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ABSTRACT
We study the effects of spoofing attacks on frequent call markets
(FCMs). Spoofing—a strategic manipulation to mislead market par-
ticipants by creating spurious limit orders—could harm the market
efficiency and has been declared illegal in many countries. How-
ever, this practice is still very common, which inspired extensive
research on measuring, detecting and curbing such manipulation
in the popular market model of continuous double auctions (CDAs).
In this paper, we extend this research to frequent call markets and
use agent-based modelling to simulate spoofing in this context.
Specifically, we apply empirical game-theoretic analysis (EGTA)
to compute equilibria of agent-based markets, and demonstrate
that while spoofing may be profitable in both market models, it
has less impact on FCMs as opposed to CDAs. Finally, we explore
several FCM mechanism designs to help to curb this type of market
manipulation even further.
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1 INTRODUCTION
In order-driven markets, the market data reveals the universal
beliefs on the market and is a key information source for traders. If
the market data, including the best ask and bid price and their sizes,
are manipulated, other participants could be misled and suffer from
potential loss. It is believed that market manipulation can harm
market liquidity [6, 7], reduce market efficiency [19] and raise
spreads and volatility [32].

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Spoofing is a simple and popular market manipulation method
which can be defined as “strategically placing and canceling orders
in order to move prices and trade later in the opposite direction”
[32]. Spoofing is illegal in many countries [11, 13]. For example, the
Dodd-FrankWall Street Reform and Consumer Protection Act made
spoofing illegal in 2010 in U.S. However, spoofing is still common
in financial markets, for example, JP Morgan Chase was fined by
U.S. regulators in 2020 for price manipulation in precious metal and
treasury bill markets [32]. The impact of spoofing on participants
and markets is then an important research question in the context
of market mechanism design.

Continuous-time double auctions (CDAs) are a very popular
trading mechanism applied in modern order-driven exchanges. In
a CDA market, the order submissions and order withdrawals are
processed serially [3]. However, CDA markets are believed to lead
to the latency arms race problem because traders could have huge
benefits if they have only tiny access-time advantages over others
[3, 21]. The frequent call market, where orders arriving during the
clearing interval are accumulated and processed in batch at the end
of the interval, is taken as the alternative mechanism addressing
the latency arms race problem [3, 25]. In this paper, we aim to
investigate the impact of spoofing on frequent call markets (FCMs).

We adopt the agent-based method to model the market and sim-
ulate the interaction amongst strategic agents and between agents
and the market. We consider three types of strategic agents: one
group generate their bidding or asking price, i.e., the strategy, only
based on their valuation, the second group also take historical in-
formation into consideration, and the last group play a spoofing
strategy. We then apply empirical game-theoretic analysis (EGTA)
[31] to account for the strategic response of agents to market rules
and each other’s actions. EGTA helps to find equilibrium states of
such agent-based markets and we compare a set of market metrics
for agents and markets before and after introducing spoofing. We
also compare the impact on FCMs to the impact on CDA markets
to examine whether FCMs curb this kind of manipulation. Further-
more, we explore additional designs of FCMs which might decrease
the risk of spoofing. To the best of our knowledge, this is the first
attempt to analyse the impact of spoofing on frequent call markets.
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The paper is organized as follows: Section 2 overviews the lit-
erature on this topic. Section 3 describes the research design and
experimental setting. The main empirical results and their analysis
are shown in Section 4. The last section summarises our findings.

