
Speeding up Deep Reinforcement Learning through
Influence-Augmented Local Simulators

Extended Abstract

Miguel Suau*, Jinke He, Matthijs T. J. Spaan, and Frans A. Oliehoek
Delft University of Technology
*m.suaudecastro@tudelft.nl

ABSTRACT
Learning effective policies for real-world problems is still an open
challenge for the field of reinforcement learning (RL). The main
limitation being the amount of data needed and the pace at which
that data can be obtained. In this paper, we study how to build light-
weight simulators of complicated systems that can run sufficiently
fast for deep RL to be applicable. We focus on domains where agents
interact with a reduced portion of a larger environment while still
being affected by the global dynamics. Our method combines the
use of local simulators with learnedmodels that mimic the influence
of the global system. The experiments reveal that incorporating
this idea into the deep RL workflow can considerably accelerate the
training process and presents several opportunities for the future.

KEYWORDS
Simulation; Influence; Deep Reinforcement Learning.

ACM Reference Format:
Miguel Suau*, Jinke He, Matthijs T. J. Spaan, and Frans A. Oliehoek. 2022.
Speeding up Deep Reinforcement Learning through Influence-Augmented
Local Simulators: Extended Abstract. In Proc. of the 21st International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online,
May 9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
In this work, we design lightweight versions of large simulators
with the goal of speeding up the overall training process. The
method we propose applies to domains where agents only interact
with a reduced local part of a larger environment, yet they are
indirectly being affected by the global dynamics. Traffic control
is one example of such environments. Say, for instance, that we
wanted to train an agent to control the traffic lights of a particular
intersection in a very large city. To do so we could build a small
local simulator that captures only the information that is directly
relevant to the agent (traffic density in the neighborhood [7]). How-
ever, after training, we may find out that an agent that does very
well in the small simulator, performs poorly in the real intersection.
The performance gap would be caused by a data distribution shift
[1, 9]. Even though the simulator might be able to closely mimic
the local dynamics (i.e. cars moving within the intersection), it
would fail to account for the interactions of the local neighborhood
with the rest of the city. Thus, the agent learns a policy based on
certain transition dynamics that turn out to be very different in the
real world. Alternatively, we could try to model the dynamics of a

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Global
Simulator

Local
Simulator

Influence Predictor
influence

local 
variables

Environment

Figure 1: Diagram Influence-Augmented Local Simulator

sufficiently large portion of the city, but this would surely result in
a very slow simulator.

One important property of the traffic domain is that, although the
agent’s local problem may be affected by many external variables,
it is only directly influenced by the road segments that connect the
intersection with the rest of the city. Hence, we can simply monitor
the traffic densities at these road segments since, from the agent’s
local perspective, they summarize the effect of all the external
variables. This insight is not specific to the traffic domain. In fact, in
most networked systems (warehouse commissioning, [2], heating
systems [4], telecommunication [11]) interactions between different
components often occur through a few number of variables.

Contributions: Supported by the formal framework of influence-
based abstraction (IBA) [8], we exploit the above property to build
influence-augmented local simulators (IALS), which mirror the re-
sponse of the global system through the so called influence predictor.
In previous work [5] we demonstrated the advantage of this ap-
proach for online planning in two discrete toy problems. Here we
extend the method to high dimensional problems and study how
to integrate the IBA framework with Deep RL. Moreover, while in
[5] we showed that the IALS outperforms the global simulator only
when the time budget is limited, our results reveal that the IALS can
train policies in a fraction of the time and that these can match the
same performance as policies trained on the GS, without imposing
any time constraints, and despite the IALS is only approximate.

2 INFLUENCE-AUGMENTED LOCAL
SIMULATORS FOR DEEP RL

In the following, we describe how we use the IBA formulation to
design lightweight simulators that can speed up the long training
times imposed by neural network policies. Figure 1 shows a diagram
of the influence-augmented local simulator (IALS) [5], which is
composed of a local simulator and an approximate influence predictor
(AIP). Please refer to the full version of this paper [12] for a more
detailed description of the method.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1735



1

Figure 2: A screenshot of the traffic environment.

