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ABSTRACT
Classification and clustering are crucial tasks that recognize the

identities and the communities of nodes in a graph. Several methods

have been proposed to reduce the accuracy of node classification

and clustering through graph neural networks (GNN). Existing de-

fense methods usually modify the model architecture and adopt

countermeasure training to enhance the robustness of the node

classification and clustering. However, these defense methods are

model-oriented and not robust. To alleviate the problem, this paper

first proposes a robust node classification metric based on residual

entropy. More concretely, we prove that maximizing the residual

entropy helps to improve the robustness of the classification accu-

racy. We them propose two graph generative algorithms to resist

against two kinds of GNN-based attacks, the untargeted and the

targeted attacks. Finally, experimental analysis show that the pro-

posed algorithms outperform the existing defense works under five

classic datasets.
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1 INTRODUCTION
Graph mining are crucial techniques to reveal insights about the

social structures of multi-agent systems [2, 8, 20, 27–29]. One of

the key insights involve subsets of agents who have dense internal

and sparse external connections, which are naturally expressed

as agent communities [14, 31, 37]. A large number of community

detection algorithms have emerged in the last two decades. The

classical methods focus on optimizing the detection metrics [1, 10,

34]. Nowadays, researchers usually treat the task of community
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detection as that of node classification. More specifically, agents

in the same community are regarded as having the same label and

graph-neural classification models, e.g., graph neural networks

(GNN), are trained. Compared with the classical methods, graph-

neural methods not only consider the topological relationship but

also node information of the network [3, 9, 15, 21, 38].

Although node classification has achieved impressive perfor-

mance in various fields such as malwares detection [36], analyzing

chromosomal domains [25], and inferring node identity [21], exist-

ing node classification algorithms are vulnerable and their perfor-

mance can be easily affected by well-designed attacks [46, 47]. In-

deed, a number of recent adversarial algorithms have been designed

and shown to be effective [4, 5, 13, 26, 43, 46]. These adversarial al-

gorithms can change the label distribution of the nodes in the graph

[13, 30] by inserting or removing several edges [13, 30, 42], once

the graph structure is leaked. Since these attacks have caused huge

damage to the node classification algorithms, it is useful to study

the corresponding defense methods to maintain the robustness of

node classification [7].

In response to the attack methods, various defense methods were

also proposed. Many of these methods focus on rebuilding the node

classification models [6, 12, 35] or adopting adversarial training

models [16, 41, 45] to enhance the robustness of classification. Oth-

ers methods try to design data generative methods [11, 43]. For

example, Wu el al. attempted to drop edges among nodes with low

similarity to reduce the mis-classification risk for the edges of being

attacked [43]. However, most of the data generative methods are

model-driven and do not exhibit sufficient robustness, meaning

that they become invalid when the adversarial model changes or

the attackers modifies the graphs structure later.

Our motivation in this paper is to design a general and robust

graph generative metric. More clearly, such a metric is expected to

preserve the accuracy of node classification under two constraints:

(1) The metric is independent from the adversarial model, and (2)

the attackers may change the graph structure later arbitrarily. With

such a metric, we may address problems with existing defence

methods to enhance robustness in a general setting.

There are several challenges that we must overcome. On one

hand, there is a lack of a commonly-agreed and mature metric to

guide the designing of defense algorithms. In terms of the adver-

sarial goal, there exist two kinds of attacks, untargeted attack and
targeted attack [18]. The former attempts to mis-classify the entire
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Figure 1: The process of designing graph generative algorithms to enhance the robustness of a community structure. (a) Model
a real-world network to a graph𝐺 with community structure 𝑃 . (b) Apply the graph generative algorithms tomake the commu-
nity structure 𝑃 more robust, i.e. add edges {1, 4} and {5, 7}. (c) When𝐺 is attacked, attackers arbitrarily modify the real-world
relationship by adding or deleting edges, i.e. add edges {2, 9}, {3, 7}, and delete edges {1, 2}, {2, 6}. (d) Classifiers are used to
classify nodes on the attacked graph. The accuracy of the node classification is similar with that of 𝐺 .

set of nodes in a graph, while the latter aims to mis-classify only

a specific set of nodes. Further, the potential strategies to execute

either goal on graph vary with the graph structures. It seems impos-

sible to explore a general defense metric by passing through all the

concrete attacks. On the other hand, the designed concrete defense

algorithms have to be used to support both traditional machine

learning-based and deep learning-based node classification models

like graph neural network.

In order to solve the aforementioned challenges, it is important

to learn the amount of information for community structure. Li

and Pan proposed the concept of structural entropy as a general

tool in structural information theory [24]. Li et al. subsequently

used this notion in community detection [22]. Liu el al. further

applied residual entropy to measure the information of community

structure, and asserted that higher residual entropy lead to more

stable community structure [30] is. These work inspired us to apply

residual entropy to explore the defense metric. In order to keep

the existing topological relationship of the original graph, we only

add new edges among nodes. The idea is to insert new edges with

the maximal residual entropy. We verify this idea using two tasks.

The primary task is to verify whether maximizing residual entropy

can improve the performance of node classification. The secondary

task is to check whether it can defend both untargeted and targeted

attacks. The contributions are summarized as follows:

• We propose a new residual entropy-based graph generative

metric. We demonstrate that maximizing the residual en-

tropy can improve the robustness of community structure,

thereby defending against various adversarial attacks.

• We design two graph generative algorithms REGG_UA and

REGG_TA. Both of them are independent from adversarial

attacks. Further, we optimize the execution efficiency of

those algorithms.

• We verify our algorithms against several adversarial attacks

on five datasets and seven classifiers. Experimental results

reveal the effectiveness of our algorithms. Specifically, the

algorithm REGG_UA improves the performance of node

classification and can effectively defense untargeted attacks,

and REGG_TA is effective in resisting targeted attacks.