2 RELATEDWORK
We have seen much research on spoofing and price manipulation
in order-driven markets. Related research mainly lies in five fields:
empirical study of behavior and performance of spoofing traders,
the impact of spoofing on markets, the study of spoofing strate-
gies, detecting or predicting spoofers and the mechanism design
to mitigate spoofing in markets. Lee et al. [11] study behavior and
performance of spoofing traders in Korea Exchange. Lin et al [13]
examines the market manipuulation in Singapore Exchange. Men-
donca et al [17] conduct an empirical study on the spoofing in the
Brazilian capital market. Williams et al [32] claim that spoofing
would raise the spread and market volatility. The harm to market
liquidity caused by spoofing is also supported by the research of
Comerton, Forde and Cumming [6, 7]. Pirrong believes that spoof-
ing also reduces market efficiency [19]. Cartea et al [4] put forward
an optimal spoofing strategy based on imbalance in volumes. Tao et
al [22] also study the optimal spoofing strategy in high-frequency
trading and in turn detect any spoofing in the market. Martìnez-
Miranda et al study a model used to predict active spoofing [16].
Wang andWellman [30] apply an adversarial learning framework to
detect spoofing. Moreover, Wang et al [29] adopt agent-based mod-
eling to demonstrate the effectiveness of spoofing in CDA markets.
They follow the same framework to investigate the mechanism to
mitigate spoofing [28] and trading strategies in the face of spoofing
[27].

We simulate the market via agent-based models and explore the
behavior at equilibrium. Agent-based markets have been studied in
the literature, especially to compare different trading mechanisms.
Lettau [12] construct a simple market where two kinds of assets are
being traded, a risk-free bond paying zero interest and a risky asset.
This market is extended to the Santa Fe Stock Market [1], where
agents can buy and sell risk-free and risky assets in a discrete-time
fashion. Much follow-up research are conducted in the Santa Fe
Market [8, 10, 18].

The auction style is an essential issue in the market design. Most
markets adopt the continuous double auction (CDA) while the fre-
quent call markets attracted much attention afterwards because of
their advantages over the CDA markets [2, 3, 23]. The design of
agents has started from the Zero-Intelligence (ZI) agents designed
by Gode and Sunder [9]. ZI agents have no intelligence and take de-
cisions randomly. Cliff introduces bounded rationality to ZI agents
[5, 18]. Brinkman et al. [2] construct a strategy space described by
the minimum and the maximum shaded surplus from the trade.

To solve equilibrium state of the market, Wellman [31] develops
the framework for empirical game-theoretic analysis (EGTA), which
is a method to find an approximate equilibrium via simulations.
A large number of systematic simulations are required by EGTA
method and some sample profiles corresponding payoffs are used
to construct a normal-from game. We have seen EGTA method
widely adopted in research on financial markets [15, 20, 24, 26, 29].
Robustness of this technique has recently been studied in [14].

3 EXPERIMENTAL SETUP
In this work, we employ a parameterised single-asset financial
market model inspired by previous research [2, 15, 29] which is
believed to capture the qualitative phenomena found in real finan-
cial markets [2]. We adopt the agent-based modeling method to
study the complex system and solve the equilibrium strategies using
EGTA. The surplus of agents will be explored based on equilibrium
strategies. We will compare the agents’ performance and market
measures with and without spoofing.

3.1 Market Model
We assume a single-asset market filled with 𝑁 strategic agents,
who can submit limit orders, cancel existing orders or take no
action following their assigned strategies. We consider a finite
and discrete trading horizon 𝑇 . At each time step 𝑡 , each agent
will decide whether to enter the market—this is controlled by a
Poisson process with arrival rate 𝜆. Upon entering the market, an
agent observes current and historical level 1 market data, including
the best bid and ask price. It plays the role of a buyer or a seller
uniformly at random. Before placing new orders, agents will cancel
all existing orders. The size of the limit order is set to be 1 unit.

We focus on the frequent call auction mechanism, thus the limit
order will not be executed as soon as it arrives, even if it crosses
the limit order book. In frequent call auctions, there is a clearing
interval with length 𝑙 , and all orders collected during the clearing
interval will be aggregated and executed in a batch at the end of
the clearing interval.

As for the asset, we assume there exists a fundamental value
dynamics, modeled by the following mean-reverting stochastic
process:

𝑓𝑡 = 𝑟 𝑓 + (1 − 𝑟 ) 𝑓𝑡−1 + 𝑠𝑡 𝑓0 = 𝑓 𝑠𝑡 ∼ 𝑁 (0, 𝜎2
𝑠 )

where 𝑓𝑡 is the fundamental value at time 𝑡 and 𝑟 ∈ (0, 1) is the
reversion rate. Observe that the values of 𝑟 and 𝜎𝑠 determine the
range of the average shift of fundamental value.

