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ABSTRACT
Moving target defense (MTD) has emerged as a key technique that
can be used in various security applications to reduce the threat
of attackers by taking away their ability to perform reconnais-
sance and exploit vulnerabilities. However, most of the existing
research in the field assumes unrealistic access to information about
the attacker’s motivations and/or actions when developing MTD
strategies. Many of the existing approaches also assume complete
knowledge regarding the vulnerabilities of a particular applica-
tion and how each of these vulnerabilities can be exploited by an
attacker. In this work, we propose an algorithm that generates ef-
fective MTD strategies for web applications that does not rely on
prior knowledge about the attackers. Our approach assumes that
the only information the defender receives about its own reward
function, is via interaction with the attacker in a repeated game
setting. We evaluate our algorithm using data which is mined from
the National Vulnerability Database to show that it matches the
performance of the state of the art techniques, despite using much
less information.
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1 INTRODUCTION
Deployment of web applications is a complex process with security
playing a key role. Given the relative anonymity with which any
person with an internet connection can access these applications,
a number of adversaries generally exist who aim to exploit their
vulnerabilities. This situation results in a game between a security
engineer or analyst who is constantly looking to identify and fix
these vulnerabilities while adversaries are looking to exploit them
for personal gain. The growing complexity of web applications has
made it harder to identify these vulnerabilities beforehand and the
ample amount of time attackers have to probe for these vulner-
abilities has made the situation even more complex for security
analysts. The consequences of failure go beyond financial loss to
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the organisation and could result in a breach of privacy or a denial
of service significantly harming the users of these applications.

Moving target defense offers a potential solution to handle this
problem. Instead of maintaining a single implementation of the web
application, analysts can maintain multiple implementations and
alternate between them. The key idea behind this is to take away the
advantage the attacker has i.e., to perform reconnaissance over time
on a static implementation. In recent times, the research community
has shown a lot of interest in this approach, with a number of
works [1–5] studying its viability and suggesting methods to switch
between the implementations.

Several works make use of the problem’s natural model as a game
between the analyst (modeled as a defender) and multiple attackers,
to use game theoretic approaches to identify switching strategies
i.e., which implementation to deploy at what phase. However, a lot
of this research assumes an unrealistic amount of prior knowledge
about the vulnerabilities in the implementations as well as the
competency and motivation of the attacker.

2 PROBLEM FORMULATION
Wemodel the setting ofmoving target defense as a repeated Bayesian
game played by two different players: (a) a defender (denoted by 𝜃 ),
and (b) an attacker (denoted by Ψ). As commonly done in Bayesian-
Stackelberg games [10], we model the attacker Ψ as having multiple
types {𝜓1,𝜓2, . . . ,𝜓𝜏 }. The defender has a set C = {𝑐1, 𝑐2, . . . 𝑐𝑛} of
𝑛 configurations of the application it can deploy. Each configuration
has a set of vulnerabilitiesV𝑐 .

There are 𝑇 rounds in the repeated game. At each round 𝑡 ,
an attacker of type 𝜓𝑓 (𝑡 ) (where 𝑓 (·) maps each round to an at-
tacker type) attempts to exploit a potential vulnerability 𝑎𝑡 of
the deployed configuration 𝑑𝑡 ∈ C. If the attacker is success-
ful i.e. the exploited vulnerability 𝑎𝑡 is indeed a vulnerability of
the configuration 𝑑𝑡 , then the defender receives a negative re-
ward 𝑟𝑡 (𝜓𝑓 (𝑡 ) , 𝑎𝑡 , 𝑑𝑡 ) ∈ [−1, 0). The defender receives a reward
of 0 otherwise. If the defender switches configurations between
rounds 𝑑𝑡 and 𝑑𝑡−1, they incurs an additional fixed switching cost
𝑠 (𝑑𝑡−1, 𝑑𝑡 ) ∈ [0, 1] which is known a priori.

We are interested in developing algorithms which compute a
strategy profile for the defender, D = (𝑑1, 𝑑2, . . . , 𝑑𝑇 ), that maxi-
mizes the reward of the defender subject to switching costs when
the reward function 𝑟 and the set of vulnerabilities of each config-
uration are not known before hand. More formally, our goal is to
maximize the total utility of the defender:

TU(D) =
𝑇∑︁
𝑡=1
(𝑟𝑡 (𝜓𝑓 (𝑡 ) , 𝑎𝑡 , 𝑑𝑡 ) − 𝑠 (𝑑𝑡−1, 𝑑𝑡 ))
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(a) Best Response
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(b) FPL-UE
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(c) Stackelberg
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(d) Random

Figure 1: Performance of our algorithms on NVD-based data. On each of the graphs, from left to right: BSS-Q, S-OPT, FPLMTD,
RobustRL, S-Exp3, FPL+GR. Performance is defined as the difference between the total utility of the algorithm and the total
utility of a uniform random algorithm.

