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ABSTRACT
The recent mean field game (MFG) formalism has enabled the ap-

plication of inverse reinforcement learning (IRL) methods in large-

scale multi-agent systems, with the goal of inferring reward signals

that can explain demonstrated behaviours of large populations.

The existing IRL methods for MFGs are built upon reducing an

MFG to a Markov decision process (MDP) defined on the collective

behaviours and average rewards of the population. However, this

paper reveals that the reduction from MFG to MDP holds only for

the fully cooperative setting. This limitation invalidates existing IRL

methods on MFGs with non-cooperative environments. To measure

more general behaviours in large populations, we study the use

of individual behaviours to infer ground-truth reward functions

for MFGs. We propose Mean Field IRL (MFIRL), the first dedicated

IRL framework for MFGs that can handle both cooperative and

non-cooperative environments. Based on this theoretically justified

framework, we develop a practical algorithm effective for MFGs

with unknown dynamics. We evaluate MFIRL on both cooperative

and mixed cooperative-competitive scenarios with many agents.

Results demonstrate that MFIRL excels in reward recovery, sample

efficiency and robustness in the face of changing dynamics.
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1 INTRODUCTION
Inverse reinforcement learning (IRL) is concerned with one or mul-

tiple agents operating in an environment that is agnostic towards

reward signals. It provides a powerful solution to learn behavioural

models by inferring reward functions from demonstrations. The

majority of its successful applications, however, deal with systems

with a handful of agents [7, 27]. Yet, many scenarios involve a much
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larger population, such as traffic networks with millions of vehicles

[6], online games with massive players [26], and online businesses

with a large customer body [2]. Applying IRL methods to such

large-scale systems is intractable due to the exponential growth of

joint state-action spaces and agent interactions.

A promising concept to achieve tractability for modelling large-

scale multi-agent systems (MAS) is the mean field game (MFG)

[25, 30] that uses mean field theory to simplify interactions among

a large number of agents. An MFG views agents as a homoge-

neous population, i.e., they are identical, indistinguishable, and

interchangeable [22]. It thus uses a single entity, termed mean field,
to denote the statistical information of the overall population, rather

than modelling each agent individually. The interactions among

agents are therefore reduced to those between a single representa-

tive agent and the overall population. This reduction to a dual-view

interplay enables characterising the optimal behaviours in large-

scale MAS using mean field Nash equilibrium (MFNE), where each

agent’s policy is a best response to the mean field and the mean field

is in turn consistent with the policy. MFGs have enabled applica-

tions in many fields such as economics [19, 28], finance [9, 12] and

crowd motion [8, 29]. To measure behaviours in large populations,

it is thus promising to study IRL for MFGs, which aims to uncover

reward signals behind demonstrated MFNE behaviours.

A recent research [55] studies IRL in MFGs, which shows that an

MFG can be reduced to a Markov decision process (MDP). It thus

extends IRL toMFGs via applying existing single-agent IRLmethods

to this MDP. Since this MDP describes the population’s collective
behaviours driven by the societal reward (i.e., the average reward of

the population), we henceforth call this method population-level IRL.
However, we reveal in this paper that the reduction from MFG to

MDP holds only for the fully cooperative setting, i.e., all agents share
the same societal reward. Consequently, population-level IRL is

prone to biased reward inferences in non-cooperative (competitive

or mixed cooperative-competitive) environments. In contrast to

the societal reward, the reward of each individual can capture each

agent’s real intention, regardless of whether the environment is

cooperative or not. To model and predict both cooperative and non-

cooperative behaviours in large-scale MAS, it is thus important to

consider inferring rewards of individual agents in MFGs.

In this paper, considering the preliminary investigation of IRL

in MFGs and limitations of population-level IRL, we study IRL for

MFGs at the individual level. We make the following contributions
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to the field: (1) We begin with a theoretical justification for the

fact that the reduction from MFG to MDP holds only for the fully

cooperative setting. The exposure of this limitation reveals the re-

stricted suitability of the existing MFG-MDP reduction-based IRL

and reinforcement learning (RL) methods for general MFGs. (2)

Towards measuring both cooperative and non-cooperative inter-

actions in MFGs, we then propose and formalise the problem of

individual-level IRL for MFGs. This new problem formulation tar-

gets recovering the individual reward function from demonstrated

individual behaviours, which is not amenable to population-level

IRL. (3) To solve this problem, we put forward a novel and dedi-

cated IRL framework for MFGs, called Mean Field IRL (MFIRL). We

show that MFIRL can recover a suitable reward function under

standard assumptions, no matter whether the environment is co-

operative or not. (4) Based on this new framework, we develop a

practical algorithm effective for MFGs with unknown dynamics.

(5) We empirically evaluate MFIRL on five numerical models and

simulated battle games, both with cooperative and non-cooperative

environments. In non-cooperative scenarios, MFIRL outperforms

population-level IRL in terms of reward recovery and robustness

against changing dynamics. Moreover, in cooperative scenarios, a

notable advantage of MFIRL is that it requires fewer samples to

achieve comparable performance.

2 RELATEDWORK
RL for MFGs. MFGs were independently proposed by Lasry and

Lions [30] and Huang et al. [25] in the continuous-time setting.

Mathematically, the system dynamics is governed by two stochas-

tic differential equations: one models the backward dynamics of a

representative agent’s value functions; the othermodels the forward

dynamics of the mean field. Discrete-time MFG models, adopted in

this paper, were then proposed in [18]. RL in MFGs has become a

burgeoning research field recently. Yang et al. [56] and Subrama-

nian et al. [51] used mean field theory to approximate joint actions

in large-population stochastic games to approximate Nash equilib-

ria. Mguni et al. [37] proposed a decentralised RL method for MFGs.

Guo et al. [20] presented a Q-learning-based algorithm for com-

puting stationary MFNE. Subramanian and Mahajan [50] used RL

to compute local MFNE (a relaxed version). While, all these works

presuppose the presence of reward functions. Our work takes a

complementary view that the reward function is difficult to specify,

and hence the necessity for IRL for MFGs.