3.2 Valuation Model
At each time 𝑡 , the fundamental value alters, and then all agents will
generate their own valuations loosely following the setup in [2, 23].
Specifically, each agent’s valuation at time 𝑡 is the sum of two
components, common and private.

The common component is the individual estimation of the
fundamental value with a valuation bias which is independently
generated from a normal distribution 𝑁 (0, 𝜎2

bias). We use 𝑏𝑖,𝑡 to
denote the valuation bias of agent 𝑖 at time 𝑡 .

The private component is a measurement of the personal valua-
tion of different positions. We express this through a vector Θ𝑖 that
we call the private value vector of agent 𝑖 . Assume agents can long or
short the asset and the maximum size allowed to long or short is𝑄 ,
then the collection of allowed positions is {−𝑄,−𝑄+1, . . . , 𝑄−1, 𝑄}.
The element of the private value vector is the marginal surplus of
obtaining one more unit of the asset when the agent is in a certain
position, thus the length of each Θ𝑖 is 2𝑄 and the specific form of
Θ𝑖 is (𝜃𝑖,−𝑄 , 𝜃𝑖,−(𝑄−1) , . . . , 𝜃𝑖,0, . . . , 𝜃𝑖,𝑄−1), where the element 𝜃𝑖,𝑞
is the marginal surplus of obtaining one more unit of the asset
when agent 𝑖 is in position 𝑞. We generate the private value vectors
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in the following way: we first have 2𝑄 independent samples from
a normal distribution 𝑁 (0, 𝜎2

𝑝𝑣), then we sort these 2𝑄 values in
descending order and fill the vector Θ. The private value vector for
each agent is fixed throughout the full horizon 𝑇 . The valuation is
the sum of common and private components and we can define the
valuation of agent 𝑖 at time 𝑡 in position 𝑞 as

𝑣𝑖,𝑡,𝑞 =

{
𝑏𝑖,𝑡 + 𝑓𝑡 + 𝜃𝑖,𝑞, if buying
𝑏𝑖,𝑡 + 𝑓𝑡 − 𝜃𝑖,𝑞−1, if selling

.

3.3 Trading Strategies
We consider three types of agents in our experiments. The first
group place orders only based on their valuations; we call this
the background trading strategy. The second group consider the
market information; we call theirs the heuristic belief learning (HBL)
strategy. Finally, the last group play the spoofing strategy.

3.3.1 Background Trading Strategy. If an agent places a limit order
with its real valuation, we call it the truth-telling bidding strategy.
However, telling the truth might not be the dominant strategy,
thus we follow the strategy space design of Brinkman et al. [2]
and consider the situation where agents require extra bonus from
a transaction. We set up a required surplus range [𝛼min, 𝛼max],
where 𝛼min represents the minimum acceptable surplus and 𝛼max
denotes the maximum expected surplus from trading. If an agent
enters the market, its surplus demand is uniformly drawn from
the surplus range and the limit order price is exactly the sum of
its valuation and the surplus demand. Specifically, the background
trading strategy can be described as

𝑝𝑖,𝑡,𝑞 ∼
{
𝑈 [𝑣𝑖,𝑡,𝑞 − 𝛼max, 𝑣𝑖,𝑡,𝑞 − 𝛼min], if buying
𝑈 [𝑣𝑖,𝑡,𝑞 + 𝛼min, 𝑣𝑖,𝑡,𝑞 + 𝛼max], if selling

.

To decrease the computational cost, we choose a limited strategy
space denoted by B1 to B5 as shown in Table 1. Obviously, strategy
B1 is exactly the truth-telling strategy and the latter strategies
are more greedy than the former ones. We note that related work
on EGTA discussed above uses a slightly larger strategy space,
excluding B1 and including greedier strategies. However, these
greedy strategies account for very small probabilities at equilibrium
while the truth-telling strategy is an important component of the
equilibrium according to further analyses, thus we believe our
limited strategy space is more solid.