Local simulator (LS):. As opposed to a global simulator (GS),
which should closely reproduce the dynamics of every state variable,
the LS is an abstracted version that only models a small portion of
it. The LS focuses on characterizing the transitions of those state
variables 𝑥𝑡 that are direct parents of rewards and observations.
Moreover, as mentioned in the introduction, although local state
transitions may be affected by many external (non-local) variables
𝑦𝑡 , in many structured settings local variables will only be directly
influenced by a subset of those which we call influence sources 𝑢𝑡 .
Hence, we can simulate local transitions as ¤𝑇 (𝑥𝑡+1 |𝑥𝑡 , 𝑢𝑡 , 𝑎𝑡 ) where
¤𝑇 denotes the local simulator.

Approximate influence predictor (AIP): . The AIP monitors
the response of the the external variables 𝑦𝑡 to the current action-
local state history (ALSH) 𝑙𝑡 = ⟨𝑥1, 𝑎1 ..., 𝑎𝑡−1, 𝑥𝑡 ⟩ by estimating
𝐼 (𝑢𝑡 |𝑙𝑡 ). Due to combinatorial explosion, computing the exact dis-
tribution 𝐼 (𝑢𝑡 |𝑙𝑡 ) is generally intractable [8]. We write 𝐼𝜃 to denote
the AIP, where 𝜃 are the parameters, which need to be learned from
data. Replacing the true influence distribution with an approxima-
tion implies that we are no longer guaranteed to find the optimal
policy [3]. Nonetheless, as we show in our experiments, it is often
worth trading accuracy for computational efficiency. We model 𝐼𝜃
using a neural network, which we train on a dataset of 𝑁 samples
of the form (𝑙𝑛, 𝑢𝑛) collected from the GS. We formulate the task
as a classification problem. The neural network is optimized using
the expected cross-entropy loss.

3 EXPERIMENTS
The goal of this experiments is to studywhether we can reduce train-
ing times by replacing the GS with the IALS while still achieving
comparable learning performances. Agents are trained separately
with PPO [10] on (1) the global simulator (GS), (2) the influence-
augmented local simulator (IALS) with a pretrained AIP, and (3)
an IALS with an untrained AIP (untrained-IALS). To measure the
agent’s performance, training is interleaved with periodic evalua-
tions on the GS. The results are averaged over 5 random seeds.

Figure 2 shows a grid-like traffic network composed of 25 in-
tersections. The agent controls the traffic lights at the intersection
highlighted by the blue dashed box. The rest of the traffic lights are
controlled by fixed actuators that use sensors to adapt to the traffic

0 1 2 3 4 5 6
Runtime (h)

80

100

120

140

160

180

GS
IALS
untrained-IALS
Actuated

0 1 2 3 4 5 6
Total runtime (h)

GS

IALS

untrained-IALS

0.0 0.2 0.4 0.6 0.8
Influence cross-entropy loss

IALS

untrained-IALS

M
ea

n 
Ep

iso
di

c 
Re

wa
rd

Figure 3: Top: Learning curves of agents trained with the GS,
the IALS and the untrained-IALS as a function of wall-clock
time. Middle: Total runtime of training for 2M training steps
on the three simulators. Bottom: Cross entropy loss.

Wu et al. [13]. The goal is to maximize the average speed of cars
entering the intersection’s neighborhood. Cars are only visible to
the agent when they enter the dashed box.

GS, LS and AIP:. The GS and LS are built using Flow [13] and
SUMO [6]. The GS simulates the entire traffic grid while the LS only
models the local neighborhood of the intersection. The influence
sources 𝑢𝑡 are binary variables indicating whether or not a car will
be entering the simulation from each of the four incoming lanes at
the current timestep. The AIP 𝐼𝜃 is a feedforward neural network
trained offline on a dataset of (𝑙𝑡 , 𝑢𝑡 ) pairs collected from the GS.