IRL for MDPs. The problem of IRL was first studied by Ng and

Russell [38] on MDPs. Existing IRL methods typically fall into the

following categories: (1) margin optimisation based methods [1,

40, 42, 52] that find a reward by creating a margin between the

expert policy and any other policy in terms of rewards; (2) Bayesian
IRL methods [13, 32, 35, 41] that use demonstrations to facilitate

a Bayesian update of a prior distribution over candidate reward

functions; (3) maximum entropy IRL methods [16, 17, 59, 60] that

use a probabilistic framework to find the policy maximising the

entropy of expert demonstrations. As explained above, although the

reduction from MFG to MDP enables applying these MDP-based

IRL methods to MFGs, they can only deal with fully cooperative

environments. In this paper, we formalise the problem of individual-

level IRL for MFGs using the idea of margin optimisation, where

the expert policy and any other policy is separated by a margin in

terms of rewards, based on the expert demonstrated mean field.

IRL for MAS. Recently, some research has explored IRL in the multi-

agent setting. Most of these works assume specific reward struc-

tures, including fully cooperative games [5, 7], fully competitive

games [34], or either of the two [43, 53]. For general stochastic

games, Yu et al. [57] presented MA-AIRL, a multi-agent IRL method

using adversarial learning. Another line of works studied inverse

dynamic games [31, 39, 44], which aims to infer the cost functions

for dynamic games from a control perspective. However, all these

prior methods scale poorly to a large agent number. Šošić et al. [49]

proposed SwarmIRL that views a large-scale MAS as a swarm sys-

tem consisting of homogeneous agents. However, it cannot handle

non-stationary policies and non-linear reward functions. Our work

makes no modelling assumptions on policies and reward functions.

3 PRELIMINARIES
The formalism ofmean field game (MFG) [25, 30] offers a mathmeti-

cally tractable model for analysing large-scale multi-agent systems.

It approximates the interactions among homogeneous agents by

those between a representative agent and the population. In this

section, we introduce the formulation of MFGs and some standard

equilibrium concepts which we will build upon in our method.

3.1 Mean Field Games
Throughout the paper, we focus on MFGs with finite state-action

spaces and finite time horizons [15]. First, consider an 𝑁 -player

game where all agents share the same local state space S and

action space A. A joint state is a tuple (𝑠1, . . . , 𝑠𝑁 ) ∈ S𝑁
where

𝑠𝑖 ∈ S is the state of the 𝑖th agent. Taking the limit as 𝑁 → ∞,

instead of modelling each agent individually, MFGs model a single

representative agent and collapse the joint state into an empirical

distribution 𝜇 ∈ P(S), called a mean field, given by

𝜇 (𝑠) ≜ lim

𝑁→∞
1

𝑁

𝑁∑︁
𝑖=1

1{𝑠𝑖=𝑠 } , (1)

where1 denotes the indicator function (i.e.,1{𝑥 } = 1 if 𝑥 is true and

0 otherwise) and P(S) denotes the set of probability distributions

over S. The transition function 𝑃 : S × A × P(S) × S → [0, 1]
specifies how an agent’s states evolve, i.e., an agent transits to the

next state 𝑠𝑡+1 with probability 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ), depending on its

current state, action, and mean field. Let𝑇 ∈ N+ denote a finite time

horizon. Amean field flow (MF flow for short) consists of a sequence

of𝑇 + 1 mean fields 𝝁 ≜ {𝜇𝑡 }𝑇𝑡=0
, where the initial value 𝜇0 is given.

The running reward of an agent is specified by the reward function
𝑟 : S × A × P(S) → R with the exception that the reward at the

last step (𝑡 = 𝑇 ) is defined separately. Following the convention,

we set it as zero [15, 55]. The agent’s long-term reward is thus the

sum

∑𝑇−1

𝑡=0
𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ), where 𝛾 ∈ (0, 1] is the discounted factor.

To summarise, an MFG is defined as a tuple (S,A, 𝑃, 𝜇0, 𝑟 , 𝛾).
MFGs adopt a time-varying stochastic policy 𝝅 ≜ {𝜋𝑡 }𝑇𝑡=0

to

characterise a strategic agent, where 𝜋𝑡 : S → P(A) is the per-
step policy at step 𝑡 , i.e., 𝜋𝑡 directs the agent to choose action 𝑎𝑡 ∼
𝜋𝑡 (·|𝑠𝑡 ). Given a policy 𝝅 , the expected return (cumulative rewards)

of an agent during the whole course of a game while interacting

Main Track AAMAS 2022, May 9–13, 2022, Online

254



with an MF flow 𝝁 is given by

𝐽 (𝝁, 𝝅) ≜ E
[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )
��� 𝑠0 ∼ 𝜇0, 𝝁, 𝝅 , 𝑃

]
. (2)

At the individual level, an agent seeks an optimal control in the

form of a policy to maximise the expected return. Fixing an MF flow

𝝁, a policy 𝝅 is called a best response to 𝝁 if it maximises 𝐽 (𝝁, 𝝅).
We denote the set of all best-response policies to a given 𝝁 by

Ψ(𝝁) ≜ arg max

𝝅
𝐽 (𝝁, 𝝅) . (3)

Since all agents are homogeneous, MFG prescribes that every agent

uses the same policy. The dynamics of MF flow is thereby governed

by the (discrete-time) McKean-Vlasov (MKV) equation [10]:

𝜇𝑡+1 (𝑠′) =
∑︁
𝑠∈S

𝜇𝑡 (𝑠)
∑︁
𝑎∈A

𝜋𝑡 (𝑎 |𝑠) 𝑃 (𝑠′ |𝑠, 𝑎, 𝜇𝑡 ) . (4)

Denote Φ(𝝅) as the MF flow fulfilling the MKV equation above

given a policy 𝝅 . We say 𝝁 is consistent with 𝝅 if 𝝁 = Φ(𝝅).
At the population level, if all agents use the same policy 𝝅 , the

population state distribution (i.e., the mean field 𝜇𝑡 ) matches each

individual’s state visitation distribution (i.e., 𝑃 (·|𝑠𝑡−1, 𝑎𝑡−1, 𝜇𝑡−1))
[20]. As a result, the cumulative societal rewards (population’s aver-
age rewards) coincide with an individual’s expected return 𝐽 (𝝁, 𝝅).
Formally, let 𝑟 (𝜇, 𝜋) denote the societal reward when all agents

play the same per-step policy 𝜋 under the mean field 𝜇:

𝑟 (𝜇, 𝜋) ≜
∑︁
𝑠∈S

𝜇 (𝑠)
∑︁
𝑎∈A

𝜋 (𝑎 |𝑠)𝑟 (𝑠, 𝑎, 𝜇). (5)

We can express 𝐽 (𝝁, 𝝅) in terms of the societal reward as follows:

𝐽 (𝝁, 𝝅) =
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟 (𝜇𝑡 , 𝜋𝑡 ) if 𝝁 = Φ(𝝅) . (6)

3.2 Mean Field Nash Equilibrium
When agents are strategic (non-cooperative), the mean field Nash
equilibrium (MFNE) is adopted as the solution concept, where all

agents use the same best-response policy to theMF flow.Meanwhile,

the MF flow is consistent with the policy.