Table 1: Background Trading Strategy Space

Strategy B1 B2 B3 B4 B5

𝛼min 0 0 0 20 50
𝛼max 0 50 100 100 100

3.3.2 HBL Trading Startegy. An agent following the HBL strategy
(simply referred to as HBL agent below) observes the current level
1 market data, i.e., the best bid/ask price and the execution price,
and stores the observation in its memory. When HBL agents enter
the market, their strategy is generated from their belief function
defined as following: suppose 𝐿 is the memory length of HBL agents,
i.e., when they enter the market at time 𝑡 , they can only take the

market data between 𝑡 − 𝐿 and 𝑡 into consideration. The design of
the HBL strategy follows the research on spoofing in CDA markets
[29]. Some required variables are explained in Table 2. Only the
market data within the memory length will be used to define these
variables.

Table 2: Parameters of HBL Strategy

Variable Explanation

EB(𝑝) Volume of executed bid orders with price ≤ 𝑝

SA(𝑝) Volume of ask orders with price ≤ 𝑝

NB(𝑝) Volume of non-executed bid orders with price ≥ 𝑝

EA(𝑝) Volume of executed ask orders with price ≥ 𝑝

GB(𝑝) Volume of bid orders with price ≥ 𝑝

NA(𝑝) Volume of non-executed ask with price ≤ 𝑝

The belief function is defined by:

𝑔𝑡 (𝑝) =


EB𝑡 (𝑝)+SA𝑡 (𝑝)

EB𝑡 (𝑝)+SA𝑡 (𝑝)+NB𝑡 (𝑝) , if buying

EA𝑡 (𝑝)+GB𝑡 (𝑝)
EA𝑡 (𝑝)+GB𝑡 (𝑝)+NA𝑡 (𝑝) , if selling

. (1)

The belief function is an estimation of probability that orders with
different price levels will be matched and executed in the market.
An HBL agent will choose the price which maximizes the expected
surplus from the trade based on her valuation and belief function.
Specifically, the strategy, i.e., selected price of agent 𝑖 with position
𝑞 at time 𝑡 is:

𝑃∗𝑖,𝑡,𝑞 =

{
argmax𝑝 (𝑣𝑖,𝑡,𝑞 − 𝑝)𝑔𝑡 (𝑝) if buying
argmax𝑝 (𝑝 − 𝑣𝑖,𝑡,𝑞)𝑔𝑡 (𝑝) if selling

. (2)

We consider two HBL strategies, denoted by HBL1 and HBL2,
with memory lengths of 10 and 50, respectively.

3.3.3 Spoofing Strategy. We consider a spoofing agent aiming to
sell assets at the end of the horizon, thus it will spoof bid orders.
Her spoofing strategy is to place a large amount 𝑉 of limit bid
orders with price just 1 tick smaller than the best bid price. If the
spoofing agent observes any updates of the best bid price, she will
cancel previous spoof orders and place new spoof bid orders. This
strategy expects that the feigned interest to buy will mislead the
market belief of HBL agents and the spoofer could benefit from the
manipulation.

3.4 Metrics
We consider metrics for both agents and the market. The surplus is
the main metric to measure the agent’s performance and is defined
as the sum of wealth at the end of the trading horizon and the net
cash flows in each trading. The key feature of the market we are
concerned with is market efficiency. It is measured by the ratio
between the realized and the potential total surplus. We also look at
the difference between mid price time series and fundamental value
time series to reveal the price discovery. To study this difference,
we will consider the root-mean-squared deviation (RMSD) of the
difference between the two time series. Therefore, lower RMSD
indicates better price discovery.
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3.5 Environment Parameters
In our comparative analysis, the markets and agents being com-
pared share the same parameters except the market mechanism
and the strategies they employ. Some common parameters includ-
ing 𝑓 , 𝜎2

