
Regular Decision Processes: A Model for Non-Markovian Domains

Ronen I. Brafman1 and Giuseppe De Giacomo2

1Ben-Gurion University, Israel
2Sapienza Università di Roma, Italy

brafman@cs.bgu.ac.il, degiacomo@dis.uniroma1.it

Abstract
We introduce and study Regular Decision Processes
(RDPs), a new, compact, factored model for do-
mains with non-Markovian dynamics and rewards.
In RDPs, transition and reward functions are spec-
ified using formulas in linear dynamic logic over
finite traces, a language with the expressive power
of regular expressions. This allows specifying com-
plex dependence on the past using intuitive and com-
pact formulas, and provides a model that generalizes
MDPs and k-order MDPs. RDPs can also approxi-
mate POMDPs without having to postulate the exis-
tence of hidden variables, and, in principle, can be
learned from observations only.

1 Introduction
The Markov assumption (MA) plays a key-role in the defini-
tion of MDPs. It states that the next-state distribution follow-
ing an action is independent of the history, given the current
state. Yet, MA does not hold in many domains: one is likelier
to be able to enter a restricted area if permission was obtained
in the past; a car is likelier to skid if it rained in the past with no
sunshine since; and even more so, if the rain was followed by
below zero temperature; a person is likelier to contract mumps
flying, if she has not contracted it in the past; or, a robot should
be rewarded for delivering coffee only if its owner previously
requested it. The first examples describe non-Markovian dy-
namics, and the last one, a non-Markovian reward, first studied
in [Bacchus et al., 1996], and recently advocated as useful
for reinforcement learning in robotics [Littman et al., 2017;
Camacho et al., 2017].

Often, MA is treated as a simple technical restriction be-
cause one can always modify the state description to make a
non-Markovian model Markovian. For example, we can add
indicator variables that record whether access was granted, cof-
fee was requested, etc. More generally, the belief-space MDP
can be viewed as maintaining information about the entire
history of a POMDP using an infinitely larger state space.

This approach suffers from two problems: First, the agent’s
state space may be hard-coded. For example, a robot learn-
ing its environment may have a built-in state representation,
related to its sensing abilities, set by a designer who was possi-
bly unfamiliar with this environment. Second, even when the

designer has the freedom to modify the state space, it may be
much simpler to specify non-Markovian dynamics or reward
explicitly than to design the correct equivalent Markovian
model which (as we show) can be exponentially larger.

One well-known non-Markovian model is k-order MDPs, in
which the next state distribution induced by an action depends
on the last k states. However, k-order MDPs are impractical
for large k, as their equivalent MDP is exponential in k. More-
over, they cannot express simple properties that depend on the
arbitrary past, such as the examples above.

To address these issues, we introduce and study Regular
Decision Process (RDP), a non-Markovian decision model
and language that can succinctly represent dependence on the
arbitrary past. In RDPs, the next state distribution and the
reward function are conditioned on logical formulas, like in
factored MDPs [Boutilier et al., 1999]. But while formulas in
factored MDPs are propositional (or first-order) and refer to
the current state only, formulas in RDPs are in LDLf– linear
dynamic logic over finite traces, and refer to the entire history.

The main contributions of this paper are to introduce RDPs,
study their properties and complexity, describe how to opti-
mize them, and postulate a potential method for learning them
from observations. We also briefly explore the potential role
of RDPs in approximating POMDPs. It is well known that
POMDPs are difficult to solve [Papadimitriou and Tsitsiklis,
1987; Littman et al., 1998; Madani et al., 2003] – and diffi-
cult to learn: only a few algorithms exist that provide some
guarantees (e.g., [Zhang et al., 2012]) but they are not too
useful w.r.t. sample complexity. RDPs offer three potential
benefits: First, they are easier to solve than POMDPs. Second,
they are more expressive than MDPs, and hence may be able
to provide a better approximation. Indeed, we show that for
every POMDP, there exists a RDP that can ε-approximate it.
Third, they do not require hypothesizing the existence of hid-
den variables – they are based on observable variables only.
This latter property is promising from the learning perspective.

2 Background
We assume familiarity with MDPs and POMDPs, and only
recall basic notation and ideas.

A Markov Decision Process (MDP)M = 〈S,A, Tr,R, s0〉
contains a set S of states, a set A of actions, a transition
function Tr : S × A → Π(S) that returns for every state
s and action a a distribution over the next state; a reward

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5516

function R : S ×A→ R that specifies the real-valued reward
received by the agent when applying action a in state s; and
an initial state s0 ∈ S. In this paper, states in S are truth
assignments to a set P of primitive propositions. This allows
for using a more compact factored description of the reward
and transition function. To emphasize this, we writeM =
〈P , S,A, Tr,R, s0〉. The horizon of the MDP is the number
of actions/steps that the agent executes.