Definition 1 (Mean Field Nash Eqilibrium). A pair of MF
flow and policy (𝝁★, 𝝅★) is called a mean field Nash equilibrium if

• Agent rationality: 𝝅★ ∈ Ψ(𝝁★);
• Population consistency: 𝝁★ = Φ(𝝅★).

An MFG admits an MFNE under the standard assumptions in

game theory [14, 45]. The computation of MFNE typically involves

a fixed-point iteration procedure for the MF flow. More formally,

defining any mapping Ψ̂ : 𝝁 ↦→ 𝝅 that identifies a best-response

policy in Ψ(𝝁), we obtain the fixed-point iteration for the MF flow

by alternating between 𝝅 = Ψ̂(𝝁) and 𝝁 = Φ(𝝅). The standard

assumption for the uniqueness of MFNE is that the fixed-point

iteration will converge to a unique MF flow. However, it does not

hold in general [14], which implies the existence of multiple MFNE.

3.3 Mean Field Social Optimum
When agents are cooperative, the solution concept is the mean
field social optimum (MFSO), which maximises cumulative societal

rewards whilst satisfies the condition of population consistency.

Definition 2 (Mean Field Social Optimum). A pair of MF flow
and policy (𝝁★, �̄�★) is called a mean field social optimum if

• Maximum cumulative societal rewards: 𝐽 (𝝁★, �̄�★) ≥ 𝐽 (𝝁, 𝝅)
for any (𝝁, 𝝅) satisfying 𝝁 = Φ(𝝅);

• Population consistency: 𝝁★ = Φ(�̄�★).

MFSO is not equivalent to MFNE. In an MFNE, 𝝅★
maximises

the expected return 𝐽 (𝝁, 𝝅) given 𝝁★; while an MFSO (𝝁★, �̄�★)
maximises 𝐽 (𝝁, 𝝅) among all (𝝁, 𝝅) satisfying 𝝁 = Φ(𝝅). In other

words, an MFSO is a particular MFNE that maximises the expected

return. Note that if an MFNE exists uniquely, it is also an MFSO.

Unless specified otherwise, we will use the term MFNE to denote

an equilibria that is not an MFSO. The process of finding an MFSO

can be defined as a constrained optimisation problem:

max

𝝁,𝝅
𝐽 (𝝁, 𝝅) subject to 𝝁 = Φ(𝝅) . (7)

In Sec. 4, we draw a connection between this optimisation problem

and a particular Markov decision process (MDP).

4 REVISITING IRL FOR MFG VIA REDUCING
MFG TO MDP

Suppose we have no access to the reward function 𝑟 (𝑠, 𝑎, 𝜇) but have
a set of expert demonstrations. Inverse reinforcement learning (IRL)
aims to uncover the reward function behind these demonstrations.

In this section, we revisit the IRL method in [55], which showed that

an MFG can be reduced to an MDP. It thus extended IRL to MFGs

by applying existing single-agent IRL methods to this MDP. This

reduction is also adopted in the study of reinforcement learning (RL)

for MFGs [11]. However, we show that this reduction holds only for

the fully cooperative setting, i.e., all agents share the same societal

reward. As a result, IRL methods based on this reduction would lead

to biased reward inferences if demonstrations are sampled from

an MFNE rather than an MFSO. The exposure of this limitation

motivates our restudy on IRL forMFGs. In Sec. 5, we propose a novel

IRL method for MFGs with general non-cooperative environments.

4.1 The Reduction from MFG to MDP
Shown in [11, 55], an MFG can be reduced to an MDP that describes

the population’s collective behaviours. The state, action and reward

in this MDP corresponds to the mean field, population’s collective

action and societal reward in the MFG, respectively. Its dynamics

coincides with the MKV equation. Formally, the MDP associated

with an MFG (S,A, 𝑃, 𝜇0, 𝑟 , 𝛾) is constructed as follows:

• State: 𝜇𝑡 , i.e., the state at step 𝑡 is the mean field 𝜇𝑡 .

• Action: 𝜋𝑡 , i.e., the action is a per-step policy in MFG.

• Reward: 𝑟 (𝜇𝑡 , 𝜋𝑡 ), i.e., the societal reward.
• Deterministic Transition: 𝜇𝑡+1 = Φ(𝜇𝑡 , 𝜋𝑡 ) 1

fulfilling the

MKV equation defined in Eq. (4).

• Stationary Policy: 𝜑 : 𝜇 ↦→ 𝜋 .

1
Here, we slightly abuse the notation Φ to denote the next mean field induced by the

current mean field and current per-step policy, according to the MKV equation.
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Intuitively, one can interpret the MDP policy 𝜑 as a “central

controller” who makes decisions for the overall population based

on the current population state distribution. Let 𝜑★ be an optimal

policy for the MDP, it was claimed in [11, 55] that the MDP state-

action trajectory (𝜇0, 𝜋0, . . . , 𝜇𝑇 , 𝜋𝑇 ) generated by 𝜑★ constitutes

an MFNE of the MFG, where 𝜋𝑡 = 𝜑★(𝜇𝑡 ) and 𝜇𝑡+1 = Φ(𝜇𝑡 , 𝜋𝑡 ).
However, we show that, more precisely, the MDP state-action

trajectory generated by 𝜑★ constitutes an MFSO rather than a gen-

eral MFNE. The reason lies in the construction of the MDP: the

optimal MDP policy 𝜑★ maximises the cumulative societal rewards

𝐽 (𝝁, 𝝅) = ∑𝑇−1

𝑡=0
𝛾𝑡𝑟 (𝜇𝑡 , 𝜋𝑡 ) and meanwhile, the deterministic tran-

sition enforces the condition of population consistency, thereby

exactly solving the constrained optimisation problem of computing

an MFSO as defined in Eq. (7). Intuitively, at the macroscopic level,

the dynamics of population’s collective behaviours is governed by

an MDP only if agents are fully cooperative. Therefore, if an MFG is

not fully cooperative or we do not assume an MFNE exists uniquely,

the reduction from MFG to MDP would no longer hold.