𝑠 , 𝜎
2
bias, 𝜆𝑖 , 𝜎

2
pv are fixed through all the experiments. The

asset price is a discrete integer ranging from 1 to 1000 in all ex-
periments. We consider the thickness of the market, assigning 100
agents to a thin market and 200 agents to a thick market. The length
of the simulation horizon 𝑇 is 2000 and the length 𝑙 of the clear-
ing interval for FCMs is 10. We also consider the stability of the
fundamental value which is controlled by the reversion rate 𝑟 . A
higher reversion rate makes a more stable fundamental dynamics.
In our experiments, the reversion value 𝑟 has two options: 0.8 and
0.2. We run 100 simulations for each game and take the average
value as an approximation. Suppose there are𝑚 different strategies,
so we need to simulate 𝐶𝑚

𝑁+𝑚−1 cases to cover all possible profiles
for each market setup when applying EGTA. The values of most
common parameters are listed in Table 3.

Table 3: Environment Parameters

𝑁 𝑓 𝑟 𝜎2
𝑠 𝜎2

bias 𝜎2
pv 𝜆 V

100,200 500 0.8,0.2 100 50 25 0.01 200

We also list all non-spoofing trading strategies in Table 4.

Table 4: Non-spoofing Trading Strategy Space

B1 B2 B3 B4 B5 HBL1 HBL2

𝛼min 0 0 0 20 50 - -
𝛼max 0 50 100 100 100 - -

Memory length - - - - - 10 50

4 EXPERIMENTS AND ANALYSIS
Our analysis contains several steps. We first verify that HBL strate-
gies are profitable in the frequent call market without spoofing.
Then we introduce the spoofing agent to examine whether spoofing
does harm to the market and the other agents. In the next step, we
compare the harm caused by spoofing in the frequent call market
and the traditional continuous double auction market, leaving all
the other parameters unchanged. Finally, we investigate additional
features which help curbing spoofing. In what follows, we refer to
the average market efficiency, average total surplus and average
trading volume simply as Efficiency, Surplus and Volume.

4.1 HBL Strategy Profitability
Our investigation starts with the verification of the profitability of
HBL strategies in the frequent call market. We divide the agents
into two equal groups, Group 1 play background trading strategies
shown in Table 1, while Group 2 play HBL strategies. After solving
the equilibrium for Group 1, the average surplus for each group in
different market setups are listed in Figure 1 (in cases with multiple
equilibria, we choose the equilibriumwith the smallest regret value).

We can conclude that HBL strategies are profitable compared
with background strategies, especially in less stable markets and
thick markets. The parameter memory length in HBL strategies has
little impact on the metrics at equilibrium.

4.2 Introducing Spoofing
In the following experiments, we let one agent play the spoofing
strategy and the rest of the agents select their strategy from the
extended non-spoofing strategy space listed in Table 4. To do the
comparison between the markets with and without spoofing, we
also run controlling experiments where all agents select their strat-
egy from Table 4 using the same market setups.

4.2.1 Metrics for Agents. We focus on the changes in agents’ sur-
plus after introducing spoofing. The results in FCMs are listed in
Table 5 while the results in CDAs are listed in Table 6.

Table 5: Agent Surplus Comparison, FCMs

Agents 𝑟 No Spoofing Spoofing
normal agents spoofer

200 0.2 6417 6739 -20796
200 0.8 5345 5517 -23405
100 0.2 3146 3337 -5135
100 0.8 2509 2621 -3518

Table 6: Agent Surplus Comparison, CDAs

Agents 𝑟 No Spoofing Spoofing
normal agents spoofer

200 0.2 6420 6049 6664
200 0.8 4948 4709 4749
100 0.2 3211 2929 3391
100 0.8 2438 2326 2357

We find that in CDA markets, the introduction of the spoofing
strategy does harm the non-spoofing agents, who suffer a sharp
decrease in their surplus. On the other hand, the agent playing
spoofing strategy has more surplus at the end of trading horizon
than the others. Our experiments support the profitability of spoof-
ing in CDA markets. However, when we introduce the spoofing
strategy to frequent call markets, non-spoofing agents all have addi-
tional benefits while the agent playing the spoofing strategy bears
a huge loss.

