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ABSTRACT
Fairness has emerged as an important concern in automated decision-

making in recent years, especially when these decisions affect hu-

man welfare. In this work, we study fairness in temporally extended

decision-making settings, specifically those formulated as Markov

Decision Processes (MDPs). Our proposed notion of fairness en-

sures that each state’s long-term visitation frequency is at least a

specified fraction. This quota-based notion of fairness is natural in

many resource-allocation settings where the dynamics of a single

resource being allocated is governed by anMDP and the distribution

of the shared resource is captured by its state-visitation frequency.

In an average-reward MDP (AMDP) setting, we formulate the prob-

lem as a bilinear saddle point program and, for a generative model,

solve it using a Stochastic Mirror Descent (SMD) based algorithm.

The proposed solution guarantees a simultaneous approximation
on the expected average-reward and fairness requirement. We give

sample complexity bounds for the proposed algorithm and validate

our theoretical results with experiments on simulated data.
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1 INTRODUCTION
Algorithms are increasingly used to make important decisions that

impact human lives. While algorithmic decision-making frame-

works offer increased efficiency, speed and scalability, their poten-

tial bias and unfairness have led to several concerns. For instance,

studies have shown that the traditional algorithms may be unfair

towards certain demographics of the population in recidivism pre-

diction [13], loan and credit lending [5], online advertising [2],

∗
Author names appear alphabetically. Vineet Nair is now at Google Research, India.

Code and appendix are available at https://yilunzhou.github.io/fair-average-mdp/.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

and recommendation systems [35]. These concerns have led to a

surge in research efforts aimed at ensuring fairness in algorith-

mic decision-making frameworks [4]. A large body of work in fair

machine learning has focused on either one-shot settings such as

classification [14, 22] or sequential but static settings such as multi-

armed bandits where reward distributions are stationary [9, 27, 37].

However, in many real-world applications, the algorithm’s deci-

sions may have long-term impact to the states and rewards of the

system. The study of fairness in such temporally-extended decision-

making settings, often modeled using the reinforcement learning

framework [30], is still in its infancy.

We introduce the problem of state-visitation fairness in Markov

Decision Processes (MDPs). Informally, our fairness notion requires

that each state of the MDP be visited with a pre-specified minimum

frequency. In particular, a policy 𝜋 with stationary state distribu-

tion 𝝂𝜋 , is called fair if 𝜈𝜋𝑠 ≥ 𝜌𝑠 for every state 𝑠 , where 𝜌𝑠 ∈ [0, 1)
specifies the fairness constraints and is given as input to the al-

gorithm. Motivated by recent works on fairness in multi-armed

bandits (MAB) [24, 27] that enforce minimum frequency on the

selection of each arm, our quota-based notion of fairness is natural

in dynamic resource allocation settings where the transition dy-

namics of the resource being allocated is governed by an MDP and

an algorithm is required to equitably divide the shared resource.

Although MABs can be considered a special case of MDPs with

one action per arm on a shared dummy state, distinctively different

techniques are needed to satisfy the analogously defined constraints

on state visitation frequency for general MDPs due to long term

implications of the taken actions.

As a concrete example, consider the task of scheduling the jobs

of 𝐶 clients to run on one shared server, where 𝐶 is assumed to be

fixed and known a priori. At every time step, each client submits

some number of jobs, and the server decides how many jobs to

run for each client. The maximum number of jobs that the server

can run at every step is 𝑁 . From the server’s perspective, this

task can be modeled as an MDP [34]: a state is a vector of the

form (𝑛1, ..., 𝑛𝐶 ) representing the number of remaining jobs for the

clients. At this state, the server can take an action 𝑎 = (𝑚1, ...,𝑚𝐶 ),
where𝑚𝑐 ≤ 𝑛𝑐 is the number of jobs that the server runs for client 𝑖

at the current time step, subject to the constraint that

∑𝐶
𝑐=1𝑚𝑐 ≤ 𝑁 .

The transition models the job execution and (potentially stochastic)

job arrival. The server gets rewards depending on the number of

finished jobs. In the simple case where client 𝑐 pays 𝑟𝑐 for each
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completed job, the total reward at each step is

∑𝐶
𝑐=1𝑚𝑐𝑟𝑐 , which

obviously leads to a strict prioritization toward the highest paying

client for a reward maximizing agent. However, in many cases we

want to enforce some quality of service (QoS) to every client. Such a

guarantee can be modeled with our notion of fairness by requiring

minimum frequencies on states with low values of𝑛𝑐 (i.e. remaining

jobs) for each low-paying client 𝑐 .

Similar fairness requirements are present in other resource allo-

cation settings such as taxi dispatching and postal service, and they

can also be framed as state-visitation guarantees. In addition, since

the service is “long-running”, the average reward captures the long

term profitability of the service provided better than the discounted

reward, and motivates us to consider the case of average-reward

MDP, which we refer to as AMDP.

Last, our notion of fairness can also generalize demographic par-

ity [7] into a temporally extended setting. Consider that a company

wishes to ensure racial diversity in their employee base, for an

extended period of time rather than for a specific hiring decision.

We can represent the overall employee profile as a state in an MDP,

from which we can compute diversity statistics. The company takes

various human-resource decisions on a day-to-day basis that may

cause the employee demographics to change. While the diversity

objective may not be feasible to achieve at all time (e.g. due to

random resignation decisions made by employees), the company

still wants to or is required to maintain the diversity with high

frequency, which can be naturally encoded as minimum frequency

constraints on states that satisfy the diversity objective.

1.1 Our Contributions
In this paper, we make two contributions, a new notion of fairness

as constraints on a MDP and an algorithm to solve for the optimal

policy under the constraints. On the former, we introduce the fair-

ness notion of minimum resource allocation guarantee in the MDP

setting. This fairness notion is practically significant, capturing

many real world applications and complementing existing notions

of fairness in MDP such as approximate action-fairness guarantees

[17] and demographic parity [33].

On the latter, our work contributes to the long line of literature

on constrained MDPs [3], which has been mostly used to ensure

the safety of exploration [1]. These formulations usually encode

safety as upper bounds on state-dependent cost functions, while

our desired fairness constraints are lower bounds on state-visitation

frequencies. With sample access to the transition function (i.e. be-

ing able to sample the next state given the current state and action),

we formulate the problem as a bilinear saddle point problem and

present an algorithm (Algorithm 1 that uses the classical stochas-

tic mirror descent (SMD) framework to simultaneously satisfy the

fairness constraint and achieve reward maximization asymptoti-

cally (Theorems 1 and 2). Its running time depends on the required

approximation threshold 𝜀, the fairness constraint parameter 𝑑𝝆 ,

mixing time 𝑡𝑚𝑖𝑥 , number of states 𝑛 and number of actions𝑚 as

𝑂
(
𝑛𝑚𝜀−2 (1 + 𝑑𝝆 )2𝑡2𝑚𝑖𝑥

log(𝑛𝑚)
)
.