4.2 Population-Level IRL for MFGs
The work [55] proposed to infer the societal reward function 𝑟 by

applying single-agent IRL methods to the MDP defined above. Since

this method infers the population’s societal reward, we henceforth

call it Population-Level IRL (PLIRL). In PLIRL, we assume that the

demonstrations D = {(𝜇 𝑗
0
, 𝜋

𝑗

0
, . . . , 𝜇

𝑗

𝑇
, 𝜋

𝑗

𝑇
)}𝑀

𝑗=1
are a set of 𝑀 MF

flow-policy trajectories whose expectation is (𝝁𝐸 , 𝝅𝐸 ). The goal of
PLIRL is to find a suitable 𝑟 that can rationalise the expert behaviour

(𝝁𝐸 , 𝝅𝐸 ). We can succinctly represent PLIRL as the following con-

strained optimisation problem:

PLIRL

(
𝝁𝐸 , 𝝅𝐸

)
= arg max

𝑟 (𝜇,𝜋 )

[
𝐽

(
𝝁𝐸 , 𝝅𝐸

)
− max

𝝁,𝝅
𝐽 (𝝁, 𝝅)

]
subject to 𝝁 = Φ(𝝅)

, (8)

where 𝐽 (𝝁, 𝝅) is in the form of Eq. (6). Intuitively, if (𝝁𝐸 , 𝝅𝐸 ) in-
deed maximises the societal rewards under a feasible 𝑟 , then the

objective would attain the maximum 0; otherwise, it is negative. In

IRL literature, problems in the form of Eq. (8) are generally solved by

a bilevel optimisation procedure [16, 17, 60]. In PLIRL, specifically,

the upper-level task is to tune the societal reward function 𝑟 (𝜇, 𝜋)
given the optimal expected return of the MDP defined above; the

lower-level task is to solve an MDP based on the current reward

function. In practice, 𝐽 (𝝁𝐸 , 𝝅𝐸 ) is estimated from D.

Although PLIRL allows us to model and predict the population’s

collective behaviours, it can only handle demonstrations sampled

from an MFSO because the reduction from the MFG to the MDP

holds only for the fully cooperative setting. The problem setting of

PLIRL does not necessarily align with the interest of each individual

agent in MFGs because, in general, agents exhibit non-cooperative

interactions. The equilibrium behind demonstrations is thereby

more likely to be anMFNE rather than anMFSO. Applying PLIRL on

MFNE demonstrations would thus lead to biased reward inferences,

as is illustrated in Fig 1. It can also be observed from Eq. (8), where

𝐽 (𝝁𝐸 , 𝝅𝐸 ) is generally not the maximised societal rewards under an

MFNE. As a result, the policy elicited from a biased reward function

may not coincide with any MFNE induced by the ground-truth

reward function, leading to an unsuitable behavioural model.

MFNE(r0) MFNE(r?)

J(µ,⇡; r0)

J(µ,⇡; r?)

(µE ,⇡E) MFSO(r?)

HighLow

Figure 1: Illustration of the biased reward inference in
population-level IRL. The shaded ellipse represents the set of
all MFNE (includingMFSO) induced by a specific reward func-
tion. The expert uses an MFNE (𝝁𝐸 , 𝝅𝐸 ) under the ground-
truth reward function 𝑟★, which is an MFSO under another
reward function 𝑟 ′. Since PLIRL presupposes expert demon-
strations are sampled from an MFSO, it tends to infer the
societal reward induced by 𝑟 ′ rather than that induced by 𝑟★.

5 INDIVIDUAL-LEVEL IRL FOR MFGs
The discussions above justify the necessity to recover the individual

reward function 𝑟 (𝑠, 𝑎, 𝜇) from demonstrations sampled from an

MFNE because the individual reward is independent of the environ-

ment and thereby allows us to model and predict both cooperative

and non-cooperative behaviours in large populations. In this section,

we first formalise this problem as the Individual-Level IRL (ILIRL)

for MFGs, as opposed to population-level IRL. We then propose our

solution framework for ILIRL with theoretical guarantees.

5.1 Problem Formulation
Suppose we do not know the ground-truth reward function 𝑟 (𝑠, 𝑎, 𝜇)
but have a set of expert demonstrationsD = {𝜏 𝑗 }𝑀

𝑗=1
sampled from

an unknownMFNE (𝝁𝐸 , 𝝅𝐸 ). Each 𝜏 𝑗 = 𝑠
𝑗

0
, 𝑎

𝑗

0
, . . . , 𝑠

𝑗

𝑇
, 𝑎

𝑗

𝑇
is a state-

action trajectory of an individual agent, which is sampled via 𝑠0 ∼
𝜇𝐸

0
, 𝑠𝑡 ∼ 𝑃 (·|𝑠𝑡−1, 𝑎𝑡−1, 𝜇

𝐸
𝑡−1

) 2
and 𝑎𝑡 ∼ 𝜋𝐸𝑡 (·|𝑠𝑡 ). Following the

convention in IRL literature [21, 48, 57], we assume thatD provides

the entire supervision signals, i.e., we cannot further communicate

with the expert for additional information. ILIRL for MFG asks for

a reward function 𝑟 (𝑠, 𝑎, 𝜇), under which (𝝁𝐸 , 𝝅𝐸 ) forms an MFNE.

The individual-level inference characteristics of ILIRL are em-

bodied in two key aspects, which distinguish it from PLIRL. First,

ILIRL uses demonstrated state-action trajectories sampled from

individuals. In contrast, PLIRL uses demonstrated MF flows and

policies sampled from the population. Second, ILIRL aims to in-

fer the individual reward 𝑟 (𝑠, 𝑎, 𝜇) and we can calculate societal

rewards accordingly; while PLIRL aims to infer the societal reward

𝑟 (𝜇, 𝜋) that is uninformative for acquiring individual rewards.

To frame ILIRL as an optimisation problem, we desire an inverse

operator ILIRL(𝝁𝐸 , 𝝅𝐸 ) in analogy to PLIRL as defined in Eq. (8).