2 RELATEDWORKS
Node classification has been studied for several years. The initial

research focused on community detection in social networks. These

researches usually defined a metric, and achieved node clustering

by optimizing this metric. For example, the algorithm Louvain is a

traditional unsupervised method by optimizing modularity [1], and

the algorithm Scalable Community Detection (SCD) is designed by

maximizing a Weighted Community Clustering (WCC) [33]. After

that, Perozzi el al. [32] proposed a node embedding method named

DeepWalk, which can capture connectivity patterns in networks

by representation learning. Moreover, this method can also be com-

bined with machine learning algorithms, such as logistic regression

[32]. Recently, the artificial neural network has been used for node

classification. Kipf el al. [21] proposed a representative Graph Con-

volutional Network (GCN) model. Petar el al. [39] proposed a neural

network architectures called Graph Attention Network (GAT) fol-

lowing a self-attention strategy to compute the hidden states of

each node by attending over its neighbors in the graph. Wang el

al.[40] combined Label Propagation (LPA) with GCN to propose the

GCN-LPAmodel. Mohammand el al. [17] proposed Semi-Supervised

Preconditioning (SSP) to employ information-geometric tools to

optimize graph neural networks, which achieved excellent perfor-

mance on node classification.

With the wide application of node classification in reality, re-

searches of adversarial attacks on graph have been paid more at-

tention [46]. Based on whether the adversary’s target is the whole

graph or parts of the graph, these attacks can be divided into un-

targeted attack and targeted attack. As a method of untargeted

attack, Liu el al. [30] proposed an efficient attack strategy Residual

Entropy Minimization (REM) from the view of information theory.

Disconnect Internally Connect Externally (DICE) [42] was another

method of untargeted attack, which worked by randomly deleting

internal edge and adding external edge for each community. For

targeted attack, Fionda el al. [13] devised Community Deception

via Safeness(FDA) for a targeted set of nodes by rewiring a certain

number of edges related with the targeted set through the metric

safeness. Li el al. [26] proposed an iterative learning framework

Community Detection ATTACKer(CD-attack) to modify the edges

of graph, which took turns to update two modules: one working

as the constrained graph generator and the other as the surrogate
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community detection model. Zügner el al. [46] designed an algo-

rithm namedNettack to generate unnoticeable structure and feature

perturbations on attributed graphs by preserving graph’s degree

distribution and features co-occurrences. RND is another bench

mark attack by randomly sample nodes and connect them with

other nodes of different labels [46].

Corresponding to the graph adversarial attacks, there are also

some studies on graph defense. One type of defense is to improve

the robustness of classification by improving the classifier, such as,

directly modifying the classifier [16, 41, 45] and adopting adver-

sarial training to the classification model [6, 12, 35, 44]. Another

type of defense is to improve the robustness of graph data, such

as, considering the graph generative defense algorithms [11, 43].

Specifically, Wu el al. designed a defense algorithm by dropping

edges among nodes with low similarity score to reduce the attacked

risk of edges [43]. They tested the performance of the algorithm on

a limited number of nodes and a specific classifier GCN. Entezari el

al. [11] observed that Nettack [46] results in changes in high-rank

spectrum of the graph. They propose to preprocess the graph with

its low-rank approximations. Their algorithm depends on linearly

modifying the adjacency matrix of the graph instead of directly add

or drop edges in graph and may not be able to counteract attacks

other than Nettack. However, most of the existing works have not

mainly studied how to generate universal and robust graphs. Thus,

in this paper, we focus on designing graph generative algorithms to

enable graphs to prevent the potential attacks by pre-protecting the

structure information of the graph data. In order to provide theoret-

ical support, we introduce the relevant knowledge of information

theory. In information theory, quantifying structural information

is essential [29]. Li el al. first introduced the structural entropy

of networks, and they used it to detect community structure in

the network [23]. As a well-defined measure for the security of

networks, Li el al. also proposed the notion of resistance based on

the one-dimensional and two-dimensional structural entropy of

networks, respectively [22]. Following by those definitions, Liu el

al. introduced the notion of residual entropy [30]. A higher value

of residual entropy means more information of the community

structure. This motivates us to introduce residual entropy to learn

the universal and robust graph generative metric.

3 PROBLEM FORMULATION
A network of agents can be described by a graph 𝐺 = (𝑉 , 𝐸),
where the node set 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of agents, the

edge set 𝐸 denotes the relationships among agents in 𝑉 . These

nodes spontaneously form a community (or label set) according to

the closeness of the connections and the agents’ attributes. Sup-

pose 𝑃 = {𝑋1, 𝑋2, ..., 𝑋𝐿} is the community structure of 𝐺 = (𝑉 , 𝐸).
This structure can be used to study sub-structural properties of

agents 𝑉 , such as, common preferences or intentions. Therefore, it

is necessary for the network publisher to protect this structure 𝑃

from being attacked. As we described above, in this paper, we focus

on a preprocessing-based defense on raw graph. That is, given a

undirected graph 𝐺 = (𝑉 , 𝐸) and its community structure 𝑃 , our

goal is to look for a defense strategy D such that D(𝐺) = 𝐺 is

robust in detecting 𝑃 , where D(𝐺) is a generated graph from raw

graph. Suppose A is the attack strategy and F is the classifier,

the preprocessing-based defense means F (A(𝐺)) resembles 𝑃 as

much as possible. Figure 1 shows a workflow of the preprocessing-

based defense on 𝐺 . It can be see that the node classification result

F (A(𝐺)) after the attack is consistent with the initial community

structure 𝑃 .

Given the graph 𝐺 = (𝑉 , 𝐸), initial community structure 𝑃 , at-

tack strategy A and classifier F , assuming that S is the similarity

function between two community structure, then the preprocessing-

based defense problem can be defined by

argmax

D
S(F (A(D(𝐺))),𝐶) (1)

where 𝐶 is the initial community structure 𝑃 if we protect all com-

munities {𝑋1, 𝑋2, ..., 𝑋𝐿} and 𝐶 is 𝑋𝑡 if we protect the target com-

munity 𝑋𝑡 . The operation of defense strategy D includes adding

or deleting nodes and edges. For simplicity, in this paper, we only

consider the case of adding edges. Nevertheless, it still takes expo-

nential time to greedily find the optimal defense strategy for edge

addition, so we introduce residual entropy in the next section to

guide the edge addition to achieve an approximate effect.