Recently, Jin and Sidford [18] proposed the first algorithm with

sample complexity bounds to compute an approximately-optimal

policy for unconstrained AMDPs. Our algorithm is similar in spirit

to this unconstrained algorithm in [18] but requires novel analyt-

ical techniques to prove the simultaneous guarantee on fairness

and reward. The main technical novelty in our work is how the

primal variables are bounded. Since the fairness constraints intro-

duce new primal variables in the linear program (Fair-LP (P) in

Section 4.1), the analysis of [18] does not lend itself to a straight-

forward extension. Instead, Lemma 2 non-trivially use structure

of the constraint matrix to bound the domain of primal variables

in our algorithm. Another technical novelty is that we restrict the

dual space by incorporating the fairness constraint explicitly in

the domain, which simplifies the objective function (Eq. 5 to Eq.

6) and helps achieve the objective. In comparison, Jin and Sidford

[18] only compute a feasible policy with no regard to optimality.

To the best of our knowledge, our work is the first to achieve the

simultaneous guarantee with sample complexity bounds.

2 RELATEDWORK
Recently, there has been growing interest in studying fairness in se-

quential decision-making. For example, Creager et al. [10] propose

causal modeling of dynamical systems to address fairness, Zhang

et al. [38] study how algorithmic decisions impact the evolution

of feature space of the underlying population modeled as an MDP,

and D’Amour et al. [11] study the impact of feedback dynamics on

long-term fairness via simulations.

The study of fairness in reinforcement learning (RL) was initiated

by Jabbari et al. [17], who extend the meritocratic fairness notion
defined by Joseph et al. [19] in the MAB setting to the MDP setting.

Under this notion, a policy is fair if, with high probability, an action

with a lower long-term reward is not favored over an action with a

higher long-term reward. This notion of fairness can be classified

as procedural fairness and is different from our outcome-based

notion of fairness where the fairness guarantee can be quantified in

terms of the state-visitation frequency. Doroudi et al. [12] study the

problem of off-policy policy selection in RL under similar fairness

constraints. In terms of the fairness constraints, the work closest to

ours is that of Wen et al. [33], which models the agents as states

of an MDP and study demographic parity with respect to reward

to the agents. However, their work is different from ours in three

key aspects: 1) they study discounted-reward MDPs in contrast to

our average-reward MDPs, 2) they focus primarily on the setting

where the model is known, whereas our main contribution is for

the generative model, and 3) they model the constraints in terms of

a reward to the agents in contrast to our fairness constraints which

capture the absolute long-term state-visitation frequency.

The unconstrained AMDP problem has been extensively studied

in the literature [6, 20, 25]. If the model is known and the MDP

is unichain, then Altman [3] and Puterman [29] showed that an

optimal policy can be computed by solving a linear program. With

a generative model (i.e. a simulator that can sample from the tran-

sition function and compute teh reward function [21]), the SMD

approach [8, 26] was recently used by Wang [32] and Jin and Sid-

ford [18] to compute an approximately optimal policy. Furthermore,

Jin and Sidford [18] proposed an algorithm to compute a feasible,

but not necessarily optimal, policy for constrained AMDPs.

We formulate MDPs with fairness guarantees as constrained

MDPs (CMDPs), [3], which have been studied extensively in the
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safety setting [1]. The policy search seeks to maximize the reward

while ensuring certain upper bound frequency on some (high-risk

or error) states [15, 31]. By contrast, our constraints are defined

as lower bounds on states, for which existing techniques could

not be adapted in a straightforward manner. Last, another line of

literature studies the problemwhere the objective itself is to achieve

a specified state-visitation frequency (or some function of it) in the

absence of reward signals [16, 23].

In the rest of the paper, Section 3 introduces the Fair-AMDP

problem. Section 4 formulates the solution as a linear program and

provide necessary background on the SMD framework. Section

5 presents the concrete algorithm implementation and Section 6

presents the theoretical analysis. Section 7 presents experimen-

tal results to validate the proposed algorithm. Finally, Section 8

presents a discussion of the work and some future directions.

3 FAIR-AMDP MODEL
A discrete Markov Decision Process (MDP) is a sequential decision-

making framework denoted by the tuple ⟨S,A, Γ, 𝒓, 𝒖⟩. At each
step 𝑡 ≥ 1, 𝑠𝑡 ∈ S denotes the state of the MDP at time 𝑡 . A

decision-maker takes an action 𝑎𝑡 ∈ A, receives a finite reward

𝑟𝑡 = 𝑟𝑠𝑡 ,𝑎𝑡 , and the MDP transitions to a state 𝑠𝑡+1 according to the

transition probability function Γ : S×A → Δ |S |
where Δ |S |

is the

simplex set of distributions over states. Without loss of generality,

we assume that the rewards are non-negative and depend only on

𝑠𝑡 and 𝑎𝑡 and not on 𝑠𝑡+1. The initial state 𝑠1 is sampled from the

initial-state distribution 𝒖 ∈ Δ |S |
.

Let 𝜋 be a stochastic policy with 𝜋𝑠,𝑎 denoting the probability

with which action 𝑎 is taken in state 𝑠 . Each policy 𝜋 induces a sta-

tionary distribution over the state space denoted by 𝝂𝜋 ∈ Δ𝑛 . One
of the popular optimization problems under an MDP framework

[3, 29] is to find a policy that maximizes the long-term expected

average-reward given by

lim

𝑇→∞
1

𝑇
·

𝑇∑
𝑡=1

E𝜋 [𝑟𝑡 ] . (1)

Throughout the paper, we consider a finite MDP with S =

{1, 2, . . . , 𝑛} and A = {1, 2, . . . ,𝑚}. Let ℓ = 𝑛𝑚 denote the total

number of state-action pairs. For clarity, we often use (𝑠, 𝑎) to index
the ((𝑠 − 1)𝑚 + 𝑎)-th entry of vectors in Rℓ . Thus, we can equiva-

lently represent the transition function Γ as a matrix of dimension

ℓ × 𝑛, where Γ(𝑠,𝑎),𝑠′ is the probability of going to 𝑠 ′ when taking 𝑎

at 𝑠 . Similarly, we can represent the reward function 𝒓 as a vector in
R𝑙 , where 𝑟 (𝑠,𝑎) gives the reward of taking 𝑎 at 𝑠 . For notational con-
venience, we define a matrix form Π ∈ R𝑙×𝑛 for the policy 𝜋 where

Π (𝑠,𝑎),𝑠 = 𝜋𝑠,𝑎 and Π (𝑠,𝑎),𝑠′ = 0 for all 𝑠 ≠ 𝑠 ′. Thus, Γ𝜋 := Π𝑇 Γ is

the transition matrix of the Markov chain induced by 𝜋 . In this

work, we restrict ourselves to ergodic MDPs, defined below.

Definition 1. (Ergodicity) A Markov decision process is ergodic

if Markov chain on the state induced by any policy is ergodic. A

Markov chain is ergodic if there exists a positive integer 𝑇0, such

that for all pairs of states 𝑠𝑖 , 𝑠 𝑗 , if the chain is started at 𝑠𝑖 , the

probability of being in state 𝑠 𝑗 is non-zero for all time after 𝑇0.