Finally, we adjust the strategy space to contain background trad-
ing strategy, HBL strategy and spoofing strategy and calculate the
equilibria in all market setups. The equilibrium profiles are listed
in Table 7, where these numbers are probabilities of playing the
corresponding strategies in the equilibrium. We see that agents will
not select spoofing strategy in equilibrium in FCMs, which reveals
that the frequent call mechanism is better at curbing spoofing than
traditional CDA markets.
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(a) Group 1 vs Group 2 (HBL1), N=200 (b) Group 1 vs Group 2 (HBL2), N=200

(c) Group 1 vs Group 2 (HBL1), N=100 (d) Group 1 vs Group 2 (HBL2), N=100

Figure 1: Agent Surplus: Background vs HBL

Table 7: Equilibrium Profiles

Market, 𝑁 , 𝑟 Background HBL Spoofing

CDA, 200, 0.2 0.21 0.50 0.29
CDA, 200, 0.8 0.30 0.52 0.18
FCM, 200, 0.2 0.56 0.44 0.00
FCM, 200, 0.8 0.64 0.36 0.00

4.2.2 Metrics for Markets. We next look at the market performance.
The market efficiency is summarized in Table 8. The results reveal
that spoofing has negative effects on the market efficiency. We also
compare the trading volume of markets with and without spoofing
in Figure 2, which shows that spoofing decreases the trading volume
of the market, showing that it might decrease market liquidity.

Finally, we look at the price discovery with and without spoofing
in differentmarkets. The RMSDs of the difference betweenmid price
time series and fundamental value time series are listed in Table 9.

Table 8: Market efficiency, with & without spoofing

Market Type Agents 𝑟 No Spoofing Spoofing

CDA 200 0.2 0.68 0.50
CDA 200 0.8 0.62 0.52
CDA 100 0.2 0.64 0.55
CDA 100 0.8 0.67 0.51
FCM 200 0.2 0.77 0.60
FCM 200 0.8 0.75 0.62
FCM 100 0.2 0.80 0.63
FCM 100 0.8 0.75 0.63

We can conclude that the introduction of spoofing has negative
effects on price discovery. However, the frequent call markets have
better price discovery than CDA markets, with or without spoofing.
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Table 9: Price Discovery, with & without spoofing

Market Type Agents 𝑟 No Spoofing Spoofing

FCM 100 0.2 120.49 125.56
CDA 100 0.2 136.45 140.89
FCM 200 0.2 120.33 134.37
CDA 200 0.2 143.78 140.49
FCM 100 0.8 162.23 162.11
CDA 100 0.8 177.51 179.13
FCM 200 0.8 170.30 179.18
CDA 200 0.8 179.35 179.28

(a) Order Volume Comparison, FCM, N=100

(b) Order Volume Comparison, FCM, N=200

Figure 2: Volume of Traded Orders

4.3 Slow Spoofer
We investigate the underlying reason why spoofing causes losses
in FCMs. We notice that a large amount of feigning orders will be
placed in spoofing. If the spoofer fails to update its feigning orders,
they could become stale and the source of huge loss if they are
traded. We count the volume of traded feigning orders in previous
experiments and list the figures in Table 10. It is clear that many

more spoofing orders are traded during the trading horizon in
FCMs. We believe that in CDA markets, the update of the best bid
price is a clear signal for the spoofer to update its feigning orders.
However, the FCMs will not update during the clearing interval and
the spoofer has no up-to-date information to make any decision
except leaving its orders to become stale, which might explain why
the spoofer will fail in FCMs.