4 RESIDUAL ENTROPY
Li el al. first defined the 𝑘-dimensional structure entropy for a

graph 𝐺 [24]. Along with the idea, Liu el al. further investigated

the notion of residual entropy to normalize the difference between

one-dimensional and two-dimensional structure entropy for com-

munity deception [30]. They pointed out that a higher value of

residual entropy can represent more information of the community

structure. In this paper, we try to extend this concept to create a

new general and robust metric to defense both of the untargeted

attacks and the targeted attacks. Before giving the concrete defini-

tion of this metric, we first recall 1-dimensional and 2-dimensional

structure entropy.

Let𝐺 = (𝑉 , 𝐸) be an undirected graph. Denote by 𝑑𝑖 the degree

of node 𝑣𝑖 ∈ 𝑉 , and |𝐸 | the number of edges in 𝐸. Each node can

be naturally considered as an agent which interacts with others by

passing random events through edges. The distribution of agents’

interactions means that
𝑑𝑖
2 |𝐸 | is the probability that agent 𝑣𝑖 is in-

volved in a random interaction. Thus the agent can be encoded

by a codeword with − log
2

𝑑𝑖
2 |𝐸 | bits. In this sense, 1-dimensional

structure entropy is defined by the average codeword length of all

interactions from nodes in 𝑉 [30]:

H(𝐺) = −
∑
𝑣𝑖 ∈𝑉

𝑑𝑖

2|𝐸 | log2
𝑑𝑖

2|𝐸 | . (2)

The value ofH(𝐺) expresses the average information of a call in

𝐺 without assuming any community structure. Now assume that

𝑃 = {𝑋1, 𝑋2, ..., 𝑋𝐿} is the community partition or label partition

of 𝑉 , where 𝐿 is the number of communities or labels. Write 𝜈 𝑗
for the volume of 𝑋 𝑗 (i.e., the sum degree of nodes in 𝑋 𝑗 ), and 𝑔 𝑗
as the number of edges with only one endpoint in 𝑋 𝑗 . Then there

are two cases to encode an interaction from 𝑣𝑖 : 1) we encode the

interaction as − log
2

𝑑𝑖
𝜈𝑗

if it is from 𝑣𝑖 ∈ 𝑋 𝑗 to another node in 𝑋 𝑗 ;

2) we encode the interaction as − log
2

𝑑𝑖
2 |𝐸 | = − log

2

𝑑𝑖
𝜈𝑗

− log
2

𝜈𝑗
2 |𝐸 |

if the call is from 𝑣𝑖 ∈ 𝑋 𝑗 to a different community. Compared with

case 2), case 1) omits the information of the community − log
2

𝜈𝑗
2 |𝐸 | .
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Then the 2-dimensional structure entropy is defined by the average

encode length of all calls with community partition 𝑃 [30]:

H𝑃 (𝐺) =
𝐿∑
𝑗=1

(
−
𝜈 𝑗

2|𝐸 | H (𝐺 |𝑋 𝑗 ) −
𝑔 𝑗

2|𝐸 | log2
𝜈 𝑗

2|𝐸 |

)
, (3)

where H(𝐺 |𝑋 𝑗
) = −∑

𝑣𝑖 ∈𝑋 𝑗

𝑑𝑖
𝜈𝑗

log
2

𝑑𝑖
𝜈𝑗
. The value of H𝑃 (𝐺) re-

flects the average information of a call in 𝐺 if we know 𝐺 ’s com-

munity structure 𝑃 . Therefore, their difference H(𝐺) − H𝑃 (𝐺)
measures the gained information as the communities in 𝑃 take

shape. Then the normalization of this difference is defined as resid-

ual entropy.

Definition 1. [30] The normalized residual entropy of P is

𝜌P (𝐺) B 𝑅𝑃/H (𝐺), (4)

where 𝑅𝑃 = H(𝐺) − H𝑃 (𝐺) =
𝜈𝑗−𝑔𝑗
2 |𝐸 | log

2

𝜈𝑗
2 |𝐸 | .

The normalized residual entropy of 𝐺 [30] indicates the amount

of information about the community structure of the graph 𝐺 . In

theory, a relatively high 𝜌𝑃 (𝐺) represents that the partition 𝑃 con-

tains more information, which makes the community structure of

𝐺 easier to be detected. Hence, the defense strategy is to modify

the graph structure to generate a new graph with higher residual

entropy. The new graph takes an explicit community structure to

achieve the effect of defensing adversarial attacks.

We first start to discuss what strategy can be adopted to increase

the residual entropy. From the definition, 𝜌𝑃 (𝐺) increases as long
as H(𝐺) decreases and 𝑅𝑃 (𝐺) increases. In our defense strategy,

we enhance the graph by adding edges. Specifically, we denote a

pair of nodes (𝑢𝑖 , 𝑢 𝑗 ) as a non-edge where the node 𝑢𝑖 and 𝑢 𝑗 are
disconnected. From the definition of resistance [22], we prove the

next lemma.

Lemma 1. For two non-edges (𝑢𝑖 , 𝑢 𝑗 )&(𝑢𝑖 , 𝑢𝑤), if 𝑢𝑖 ∈ 𝐶𝑚 and
𝑢 𝑗 ∈ 𝐶𝑚 and 𝑢𝑤 ∈ 𝐶𝑛 where 𝑚 ≠ 𝑛, then 𝑅𝑃 (𝐺 ⊕ (𝑢𝑖 , 𝑢 𝑗 )) >

𝑅𝑃 (𝐺 ⊕ (𝑢𝑖 , 𝑢𝑤)).

It can be observed that adding a non-edge inside a single sub-

community can make the value of 𝑅𝑃 (𝐺) higher, when comparing

with adding a non-edge between two different sub-communities.