Intuitively, the state transition in an ergodic MDP mixes across

all states without showing any periodic oscillations. Next, we define

its mixing time as follows.

Definition 2. (Mixing Time) The mixing time of a given MDP

⟨S,A, Γ, 𝒓, 𝒖⟩ is given by 𝑡𝑚𝑖𝑥 = max𝜋 𝑡𝜋 where,

𝑡𝜋 = argmin

𝑡 ≥1

[
max

𝒖

[
| | (Γ𝜋

𝑇

)𝑡𝒖 − 𝝂𝜋 | |1 ≤ 1/2
] ]

.

The mixing time 𝑡mix of an ergodic MDP captures how fast the

Markov chain induced by any policy converges to its corresponding

stationary distribution.

Assumption 1. The MDP instance ⟨S,A, Γ, 𝒓, 𝒖⟩ is ergodic.

The ergodicity condition enables us to formulate the problem of

finding an optimal policy for an AMDP problem as a linear program

(Section 4.1). We consider a constrained version of it where the

constraints are in terms of the minimum state-visitation frequency.

In particular, we study the Fair-AMDP problem with the following

notion of fairness.

Definition 3. Let 𝝆 ∈ [0, 1]𝑛 such that

∑
𝑠 𝜌𝑠 ≤ 1. Then, a policy

𝜋 is called 𝝆-fair if 𝜈𝜋𝑠 ≥ 𝜌𝑠 for all 𝑠 ∈ [𝑛].

A Fair-AMDP instance is denoted as ⟨S,A, Γ, 𝒓, 𝒖, 𝝆⟩. We note

that a Fair-AMDP instance may not even have a feasible policy.

For example, consider an AMDP instance with 𝑛 = 2,𝑚 = 1 and

Γ = (1 − 𝛼, 𝛼 ; 1 − 𝛼, 𝛼). Here, the stationary distribution for the

unique policy 𝜋 is 𝝂𝜋 = (1 − 𝛼, 𝛼). There does not exist a 𝝆-fair
policy for any 𝝆 with 𝜌2 > 𝛼 . We restrict our attention to 𝝆 such

that 𝜌𝑠 < 1/𝑛 for all 𝑠 ∈ S unless otherwise specified.In this paper,

we assume that the problem is feasible.

Assumption 2. There exists a 𝝆-fair policy.

Ensuring feasibility and identifying infeasibility can be done

with one technical addition to the generative model. We introduce

a fair action 𝑎∗ available at each state with a reward that is strictly

lower than the one on any state-action pair. One choice of 𝑎∗ is
such that Γ((𝑠, 𝑎★), 𝑠 ′) = 1/𝑛. In other words, taking this action

“resets” the agent to a state selected uniformly at random. We make

the following additional remarks regarding the above assumption.

(1) Given a Fair-AMDP with action 𝑎∗, a policy 𝜋 that chooses

action 𝑎∗ in all the states 𝑠 has 𝝂𝜋 = (1/𝑛 . . . 1/𝑛) and hence

𝝂𝜋 > 𝝆 implying that the Fair-AMDP is strictly feasible. Fur-

ther, if the Fair-AMDP instance is guaranteed to have a feasible

solution without using the fair-action then there is an optimal

policy that has zero probability of choosing action 𝑎∗ at any
state 𝑠 .

(2) For a particular 𝝆, one may relax the assumption to the follow-

ing: the fair-action 𝑎∗ is such that Γ((𝑠, 𝑎∗), 𝑠 ′) > max𝑠 𝜌𝑠 for

all 𝑠, 𝑠 ′ ∈ [𝑛]. Such an assumption is seemingly necessary to

compute a fair-algorithm in the generative model where there

is only stochastic access to the transition probability matrix via

state-action queries.

4 SOLUTION APPROACH
Asmentioned before, we assume access to a generative model, which
can be used to sample the next state 𝑠 ′ given the current state 𝑠 and

action 𝑎 according to Γ and compute the reward r𝑠,𝑎 .
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4.1 Linear Program for Fair-AMDP
We first recall the linear programming solution to solve the (un-

contrained) AMDP when the transition and reward functions are

known. The formulation is based on the Bellman equation for op-

timal policy, and is derived in detail in textbooks [e.g. 29]. Let

Î ∈ Rℓ×𝑛 be such that Î((𝑠, 𝑎), 𝑠 ′) = 1 if 𝑠 = 𝑠 ′ and 0 otherwise.

UC-LP (D) UC-LP (P)

max

𝒙∈Δℓ
𝒙𝑇 𝒓 min

𝝀>0,𝛽
𝛽

subject to (Î − Γ)𝑇 𝒙 = 0 subject to (Î − Γ)𝝀 + 𝒓 ≤ 𝛽𝑇 1

We focus our attention on UC-LP (D). From the optimal solution

𝒙 , we can derive the policy 𝜋 as

𝜋𝑠,𝑎 =
𝑥𝑠,𝑎∑𝑚

𝑎′=1 𝑥𝑠,𝑎′

It is easy to verify the following:

(1) For 𝝂𝜋 = (∑𝑎 𝑥1,𝑎, . . . ,
∑
𝑎 𝑥𝑛,𝑎), we have 𝒙 = Π𝝂𝜋 ,

(2) 𝝂𝜋 is the stationary state distribution corresponding to the 𝜋 ,

as (Î − Γ)𝑇 𝒙 = (I − Γ𝜋 )𝑇𝝂𝜋 = 0, and
(3) Î𝒙 = 𝝂𝜋 .

In particular, from (3) we conclude that 𝑥𝑠,𝑎 is the average state-

action visitation probability of the state-action pair (𝑠, 𝑎). Note that
Assumption 1 ensures that 𝝂𝜋 > 0, for every such 𝜋 .

It follows that the desired fairness guarantee can be achieved

by ensuring that 𝒙 satisfies

∑
𝑎 𝑥𝑠,𝑎 ≥ 𝜌𝑠 ∀𝑠 such that 𝜌𝑠 > 0.

We assume, without loss of generality, that 𝜌𝑠 > 0 ∀𝑠 . We state

the Fair-LP primal/dual below, where C ∈ R𝑛×ℓ is such that the

(𝑠 ′, (𝑠, 𝑎))-entry is 1/𝜌𝑠 if 𝑠 = 𝑠 ′ and 0 otherwise. Assumption 2

guarantees their feasibility.

Fair-LP (D) Fair-LP (P)

max

𝒙∈Δℓ
𝒙𝑇 𝒓 min

𝝀>0,𝝁>0,𝛽
𝛽 − 𝝁𝑇 1

subject to (Î − Γ)𝑇 𝒙 = 0,C𝒙 ≥ 1 subject to (Î − Γ)𝝀 + 𝒓 + C𝑇 𝝁 ≤ 𝛽𝑇 1

Proposition 1. Let ⟨S,A, Γ, 𝒓, 𝒖, 𝝆⟩ be a Fair-AMDP instance and

𝜋 be a policy with𝝂𝜋 as the induced stationary distribution. Further,

let 𝒙 = Π𝝂𝜋 . Then, 𝜋 is a 𝝆-fair policy if and only if 𝒙 is a feasible

solution of Fair-LP.