The key idea of Eq. (8) is to choose a societal reward 𝑟 (𝜇, 𝜋) that
creates a margin between the expert and every other MF flow-

policy pair. Since in an MFNE the policy maximises the expected

2
Since under an MFNE, the mean field matches each individual’s state visitation

distribution, sampling the state from a single individual via 𝑠𝑡 ∼ 𝑃 ( · |𝑠𝑡−1, 𝑎𝑡−1, 𝜇
𝐸
𝑡−1

)
is equivalent to sampling that from multiple individuals, i.e., 𝑠𝑡 ∼ 𝜇𝐸𝑡 .
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Figure 2: Illustration of the MFIRL framework. The function
Ψ̂(𝝁𝐸 ;𝜔) identifies a best-response policy 𝝅𝜔 to 𝝁𝐸 under a
reward function 𝑟𝜔 . The function L(𝜔) measures the differ-
ence between expected returns induced by 𝝅𝐸 and 𝝅𝜔 given
𝝁𝐸 . If we can find a parameter 𝜔★ such that L(𝜔★) = 0, then
𝑟𝜔 is a valid solution to ILIRL. In practice, 𝝁𝐸 is replaced by
the empirical value 𝝁𝐸 estimated from demonstrations D.

return given the MF flow, we can interpret ILIRL as finding a reward

𝑟 (𝑠, 𝑎, 𝜇) that creates a margin between the expert policy 𝝅𝐸
and

every other policy given the expert MF flow 𝝁𝐸 :

ILIRL

(
𝝁𝐸 , 𝝅𝐸

)
= arg max

𝑟 (𝑠,𝑎,𝜇 )

[
𝐽

(
𝝁𝐸 , 𝝅𝐸

)
− max

𝝅
𝐽

(
𝝁𝐸 , 𝝅

)]
, (9)

where 𝐽 (𝝁, 𝝅) is in the form of Eq. (2). If (𝝁𝐸 , 𝝅𝐸 ) is an MFNE

under a valid 𝑟 (𝑠, 𝑎,𝑢), then the objective attains the maximum 0,

otherwise it is negative. Note that there may exist multiple feasible

solutions to the problem. We do not intend to find all of them, as

any a feasible reward function can explain expert demonstrations.

5.2 The Mean Field IRL Framework
We next present our proposed framework to solve the optimisa-

tion problem of ILIRL in Eq.(9), which we name as Mean Field IRL
(MFIRL). The framework solves the ILIRL problem in a manner

of bilevel optimisation, where the upper-level task is to tune the

reward function 𝑟 (𝑠, 𝑎, 𝜇) given the solution of the lower-level task

that computes a best-response policy to the expert MF flow 𝝁𝐸 .
Recall the fixed point iteration for computing MFNE from Sec. 3.2,

where the mapping Ψ̂ : 𝝁 ↦→ 𝝅 is used to identify a best-response

policy to 𝝁 under a reward function 𝑟 . Using this notation, we are

left with finding a suitable Ψ̂. But first, let us see how to solve

the ILIRL problem in a more feasible way, where we estimate ex-

pected returns from D and use a parameterised reward function.

Immediately after that, the instantiation of Ψ̂ will be given.

5.2.1 Estimated Expected Returns and Parameterised Reward Func-
tions. Since the true MF flow 𝝁𝐸 is unknown, we use an empirical

value 𝝁𝐸 ≜ {𝜇𝐸𝑡 }𝑇𝑡=0
estimated from D by averaging the frequen-

cies of state occurrences:

𝜇𝐸𝑡 (𝑠) =
1

𝑀

𝑀∑︁
𝑗=1

1{𝑠 𝑗𝑡 =𝑠 }
. (10)

Since under an MFNE, the mean field matches each individual’s

state visitation distribution, 𝝁𝐸 is an unbiased estimator of 𝝁𝐸 .

Following standard practice [16, 17, 57], we assume the reward

function 𝑟 is parameterised by 𝜔 ∈ R𝑑 and thus write it as 𝑟𝜔 .

Also assume (𝝁𝐸 , 𝝅𝐸 ) is induced by some unknown true parameter

𝜔★
, i.e., (𝝁𝐸 , 𝝅𝐸 ) = (𝝁𝜔★

, 𝝅𝜔★). Let 𝝅𝜔 = Ψ̂(𝝁𝐸 ;𝜔) denote a best-
response policy to 𝝁𝐸 under 𝑟𝜔 . As illustrated in Fig. 2, optimising

the problem in Eq. (9) on demonstration dataD reduces to a search

process for 𝜔★
, where 𝐽 (𝝁𝐸 , 𝝅𝐸

;𝜔) is estimated from D:

max

𝜔
L(𝜔) ≜ E𝜏∼D

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝐸𝑡 )
]
− 𝐽 (𝝁𝐸 , 𝝅𝜔 ). (11)

5.2.2 Characterising Best-Response Policies. The desired mapping

Ψ̂ relies on the action value function for MFGs, which represents

the expected cumulative future rewards guided by an MF flow 𝝁
and a policy 𝝅 . Formally, it is defined by

𝑄 (𝑡, 𝑠, 𝑎, 𝝁) ≜ 𝑟 (𝑠, 𝑎, 𝜇𝑡 ) + E
[

𝑇∑︁
ℓ=𝑡+1

𝛾 ℓ−𝑡𝑟 (𝑠ℓ , 𝑎ℓ , 𝜇ℓ )
���𝝁, 𝝅 , 𝑃 ] . (12)

The expected return can be expressed in terms of 𝑄 as follows:

𝐽 (𝝁, 𝝅) = E𝑠∼𝜇0

[∑
𝑎∈A 𝜋0 (𝑎 |𝑠) 𝑄 (0, 𝑠, 𝑎, 𝝁)

]
.We can use backward

induction to recursively compute the action value function: starting

from the terminal step 𝑡 = 𝑇 : 𝑄 (𝑇, 𝑠, 𝑎, 𝝁) = 𝑟 (𝑠, 𝑎, 𝜇𝑇 ); then for

0 ≤ 𝑡 < 𝑇 we recursively compute:

𝑄 (𝑡, 𝑠, 𝑎, 𝝁) = 𝑟 (𝑠, 𝑎, 𝜇𝑡 ) + 𝛾E
[
𝑄 (𝑡 + 1, 𝑠′, 𝑎′, 𝝁) |𝝁, 𝝅 , 𝑃

]
. (13)

