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Abstract

In a liquid democracy, voters can either vote di-
rectly or delegate their vote to another voter of their
choice. We consider ordinal elections, and study a
model of liquid democracy in which voters spec-
ify partial orders and use several delegates to refine
them. This flexibility, however, comes at a price, as
individual rationality (in the form of transitive pref-
erences) can no longer be guaranteed. We discuss
ways to detect and overcome such complications.
Based on the framework of distance rationalization,
we introduce novel variants of voting rules that are
tailored to the liquid democracy context.

1

Liquid democracy is based on the paradigm of delegative
voting and can be seen as a middle ground between direct
democracy and representative democracy (see, e.g., [Blum
and Zuber, 2016; Behrens et al., 2014]). Under this paradigm,
each voter can choose to either vote directly, or to select an-
other voter acting as her delegate. Delegation is transitive, in
the sense that the delegate can choose to delegate the vote fur-
ther, resulting in delegation paths along which voting weight
is accumulated. The voting weight of a voter who decides
to actually vote is then given by the number of voters who—
directly or indirectly—delegated their vote to this voter.

Liquid democracy has been popularized by the German Pi-
rate Party, which was one of the first organizations to employ
the LiquidFeedback software [Behrens er al., 2014] for deci-
sion making within the party. Similar tools have been used
in other political parties, such as the Spanish party Partido
de Internet, the local Swedish party Demoex, and the Argen-
tinian “Net Party” (Partido de la Red).

Liquid democracy is appealing due to the flexibility it of-
fers to voters. In this paper, we aim to increase this flexibility
further by introducing the concept of pairwise liquid democ-
racy. Specifically, we consider ordinal elections, where each
voter needs to rank-order a set of alternatives. This setting,
which is standard in social choice theory, is in fact used in
LiquidFeedback [Behrens et al., 2014, Chapter 14.12]. We
propose that voters in an ordinal election can make use of
delegations in a fine-grained manner, by specifying a partial
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order and then using several delegates to refine different parts
of that partial order. We illustrate the idea with an example.

Example 1. Consider the alternatives a, b, ¢, d, and assume
that a voter v feels strongly about a being the best alternative,
but is not sure how the remaining three alternatives compare.
Moreover, voter v trusts another voter v’ to know whether b
is better than ¢ (maybe b and ¢ differ mainly in one aspect, on
which v happens to be an expert) and voter v moreover thinks
that the comparison between c and d could be best performed
by a third voter v” (maybe v” has a lot of experience with
both ¢ and d). For the sake of the example, say that voter v’
decides that b is better than ¢ and voter v” decides that c is
better than d. Then, the resulting ranking of v, after taking
the delegations into account, would be a > b > ¢ > d.!

Notice the flexibility voter v used in her delegations, and
how v’ and v helped to refine her initial partial order. This
flexibility is useful, e.g., for voters who (a) really care about
the outcome of an election, but (b) do not feel well-informed
or competent enough to compare certain pairs of alternatives.
This flexibility, as might be suspected, comes at a price: Re-
fining a partial order by delegating certain pairwise compar-
isons to different delegates might result in intransitive prefer-
ence orders (see Figure 1 for a concrete example).

In this paper, we study such combinatorial complications,
and discuss ways to overcome them. Specifically, we con-
sider the problem of deciding whether a given delegation
graph is consistent (i.e., whether, after taking into account
delegations, all preference orders are transitive). For in-
consistent delegation graphs, we then consider several ap-
proaches to cope with intransitive preference orders. Finally,
we identify a rich family of voting rules which operate di-
rectly on such delegation graphs. These rules generalize stan-
dard voting rules and could be considered more appropriate
for the pairwise liquid democracy setting.

An important appeal of liquid democracy is the flexibility
it offers to participants. We argue that extending this flexi-
bility further, specifically by allowing pairwise delegations,

"Note that, in this example, voter v did not explicitly delegate the
comparison between b and d. In a sense, voter v got lucky that the
decisions by her delegates v’ and v” resulted in a consistent ranking.
Later we will concentrate on situations in which voters are required
to delegate all pairwise comparisons that are not decided by them-
selves; we will see that this might result in certain inconsistencies.
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holds a significant potential for advancing the liquid democ-
racy paradigm.