Proposition 1 establishes that if Γ and 𝒓 are known, we can

compute an optimal 𝝆-fair policy by solving Fair-LP. However,

when the model parameters are unknown or partially known, even

the problem of verifying the feasibility is difficult. For instance, if

𝛼 is not known in our example from Section 3, then without the

fair-action, it is impossible to determine whether a policy is 𝝆-fair.
Let (𝝀∗, 𝝁∗, 𝛽∗) be an (optimal) solution of Fair-LP (P). First, we

note that 𝝀∗ is not unique, as for every 𝑐 ∈ R, (𝝀∗ + 𝑐 · 1, 𝝁∗, 𝛽∗)
is also an optimal solution. Hence, we may assume without loss

of generality that 𝝀∗ is orthogonal to the stationary distribution

𝝂𝜋
∗
of the optimal policy 𝜋∗ of a given Fair-AMDP instance. We

conclude this section by stating two important lemmas regarding

the nature of 𝝁∗ and 𝝀∗. The presence of a strictly feasible solution

is used in Claim 1, which is in turn used to prove Lemma 2.

Claim 1. Let 𝝀∗, 𝝁∗, 𝛽∗ be the solution to the Fair-LP (P). Then

𝜇∗𝑠 ≤ (𝑛𝜌𝑠 )/(1 − 𝑛𝜌𝑠 ) for all 𝑠 ∈ [𝑛].

Proof. Since 𝝀∗, 𝝁∗, and 𝛽∗ satisfies the Fair-LP primal, we have

(Î − Γ)𝝀∗ + 𝒓 + C𝑇 𝝁∗ ≤ 𝛽∗ · 1 .

Consider the policy 𝜋 𝑓
which only pulls the fair-action at every

point. Then 𝜈 𝑓 = ( 1𝑛 . . . 1𝑛 ) is the stationary distribution corre-

sponding to 𝜋 𝑓
. Since the reward for pulling the control action in

any state is zero, (Π𝑓 𝝂 𝑓 )𝑇 𝒓 = 0. Multiplying the above equation

by (Π𝑓 𝝂 𝑓 )𝑇 , we have ∑
𝑠

1

𝑛𝜌𝑠
𝜇∗𝑖 ≤ 𝛽∗

Further, using strong duality we have 𝒓𝑇 𝒙∗ +∑
𝑠 𝜇

∗
𝑠 = 𝛽∗. Hence,∑

𝑠

1

𝑛𝜌𝑠
𝜇∗𝑠 ≤ 𝒓𝑇 𝒙∗ +

∑
𝑠

𝜇∗𝑠 .

Since 𝒓 ∈ [0, 1]ℓ , and 𝒙 ∈ Δℓ
,∑

𝑠

1 − 𝑛𝜌𝑠

𝑛𝜌𝑠
· 𝜇∗𝑠 ≤ 𝒓𝑇 𝒙∗ ≤ 1 .

This implies for all 𝑠 , 𝜇∗𝑠 ≤ (𝑛𝜌𝑠 )/(1−𝑛𝜌𝑠 ) assuming 𝜌𝑠 < 1/𝑛. □

Remark: If we had prior knowledge that there exists a strictly

feasible policy 𝜋 , then it can be shown that 𝜇∗𝑠 (
𝜈𝑠
𝜌𝑠

−1) ≤ 1−(Π𝝂)𝑇 𝒓 ,
where (Π𝝂)𝑇 𝒓 is the reward of the strictly feasible policy 𝜋 and is

at least 0.

We first state the following useful lemma (Lemma 5 by Jin and

Sidford [18]) here without a proof. This lemma is used in the proof

of Lemma 2 and Theorem 2.

Lemma 1. Give a mixing AMDP with mixing time 𝑡mix, a policy

𝜋 , and its transition probability matrix Γ𝜋 ∈ R𝑛×𝑛 and stationary

distribution 𝝂𝜋 , the following holds:

| | (I − Γ𝜋 + 1𝝂𝑇 )−1 | |∞ ≤ 2𝑡mix .

Our proposed algorithm’s convergence time depends on the

mixing time of the MDP via the following lemma.

Lemma 2. Let 𝝀∗, 𝝁∗, 𝛽∗ be the solution to the Fair-LP (P). Then

| |𝝀∗ | |∞ ≤ 𝑀 := 2𝑡mix (1 + 𝑑𝝆 ), where 𝑑𝝆 = max𝑠
𝑛

1−𝜌𝑠𝑛 .

Proof. Since 𝝀∗, 𝝁∗, and 𝛽∗ is the solution to the Fair-LP primal,

(Î − Γ)𝝀∗ + C𝑇 𝝁∗ + 𝒓 ≤ 𝛽∗1 . (2)

Let 𝜋∗ be the optimal policy corresponding to 𝒙∗, and let Π∗ ∈ Rℓ×𝑛
and 𝝂∗ be its corresponding matrix and stationary distribution re-

spectively. Note that Γ∗ = (Π∗)𝑇 · Γ is the probability transition

matrix corresponding to the Markov chain induced by 𝜋∗. Multiply-

ing Equation 2 by (Π∗)𝑇 from the left, and using the KKT condition

and that 𝜈∗𝑠 > 0 for all 𝑠 (as the MDP is ergodic; Assumption 1) we

have

(I − Γ∗)𝝀∗ + D𝝆𝝁
∗ + (Π∗)𝑇 𝒓 = 𝛽∗ · 1, (3)

where D𝝆 is the 𝑛 × 𝑛 diagonal matrix with its 𝑠-th entry being

1

𝜌𝑠
. It is easy to see that (Π∗)𝑇 C𝑇 = D𝝆 , and (Π∗)𝑇 1 = 1. Denote
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(Π∗)𝑇 𝒓 as 𝒓∗. Since ⟨𝝀∗,𝝂∗⟩ = 0, Equation 3 can be rewritten as

follows

(I − Γ∗ + 1(𝝂∗)𝑇 )𝝀∗ + D𝝆𝝁
∗ + 𝒓∗ = 𝛽∗ · 1 .

This implies

𝝀∗ = (I − Γ∗ + 1(𝝂∗)𝑇 )−1 (𝛽∗ · 1 − D𝝆𝝁
∗ − 𝒓∗)

| |𝝀∗ | |∞ ≤ ||(I − Γ∗ + 1(𝝂∗)𝑇 )−1 | |∞ | |𝛽∗ · 1 − D𝝆𝝁
∗ − 𝒓∗ | |∞

≤ 2𝑡mix | |𝛽∗ · 1 − D𝝆𝝁
∗ − 𝒓∗ | |∞

≤ 2𝑡mix (1 +max

𝑠

𝑛

1 − 𝜌𝑠𝑛
) (4)

The first inequality in Equation 4 follows from Lemma 1, and the

second follows by showing that | |𝛽∗ · 1 − D𝝆𝝁∗ − Π𝑇 𝒓 | |∞ ≤ (1 +
max𝑠

𝑛
1−𝜌𝑠𝑛 ), which we argue next. By strong duality we have

𝛽∗−∑𝑠 𝜇
∗
𝑠 = 𝒓𝑇 𝒙∗. Since 𝒓 ∈ [0, 1]ℓ and 𝒙∗ ∈ Δℓ

, 0 ≤ 𝛽∗ ≤ 1+∑𝑠 𝜇
∗
𝑠 .