For a fixed MF flow 𝝁, we say a policy 𝝅∗
is greedy with respect

to 𝝁 if 𝜋∗𝑡 (·|𝑠) picks an action

𝑎𝑡 ∈ arg max

𝑎∈A
𝑄 (𝑡, 𝑠, 𝑎, 𝝁) (14)

uniformly at random. Since 𝝅∗
maximises the action value function

for each step, it is a best response to the corresponding MF flow 𝝁.
This provides an intuition to define the mapping 𝝅𝜔 = Ψ̂(𝝁𝐸 ;𝜔) by
letting 𝝅𝜔

be greedy with respect to 𝝁𝐸 . More formally, we write

𝑄∗
𝜔 (𝑡, 𝑠, 𝑎, 𝝁𝐸 ) for the optimal action value function induced by a

greedy policy given 𝑟𝜔 . By Eq. (13) and Eq. (14), 𝝅𝜔
and𝑄∗

𝜔 can be

recursively computed by backward induction. The expected return

induced by 𝝅𝜔
in Eq. (11) can thereby be written as:

𝐽 (𝝁𝐸 , 𝝅𝜔 ) = E𝑠∼𝜇𝐸
0

[∑︁
𝑎∈A

𝜋𝜔
0
(𝑎 |𝑠) 𝑄∗

𝜔 (0, 𝑠, 𝑎, 𝝁𝐸 )
]
. (15)

5.3 Theoretical Result
Now, we are ready to present our main result, which shows that

the optimal solution to the optimisation problem in Eq. (11) is an

asymptotically consistent estimator of the true reward parameter.

Theorem 1. Let the demonstrated trajectories in D = {𝜏 𝑗 }𝑀
𝑗=1

be independent and identically distributed (i.i.d.) and sampled from
an MFNE induced by an unknown parameterised reward function
𝑟𝜔★ (𝑠, 𝑎, 𝜇). With probability 1 as the number of samples 𝑀 → ∞,
the equation L(𝜔) = 0 has a root �̂� such that �̂� = 𝜔★.

Proof. Under the i.i.d. assumption, 𝝁𝐸 = 𝝁𝐸 with probability

1 as 𝑀 → ∞, due to the law of large numbers. Having this, we

further know that L(�̂�) = 0 if and only if (𝝁𝐸 , 𝝅𝐸 ) is an MFNE

under reward 𝑟�̂� . Finally, due to the fact (𝝁𝐸 , 𝝅𝐸 ) is an MFNE

induced by 𝑟𝜔★ , there must exist one �̂� such that �̂� = 𝜔★
. □
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6 PRACTICAL MFIRL ALGORITHM
This section develops a practical implementation of the MFIRL

framework. For the sake of practical use, we consider gradient

methods to optimise the objective L(𝜔) in Eq. (11), where the

gradient ∇L is computed by

∇L = E𝜏∼D

[
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝑟𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝐸𝑡 )
]
− ∇𝐽 (𝝁𝐸 , 𝝅𝜔 ) . (16)

By Eq. (15), the gradient ∇𝐽 (𝝁𝐸 , 𝝅𝜔 ) is computed by:

∇𝐽 (𝝁𝐸 , 𝝅𝜔 ) = E𝑠∼𝜇𝐸
0

[ ∑︁
𝑎∈A

𝑄∗
𝜔 (0, 𝑠, 𝑎, 𝝁𝐸 )∇𝜋𝜔

0
(𝑎 |𝑠)

+ 𝜋𝜔
0
(𝑎 |𝑠)∇𝑄∗

𝜔 (0, 𝑠, 𝑎, 𝝁𝐸 )
]
.

(17)

While, one difficulty with such an approach is that the greedy policy

𝝅𝜔
is non-differentiable [20]. We thus need to find alternative

smooth Ψ̂ mapping. To this end, we adopt Boltzmann policy
3
to

approximate the non-differentiable greedy policy. Formally, we

use �̃�𝜔
to denote a Boltzmann policy and use �̃�∗

𝜔 to represent the

corresponding action value function, which are defined by:

�̃�𝜔𝑡 (𝑎 |𝑠) ≜
exp

(
𝛽�̃�∗

𝜔 (𝑡, 𝑠, 𝑎, 𝝁𝐸 )∑
𝑎′∈A exp

(
𝛽�̃�∗

𝜔 (𝑡, 𝑠, 𝑎′, 𝝁𝐸
) . (18)

Here, 𝛽 > 0 is the inverse Boltzmann temperature controlling the

degree of approximation. Note that we recover the optimality (i.e.,

the greedy policy) if 𝛽 → ∞. By Eq. (18) and Eq. (13), gradients

∇�̃�𝜔𝑡 (𝑎 |𝑠) and ∇�̃�∗
𝜔 (𝑡, 𝑠, 𝑎, 𝝁𝐸 ) can be recursively calculated:

∇�̃�𝜔𝑡 (𝑎 |𝑠) = �̃�𝜔𝑡 (𝑎 |𝑠) · 𝛽
[
∇�̃�∗

𝜔 (𝑡, 𝑠, 𝑎, 𝝁𝐸 )

− E𝑎′∼�̃�𝜔
𝑡 ( · |𝑠 )

[
∇�̃�∗

𝜔 (𝑡, 𝑠, 𝑎′, 𝝁𝐸 )
] ]

,

(19)

∇�̃�∗
𝜔 (𝑡, 𝑠, 𝑎, 𝝁𝐸 ) = ∇𝑟𝜔 (𝑠, 𝑎, 𝜇𝐸𝑡 )

+ 𝛾E𝑠′∼𝑃

[ ∑︁
𝑎′∈A

�̃�∗
𝜔 (𝑡 + 1, 𝑠′, 𝑎′, 𝝁𝐸 )∇�̃�𝜔𝑡+1

(𝑎′ |𝑠′)

+ E𝑎′∼�̃�𝜔
𝑡+1

( · |𝑠′ )
[
∇�̃�∗

𝜔 (𝑡 + 1, 𝑠′, 𝑎′, 𝝁𝐸 )
] ]

.

(20)

Detailed derivation of ∇�̃�𝜔𝑡 (𝑎 |𝑠) in Eq. (19) is given in Appen-

dix A. Substituting ∇�̃�∗
𝜔 for ∇𝑄∗

𝜔 in Eq. (17) yields an approximate

∇L, which we denote by ∇ ˜L.