Table 10: Volume of Traded Feigning Orders

Market Type Agents 𝑟 Volume of Traded Feigning Orders

CDA 200 0.2 3.2
CDA 200 0.8 3.0
CDA 100 0.2 1.5
CDA 100 0.8 1.8
FCM 200 0.2 1457.3
FCM 200 0.8 1605.4
FCM 100 0.2 485.0
FCM 100 0.8 570.7

To verify our argument, we test several CDA markets sharing
the same environment parameters but different spoofers. The only
difference in spoofers is their response time to stale orders. We plot
the surplus trends for both non-spoofing agents and the spoofer in
Figure 3. The left end of each plot is the surplus in the market with
fast spoofer while the right end shows the surplus in the market
with slow spoofer. The results show that the response time is the
key to taking the advantage of the other non-spoofing agents. Slow
spoofers could suffer from huge loss because of failure in cancelling
stale orders.

4.4 Random Clearing Interval Length
In continuous double auction markets, it is difficult to regulate
the response time of agents. However, in frequent call markets,
adopting random clearing interval length could lead to further curb
spoofing. The underlying principle could be explained as follows:
it is risky to leave feigning orders in the limit order book while the
random completion of the auction gives no clear signals for agents
to update their stale orders. In other words, when an agent plays
the spoofing strategy and places a large amount of feigning orders,
there exists a great probability that she cannot update her orders
in time, and failure to do so will cause losses, finally decreasing the
incentive to play the spoofing strategy.

In the previous experiments, the length of clearing interval is
set to be 10. After adopting a random ending rule for the auction,
the average clearing interval is also 10, but the length of each clear-
ing interval is generated from a uniform distribution 𝑈 [0, 20]. We
compare the impact caused by spoofing on FCMs with fixed ending
with the impact on random ending, denoted RFCM. The experi-
ment results are summarized in Table 11 and Table 12, showing the
metrics for agents and markets, respectively.

We can conclude that a random ending of the auction has en-
hanced effects on curbing spoofing compared with FCMs with fixed
clearing interval, with no sacrifice in terms of market efficiency or
the level of price discovery.
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(a) Surplus Trend of Non-spoofing Agents

(b) Surplus Trend of Spoofing Agents

Figure 3: Surplus Trends, CDA, N=200, 𝑟 = 0.2

Table 11: Metrics for Agents: FCM vs RFCM

Market, 𝑁 , 𝑟 Normal Agents Spoofer Feigning Orders

FCM,200,0.2 6739 -20796 1457.3
RFCM,200,0.2 6874 -22267 1667.2
FCM,200,0.8 5517 -23405 1605.4
RFCM,200,0.8 5643 -24508 1789.1

Table 12: Metrics for Markets: FCM vs RFCM

Market, 𝑁 , 𝑟 Efficiency Price Discovery

FCM,200,0.2 0.60 134.37
RFCM,200,0.2 0.63 133.56
FCM,200,0.8 0.62 179.18
RFCM,200,0.8 0.62 180.89

5 CONCLUSION
This paper explores the effects on traders’ surplus and market
performance of introducing a spoofing strategy to frequent call
markets using agent-based modeling and the EGTA method.

We conclude from our experimental results that spoofing will
decrease market efficiency and order volume of the market, having
further negative effects on market liquidity. An interesting finding
is that spoofing is not as profitable in the frequent call markets
as in traditional continuous double auction markets. We compare
the agent surplus between CDA markets and FCMs sharing the
same parameters and conclude that spoofing is profitable in CDAs
whereas it will benefit others and cause huge loss to the spoofer in
FCMs.

Investigating the reasons underpinning this differences, we find
that the effect of spoofing is related to the volume of traded feigning
orders, which is also equivalent to the speed of accessing updated
level 1 market data. If the spoofing agent is able to update its feign-
ing orders immediately after the best bids and asks alter, it can
avoid loss from unexpected trades. However, the call auction mech-
anism delays its access to latest market data and increases the risk
of executing spoofing orders. A mechanism that forces the agents
to have a longer response to latest market information should then
give less incentive to spoof. Following this idea, we test a so-called
slow spoofer in CDA markets and the results support our argument.

Finally, we follow this design idea in the frequent call market and
set up a random auction ending. This trading mechanism increases
the risk for spoofing agents of staying in the market because their
stale spoofing orders could be traded at any time before they make
the decision from the observation of the market. Our experimental
results reveal that this design is beneficial in that it curbs spoofing.
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