Hence from Claim 1, we have for any 𝑠

−1 −
∑
𝑠

𝑛𝜌𝑠

1 − 𝑛𝜌𝑠
≤ 𝛽∗ − 𝜇∗𝑠

𝜌𝑠
− 𝑟∗𝑠 ≤ 1 +max

𝑠

𝑛

1 − 𝑛𝜌𝑠
.

Now as

∑
𝑠 𝜌𝑠 < 1, 1 +∑

𝑠
𝑛𝜌𝑠

1−𝑛𝜌𝑠 ≤ 1 +max𝑠
𝑛

1−𝑛𝜌𝑠 ). Hence, | |𝛽
∗ ·

1 − D𝝆𝝁∗ − 𝒓∗ | |∞ ≤ (1 + 𝑑𝝆 ). □

The bound on | |𝝀∗ | |∞ crucially restricts the search space of the

primal variable 𝝀 in the stochastic mirror descent (SMD) approach

in Section 4.2 and 4.3 and enables us to give convergence guarantee

for the proposed algorithm.

4.2 Minimax Formulation
We formulate Fair-AMDP as a bilinear saddle point problem using

the Lagrangian of Fair-LP,

ℎ(𝒙,𝝀, 𝝁, 𝛽) = 𝒓𝑇 𝒙 + 𝝀𝑇 (Î − Γ)𝑇 𝒙 + 𝝁𝑇 (C𝒙 − 1) + 𝛽 (1 − 1𝑇 𝒙) .
Let 𝒙∗,𝝀∗, 𝝁∗, 𝛽∗ be a solution to

min

𝝀∈R𝑛,𝝁≥0,𝛽
max

𝒙≥0
ℎ(𝒙,𝝀, 𝝁, 𝛽) . (5)

From Assumption 2, we have that Fair-LP problem has a feasible

solution. Hence, 𝒙∗ is the solution to Fair-LP (D), and 𝝀∗, 𝝁∗ and 𝛽∗

is the solution to Fair-LP (P). Moreover, from the KKT optimality

conditions, (𝝁∗)𝑇 (C𝒙∗ − 1) = 0.

Let Δℓ
𝝆 := {𝒙 ∈ Δℓ | ∑

𝑎 𝑥𝑠,𝑎 ≥ 𝜌𝑠 for all 𝑠}, and B𝑛
2𝑀

:=

{𝝀 | | |𝝀 | |∞ ≤ 2𝑀}, where 𝑀 is as defined in Lemma 2. Then,

for every 𝒙∗ ∈ Δℓ
𝝆 , note the following: a) 𝛽 (1 − 1𝑇 𝒙) = 0, b)

0 ∈ argmin𝝁≥0 𝝁𝑇 (C𝒙 − 1). Hence, using Lemma 2 it follows

that (𝒙∗,𝝀∗, 𝝁∗, 𝛽∗) is a solution to the optimization problem in

Equation 5 if and only if (𝒙∗,𝝀∗) is the solution to the following

problem

min

𝝀∈B𝑛
2𝑀

max

𝒙∈Δℓ
𝝆

𝑓 (𝒙,𝝀) = 𝒓𝑇 𝒙 + 𝝀𝑇 (Î − Γ)𝑇 𝒙 . (6)

Furthermore, we have

ℎ(𝒙∗,𝝀∗, 𝝁∗, 𝛽∗) = 𝑓 (𝒙∗,𝝀∗) = 𝒓𝑇 𝒙∗ .

Though |𝝀∗ |∞ ≤ 𝑀 , increasing the domain of 𝝀 from 𝑀 to 2𝑀

helps in the proof of Theorem 2 which provides simultaneous ap-

proximation guarantees on the optimality and fairness of the policy

that is constructed by Algorithm 1.

Next, we define the Gap function, which quantifies the closeness

of a given feasible solution (𝒙,𝝀) to the optimal solution.

Definition 4. The gap function Gap : Δℓ
𝝆 ×R𝑛 → R+ is defined as

Gap(𝒙,𝝀) = max

𝒙′∈Δℓ
𝝆

𝑓 (𝒙 ′,𝝀) − min

𝝀′∈B𝑛
2𝑀

𝑓 (𝒙,𝝀′) . (7)

It is easy to see that the Gap function is non-negative and Gap(𝒙★,
𝝀★) = 0. We say that (𝒙,𝝀) is an 𝜀-approximate solution to Equation

6 if Gap(𝒙,𝝀) ≤ 𝜀.

4.3 Stochastic Mirror Descent (SMD)
In this section, we state the SMD framework and then briefly de-

scribe how we use it to compute an (expected) 𝜀-approximate solu-

tion to the optimization problem in Equation 6. This is done using

the ghost iterate technique [18] to compute the approximate solu-

tion using only stochastic query access to Γ and 𝒓 (i.e. the generative
model). We begin with two useful definitions.

Definition 5. (Strong Convexity) Let X ⊂ R𝑛 be a convex set. A

differentiable function 𝑅 : X → R is said to be 𝛼-strongly convex

with respect to norm | |.| | if𝑅(𝒚) ≥ 𝑅(𝒙)+⟨∇𝑅(𝒙),𝒚−𝒙⟩+ 𝛼
2
| |𝒚−𝒙 | |2

for all 𝒙,𝒚 ∈ X.

Definition 6. (Distance Generating Function) Let 𝑅 : X → R be a

continuously differentiable, strongly convex, real-valued function

on a convex set X ⊂ R𝑛 . For any 𝒙,𝒚 ∈ X, the distance from point

𝒙 to 𝒚 is given by 𝑉𝒙 (𝒚) = 𝑅(𝒚) − 𝑅(𝒙) − ⟨∇𝑅(𝒙),𝒚 − 𝒙⟩.1

The SMD framework is a stochastic approximation approach of

finding a solution to a stochastic convex program [26]. In particular,

the SMD algorithm is a special type of stochastic gradient descent

(SGD) algorithm where the updates are computed in the mirrored
space. It provides an iterative procedure to select points from a

convex space X with stochastic query access to underlying param-

eters. First, a suitable strongly convex regularizer 𝑅 catering to the

geometry of X is designed. Then, at each iterate 𝑡 , an unbiased

estimator of gradient 𝒈 given by �̃�𝑡 and a step size 𝜂𝑡 is computed.

This estimator, along with the previous iterate value 𝒙𝑡 and step

size 𝜂𝑡 , is used to compute the next iterate as given below:

𝒙𝑡+1 = arg min

𝑥 ∈X
⟨𝜂𝑡 �̃�𝑡 , 𝒙⟩ +𝑉𝒙𝑡

(𝒙) . (8)

Since the regularizer is strictly convex and differentiable, the SMD

update can be equivalently written in the (mirrored) gradient space

as follows

∇𝑅(𝒙𝑡+1) = ∇𝑅(𝒙𝑡 ) − 𝜂𝑡 �̃�𝑡 .