Monte-Carlo Simulation under Unknown Dynamics. The transition
function 𝑃 is generally unknown in practice. We can instead use

Monte-Carlo simulation to estimate empirical gradients
ˆ∇�̃�∗

𝜔 and

ˆ∇�̃�𝜔𝑡 , that is, suppose we have the access to a simulator of the

environment and calculate
ˆ∇�̃�∗

𝜔 by estimating the expectation with

respect to 𝑠′ in Eq. (20) using sampled states 𝑠′ from the simulator.

We denote the resulting empirical gradient of L by
ˆ∇ ˜L.

3
Other smooth operators (e.g., Mellowmax [3]) may also be used to approximate Ψ̂.

Algorithm 1 Practical MFIRL Algorithm

1: Input:MFGwith parameters (S,A, 𝑃, 𝜇0, 𝛾) and expert demon-

strations D = {𝜏 𝑗 }𝑀
𝑗=1

.

2: Initialisation: Initialise reward parameter 𝜔 .

3: Estimate empirical expert MF flow 𝝁𝐸 according to Eq. (10).

4: for each epoch do
5: for 𝑡 = 𝑇, . . . , 0 do
6: Calculate ∇�̃�𝜔𝑡 and ∇�̃�∗

𝜔 according to Eq. (19) and Eq. (20).

7: end for
8: Calculate the empirical gradient

ˆ∇ ˜L according to Eq. (16).

9: Update 𝜔 to increase L according to
ˆ∇ ˜L.

10: end for
11: Output: Learned reward function 𝑟𝜔 .

Truncated Recursive Computation of Gradients. With the horizon of

an MFG increasing, the recursive computation of ∇�̃�∗
𝜔 (𝑡, 𝑠, 𝑎, 𝝁𝐸 )

tends to be intractable. To overcome this potential issue in practice,

we can approximate ∇�̃�∗
𝜔 (𝑡, 𝑠, 𝑎, 𝝁𝐸 ) by truncating the recursion.

More formally, let𝜔 (𝑖 )
denote the reward parameter in the 𝑖th round

of update. In the 𝑖 + 1th update, we look 𝐻 -step (𝐻 < 𝑇 ) ahead

according to Eq. (20) until we arrive at time step 𝑡 +𝐻 , where we

stop tracing deeper by replacing ∇�̃�∗
𝜔 (𝑡 +𝐻 +1, 𝑠, 𝑎, 𝝁𝐸 ) |𝜔=𝜔 (𝑖 ) and

∇�̃�𝜔
𝑡+𝐻+1

(𝑎′ |𝑠′) |𝜔=𝜔 (𝑖 ) with the corresponding variables induced

by the old value𝜔 (𝑖−1)
. Using old parameter values to approximate

the corresponding variables induced by new values has also been

adopted in the RL literature [46, 47]. The intuition is that the change

of the parameter between two updates is not severe. Meanwhile,

due to the presence of the discount factor, this approximation would

not cause a significant error in the estimation of gradients.

To summarise, we present the pseudocode in Alg. 1.

7 EXPERIMENTS
In experiments, we seek to answer the following key question: Can
MFIRL efficiently recover the underlying individual reward function,
regardless of whether the environment is cooperative or not? To this

end, we evaluate the quality of a learned reward function 𝑟𝜔 by

comparing its induced MFSO (𝝁𝜔 , �̄�𝜔 ) and the ground-truth MFSO

(𝝁★, �̄�★), because an MFSO is more likely to be unique than an

MFNE in terms of policy and it is always unique in term of expect

return. Specifically, we use the following metrics:

(1) Policy Deviation (Dev. Policy). We use the cumulative KL-

divergence,

∑𝑇
𝑡=0

∑
𝑠∈S 𝐷KL

(
𝜋★𝑡 (·|𝑠) ∥ 𝜋𝜔𝑡 (·|𝑠)

)
, to measure

the difference over two policies.

(2) MF flow Deviation (Dev. MF). Similarly, we use the cumu-

lative KL-divergence,

∑𝑇
𝑡=0

𝐷KL

(
𝜇★𝑡 ∥ 𝜇𝜔𝑡

)
, to measure the

difference over two MF flows.

(3) Expected return. (Exp. Return) The expected return of (𝝁𝜔 , �̄�𝜔 )
and (𝝁★, �̄�★) under the ground-truth reward function.

We compare MFIRL against the PLIRL in [55] as it is the only IRL

method for MFGs in the literature as of the present. Also, existing

multi-agent IRL and imitation learning methods (e.g., MA-GAIL

[48] and MA-AIRL [57]) scale poorly when the population size is in

hundreds, due to the exponential growth of joint state-action spaces.

We carry out two classes of tests, one on numerical MFGmodels and
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Figure 3: Results for numerical tasks under original dynamics. The solid line shows the median and the shaded area represents
the standard deviation over 10 independent runs.

the other on simulated mixed cooperative-competitive battle games.

For both classes of tests, we set the discounted factor 𝛾 = 0.99 and

the time horizon as 50, which is the same as the number of time

steps used in [48, 57]. For MFIRL, we set the inverse Boltzmann

temperature 𝛽 = 1. In each task, we set 𝑁 agents where 𝑁 is a large

but finite number. We sample state-action trajectories from each of

𝑁 individual agents by executing a pre-trained expert policy. We

call an execution of the expert policy on all 𝑁 agents a game play.
MFIRL directly takes as input these individual trajectories. While,

each demonstrated expert policy and mean field fed into PLIRL

are estimated by averaging occurrence frequencies of states and

actions in all 𝑁 trajectories per game play. For both algorithms, we

adopt the same neural network architecture as the reward model:

two hidden layers of 64 leaky rectified linear units (ReLU) each.
Implementation details are given in Appendix C.

7.1 Numerical Models
Settings. We evaluate MFIRL on five numerical discrete MFG mod-

els: investment in product quality [50, 54] (INVEST for short), mal-
ware spread [23, 24, 50] (MALWARE), virus infection [14] (VIRUS),
Rock-Paper-Scissors [14] (RPS) and Left-Right [14] (LR), ordered in

decreasing complexity. These models simulate a series of large-

scale decision making scenarios in the real world. Among these

five models, we use VIRUS and LR as cooperative scenarios, i.e.,

the demonstrations in these two models are sampled from MFSO.

The remaining three models are used as non-cooperative scenarios.