RELATED WORK. While some of the ideas behind liquid
democracy can be traced back to early works of [Dodgson,
1884] and [Miller, 1969], the idea has been mainly developed
since the early 2000s (see, e.g., [Ford, 2002]). For an histor-
ical overview of the development of the idea, we refer to the
surveys by [Ford, 2014] and [Behrens, 2017].

In recent years, liquid democracy has gained increasing at-
tention from the scientific community. [Boldi er al., 2011]
studied a variant of liquid democracy called viscous democ-
racy, which uses a discount factor for dampening the impact
of long delegation paths. Attempts to formally establish the
virtues of liquid democracy have been undertaken by [Green-
Armytage, 2015] and [Cohensius et al., 2017], who consid-
ered spatial voting models and showed that liquid democracy
outperforms direct democracy under certain conditions. On
the other hand, [Kahng et al., 2018] have established that lig-
uid democracy with so-called local delegation mechanisms
cannot truly outperform direct democracy with respect to the
ability of recovering a ground truth.

Perhaps the most related work to our paper is that of
[Christoff and Grossi, 2017], who consider delegative voting
in the binary aggregation framework. In this setting, there
are several binary issues and voters can delegate their vote on
individual issues to different voters, potentially resulting in
voter preferences that are not “individually rational” because
they violate an integrity constraint. Our model of ordinal vot-
ing can be seen as a special case, where issues are pairwise
comparisons between alternatives and the integrity constraint
requires the transitivity of preferences. Focussing on the im-
portant special case of ordinal voting allows us to study spe-
cific problems, and to come up with specific solutions, that
might not manifest in the more general framework.

2 Preliminaries

Let N = {1,...,n} be a finite set of n voters and A =
{a,b,c,...} afinite set of |A| = m alternatives. The prefer-
ences of voter i € N are modeled as an asymmetric® binary
relation R; C A x A. The interpretation of (a, b) € R;, which
is denoted a >; b (or a > b if 7 is obvious from the context),
is that voter ¢ strictly prefers alternative a over alternative b.
A preference relation R; is complete if a >; b or b >; a for
every pair of distinct a,b € A, and it is transitive if a >=; b
and b >; c implies a >; c for all distinct a,b,c € A. For a
preference relation R; and a subset A’ C A of alternatives,
we let R;| 4/ denote the restriction of R; to A" x A’

A ranking (or linear order) over A is a transitive and com-
plete preference relation and is denoted a; > as > ... > an,
with the understanding that a; > a if and only if j < j'. A
weak ranking over A is a transitive preference relation that
can be described by an ordered partition (Aj, Ao, ..., Ak)
and the assumption that a > b if and only if there exits j
and j’ such that @ € A;, b € Ay, and j < j'. For ex-
ample, {a,b} > ¢ > {d,e} denotes the weak ranking with

2 Asymmetry requires that (a, b) € R; implies (b, a) ¢ R; for all
a,b € A. It also implies irreflexivity, i.e., (a,a) ¢ R; foralla € A.
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Figure 1: Intransitive preferences due to pairwise delegations.

A; ={a,b}, As = {c}, and A3 = {d, e}. Each set A; in the
ordered partition is called an indifference class.

A preference relation R; contains a preference cycle if
there exists a £ > 3 and alternatives a1, as, . .., ax such that
a1 > a2, Gy >; as, ..., ar >—; ai1. A complete preference
relation is transitive iff it does not contain a preference cycle.

A preference profile is alist R = (Ry, ..., R;,) containing
a preference relation R; for every voter ¢ € N. A preference
profile R is complete (resp., transitive) if every preference re-
lation in it is complete (respectively, transitive). A preference
profile R’ = (RY,...,R]) is an extension of a preference
profile R = (Ry,...,R,)if R; C R} foralli € N.

3 Pairwise Delegations

We introduce the model of pairwise liquid democracy, which
strictly generalizes the standard liquid democracy paradigm.