The strong convexity of the regularizer 𝑅 implies the uniqueness

of the mapping of ∇𝑅(·). For more details, the reader is referred to

the works by Nemirovski et al. [26] and Carmon et al. [8].

In this paper, we use the SMD framework to obtain an approxi-

mate solution to the optimization problem defined in Equation 6.

Note that, in our problem, there are two convex spaces: Δℓ
𝝆 cor-

responding to 𝒙 , and Bℓ
2𝑀

corresponding to 𝝀. First, we choose

strongly convex regularizers for the respective spaces and initialize

the constant step sizes 𝜂𝒙 and 𝜂𝝀 , respectively. Then, at each iterate,

we compute bounded estimators of the gradients 𝒈𝒙 and 𝒈𝝀 given

1
This function is also called as the Bregman divergence or the prox-function.

Main Track AAMAS 2022, May 9–13, 2022, Online

529



by �̃�𝒙𝑡 and �̃�𝝀𝑡 , respectively. Here, 𝒈
𝒙
and 𝒈𝝀 are the gradients of

𝑓 with respect to 𝒙 and 𝝀, respectively. Finally, we use the SMD

update rule given in Equation 8 to compute the iterate value for

the respective spaces. In this paper, we consider bounded gradient

estimates of the gradients as defined below.

Definition 7. (Jin and Sidford [18]) Given following properties on

mean, scale, and variance of an estimator �̃� of the gradient 𝒈:

(1) unbiasedness: E[�̃�] = 𝒈,
(2) bounded maximum entry: | |�̃� | |∞ ≤ 𝑐 with probability 1, and

(3) bounded second moment E[| |�̃� | |2] ≤ 𝑣 ,

we say that �̃� is a (𝑣, | |.| |)-bounded estimator of 𝒈 if it satisfies (1)
and (2), and that it is a (𝑐, 𝑣, | |.| |Δℓ

𝝆
)-bounded estimator if it satisfies

all three with local norm | |.| |𝒚 for all 𝒚 ∈ Δℓ
𝝆 .

Next, we present our algorithm and the bounded gradient esti-

mators and regularizers corresponding to the two convex spaces

(mentioned above) used in the algorithm.

5 ALGORITHM AND ESTIMATORS

Algorithm 1: Fair State-Visitation
Input: Desired accuracy 𝜀

Output: An 𝜀-approx policy 𝜋𝜀

Parameter: 𝜂𝝀 ≤ 𝜀/16, 𝜂𝒙 ≤ 𝜀/(8ℓ (24𝑀2 + 1)),
𝑇 ≥ max

(
8 log ℓ/(𝜂𝒙𝜀), 32𝑀2𝑛/(𝜂𝝀𝜀)

)
1 for 𝑡 = 1, . . . ,𝑇 do
2 Get �̃�𝝀𝑡 as a ((4𝑀 + 1)ℓ, (24𝑀2 + 1)ℓ, | |.| |Δℓ )-bounded

estimator of 𝒈𝝀 (𝒙𝑡 ,𝝀𝑡 )
3 Get �̃�𝒙𝑡 as a (2, | |.| |2)-bounded estimator of 𝒈𝒙 (𝒙𝑡 ,𝝀𝑡 )
4 Let 𝒙𝑡+1 = argmin𝒙∈Δℓ

𝝆
⟨𝜂𝒙 �̃�𝒙𝑡 , 𝒙⟩ +𝑉𝒙𝑡

(𝒙)
5 Let 𝝀𝑡+1 = argmin𝝀∈B𝑛

2𝑀
⟨𝜂𝝀�̃�𝝀𝑡 ,𝝀⟩ +𝑉𝝀𝑡

(𝝀)
6 end
7 Let (𝒙𝜀 ,𝝀𝜀 ) = 1

𝑇

∑𝑇
𝑡=1 (𝒙𝑡 ,𝝀𝑡 )

8 return 𝜋𝜀 with 𝜋𝜀 (𝑎 |𝑠) = 𝑥𝑠,𝑎/
∑𝑚
𝑎′=1 𝑥𝑠,𝑎′

In Section 4, we formulated Fair-AMDP as a bilinear saddle point

problem using the Lagrangian function of Fair-LP. We also showed

how the SMD framework can be used to compute an expected ap-

proximate solution to this bilinear problem. Given input 𝜀, Algo-

rithm 1 computes (𝒙𝜀 ,𝝀𝜀 ), which is an expected 𝜀-approximate

solution to the optimization problem in Equation 6, i.e. E[Gap(𝒙𝜀 ,
𝝀𝜀 )] ≤ 𝜀. The details of the regularizers and estimators are pro-

vided in the next paragraph. Then, in Line 8, the algorithm uses 𝒙𝜀

to compute 𝜋𝜀 . Note that it is not immediately clear that 𝜋𝜀 satis-

fies the approximation guarantees (in expectation) as mentioned

in Definition 8 even though 𝒙𝜀 is 𝜀-approximate solution for the

corresponding bilinear saddle point problem. In addition, note that

Algorithm 1 is oblivious to the presence of the fair-action.

We use normalized entropic regularizer for Δℓ
𝝆 , and | |.| |2

2
regular-

izer for Bℓ
2𝑀

, as shown in Table 1. The gradients of 𝑓 with respect

𝒙 , and 𝝀 are given as

𝒈𝒙 = (Γ − Î)𝝀 − 𝒓,

𝒈𝝀 = (Î − Γ)𝑇 𝒙 .

Note that since we maximize with respect to 𝒙 , we take the negative
of the gradient with respect to 𝒙 . To estimate �̃�𝒙𝑡 and �̃�𝝀𝑡 of 𝒈𝒙

and 𝒈𝝀 , we use the generative model as follows, where (𝑠, 𝑎) ∼ 𝒙𝑡
denotes the state-action pair sampled from the distribution 𝒙𝑡 ∈ Δℓ

𝝆 .

(1) For an 𝒙 ∈ Δℓ
𝝆 , the estimator �̃�𝝀𝑡 for 𝒈𝝀 in Line 2 is computed:

(𝑠, 𝑎) ∼ 𝒙, 𝑠 ′ ∼ Γ((𝑠, 𝑎), 𝑠 ′)

�̃�𝝀 (𝒙,𝝀) = 𝒆𝑠 − 𝒆𝑠′ ,

where 𝒆𝑠 is the unit vector in R𝑛 . Finally, �̃�
𝝀
𝑡 = �̃�𝝀 (𝒙𝑡−1,𝝀𝑡−1).