Similarly, from (4), adding any edge inside a single sub-community

has the same effect to the value of 𝑅𝑃 . Hence, we focus on how to

add edges inside a single sub-community to make H(𝐺) smaller.

From the formula of structure entropy, another lemma can be

derived as below.

Lemma 2. [[30]] For two non-edges (𝑢𝑖 , 𝑢 𝑗 ),&(𝑢𝑥 , 𝑢𝑦), ifmin(𝑑𝑖 , 𝑑 𝑗 ) ≤
min(𝑑𝑥 , 𝑑𝑦) and 𝑑𝑖 + 𝑑 𝑗 ≤ 𝑑𝑥 + 𝑑𝑦 then H(𝐺 ⊕ (𝑢𝑖 , 𝑢 𝑗 )) ≥ H (𝐺 ⊕
(𝑢𝑥 , 𝑢𝑦)).

In addition, two corollaries can be derived as below.

Corollary 1. If 𝑑𝑖 + 𝑑 𝑗 < 𝑑𝑥 + 𝑑𝑦 , then H(𝐺 ⊕ (𝑢𝑖 , 𝑢 𝑗 )) ≥
H (𝐺 ⊕ (𝑢𝑥 , 𝑢𝑦)).

Corollary 2. If 𝑑𝑖 +𝑑 𝑗 = 𝑑𝑥 +𝑑𝑦 and |𝑑𝑖 −𝑑 𝑗 | ≥ |𝑑𝑥 −𝑑𝑦 |, then
H(𝐺 ⊕ (𝑢𝑖 , 𝑢 𝑗 )) ≥ H (𝐺 ⊕ (𝑢𝑥 , 𝑢𝑦)).

We can deduce from Lemma 2 and the corollaries above that if

we adopt edge addition to make the structural entropy of the graph

smaller, we should tend to choose a non-edge with a larger sum of

degrees at both ends and a smaller difference between the degrees.

Through the previous analysis, we can conclude that adding

edges in sub-communities of the graph can affect 𝑅𝑃 (𝐺) andH(𝐺).
Meanwhile, it is able to increase 𝜌𝑃 (𝐺). Therefore, we can make

the residual entropy larger than the original graph through adding

edges. Consequently, the key question is changed to designing an

efficient edge choice algorithm. In the next section, we will discuss

the algorithm in detail.

5 RESIDUAL ENTROPY BASED DEFENSE
ALGORITHMS

In this section, we adopt the strategy of directly adding the edges in

the graph instead of modifying node feature. As mentioned earlier,

the key point is to adding as few as edges to the graph and get a

more robust graph structure. We will first give the definition of the

candidate edge:

Definition 2. For a sub-community 𝐶𝑖 of the graph and a non-
edge (𝑢𝑥 , 𝑢𝑦) in 𝐶𝑖 , we call (𝑢𝑥 , 𝑢𝑦) an aim edge if 𝑑𝑥 + 𝑑𝑦 is the
maximum among all non edges in𝐶𝑖 . In all aim edges of𝐶𝑖 , (𝑢𝑥 , 𝑢𝑦)
is the candidate edge if |𝑑𝑥 − 𝑑𝑦 | is the minimum.

From the previous lemmas and the definitions about candidate

edge, we can infer that comparing with randomly choose a non-

edge in a single sub-community, choosing to add the candidate edge

to the graph can better increase the residual entropy.

Next we will introduce the robust graph generative algorithms.

Since there are two categories of attacks on graph: untargeted attack

and targeted attack, we design two defense algorithms based on

residual entropy, respectively. The specifications of both algorithms

are listed as follows.

The residual entropy-based graph generative algorithm for untar-
geted attack (REGG_UA) is proposed below. This algorithm contains

three steps. The first step is to select the candidate edge in each

sub-community to form a candidate edge set. The second step is

to select a best candidate edge from the candidate edge set. In this

step, we traverse the entire set in line 10 of the procedure, and

calculate the change of the residual entropy when adding each edge

to the graph, and finally choose the one that maximizes the residual

entropy. The third step is to add this edge into the graph and update

the candidate edge set. We suppose the best candidate edge is in the

sub-community 𝐶𝑖 . In the step of updating the candidate edge set

in line 18, we first remove the best candidate edge from the set and

then add a new candidate edge to the set from the sub-community

𝐶𝑖 . After repeating the whole three steps for 𝐾 times (𝐾 is a hyper-

parameter), a robust graph to resist against the untargeted attack is

generated. When implement this algorithm, we sort the non edges

inside each sub-community by the sum of degrees of both nodes

and save the results in advance. This is used to enable the algorithm

to quickly calculate the candidate edge in each sub-community.

Let |𝑃 | be the number of sub-communities in the graph, then the

compute complexity of the REGG_UA is 𝑂 ( |𝑃 | |𝑉 | log
2
|𝑉 |), which

is faster than greedy strategy to select candidate edges in the entire

graph with the compute complexity of 𝑂 ( |𝑉 |2).
The residual entropy-based graph generative algorithm for tar-

geted attack (REGG_TA) is defined similarly to the REGG_UA. The

REGG_TA algorithm can be divided into two steps. The first step in
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line 25 is to calculate the candidate edge in the aim sub-community(aim

sub-community is known). The second step in line 26 is to add this

edge to the graph. The two steps are repeated for 𝑇 times (𝑇 is a

hyper-parameter) as well.