Let P denote the set of all unordered pairs of distinct al-
ternatives. For a pair {a,b} € P, we usually write ab; in
particular, ab and ba refer to the same unordered pair. Every
voter ¢ € N divides the set P into two sets: the set of internal
pairs Pin(i) and the set of external pairs Pex (7). For every
internal pair ab, the voter specifies her (strict) preferences be-
tween the two alternatives in question (a >=; b or b =; a).’
For every external pair cd, the voter designates another voter
j € N\ {i} as the pairwise delegate for that pair.*

PAIRWISE DELEGATION GRAPHS. The collection of all in-
ternal and external pairs can be represented by a directed
graph with n vertices, where each vertex v; corresponds to
avoter ¢ € N. Every node v; € N is labeled with the prefer-
ences over the internal pairs P, (¢) of voter i. A directed arc
from v; to v; has a label ab € P and corresponds to the exter-
nal pair ab € Py (7) that voter ¢ delegates to voter j. Notice
that there could be parallel edges (if ¢ delegates several pairs
to 7). We refer to such a graph as a pairwise delegation graph.
Pairwise delegation graphs can sometimes lead to intransi-
tive preference relations, as the next example demonstrates.

Example 2. Consider the pairwise delegation graph G de-
picted in Figure 1 with n = 3 voters and alternatives a, b, c.

3Internally specified preferences are assumed to be transitive.

“We usually assume that each voter specifies every pair in P ei-
ther as an internal pair or as an external pair. Sometimes, however,
we consider instances (such as the one constructed in the proof of
Theorem 2) without specifying explicitly whether certain pairs are
internal or external. In those cases, such “unspecified” pairs can be
arbitrarily set to either internal or external pairs without impacting
the construction. A simple, general way of reducing an instance with
unspecified pairs to one without such pairs is to add some additional,
dummy voters: For each voter ¢ containing at least one unspecified
pair, add a voter 4', initially with the same internal and external pairs
as voter 4, and add each unspecified pair of ¢ as an external pair for
both 7 and i’, who delegate those pairs to each other. The modified
instance preserves (weak) consistency (see Definitions 1 and 2).
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Voter 1 internally declares the ranking @ >; b >; c and
voter 2 internally declares the ranking ¢ >=5 b >2 a. Voter 3
internally declares a >3 b, delegates bc to voter 1, and del-
egates ac to voter 2. As a result, the preference relation of
voter 3 contains a preference cycle: a >3 b, b >3 ¢, ¢ >3 a.

The following notation will be useful for the remainder of
the paper. For a voter i € N and an external pair ab € Pey (i),
let del,p (i) denote the ultimate delegate of i with respect
to ab; it can be found by following the path in G starting in v;
and following the ab-labeled arcs. There are two possibilities:
either the path leads to a voter j € N \ {i} with ab € Pin(j)
or the path leads to a cycle (which we call an ab-cycle). In
the former case, we let dely,(i) = j (note that j is uniquely
determined by G); in the latter case, we write delq, (i) = 0
and say that ¢ has no ultimate delegate with respect to ab.

The arc-set of a pairwise delegation graph G is the union
of (") arc-sets, each corresponding to a pair in P. For a pair
ab € P, the ab-graph is the subgraph of GG containing only
those arcs labeled ab. G does not contain pairwise delegation
cycles if, for each ab € P, G does not contain an ab-cycle.

FROM GRAPHS TO PREFERENCE PROFILES. For a pairwise
delegation graph G, R(G) is the preference profile resulting
from resolving all delegations. That is, for each voter i € N
and each external pair ab of i, we find the ultimate delegate
del,p(7) (if it exists) and add the corresponding ordered pair
(either (a,b) or (b,a)) to R;. If delqy(i) = 0 (implying that
there is an ab-cycle), however, then neither (a, b) nor (b, a) is
added to R;. Indeed, whenever GG contains pairwise delega-
tion cycles, then some ultimate delegates are not defined and,
consequently, R(G) is not complete.

A preference profile R respects a pairwise delegation graph
G if for all voters ¢ € N and all ab € Pex (%), Rilab = Rjlabs
where j is the voter that ¢ delegates ab to. (If dely, (i) = 0,
then R;|,, = (0.) By definition, R(G) respects G. Some-
times we are interested in complete and transitive preference
profiles respecting GG. The set of all such profiles is denoted

by R(G). Figure 1 illustrates that 2(G) may be empty. A

necessary condition for a profile to be contained in R(G) is
to extend R(G). If G does not contain pairwise delegation

cycles and R(G) # 0, then R(G) = {R(G)}.