(2) The estimator �̃�𝒙𝑡 of 𝒈𝒙 in Line 3 is computed as:

(𝑠, 𝑎) ∼ [1/ℓ] , 𝑠 ′ ∼ Γ((𝑠, 𝑎), 𝑠 ′)
�̃�𝒙 (𝒙,𝝀) = ℓ (𝜆𝑠′ − 𝜆𝑠 − 𝑟𝑠,𝑎)𝒆𝑠,𝑎,

where 𝜆𝑠 denotes the 𝑠-th entry of 𝝀, 𝒆𝑠,𝑎 is a unit vector in Rℓ ,
and �̃�𝒙𝑡 = �̃�𝒙 (𝒙𝑡−1,𝝀𝑡−1).

Next, we show that �̃�𝒙𝑡 and �̃�𝝀𝑡 are bounded (Definition 7).

Lemma 3. The estimator �̃�𝒙 (𝒙,𝝀) as constructed above is a ((4𝑀+
1)ℓ, (24𝑀2 + 1)ℓ, | |.| |Δℓ )-bounded estimator.

Proof. From the definition of �̃�𝒙 (𝒙,𝝀) it follows that

E[�̃�𝒙 ] =
∑

𝑠,𝑠′∈[𝑛],𝑎∈[𝑚]
Γ((𝑠, 𝑎), 𝑠) (𝜆𝑠′ − 𝜆𝑠 − 𝑟𝑠,𝑎)𝑒𝑠,𝑎

= (Γ − Î)𝝀 − 𝒓 .

Since | |𝝀 | |∞ ≤ 2𝑀 and 𝒓 ∈ [0, 1]ℓ , |𝜆𝑠′ − 𝜆𝑠 − 𝑟𝑠,𝑎 | ≤ 4𝑀 + 1, we

have | |�̃�𝒙𝑡 | |∞ ≤ (4𝑀 + 1)ℓ . For the second moment, we have that

for any 𝒙 ′ ∈ Δℓ
,

E[| |�̃�𝒙 | |2𝒙′] ≤
∑
𝑠,𝑎

1

ℓ
𝑥 ′𝑠,𝑎 (24𝑀2 + 1)ℓ2 = (24𝑀2 + 1)ℓ .

□

Lemma 4. The estimator �̃�𝝀 (𝒙,𝝀) as constructed above is a (2,
| |.| |2) bounded estimator.

The proof of Lemma 4 is in Appendix A. We note that if 𝝆 = 0, then
our algorithm is the same as that by Jin and Sidford [18] for the

unconstrained AMDP. In Section 6, Theorem 1 shows that (𝒙𝜀 ,𝝀𝜖 )
is such that EGap(𝒙𝜀 ,𝝀𝜀 ) ≤ 𝜀. Then, Theorem 2 shows that the

policy 𝜋𝜀 constructed at Line 8 is indeed (3𝜀, 𝜀)-approximate in

expectation, and thus is the main contribution of our work.

𝑅 𝑉𝒙′ (𝒙)
𝒙 - space

∑
𝑠,𝑎 𝑥𝑠,𝑎 log(𝑥𝑠,𝑎)

∑
𝑠,𝑎 𝑥

′
𝑠,𝑎 log(𝑥 ′𝑠,𝑎/𝑥𝑠,𝑎)

𝝀 - space
1

2
| |𝝀 | |2

2

1

2
| |𝝀 − 𝝀′ | |2

2

Table 1: SMD parameter setting
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6 THEORETICAL RESULTS
Theorem 1 shows that (𝒙𝜀 ,𝝀𝜀 ) computed by Algorithm 1 at Line 5

satisfies E[Gap(𝒙𝜀 ,𝝀𝜀 )] ≤ 𝜀.

Theorem 1. Given a state-visitation fairness vector 𝝆 ∈ [0, 1/𝑛)𝑛 ,
desired accuracy 𝜀 > 0, and bounded estimators �̃�𝒙𝑡 and �̃�𝝀𝑡 as given

in Lemmas 3 and 4, Algorithm 1 with step sizes 𝜂𝒙 ≤ 𝜀
8ℓ (24𝑀2+1)

and 𝜂𝝀 ≤ 𝜀/16, at the end of 𝑇 ≥ max

(
8 log ℓ
𝜂𝒙𝜀 , 32𝑀

2𝑛

𝜂𝝀𝜀

)
rounds, at

Line 5 computes (𝒙𝜀 ,𝝀𝜀 ) such that E[Gap(𝒙𝜀 ,𝝀𝜀 )] ≤ 𝜀 .

The expectation is over the stochasticity in both the state-action

selection and the MDP transitions. The proof of Theorem 1 is in

Appendix B. We make two remarks. First, the step size 𝜂𝒙 and time

horizon 𝑇 depend on the mixing time of an MDP. The problem

of estimating (or providing an upper bound) on the mixing time

of an MDP is an active research topic [28, 36]. We rely on these

techniques to estimate the mixing time used to compute step size

and time horizon.

Second, the lower bound on 𝑇 is proportional to 𝑀 , which be-

comes very large as 𝜌𝑠 approaches 1/𝑛. Hence, if 𝜌𝑠 ’s are close

to 1/𝑛 then the search space of 𝝀 in Algorithm 1 increases and it

converges slowly. Note that, if 𝜌𝑠 ≤ 1/2𝑛 then 𝑑𝝆 ≤ max𝑠
1

𝜌𝑠
then

our algorithm yields similar convergence time (in order) as that of

the constrained AMDP algorithm by [18] that only computes a fea-

sible solution without reward maximization. This bound, without

Assumption 2, can be obtained from a stationary distribution of

(any) strictly feasible policy.

Next, we define the notion of simultaneous approximation guar-

antee of an solution to the Fair-AMDP problem and show that

the the policy 𝜋𝜀 computed by Algorithm 1 satisfies this notion in

Theorem 2.

Definition 8. Let 𝒙∗ be the optimal solution to Fair-LP (D). A

policy 𝜋 is called (𝜀1, 𝜀2)-approximate for the Fair-AMDP problem

if 𝒓𝑇 (Π𝝂𝜋 ) ≥ 𝒓𝑇 𝒙∗ − 𝜀1 and C𝒙 ≥ 1 − 𝜀2.

Theorem 2. Given a state-visitation fairness vector 𝝆 ∈ [0, 1/𝑛)𝑛 ,
desired accuracy 𝜀 > 0 and bounded estimators 𝑔𝒙𝑡 and 𝑔𝝀𝑡 as given

in Lemmas 3 and 4, Algorithm 1 with step sizes and𝑇 as in Theorem

1 computes a policy 𝜋𝜀 which is (3𝜀, 𝜀)-approximate in expectation

with sample complexity 𝑂
(
𝑛𝑚𝜀−2𝑡2

𝑚𝑖𝑥
(1 + 𝑑𝝆 )2 log(𝑛𝑚)

)
.