Algorithm REGG_UA / REGG_TA

Input: Graph 𝐺 , Partition 𝑃 , 𝐾 , 𝑇 , Aim Community 𝑋𝑐
Output: Defensed Graph 𝐺

1: function REGG_UA(Graph 𝐺 , Partition 𝑃 , 𝐾 )

2: Initialize 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡 as {}
3: for 𝑋𝑖 ∈ 𝑃 = {𝑋1, 𝑋2, ..., 𝑋𝐿} do
4: find a candidate edge (𝑢𝑥 , 𝑢𝑦) from 𝑋𝑖
5: add (𝑢𝑥 , 𝑢𝑦) to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡
6: end for
7: while 𝐾 > 0 do
8: max residual entropy = −∞
9: best candidate edge = (None,None);
10: for (𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡 do
11: re = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐺 ⊕ (𝑢𝑖 , 𝑢 𝑗 ))
12: if re > max residual entropy then
13: max residual entropy = re

14: best candidate edge = (𝑢𝑖 , 𝑢 𝑗 )
15: end if
16: end for
17: add best candidate edge to 𝐺

18: update 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡

19: 𝐾 = 𝐾 − 1

20: end while
21: return 𝐺
22: end function
23: function REGG_TA(Graph𝐺 , Partition 𝑃 , 𝑇 , Aim Community

𝑋𝑐 )

24: while 𝑇 > 0 do
25: calculate the candidate edge (𝑢𝑥 , 𝑢𝑦) from 𝑋𝑐
26: add the candidate edge to 𝐺

27: 𝑇 = 𝑇 − 1

28: end while
29: return 𝐺
30: end function

6 EXPERIMENTAL EVALUATION
In this section, we conduct experiments to evaluate the effectiveness

of REGG_UA and REGG_TA on the following three tasks mentioned

as before.

• First, we test the performance of REGG_UA on the task of

improving the performance of node classification through

different classifiers.

• Second, we test the performance of REGG_UA on the task

of defending different untargeted attacks.

• Finally, we test the performance of REGG_TA on the task of

defending different targeted attacks.

Here, we first describe the experimental settings.

6.1 Experimental Settings
Datasets: Similar with [19, 46], we adopt five benchmark datasets,

including one blog graph Polblogs and one email data graph Email,

and three citation graphs, i.e., Cora, Citeseer, Pubmed. We show the

statistics of the datesets in Table 1. Node features are not available

both in Email and Polblogs. In this case, we test them on classifiers

that do not require node features.

Table 1: Statistics of datasets. For each graph, |𝑉 | is the num-
ber of nodes and |𝐸 | is the number of edges.

|𝑉 | |𝐸 | Classes Features

Cora 2485 5278 7 1433

Citeseer 3312 4536 6 3703

Pubmed 19717 44324 3 500

Polblogs 1491 16715 2 /

Email 1134 5451 12 /

Classifiers: We validate our proposed algorithms on Email, Pol-

blogs and Cora through three node classification classifiers as fol-

lowing. All of them do not require node features in the graph.

• Louvain [1]: One of the fastest and most effective unsuper-

vised community detection algorithms. It has been shown

to perform very well in comparative benchmark tests.

• DeepWalk [32]: A classic node representationmethodwhich

can be combined with traditional machine learning models

such as Logistic Regression on the node classification meth-

ods.

• SCD(Scalable Community Detection) [33]: A novel disjoint

community detection algorithm bymaximizing theWeighted

Community Clustering(WCC).

We then test our proposed algorithms on Cora, Citeseer, Pubmed

through the following four graph neural network models. All of

them require node features in the process of training.

• GCN [21]: Themost representative one in the existing Graph

Convolutional Networks (GCN) models.

• GAT [39]: Comparing with GCN, Graph Attention Network

(GAT) is composed of attention layers which can learn dif-

ferent weights for different nodes in the neighborhood.

• SSP(Semi-Supervised Preconditioning) [17]: The author pro-

posed SSP to develop optimization algorithms for the graph-

based semi-supervised learning by employing the natural

gradient information in the optimization process, which

achieves good performance in node classification task.

• GCN-LPA [40]: GCN-LPA uses Label Propagation (LPA) to

assist the GCN in learning proper edge weights that lead to

improved classification performance.

Parameter settings: For the first and second task, we set hyper-

parameters 𝐾 as 𝑝 |𝐸 | for each dataset, where 𝑝 is called the defense
ratio. The budget of updates for untargeted attack methods is the

same value 𝐾 for each graph. For the third task, we randomly

choose one as the attacked sub-community for each dataset and

set hyper parameters𝑇 as 𝑝 |𝑋𝑐 |, where |𝑋𝑐 | is the number of edges

on the nodes of the target sub-community. The budget of updates

for untargeted attack on the target sub-community is also the same
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value 𝑇 for each graph. For all node classification model, we adopt

the default parameter setting in the author’s implementation. For

the algorithms with random results like Louvain, we report the

average performance of 10 runs.

Baselines: We first investigate the existing graph generative algo-

rithms. Wu el al. [43] proposed a defense method based on deleting

edges where nodes at both nodes of an edge have a low feature

similarity. To validate the defense performance of this strategy, we

delete all edges that feature similarity is 0 in the dataset Cora accord-

ing to the proposed defense strategy. Then we test the classification

performance on GCN [21] with the default parameter setting and

show the result in Table 1. From Table 2 we can observe that the

performance of node classification on the defensed graph decreases

comparing with the original graph. Because the author only test

this strategy on 40 nodes, the results show that this defense method

is not suitable to be extended on the whole graph.

Table 2: Accuracy (%) of GCN on dataset Cora with/without
the defense[43].

Dataset Original Defensed

Cora 83.71 82.75

Entezari el al. [11] proposed a defense algorithm that keeps only

the high-rank components of the adjacency matrix of the graph

during model training. Dropping the rank of the adjacency matrix

cannot be mapped to the modification of graph edges. The method

also does not work for some classifiers that do not require an ad-

jacency matrix. Therefore, the above two existing preprocessing

methods are not suitable for baselines. In order to compare our

defense algorithms REGG_UA and REGG_TA with other baselines,

we replaced the process of calculating candidate edge in REGG_UA

and REGG_TA with randomly selecting an edge. Then we get two

variant algorithms REGG_UA_r and REGG_TA_r for the compara-

tive experiments. We will keep parameter K consistent in REGG_UA

and REGG_UA_r, and parameter T is also the same in REGG_TA

and REGG_TA_r.

6.2 The Performance of Node Classification
In this subsection, we show the results of REGG_UA and REGG_TA

on the task of improving the performance of node classification.