4 Detecting Intransitivities

Example 2 demonstrates that pairwise delegations can poten-
tially yield intransitive preferences for individual voters, even
when the internal pairs satisfy transitivity. Whether such in-
transitive preferences arise depends on the pairwise delega-
tion graph in question, and it might not be straightforward
to check whether a given graph yields intransitivities or not.
Next, we analyze the detection of intransitivities from a com-
putational complexity perspective. A first step in checking
for inconsistencies in voters’ preferences is to propagate pair-
wise comparisons along delegation arcs and check whether
this results in violations of transitivity. If this is not the case,
we call the pairwise delegation graph weakly consistent.

Definition 1 (weak consistency). A pairwise delegation
graph G is weakly consistent if no preference relation
in R(G) contains a preference cycle.
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Figure 2: A weakly consistent pairwise delegation graph that is not
consistent. There are two ways to “fix” the ac-cycle: either seta > ¢
for all voters involved in (or delegating to) the cycle, resulting in
intransitive preferences for voter 2; or set ¢ > a for all these voters,
resulting in intransitive preferences for voter 6.

For example, the pairwise delegation graph in Figure 1 vi-
olates weak consistency.

Weak consistency can be checked efficiently: It is suffi-
cient to observe that, for each voter ¢ € N and for each pair
ab € Pexi(i), the ultimate delegate del,; (i) can be computed
efficiently, e.g., using a depth first search.

Observation 1. It can be checked in polynomial time whether
a pairwise delegation graph is weakly consistent.

Even if pairwise delegations do not result in preference cy-
cles, it could be the case that R(G) cannot be extended to a
complete and transitive preference profile respecting all dele-
gations. In other words, the set ]:Z(G ) may be empty even if G
is weakly consistent. This is illustrated in Figure 2. The fol-
lowing stronger notion of consistency forbids such “hidden”
inconsistencies.

Definition 2 (consistency). A pairwise delegation graph G is

consistent if R(G) # 0; i.e., if there exists a complete and
transitive G-respecting extension of R(G).

Recall that each incompleteness of R(G) (i.e., each prefer-
ence relation in R(G) for which some pairwise comparisons
are unknown) is caused by a pairwise delegation cycle. Thus,
a pairwise delegation graph is consistent if and only if, for ev-
ery pairwise delegation cycle of G, the preferences over the
respective pair can be “fixed” in a way that does not result
in intransitive individual preferences. In particular, profiles
in R(G) have the property that all voters that are contained
in an ab-cycle (and also those contained in an ab-path lead-
ing to that cycle) have identical preferences over ab (either
a > bor b > a). In the absence of pairwise delegation cycles,
R(G) is complete (as ultimate delegates are always defined);
consequently, the two consistency notions coincide.

Proposition 1. A pairwise delegation graph not containing
pairwise delegation cycles is weakly consistent if and only if
it is consistent.

It turns out that, in contrast to checking weak consistency,
checking consistency is computationally intractable.

Theorem 2. Deciding whether a given pairwise delegation
graph is consistent is NP-complete.

Proof. Membership in NP follows directly from Proposi-
tion 1, by guessing the decisions made on the cycles. Next,
we provide a reduction from the NP-hard problem 3SAT, in
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Figure 3: Example for the reduction described in the proof of Theo-
rem 2, corresponding to ¢ = C1 A Co, where C1 = z1 V 2 V 23
and CQ =x3VxaV Ts5.

which we have a Boolean 3-CNF formula ¢ with m clauses
Cj, j € [m], over n variables z;, ¢ € [n], and shall decide
whether ¢ is satisfiable. Given an instance ¢ of 3SAT, we
create a pairwise delegation graph G as follows.