3 PROPOSED ALGORITHM
Our proposed algorithm, 𝐹𝑃𝐿 −𝑀𝑇𝐷 (Algorithm 1) is inspired by
the Follow the Peturbed Leader (𝐹𝑃𝐿) algorithm for the multi-armed
bandit problem [7–9]. 𝐹𝑃𝐿−𝑀𝑇𝐷 only assumes that at each round,
the defender gets to know the reward it received from any exploited
vulnerabilities during the round.
𝐹𝑃𝐿 −𝑀𝑇𝐷 maintains a reward estimate for each configuration,

𝑟𝑐 , and then chooses a configuration that has the highest reward
estimate (subject to minor perturbations). Our reward estimates 𝑟𝑐
are an unbiased estimate of a natural reward estimation method:

E[𝑟𝑡𝑐 ] =
1

𝑡 − 1
∑︁

𝑖∈[𝑡−1]
𝑟 𝑖 (𝜓𝑓 (𝑖) , 𝑎𝑖 , 𝑐)

Algorithm 1 𝐹𝑃𝐿 −𝑀𝑇𝐷
1: Input: hyperparameters 𝜂 and 𝛾
2: 𝑟1𝑐 ← 0 ∀𝑐 ∈ C
3: for 𝑡 in 1 to 𝑇 do
4: Sample 𝑞 ∼ Bernoulli(𝛾)
5: if 𝑞 = 1 then
6: Let 𝑑𝑡 be a uniformly sampled configuration
7: else
8: Sample 𝑧𝑐 ∼ exp(𝜂) ∀𝑐 ∈ C
9: 𝑢𝑐 ← 𝑟𝑡𝑐 − 𝑧𝑐 ∀𝑐 ∈ 𝐶
10: 𝑑𝑡 ← max𝑐∈𝐶 (𝑢𝑐 − 𝑠 (𝑑𝑡−1, 𝑐))
11: end if
12: Adversary of unknown type𝜓𝑓 (𝑡 ) plays unknown action

𝑎𝑡 , giving the defender a reward 𝑟𝑡 (𝜓𝑓 (𝑡 ) , 𝑎𝑡 , 𝑑𝑡 )
13: Run GR to obtain 𝐾 (𝑑𝑡 )
14: 𝑟𝑡+1

𝑑
← 1

𝑡

[
(𝑡 − 1)𝑟𝑡

𝑑
+ 𝐾 (𝑑𝑡 )𝑟𝑡 (𝜓𝑓 (𝑡 ) , 𝑎𝑡 , 𝑑𝑡 )I{𝑑 = 𝑑𝑡 }

]
15: end for

4 EXPERIMENTAL EVALUATION
In order to evaluate 𝐹𝑃𝐿 −𝑀𝑇𝐷 , we randomly generate artificial
web applications with vulnerabilities from the National Vulnera-
bility Database. We then simulate our algorithm on these artificial
web applications against a synthetic attacker and measure the cu-
mulative reward. We compare our algorithm to the state of the art
algorithms for the problem: 𝐵𝑆𝑆 −𝑄 [11], 𝑆 −𝑂𝑃𝑇 [12], 𝑅𝑜𝑏𝑢𝑠𝑡𝑅𝐿
[14], 𝑆 − 𝐸𝑥𝑝3 [6] and 𝐹𝑃𝐿 +𝐺𝑅 [9]. 𝐵𝑆𝑆 −𝑄 and 𝑆 −𝑂𝑃𝑇 assume

Algorithm 2 GR

𝐾 (𝑑𝑡 ) ← 𝑀

for 𝑘 in 1 to𝑀 do
Follow lines 4 to 11 in Algorithm 1 to produce 𝑑 as a simula-

tion of 𝑑𝑡
if 𝑑 = 𝑑𝑡 then

𝐾 (𝑑𝑡 ) ← min(𝐾 (𝑑𝑡 ), 𝑘)
end if

end for
return 𝐾 (𝑑𝑡 )

knowledge of the set of vulnerabilities of each configuration along
with the defender’s and attacker’s reward function. On the other
hand, 𝑅𝑜𝑏𝑢𝑠𝑡𝑅𝐿, 𝑆 − 𝐸𝑥𝑝3 and 𝐹𝑃𝐿 +𝐺𝑅 use the same amount of
information as 𝐹𝑃𝐿 −𝑀𝑇𝐷 . We test all the algorithms against four
attacker strategies: Best Response (also used by [13]), 𝐹𝑃𝐿 − 𝑈𝐸
[13], Stackelberg solution [10] and Uniform Random.

We present our results in Figure 1. Each graph plots the per-
formance of each of the above mentioned algorithms against each
attacker strategy. We measure the performance of every algorithm
defined as the difference between the total utility of the algorithm
and the total utility of the uniform random algorithm. The graphs in
Figure 1 show a clear trend across the different attacker strategies.
𝑆 −𝑂𝑃𝑇 performs significantly well outperforming 𝐵𝑆𝑆 −𝑄 ; we
attribute this to the slow convergence rate of 𝐵𝑆𝑆 −𝑄 resulting in a
lack of convergence to the optimal strategy even after 25 episodes.
Across all the four attacker strategies, we find that our algorithm
has a performance similar to 𝑆 −𝑂𝑃𝑇 even marginally surpassing
it in a few cases. Our algorithm also performs significantly better
than the other baselines 𝑅𝑜𝑏𝑢𝑠𝑡𝑅𝐿, 𝑆 − 𝐸𝑥𝑝3 and 𝐹𝑃𝐿 +𝐺𝑅. More
specifically, against the Best Response attacker strategy, 𝐹𝑃𝐿−𝑀𝑇𝐷
has a performance which is 71%, 72% and 430% greater than that
of 𝑅𝑜𝑏𝑢𝑠𝑡 − 𝑅𝐿, 𝑆 − 𝐸𝑥𝑝3 and 𝐹𝑃𝐿 + 𝐺𝑅 respectively. We obtain
similar percentages for the other attacker strategies as well (as can
be seen in Figure 1).
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