We use the Normalized Mutual Information(NMI) to evaluate the

similarity between the results of classifiers and the true community

structure 𝑃 . When the community structure 𝑃 ′ = {𝑋 ′
1
, 𝑋 ′

2
, ..., 𝑋 ′

𝐽
}

detected by classifiers is known, we can calculate the NMI between

the 𝑃 and 𝑃 ′ according to the following formula

𝑁𝑀𝐼 (𝑃, 𝑃 ′) =
∑𝐼
𝑖=1

∑𝐽
𝑗=1

𝑃 (𝑖, 𝑗) log 𝑃 (𝑖, 𝑗)
𝑃 (𝑖)𝑃 ( 𝑗)√

𝐻 (𝑃)𝐻 (𝑃 ′)
. (5)

Assume the partition 𝑃 and 𝑃 ′ have 𝐼 and 𝐽 clusters respectively.
𝑃 (𝑖) is the probability that a randomly selected node from the graph

falls into the sub-community 𝑋𝑖 in partition 𝑃 . 𝑃 (𝑖, 𝑗) denotes the
probability that an node belongs to the sub-community 𝑋𝑖 in 𝑃 and

the sub-community 𝑋 ′
1
in 𝑃 ′. 𝐻 (𝑃) is the entropy associated with

Table 3: The performance (NMI * 100) for the graph defensed
by REGG_UA and REGG_UA_r on Louvain, DeepWalk, SCD.

Dataset p(%)

Louvain DeepWalk SCD

REGG_UA REGG_UA_r REGG_UA REGG_UA_r REGG_UA REGG_UA_r

Email

0 42.23 42.23 66.11 66.11 49.86 49.86

10 47.49 34.39 80.90 72.90 51.53 49.09

20 51.28 34.40 82.62 76.97 53.43 50.03

30 52.22 31.41 86.20 77.41 53.90 50.20

40 54.11 31.88 87.30 80.16 55.52 51.09

50 55.37 31.12 90.77 81.55 56.06 51.36

Polblogs

0 89.50 89.50 56.99 56.99 57.02 57.02

10 92.79 87.94 63.83 55.43 63.42 58.11

20 93.06 87.72 63.85 55.27 64.08 58.10

30 93.34 87.86 64.15 55.49 65.57 58.47

40 94.79 88.05 64.26 55.10 67.93 58.39

50 96.57 87.86 64.36 55.21 78.85 58.78

Cora

0 15.16 15.16 51.14 51.14 38.94 38.94

10 23.44 13.87 71.80 52.45 39.81 39.48

20 27.11 13.69 77.49 52.80 40.56 40.08

30 31.80 13.48 84.17 53.41 41.26 40.31

40 34.27 13.28 87.40 53.46 42.13 40.49

50 40.74 12.56 92.84 53.39 43.50 40.51

Table 4: The performance (NMI * 100) for the graph defensed
byREGG_UAandREGG_UA_r onGCN,GAT, SSP, GCN-LPA.

Dataset p(%)

GCN GAT SSP GCN-LPA

REGG_UA REGG_UA_r REGG_UA REGG_UA_r REGG_UA REGG_UA_r REGG_UA REGG_UA_r

Cora

0 68.10 68.10 66.11 66.11 65.44 65.44 73.90 73.90

10 72.05 66.26 72.67 69.49 72.28 66.79 77.67 78.45

20 74.70 66.22 74.03 70.01 77.71 66.68 76.48 77.45

30 76.62 66.09 77.09 69.40 79.67 66.75 77.20 76.83

40 78.73 66.13 77.38 69.76 82.44 66.62 76.53 76.82

50 81.00 66.01 80.24 69.42 86.25 66.62 79.73 77.64

Citeseer

0 50.65 50.65 47.99 47.99 55.62 55.62 56.49 56.49

10 55.13 50.94 55.59 50.44 56.16 50.21 60.56 50.25

20 60.20 54.31 62.12 53.61 62.88 55.40 61.09 49.62

30 65.70 57.25 67.92 56.25 69.55 58.62 64.57 63.83

40 70.40 58.12 73.56 57.55 71.81 58.42 65.27 63.60

50 74.35 57.95 78.91 58.69 75.46 58.37 67.14 63.35

Pubmed

0 48.17 48.17 49.25 49.25 51.97 51.97 37.59 37.59

10 55.13 50.94 55.59 50.44 51.99 52.45 37.93 37.51

20 58.35 52.60 59.64 52.18 52.52 53.96 39.71 38.39

30 60.20 54.31 62.12 53.61 58.40 57.70 42.92 27.52

40 63.55 55.89 66.90 55.70 58.46 58.39 41.83 29.21

50 65.70 57.25 67.92 56.25 60.40 59.59 42.72 28.87

all probabilities 𝑃 (𝑖) in partition 𝑃 (1 < 𝑖 < 𝐼 ). And 𝐻 (𝑃) can be

represented by

𝐻 (𝑃) =
𝐼∑

𝑖=1

|𝑋𝑖 | log
|𝑋𝑖 |
|𝑉 | (6)

As a result of the meaning of mutual information, larger NMI

reflects better performance of the classifier.

We first evaluate how REGG_UA and REGG_UA_r behaves under

different defense ratios from 0% to 50% with a step size of 10%.

On the classifiers that do not require node features, we show the

performance of two algorithms REGG_UA and REGG_UA_r on

Email, Polblogs, and Cora in Table 3.We then show the performance

of the two algorithms on the three datasets of Cora, Citeseer, and

Pubmed for the four graph neural network models GCN, GAT, SSP,

and GCN-LPA in Table 4.

It can be seen from Table 3 that on the three datasets, REGG_UA

improves the effect of node classification on classifiers that do not

require features, while REGG_UA_r maintains almost the same

effect or even decreases in most cases. In Table 4, REGG_UA still

performs better than REGG_UA_r on the graph neural network
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models. The results show that the graph after defensed basing on

REGG_UA has more information about the community structure,

which makes it easier for classifiers to detect the community struc-

ture.

