 1 (June 2007), 221–267.

[17] D. Walton, C. Reed, and F. Macagno. 2008. Argumentation Schemes. Cambridge
University Press.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1710


	Abstract
	1 Introduction
	2 Semantics for Enthymemes
	3 Conclusion
	References