For each variable z;, ¢ € [n], we create a voter x; and two
alternatives, t; and f;. For each clause C;, j € [m], we create
avoter ¢;. If C; = (z;1 V ;2 V x,;3), then voter ¢; delegates
the pair ¢;1 f;1 to voter x;1, the pair ¢;2 f2 to voter x;2, and
the pair ¢;3 fj3 to voter ;3. The idea is that the decision of
voter x; for the pair ¢; f; shall correspond to the sign of the
literal of z;: t; > f; corresponds to a positive literal, while
fi > t; corresponds to a negative literal. The internal pairs
of voter c¢; correspond to the signs of its literals. To explain
how, we consider several cases, depending on its form; for
notational simplicity, assume that C; contains the variables
21, T2, and x3, and consider the form of its negation, —=C}:

o If -C; = (x1 A m2 A x3), then ¢; internally decides
f1 > ta, f2 > t3, and f3 = tq.

o If -C; = (z1 A z2 A —x3), then ¢; internally decides
f1 = to, fo > f3,and t3 > t;.

o If -C; = (21 A ~x2 A —x3), then ¢; internally decides
J1 = fa, a2 = f3,and t3 - 4.

o If ~C; = (—x1 A ~x2 A —x3), then ¢; internally decides
t1 >~ f2, to >~ fg, and ts > fl-

The idea is that, as satisfying =C; would cause ¢ to be un-
satisfied, the internal decisions of c¢;, combined with those
decisions of the voters corresponding to the literals of C;
which would satisfy =C; would cause a preference cycle in
c;’s preference relation. This finishes the reduction. An ex-
ample is given in Figure 3. (Pairs not explicitly specified as
either internal or external pair can be set arbitrarily without
introducing preference cycles; see also Footnote 4.)
Correctness follows as any G-respecting complete exten-
sion of R(G) shall decide, for each x;, whether ¢; > f; or
fi > t;; these decisions would propagate to the c;’s, causing
a preference cycle in each c; for which ~C}; is satisfied. [

Remark 1. There is an elegant SAT-formulation of the con-
sistency problem. This is also of practical importance, as it
allows the use of efficient SAT solvers. For each vertex v and
each pair ab, define a binary variable v, p, with the intended
meaning that v, , = 0 if @ >, b in a complete extension of
R(G), and v, , = 1 otherwise. For any delegation arc (v, u)
labeled ab, we add an arc-clause: (uqp — Vop) A (Ugp —
T,.p). For each vertex v and each triplet of alternatives a, b, ¢
we add the transitivity constraints: (vgp A Vpc) — Vg, and
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(Uab A Ubc) — TUgc. The corresponding formula is satisfi-
able if and only if G is consistent; in this case, the variables
encode a profile in R(G).

5 Coping with Intransitivities

It is unfortunate that allowing pairwise delegations might re-
sult in intransitive preferences. In this section we suggest
several ways of coping with this problem. In particular, we
explore approaches to prevent intransitive preferences by re-
stricting allowed delegations, ways to circumvent intransitive
preferences by ignoring delegations, and the possibility of
consolidating intransitive preferences into weak rankings.’

5.1 Restricting Allowed Delegations

Intransitive preferences are the result of the flexibility of pair-
wise liquid democracy. It is therefore natural to consider re-
strictions to our general model, specifically tuning this flexi-
bility to avoid such individually irrational outcomes.

Taken to the extreme, we might say that if a voter dele-
gates some pair to another voter, then she shall delegate all
(’;) pairs to that voter; indeed, this is a very cumbersome
way to describe the standard (non-pairwise) delegation on
which liquid democracy is based: Each voter can either spec-
ify her own ranking, or delegate her complete vote to another
voter. A more flexible approach that still prevents intransi-
tivities consists in letting each voter specify a weak ranking
together with a list of delegates, one delegate for each indif-
ference class of the weak ranking. The weak ranking of the
voter would then be completed into a linear order by rank-
ing the alternatives in each indifference class according to the
preferences of the corresponding delegate. Assuming no pair-
wise delegation cycles, this approach is guaranteed to result in
a complete and transitive preference profile. Note, however,
that this approach restricts the freedom of voters to some ex-
tent: coming up with a weak ranking already requires a lot of
internal decisions, and a voter might not be willing/competent
to make those decisions.

5.2 Modifying Existing Delegations

Another approach to prevent intransitive preferences consists
in modifying the delegation graph. Specifically, intransitivi-
ties can be circumvented by removing (ignoring) some pair-
wise delegations. E.g., recall the inconsistent pairwise dele-
gation graph of Figure 1 and observe that removing any one
of the two external pairs yields a consistent graph.