Statistical information of these models is summarised in Tab. 1.

Detailed descriptions and settings can be found in Appendix B. We

take 100 agents for each model. We train MFNE experts through

the fixed-point iteration as described in Sec. 3.2, and train MFSO

experts using DDPG [33] to solve the MDP reduced from MFG.

Reward Recovery under Original Dynamics. We first conduct tests

under fixed environment dynamics. Fig. 3 depicts results. On all

non-cooperative models, MFIRL achieves near-expert performance,

while PLIRL shows larger deviations. The reason is that the demon-

strations in these models are sampled from an MFNE rather than

Table 1: Statistics of Numerical MFG Models

Model States Actions Cooperative

INVEST 10 2 ✗

MALWARE 10 2 ✗

VIRUS 2 2 ✓

RPS 3 3 ✗

LR 3 2 ✓

MFSO. This verifies the biased reward inference in PLIRL. On co-

operative models, both MFIRL and PLIRL show expert-like perfor-

mance, but MFIRL is more sample efficient. This is because one

game play provides 𝑁 samples to our MFIRL but can only provide

one sample of MF flow and policy to PLIRL.

Robustness to New Dynamics. To investigate the robustness of the

learned reward function 𝑟𝜔 in the face of uncertainties in dynamics,

we change the transition function (see Appendix B for details), re-

compute MFSO induced by the ground-truth reward and 𝑟𝜔 (trained

with 10 game plays), respectively. Results are summarised in Tab. 2.

MFIRL has comparable performance with PLIRL on cooperative

models but shows much smaller errors on non-cooperative models.

We attribute the low robustness of PLIRL to the conjecture that the

changing dynamics can exacerbate the biased reward inference.

7.2 Simulated Battle Games
Settings. The Mixed Cooperative-Competitive Battle Game [58] con-
tains two groups of homogenous agents fighting against each other

in a 2D grid. The goal of each group is to destroy all opponents in

the other group. Each group has 64 agents. Each agent can move to

the neighbourhood or take attack actions. The setting is illustrated

in Fig. 4. For each agent, the default reward setting is: −0.005 for

every move (M), 0.2 for attacking an opponent (AO), 5 for killing

an opponent (K), −0.1 for attacking an empty grid (AE). If an agent

is attacked or destroyed, it also receives a reward −1. To adapt the

game for MFG, we supply an additional term to the default reward
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Table 2: Results for numerical models under new dynamics. Mean and variance are taken across 10 independent runs.

Metric Algorithm

Task

INVEST MALWARE VIRUS RPS LR

Dev. Policy

MFIRL 0.305 ± 0.017 0.411 ± 0.025 1.544 ± 0.012 7.089 ± 0.541 0.683 ± 0.035

PLIRL 1.130 ± 0.334 1.466 ± 1.322 1.892 ± 0.237 7.550 ± 0.841 0.734 ± 0.373

Dev. MF

MFIRL 0.464 ± 0.029 0.435 ± 0.007 0.057 ± 0.0004 2.932 ± 0.057 0.353 ± 0.029

PLIRL 1.510 ± 0.697 1.731 ± 2.207 0.076 ± 0.0085 3.112 ± 0.569 0.348 ± 0.310

Expected Return

EXPERT -35.051 -18.055 -1.167 94.274 -0.518

MFIRL -35.542 ± 0.677 -18.519 ± 0.245 -1.614 ± 0.042 93.578 ± 2.508 -0.563 ± 0.078

PLIRL -35.917 ± 2.548 -19.151 ± 0.507 -1.553 ± 0.170 93.212 ± 0.493 -0.547 ± 1.080
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Figure 4: Illustration and results for simulated battle games. The first and second rows correspond to the cooperative and mixed
cooperative-competitive setting, respectively. Results are averaged over 10 independent runs.

function according to the following intuition: it is less risky to at-

tack a foe if more friends are nearby. The mean field can thus be

involved in the reward to measure the average distance between an

agent and all other friends. Formally, let 𝑟 (𝑠, 𝑎) denote the default
reward and write modified reward function by:

𝑟 (𝑠, 𝑎, 𝜇) = 𝑟 (𝑠, 𝑎) − 𝑑 · 1{𝑎=AO} · E𝑠′∼𝜇
[
dist(𝑠, 𝑠′)

]
,

where dist denotes the Manhattan distance and 𝑑 > 0 controls its

importance. In experiments, we set 𝑑 = 0.1. We generate two types

of environments: (1) Mixed cooperative-competitive: the reward of

each agent at each step is defined above. (2) Fully cooperative: the

reward of each agent is set as the societal reward of the group it

belongs to. We train experts (of each group) using MADDPG [36], a

multi-agent actor-critic algorithm. If an agent is destroyed halfway,

we treat all variables of it as null in the subsequent training.

Results. Results are reported in Fig. 4. Consistently, MFIRL demon-

strates higher accuracy in non-cooperative environments and higher

sample efficiency in both cooperative and non-cooperative envi-

ronments. PLIRL again shows large deviations from the expert

performance. To summarise, MFIRL can accurately recover individ-

ual reward functions for MFGs in the non-cooperative setting with

high sample efficiency, in line with our theoretical analysis.

8 CONCLUSIONS AND FUTUREWORK
This paper amounts to an effort towards individual-level IRL for

MFGs. We reveal that the reduction from MFG to MDP holds only

for the fully cooperative setting, which restricts the suitability of

existing IRL methods in general MFGs. In order to handle MFGs

with general non-cooperative environments, we propose and for-

malise the individual-level IRL problem that asks for recovering an

individual reward function for MFGs. To address this problem, we

propose MFIRL, the first dedicated IRL framework for MFGs that

can deal with both cooperative and non-cooperative environments.

Moreover, bymaking a series of approximations to theMFIRL frame-

work, we develop a practical algorithm effective for MFGs with

unknown dynamics. Experiments on both cooperative and non-

cooperative scenarios verify the advantages of MFIRL on reward

recovery, sample efficient and robustness to changing dynamics.

Alongside the direction opened up by this work, a straightfor-

ward future work is to scale MFIRL to MFGs with continuous or

high-dimensional state-action spaces. Another promising work is

to study IRL methods for general MFGs that can tolerate imperfect

expert demonstrations. A third future work is to apply MFIRL to

more real-world scenarios, e.g., dynamic demand management in

power grids [4] and behaviour analysis in large social media [55].
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