6.3 Defending Untargeted Attack
In this section, we compare the performance of node classification

on the original graph with the defended graph when the two graphs

are attacked by untargeted attack methods. We set defense ratio

as 50% then 𝐾 = 0.5|𝐸 |. For untargeted attack, we choose the two

following methods samely based on modifying edges in graph.

• REM [30]: An efficient attack strategy through adding edges

to the graph, which is designed by residual entropy from the

view of information theory.

• DICE [42]: It’s a attack method which randomly choose

whether to insert or remove an edge. Edges are only removed

between nodes from the same classes, and only inserted

between nodes from different classes.

First, we studied the defensive effects of REGG_UA and REGG_UA_r

on the attack algorithms REM and DICE. For each dataset, we use

REM and DICE to attack three corresponding graphs: the original

graph, the graph defensed by REGG_UA, and the graph defensed

by REGG_UA_r. Then we get six attacked graphs, and we compare

the final classification results of them and the unattacked orginal

graph together through different classifiers. We also use NMI as an

evaluation indicator. Table 5 shows the results of the classifier that

does not require node features, and Table 6 shows the results of the

graph neural network models.

We can see from Table 5 that the performance of orginal graph

has dropped significantly when attacked by REM or DICE. Com-

pared with the attacked original graph, the performance of the

graph defensed by REGG_UA still maintain a higher value. It even

performs better than the unattacked orginal graphs in almost all

cases. And we also notice that REGG_UA_r also has a certain de-

fensive effect, but the performance is unstable due to its random

stratedy. For the graph neural networkmodels in Table 6, we can see

that REGG_UA and REGG_UA_r still maintains the same conclusion

as before. The performance of the graph defensed by REGG_UA per-

forms worse than the unattacked orginal graphs on the dataset cora

in some cases. We can infer that the classifiers uses node features

as the input of the model, so its performance is not only affected

by the graph structure.

6.4 Defending Target Attack
Next wewill concentrate on the effect of REGG_TA and REGG_TA_r

for defending targeted attack with the same budget𝑇 . Similar to the

previous section, we set defense ratio as 50% then 𝑇 = 0.5|𝑋𝑐 |. For
targeted attack, we also choose the two following methods which

only attack a certain sub-community of the graph.

• FDA[13]: It introduce a measure to quantify the level of

hiding of a target sub-community in the graph and present

an efficient algorithm to hide the target sub-community.

• RND [46]: It is an attack based on modifying the structure

of the graph by a random strategy. Given a target node 𝑣 ,in

each step it randomly sample nodes𝑢 whose label is different

from 𝑣 and add the edge 𝑢, 𝑣 to the graph structure.

Since the classifiers Louvain, Deepwalk, and SCD are all unsu-

pervised algorithms, in order to measure the classification effect

of unsupervised classifiers on a specific sub-community, we first

define a new classification evaluation parameter NMI_part for a

sub-community based on the theory of information. When the

specific sub-community 𝑋𝑐 of the original graph and the commu-

nity structure 𝑃 ′ detected by classifiers are given, the definition of

NMI_part can be represented by

Table 5: Node classification performance (𝑁𝑀𝐼 × 100) for the
original graph, and three graphs attacked by REM or DICE:
the original graph, the graph defensed by REGG_UA and the
graph defensed byREGG_UA_r on Louvain, DeepWalk, SCD.

Dataset Attack Graph Louvain DeepWalk SCD

Email

NO original 42.23 66.11 49.86

REM

original 17.52 63.48 47.98

REGG_UA_r 27.40 80.86 52.10

REGG_UA 44.13 89.84 56.68

DICE

original 21.52 49.91 48.32

REGG_UA_r 25.50 64.35 51.62

REGG_UA 42.58 81.66 55.29

Polblogs

NO original 89.50 56.99 57.02

REM

original 68.04 55.68 67.34

REGG_UA_r 67.30 46.98 70.70

REGG_UA 74.41 69.68 77.87

DICE

original 67.39 65.77 51.76

REGG_UA_r 69.09 66.85 44.65

REGG_UA 82.21 78.15 60.37

Cora

NO original 15.16 51.14 38.94

REM

original 5.30 42.58 23.97

REGG_UA_r 8.84 48.84 35.99

REGG_UA 27.97 89.82 48.88

DICE

original 16.44 38.74 30.52

REGG_UA_r 15.85 39.51 33.17

REGG_UA 25.11 86.91 51.32

Table 6: Node classification performance (𝑁𝑀𝐼 × 100) for
the unattacked original graph, and three graphs attacked
by REM or DICE: the original graph, the graph defensed by
REGG_UA and the graph defensed by REGG_UA_r on GCN,
GAT, SSP, GCN-LPA.

Dataset Attack Graph GCN GAT SSP GCN-LPA

Cora

NO original 68.10 66.11 65.44 73.90

REM

original 42.31 44.19 35.32 66.89

REGG_UA_r 48.41 54.30 47.50 73.04

REGG_UA 58.58 63.91 61.61 77.04

DICE

original 41.09 43.08 21.42 70.73

REGG_UA_r 42.23 46.00 22.33 73.63

REGG_UA 63.88 64.72 62.59 79.63

Citeseer

NO original 50.65 47.99 55.62 56.49

REM

original 31.95 30.88 28.78 47.05

REGG_UA_r 48.52 46.74 53.73 57.48

REGG_UA 53.25 48.74 59.72 64.50

DICE

original 31.81 31.50 22.26 56.06

REGG_UA_r 45.59 42.83 32.97 52.02

REGG_UA 50.52 49.90 52.47 59.71

Pubmed

NO original 48.17 49.25 51.97 37.59

REM

original 38.92 37.85 42.60 29.94

REGG_UA_r 45.91 34.85 44.66 20.15

REGG_UA 52.43 57.85 48.44 33.95

DICE

original 41.11 40.11 43.93 40.50

REGG_UA_r 38.21 39.21 50.05 17.43

REGG_UA 50.18 54.18 51.92 38.60
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𝐻 (𝑋𝑐 ) = − |𝑋𝑐 |
|𝑉 | log

|𝑋𝑐 |
|𝑉 | (7a)