A natural objective is to make a pairwise delegation graph
consistent by removing as few delegations as possible, as it
would hopefully correspond to only a negligible change to the
graph. This motivates the following computational problem,
which we refer to as the consistency modification problem:

SThis list is by no means exhaustive. For instance, [Christoff
and Grossi, 2017] suggest to avoid inconsistencies by employing an
opinion diffusion approach [DeGroot, 1974]. Under this approach,
a voter incorporates the decisions of delegates only if it does not in-
troduce inconsistencies. Though we do not consider this idea further
in this paper, we note that opinion diffusion can be applied on the
level of pairwise comparisons of alternatives [Brill ez al., 2016].
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Given a pairwise delegation graph G and an inte-
gerb > 0, can at most b arcs be removed from G in
order to make G consistent?

The consistency modification problem can be defined for
both weak consistency and consistency as the desired goal.
The budget b plays an important role, as with a high enough
budget any graph can be made consistent (e.g., the empty
graph is always consistent). The problem is intractable.

Theorem 3. The consistency modification problem is NP-
complete, both for weak consistency and for consistency.

Proof sketch. NP-hardness follows from a straightforward
reduction from Feedback Arc Set on Tournaments. Given a
tournament 7' = (W, E)), we construct a pairwise delegation
graph G with voter set N = v* U {v, : e € E}. The set of
alternatives is defined by the set W of vertices of T". Voter v*
has only external pairs: for every directed edge e = (x,y) of
the tournament 7', voter v* delegates the pair xy to voter v,
who has only internal pairs, and in particular prefers x to y.
Now we can make G consistent (or weakly consistent) by
removing b external pairs if and only if we can make 7" acyclic
by removing b directed edges from E. O

Remark 2. The consistency modification problem can be ef-
ficiently solved using MaxSAT solvers, by constructing the
formula described in Remark 1, setting the weight of the arc-
clauses to 1, and setting the weight of other clauses to oco.
Indeed, a maximum weight MaxSAT solution corresponds to
a solution of the consistency modification problem, with un-
satisfied arc-clauses corresponding to deleted arcs.

5.3 Consolidating into Weak Rankings

A further way to cope with intransitive voter preferences is to
first “consolidate” those intransitivities into weak rankings,
and then apply a voting rule which can cope with weak rank-
ings. One way to accomplish this is by applying a tournament
solution (e.g., the top cycle or the Copeland set), which takes
an asymmetric and complete® binary relation on a set of al-
ternatives as input and outputs a non-empty subset of alterna-
tives [Laslier, 1997; Brandt et al., 2016]. These can be used
iteratively to construct a weak rankings as follows: First, the
tournament solution is applied to the set of all alternatives and
the resulting subset of alternatives then defines the top-most
indifference class of the weak ranking. These alternatives are
then removed from consideration and the tournament solution
is applied to the set of remaining alternatives to determine the
next indifference class, and so on. This approach has been an-
alyzed by [Bouyssou, 2004] and (for the special case of two
indifference classes) [Yang, 2017].

6 Voting Rules for Delegation Graphs

The need to prevent, consolidate, or circumvent intransitiv-
ities can be rendered moot by employing a voting rule that
accepts intransitive voter preferences. In particular, this is the

6Completeness can be relaxed [Brandt et al., 2018]; therefore,
this approach is feasible also for incomplete voter preferences re-
sulting from pairwise delegation cycles.
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case for all pairwise voting rules (a voting rule is pairwise’

if it only depends on anonymized comparisons between pairs
of alternatives). The motivation for this approach is rather
straightforward: The premise of pairwise liquid democracy is
that domain expertise in the form of high-accuracy pairwise
comparisons should be exploited; and pairwise voting rules
take all pairwise comparisons into account.

An important example of a pairwise rule is Kemeny’s
rule [Kemeny, 1959], which enjoys a strong axiomatic foun-
dation [Young and Levenglick, 1978] and has been estab-
lished as the maximum likelihood estimator for a natural
noise model [Young, 1995]. Under Kemeny’s rule, for ev-
ery ranking r» we compute the minimum number of pairwise
swaps that are necessary to transform the preference profile
into one where all preference relations of voters coincide with
r, and we pick the top-ranked alternative from the ranking r
for which this number is the smallest.