Results: The plot at the top of Figure 3 are the learning curves of
agents trained with the GS, the IALS, and the untrained-IALS. The
plot shows the mean episodic reward as a function of real wall-clock
time. Agents are trained for 2M timesteps on all three simulators.
The dotted horizontal lines at the end of the red and blue curves
show the agent’s final performance. The short horizontal line at
the beginning of the red curve represents to the AIP’s training time.
The black horizontal line indicates the performance of the actuated
traffic light controller. The two bar charts at the bottom show the
total training time when using each of the three simulators, and the
AIP’s accuracy with and without training. The results suggest that
policies trained on the IALS (red) can match the performance of
those trained on the GS (orange) in about 1/3 of the total training
time, despite the IALS is not as accurate as the GS. On the other hand,
since the distribution 𝐼𝜃 (𝑢𝑡 |𝑙𝑡 ) induced by the untrained AIP is very
different from the true distribution 𝐼 (𝑢𝑡 |𝑙𝑡 ), as evidenced by the
high cross entropy loss (blue bar bottom chart), agents trained on
the untrained-IALS (blue) perform much worse. More experiments
can be found in the full version [12].

ACKNOWLEDGEMENTS
This project received funding from the European Research
Council (ERC) under the European
Union’s Horizon 2020 research and in-
novation programme (grant agreement
No. 758824 —INFLUENCE).

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1736



REFERENCES
[1] Martin Arjovsky. 2021. Out of Distribution Generalization in Machine Learning.

arXiv preprint arXiv:2103.02667 (2021).
[2] Daniel Claes, Frans Oliehoek, Hendrik Baier, Karl Tuyls, et al. 2017. Decentralised

online planning for multi-robot warehouse commissioning. In Proceedings of
the 16th international conference on autonomous agents and multiagent systems.
492–500.

[3] Elena Congeduti, Alexander Mey, and Frans A. Oliehoek. 2021. Loss Bounds for
Approximate Influence-Based Abstraction. In AAMAS21.

[4] Anchal Gupta, Youakim Badr, Ashkan Negahban, and Robin G Qiu. 2021. Energy-
efficient heating control for smart buildings with deep reinforcement learning.
Journal of Building Engineering 34 (2021), 101739.

[5] Jinke He, Miguel Suau, and Frans Oliehoek. 2020. Influence-Augmented Online
Planning for Complex Environments. In Advances in Neural Information Process-
ing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 4392–4402.

[6] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter
Wagner, and Evamarie Wießner. 2018. Microscopic Traffic Simulation using
SUMO, In The 21st IEEE International Conference on Intelligent Transportation
Systems. IEEE Intelligent Transportation Systems Conference (ITSC). https://elib.

dlr.de/124092/
[7] Elise van der Pol and Frans A. Oliehoek. 2016. Coordinated Deep Reinforcement

Learners for Traffic Light Control. Submitted to NIPS’16 Workshop on Learning,
Inference and Control of Multi-Agent Systems.

[8] Frans Oliehoek, Stefan Witwicki, and Leslie Kaelbling. 2021. A sufficient statis-
tic for influence in structured multiagent environments. Journal of Artificial
Intelligence Research 70 (2021), 789–870.

[9] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D
Lawrence. 2009. Dataset shift in machine learning. The MIT Press.

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[11] Miguel Suau, Alexandros Agapitos, David Lynch, Derek Farrell, Mingqi Zhou, and
Aleksandar Milenovic. 2021. Offline Contextual Bandits for Wireless Network
Optimization. arXiv preprint arXiv:2111.08587 (2021).

[12] Miguel Suau, JinkeHe,Matthijs T. J. Spaan, and Frans A. Oliehoek. 2022. Influence-
Augmented Local Simulators: A Scalable Solution for Fast Deep RL in Large
Networked Systems. Preprint (2022).

[13] Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M
Bayen. 2017. Flow: A Modular Learning Framework for Autonomy in Traffic.
arXiv preprint arXiv:1710.05465 (2017).

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1737

https://elib.dlr.de/124092/
https://elib.dlr.de/124092/

	Abstract
	1 Introduction
	2 Influence-Augmented Local Simulators for Deep RL
	3 Experiments
	References