The proof of Theorem 2 is given in Appendix C. As stated earlier,

Algorithm 1 is oblivious to the presence of fair-action. Assump-

tion 2 is not necessary if strict feasibility (even for 𝝆 ∈ [0, 1]𝑛
such that

∑
𝑠 𝜌𝑠 < 1) is known a priori. The convergence time 𝑇 in

this case would depend on the reward and the stationary distribu-

tion induced by the strictly feasible policy. We note an additional

multiplicative factor of (1 + 𝑑𝝆 )2 in the sample complexity of our

proposed algorithm when compared with the best known sample

complexity result for the unconstrained problem (see Theorem 1

by Jin and Sidford [18]). In the proposed framework, this factor is

required to ensure that the bounding box contains the optimal value

of the primal variable 𝝀 and is the price we pay to compute a policy

with simultaneous approximation guarantee on both fairness and

reward. However, the sample complexity is not tight when 𝝆 = 0. In
this case (1 +𝑑𝝆 )2 = 𝑛2 and the sample complexity of the proposed

algorithm becomes 𝑂 (𝑛3𝑚𝜀−2𝑡2
𝑚𝑖𝑥

log(𝑛𝑚)) which is suboptimal.

Finding a better sample complexity for fair-AMDP problem is an

interesting future work.

7 SIMULATIONS
In this section, we evaluate our proposed algorithm and validate

its properties with experiments on simulated data. Figure 1 presents

theMDP transition dynamics specificationwith three states, 𝑠0, 𝑠1, 𝑠2,

and two actions, 𝑎0, 𝑎1. The reward of taking 𝑎0 on 𝑠0 is 1, and 0.1

otherwise. It is easy to see that the optimal unconstrained policy is

a deterministic policy with 𝜋 (𝑠0) = 𝑎0, 𝜋 (𝑠1) = 𝑎1, and 𝜋 (𝑠2) = 𝑎0.

This policy yields an average-reward of 0.526, with the three states

𝑠0, 𝑠1, and 𝑠2 being visited 47.4%, 43.5%, and 9.1% of times respec-

tively. Also, since the MDP is feasible for 𝝆 ≤ 1/3, we do not use the
fair-action. Recall, 𝒙𝜀 is the average of 𝒙𝑡 , 𝑡 ∈ [𝑇 ]. Further, we use
𝒙 to denote the state-action frequency vector of policy 𝜋𝜀 derived

from 𝒙𝜀 (Step 8, Algorithm 1). Note that the reward of 𝜋𝜀 is 𝒓𝑇 𝒙 .
Convergence of SMD: We first empirically demonstrate the

convergence of SMD. We choose a fairness constraint 𝜌 = [0.1,
0.1, 0.25], which is violated by the unconstrained optimal policy.

We implemented Algorithm 1 to solve this problem with𝑀 = 100

and 𝜂𝒙 = 𝜂𝝀 = 0.01. Figure 1 shows the average-reward and state-

visitation frequencies for policies obtained after different number of

gradient descent steps, up to a maximum of 20,000. The results are

averaged over 100 runs, with the shaded regions representing the

standard deviations. We also see that the reward 𝒓𝑇 𝒙 , approaches
the fair optimal value and the visitation frequency of 𝑠2 approaches

the required value (25%). We note that 𝒓𝑇 𝒙 can cross the optimal

value as 𝒙 is only approximately fair. In Figure 1, we also plot 𝒓𝑇 𝒙𝜀

along with 𝒓𝑇 𝒙 for different values of 𝑇 .

Gap Function: The theorems prove that the difference between

𝒓𝑇 𝒙 and the optimal reward decreases with the value of the the gap

function Gap(𝒙𝜀 ,𝝀𝜀 ). Figure 2 (left) plots the reward difference as

the gap decreases.

Varying the Constraint 𝝆: In this section, we vary the value

of 𝜌2 ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. For each 𝝆 parameter, we run SMD

10 times, with 10,000 steps each. Figure 2 plots the reward and

state-visitation frequency on 𝑠2 for different 𝝆. The colors blue,

orange, green, red, and purple indicate increasing values of 𝜌2. As

expected, all fairness constraints are satisfied, but as 𝜌2 increases,

the optimal rewards decreases. This decrease captures the cost of

fairness as the fairness constraints become more stringent.

8 CONCLUSION AND FUTUREWORK
In this paper, we studied the Fair-AMDP problem and proposed

an SMD-based algorithm to compute a policy with simultaneous

approximation guarantee on average-reward and state-visitation

fairness. We note that our results in this work can be extended to

ensure state-action visitation fairness: for 𝝆 ∈ [0, 1]ℓ a fair policy 𝜋
with stationary distribution 𝜈𝜋 satisfies Π · 𝜈𝜋 ≥ 𝝆, provided there

is a strictly feasible solution.

In Section 4.2, we determined the domain for the primal and

dual variables for approximately solving the bilinear saddle point

problem using the SMD framework. In particular, we restricted our

domain of 𝒙 to Δℓ
𝝆 and we removed 𝝁 variables from the optimiza-

tion problem. This in turn demands that at step 4 in Algorithm 1, 𝒙𝑡
is computed by projecting to Δℓ

𝝆 . This approach can also be adapted

Main Track AAMAS 2022, May 9–13, 2022, Online

531



𝑠0 𝑠1 𝑠2

0 5000 10000 15000 20000
T

0.25

0.30

0.35

0.40

0.45

Re
wa

rd

rTx
rTxε

Optimal Reward

0 5000 10000 15000 20000
T

0.20

0.25

0.30

0.35

0.40

St
at

e 
Fr

eq
ue

nc
y

State 0
State 1
State 2

Figure 1: Left: the MDP specification, with three states and two actions. In each state, action 𝑎0 takes the blue transition with
probability 0.9, and takes the yellow transition with probability 0.1; action 𝑎1 has the converse effect. Middle and right: reward
and state-visitation frequency of a policy learned after 𝑇 steps, averaged over 100 runs.
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Figure 2: Left: gap function value (blue) and reward difference (orange) learned after 𝑇 steps, averaged over 100 runs. Mid-
dle and right: reward and visitation frequency of 𝑠2 of policies learned after 𝑇 steps, averaged over 10 runs, for each 𝜌2 ∈
{0.1, 0.15, 0.2, 0.25, 0.3}. The colors of blue, orange, green, red, and purple indicate increasing values of 𝜌2. Dashed lines indicate
optimal rewards and visitation frequency constraints.

for computing a feasible solution for an AMDP with arbitrary linear

constraints and no objective function [18].

For future work, the time complexity bound of our algorithm

becomes large as 𝜌𝑠 → 1/𝑛. Thus, an immediate direction is to

improve the dependence of time complexity on 𝝆, either via a new
algorithm or better analysis. Also observe that the introduction of

fair-action ensures strict feasibility when 𝜌𝑠 < 1/𝑛 for all 𝑠 . It is

interesting to see if there is an approach that ensures feasibility for

a broader class of 𝝆.
We note that a convex program formulation for discounted-

reward MDPs with state-visitation fairness constraints is not im-

mediate, and we need novel techniques to solve the state-visitation

fairness problem for discounted-reward MDPs. The introduction

of fairness constraints may lead to a loss in the maximum average-

reward that can be achieved. The difference in the average-reward

of an unconstrained optimal policy and that of an optimal policy

that satisfies fairness captures the price of fairness in the system.

Further study of price of fairness in the Fair-AMDP setting is an

interesting future direction.
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