However, pairwise voting rules—like all standard voting
rules—have a drawback when applied to the pairwise liquid
democracy setting: they ignore the structure of the pairwise
delegation graph. Motivated by this observation, we initiate
the study of so-called liguid voting rules, which take pair-
wise delegation graphs as input. Since pairwise delegation
graphs can be viewed as generalizations of preference pro-
files (a preference profile corresponds to a pairwise delega-
tion graph without external arcs), liquid voting rules gener-
alize standard voting rules. In the following, we propose a
generic way to “liquidize” voting rules. Our approach relies
on the concept of distance rationalization.

6.1 Distance Rationalization

Distance rationalization (DR) is a very general framework in
social choice theory [Elkind and Slinko, 2016]. Intuitively,
a voting rule is distance rationalizable if there is a “distance
function” and a “consensus class” such that winning alterna-
tives coincide with consensus alternatives of the closest con-
sensus profile, measuring closeness by the distance function.

Formally, a distance function is a metric on preference re-
lations® and a consensus class C is a pair (R, W) where R
is a set of preference profiles and WV is a function mapping
every R € R to a winning alternative. The intuition is that
the winner WW(R) of a consensus profile R € R is “obvi-
ous.” A voting rule is (d,C)-distance rationalizable for dis-
tance d and consensus class C = (R, W) if, for every profile
R, the rule selects the winner W(R') of the consensus pro-
file R € R that is closest to R according to d. If several
closest consensus profiles exist, then all corresponding con-
sensus winners will be tied winners. For instance, Kemeny’s
rule is (d, C)-distance rationalizable for d being the swap dis-
tance (aka bubble sort distance) and C = (€, W) being the
unanimous consensus class, consisting of all complete and
transitive preference profiles in which all preference relations
are identical.

"Pairwise voting rules are also known as C2 functions [Fishburn,
19771 or weighted tournament solutions [Fischer et al., 2016].

8That is, we consider what [Elkind and Slinko, 2016] call vore-
wise distances. A distance function d on the set of preference rela-
tions naturally extends to a distance function on the set of preference
profiles by letting d(R, R') = >~y d(Ri, R;).
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6.2 Liquid Distance Rationalization

We generalize the DR framework by incorporating operations
on pairwise delegation graphs. The basic idea is as follows.
While the standard DR framework considers only the space
of preference profiles and defines distance functions and con-
sensus classes within that space, the liquid DR framework
also considers the space G of all pairwise delegation graphs.
These two spaces are related via the mappings R(-) and R(-)
defined in Section 3. Specifically, the distance function is de-
fined on G, whereas the consensus classes remain in the space
of preference profiles. Applying function R() allows us to
transfer the notion of consensus to the graph space.

Definition 3. Let C = (R, V) a consensus class. A pairwise
delegation graph G is a consensus graph if R(G) N R # {.

That is, a consensus graph is a pairwise delegation graph G
whose corresponding preference profile R(G) can be ex-
tended to a consensus preference profile. The function W can
be extended to consensus graphs by letting W(G) = W(R),

where R € R(G) N R. (If |[R(G) N'R| > 1, then all corre-
sponding consensus winners are contained in W(G).)
We are now ready to define liquid distance rationalizability.

Definition 4. Let d be a distance function on G and
C=(R,W) a consensus class. A liquid voting rule is
(d, C)-distance rationalizable if, for any pairwise delegation
graph G, the rule selects the winner(s) W(G") of the consen-
sus graph G that is closest to G according to d. (If several
closest consensus graphs exist, then all corresponding con-
sensus winners tie as winners.)

That is, a liquid distance rationalizable voting rule takes
as input a pairwise delegation graph G and finds a closest
graph G such that R(G’) contains a consensus profile; the
rule then outputs the consensus winner of this profile.’

A natural distance function on G counts the number of
swaps of internal pairs that are needed to transform one graph
to another. The appeal of this distance function, denoted djy,
has to do with delegations: If some voters delegate a pair ab to
a voter ¢, and we swap voter ¢’s internal pair ab, then this swap
will be propagated—by pairwise delegations—to all voters
having ¢ as their ultimate ab-delegate. Thus, a single pairwise
swap of an internal pair might lead to many swaps of that pair
in other voters. It might therefore be possible to “reach” a
consensus graph G’ by making only few internal swaps.