𝐻 (𝑋𝑐 |𝑃 ′) = −
𝐽∑
𝑗=1

|𝑋𝑐 ∩ 𝑋 ′
𝑗
|

|𝑉 | log

|𝑋𝑐 ∩ 𝑋 ′
𝑗
|/|𝑉 |

|𝑋 𝑗 |/|𝑉 | (7b)

𝑁𝑀𝐼_𝑝𝑎𝑟𝑡 = (𝐻 (𝑋𝑐 ) − 𝐻 (𝑋𝑐 |𝑃 ′))/𝐻 (𝑋𝑐 ) (7c)

𝐻 (𝑋𝑐 ) can represent the amount of uncertainty to encode sub-

community 𝑋𝑐 in the original graph. And 𝐻 (𝑋𝑐 |𝑃 ′) can represent

the residual uncertainty if the community structure 𝑃 ′ detected
by classifiers is known. Then the metric NMI_part can be defined

as (𝐻 (𝑋𝑐 ) − 𝐻 (𝑋𝑐 |𝑃 ′))/𝐻 (𝑋𝑐 ), which reflects the amount of ex-

isted information for 𝑋𝑐 in 𝑃
′
. A higher NMI_part means a better

classification effect for 𝑋𝑐 .

For each dataset we first randomly choose a sub-community as

the aim sub-community. Similar to the untargeted attack, we use

FDA and RND to attack the aim sub-community in three correspond-

ing graphs: the original graph, the graph defensed by REGG_TA, and

the graph defensed by REGG_TA_r. Then we calculate NMI_part

for the aim sub-community of the three attacked graphs above and

the aim sub-community of the unattacked original graph. We show

the results for the classifiers that does not require node features in

the Table 7 and the results of the graph neural network models in

the Table 8.

From the results of the two tables, we can see that the perfor-

mance on the attacked aim sub-community decreases a lot com-

paring with the aim sub-communitiy in the original graph. For

unsupervised classifiers, the aim sub-community becomes more ro-

bust when defensed by REGG_TA and its NMI_part only has a small

drop. For the graph neural network models, the performance of the

aim sub-community defensed by REGG_TA even performs better

than the original aim sub-community in many cases. In contrast,

REGG_TA_r performs worse than the original aim sub-community

or only shows a very weak defense effect, which indicated that the

strategy of REGG_TA is more effective.

7 CONCLUSION
In this paper, we first explore a new graph generative metric to

reduce the effect of graph adversarial attacks when the information

of the graph is leaked. We then proposed two graph generative

algorithms based on the concept of residual entropy for untargeted

attack and targeted attack. We also analyze the performance of

proposed algorithms with the existing works on different classifiers

and datasets.

In the future, we will attempt to consider the node features and

design more robust defense algorithms through pre-processing on

the raw graph. We wish the features could further improve the

performance of the defense algorithms.

Table 8: Node classification performance (𝑁𝑀𝐼_𝑝𝑎𝑟𝑡×100) for
the unattacked original aim sub-community, and the aim
sub-community in three graphs attacked by FDA or RND:
the original graph, the graph defensed by REGG_TA and
the graph defensed by REGG_TA_r on GCN, GAT, SSP, GCN-
LPA.

Dataset Attack Graph GCN GAT SSP GCN-LPA

Cora

NO original 57.90 62.37 62.68 69.35

FDA

original 42.19 49.03 49.39 22.08

REGG_TA_r 50.65 60.73 53.15 31.16

REGG_TA 59.05 63.39 57.47 43.99

RND

original 47.85 52.36 50.92 24.05

REGG_TA_r 55.10 60.48 52.75 30.81

REGG_TA 64.03 62.36 65.60 38.60

Citeseer

NO original 51.37 46.84 59.14 65.68

FDA

original 39.45 37.28 44.17 52.13

REGG_TA_r 54.18 54.94 56.39 57.79

REGG_TA 55.98 56.93 59.63 69.02

RND

original 38.64 37.91 49.19 67.52

REGG_TA_r 55.61 53.39 57.64 67.63

REGG_TA 56.51 58.03 61.72 85.21

Pubmed

NO original 42.70 42.86 46.30 23.70

FDA

original 22.02 23.02 24.51 12.25

REGG_TA_r 36.92 33.92 39.71 4.72

REGG_TA 42.83 51.83 45.02 14.94

RND

original 25.95 27.95 29.37 9.70

REGG_TA_r 41.15 36.15 39.37 6.73

REGG_TA 43.94 52.94 44.14 13.49

Table 7: Node classification performance (𝑁𝑀𝐼_𝑝𝑎𝑟𝑡×100) for
the unattacked original aim sub-community, and the aim
sub-community in three graphs attacked by FDA or RND:
the original graph, the graph defensed by REGG_TA and the
graph defensed by REGG_TA_r on Louvain, DeepWalk, SCD

Dataset Attack Graph Louvain DeepWalk SCD

Email

NO original 72.23 83.90 84.87

FDA

original 24.56 39.72 75.43

REGG_TA_r 18.19 45.97 80.62

REGG_TA 32.56 50.24 84.32

RND

original 11.85 42.05 77.67

REGG_TA_r 17.15 41.15 76.08

REGG_TA 29.73 52.96 80.73

Polblogs

NO original 96.65 99.09 98.34

FDA

original 31.13 60.89 85.33

REGG_TA_r 47.27 71.67 89.47

REGG_TA 80.07 93.08 93.39

RND

original 20.27 64.42 57.14

REGG_TA_r 10.02 67.14 67.41

REGG_TA 33.54 88.72 73.67

Cora

NO original 13.81 40.40 92.12

FDA

original 7.386 19.85 83.56

REGG_TA_r 7.01 31.15 85.34

REGG_TA 17.41 54.21 87.84

RND

original 10.04 23.99 85.54

REGG_TA_r 8.19 36.68 86.80

REGG_TA 15.53 53.05 88.06
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