6.3 Liquid Voting Rules

An interesting example of a distance rationalizable liquid vot-
ing rule can be obtained by combining the distance function
diny With the unanimous consensus class. We call the resulting
liquid voting rule LiquidKemeny; it can be seen as an adap-
tation of Kemeny’s rule to the pairwise liquid democracy set-
ting. LiquidKemeny takes a pairwise delegation graph and,
for every ranking r, computes the minimum number of pair-
wise swaps of internal pairs such that the resulting graph can

°Since the output of a liquid distance rationalizable voting rule
may depend on the structure of the pairwise delegation graph, such
rules generally violate the one man—one vote property as discussed
by [Christoff and Grossi, 2017].
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Figure 4: A pairwise delegation graph G with 9 voters. LiquidKe-
meny selects alternative ¢, because G can be turned into a consensus
graph G’ via 8 pairwise swaps of internal pairs. The corresponding
consensus profile satisfies ¢ >; a >; b for all ¢ € N. No other con-
sensus graph can be reached with at most 8 pairwise internal swaps.
(For comparison: Kemeny’s rule, applied to the profile R(G), se-
lects winner a. The optimal ranking is a > b > c and 10 pairwise
swaps are necessary to transform R(G) into a unanimous profile.)

be extended to a profile in which all preference relations are
identical to r. The rule then selects the top-ranked alternative
of the ranking r for which this number is smallest. That is,
in this liquid variant of Kemeny’s rule, we do not count all
disagreements between a ranking and preference relations of
voters, but rather only those disagreements between a ranking
and the internal pairs of voters. Figure 4 illustrates this rule.

There are other rules that can be distance rationalized with
the swap distance [Elkind and Slinko, 2016]. For each such
rule, we can immediately define their liquid version by gener-
alizing the domain to the space of pairwise delegation graphs
and replacing the swap distance with dj,. For instance,
this approach yields liquid versions of Dodgson’s rule and
Borda’s rule. Whenever the delegation graph is empty, the
liquid version of a rule coincides with the original version.

Remark 3. The distance function djy, is based on the implicit
assumption that the “cost” of swapping an internal pair of a
voter does not depend on the number of other voters to which
this swap will be propagated through delegations. This, how-
ever, violates the intuition that swapping pairs for voters with
many delegations should be more costly than doing so for a
voter who attracts only few delegations. Indeed, the appeal of
pairwise liquid democracy is closely connected to the promise
of effective utilization of expert knowledge, thus it can be
argued that the preferences of voters attracting many dele-
gations should be given increased attention. This argument
can be accounted for by augmenting d;,, with a cost function
cg : N x P — R, that, with respect to a pairwise delega-
tion graph G, assigns a cost for swapping each internal pair
of each voter. Intuitively, a high value of ¢ (%, ab) means that
the opinion of voter ¢ on the pairwise comparison between
a and b is valued highly. In fact, the rules we have consid-
ered can be recovered by defining the cost function appropri-
ately: Let #d(%, ab) denote the number of voters that have
voter ¢ as their ultimate ab-delegate, and observe that setting
ca (i, ab) 1 corresponds to LiquidKemeny, while setting
cg(iyab) = #d(i,ab) corresponds to the standard version
of Kemeny’s rule. A middle ground could be based on cost
functions that take the length of delegation paths (or other
structural properties of (G) into account. An interesting way
to do that has been proposed by [Boldi e al., 2011].
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7 Conclusion and Outlook

We proposed a generalized model of liquid democracy where
voters can delegate pairwise comparisons, and explored ap-
proaches to deal with the possibility of intransitive prefer-
ences that might arise as a result of the increased flexibil-
ity that the model offers. We described a generalization of
distance rationalization and suggested a framework for con-
structing “liquid voting rules” working directly on delegation
graphs. Next we mention some directions for future research.

The most immediate direction is to study further liquid vot-
ing rules and their properties, e.g., by considering metrics on
delegation graphs (including graph edit distances [Gao et al.,
2010]), or by “liquidizing” other classes of voting rules (e.g.,
generalized scoring rules [Xia, 2013]).

Further, one could consider other generalizations of liquid
democracy. A particularly interesting approach is “statement
voting” [Zhang and Zhou, 2017], where voters can specify
delegation rules (e.g., “I delegate to j unless j delegates fur-
ther”), resulting in an even greater flexibility.
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