A solution to an MDP is a policy that maps histories of
states and actions to actions. The value of policy ρ at s, vρ(s),
is the expected discounted sum of rewards when starting at s
and selecting actions based on ρ. Every MDP has an optimal
policy, ρ∗, that maximizes the expected discounted sum of
rewards for every starting state s ∈ S. When the horizon is
infinite, a deterministic stationary policy ρ∗ : S → A that is
optimal, exists [Puterman, 2005]. Many methods for solving
MDPs rely on the Markov assumption, and their theoretical
and practical complexity is strongly impacted by |S||A|.

A partially observable MDP (POMDP) is a tuple M =
〈S,A, Tr,R,O,Ω, b0〉. S,A, Tr,R are as in MDPs, but in-
stead of observing the entire state, the agent observes an
element of Ω. O : A × S → Π(Ω) specifies the prob-
ability of observing o ∈ Ω if a ∈ A was executed and
led to state s ∈ S, denoted o(a, s, o). Observations can
be noisy, and the same observation may be possible in dif-
ferent state-action pairs. b0 is the initial distribution over
states. In a factored POMDP [Boutilier et al., 1999], M =
〈P , S,A, Tr,R,O,PO, b0〉, P is a set of propositions, S con-
tains assignments to P , and PO ⊂ P are the observable propo-
sitions. Transition, reward, and observation functions are
specified more succinctly by alluding to changes in the values
of propositions as a function of the current state’s properties.

POMDPs can be solved by compiling them to belief-space
MDPs – MDPs in which the states (called belief states) are
distributions over S. The initial belief state is b0, and given the
current belief state, action and observation, the next belief state
can be computed using standard probabilistic inference. While
this state space is uncountable, it enjoys special properties that
are exploited by various solution algorithms.

LDLf (linear dynamic logic on finite traces)[De Gia-
como and Vardi, 2013] combines linear-time temporal logic
LTL [Pnueli, 1977] with the syntax of PDL, propositional dy-
namic logic [Fischer and Ladner, 1979; Harel et al., 2000;
Vardi, 2011], but interpreted over finite traces. LDLf is as
expressive as regular expressions (RE) and both have the ex-
pressive power of monadic second order logic over finite traces.
Thus, much of this paper can be understood without familiar-
ity with LDLf , by substituting “regular expressions” wherever
“LDLf formula” appears. However, RE themselves are not
convenient for expressing temporal specifications: To negate a
RE, one must generate the corresponding deterministic finite
automaton (DFA), which can be exponential in the size of
the RE, negate it, and generate its corresponding RE. One
can conjoin two RE in polynomial time by constructing their
NFAs, generating their product NFA, and then moving to RE.
Polynomial, but quite inconvenient. LDLf was explicitly in-
troduced in [De Giacomo and Vardi, 2013] to provide a more
convenient specification language.

Here, we consider a variant of LDLf that works also on

empty traces [Brafman et al., 2018]. Formally, LDLf formulas
ϕ are built as follows:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈%〉ϕ
% ::= φ | ϕ? | %1 + %2 | %1; %2 | %∗

tt stands for logical true; φ is a propositional formula over
P (including true , not to be confused with tt); % denotes
path expressions, which are RE over propositional formulas φ
with the addition of the test construct ϕ? typical of PDL. We
use abbreviations [%]ϕ

.
= ¬〈%〉¬ϕ, ff

.
= ¬tt for false, and

φ
.
= 〈φ〉tt to denote occurrence of propositional formula φ.
Intuitively, 〈%〉ϕ states that from the current step in the trace,

there exists an execution satisfying the RE %, such that its last
step satisfies ϕ, while [%]ϕ states that from the current step,
all executions satisfying the RE % are such that their last step
satisfies ϕ. Tests are used to insert into the execution path
checks for satisfaction of additional LDLf formulas.

The semantics of LDLf is given in terms of finite traces,
i.e., finite sequences τ = τ0, . . . , τn of elements from the
alphabet 2P . In decision processes, traces are sequences of
states and actions: 〈s0, a1, s1, . . . , an, sn〉. We represent them
as a trace by extending the set P to include one proposition
pa per action a, assigned true if a was the last action, and
setting τi

.
= si ∪ {pa | a = ai}. In this way, τi denotes the

pair (ai, si) (with a dummy action a0 for the initial state s0).
Henceforth, we assume this form, even if verbally referring to
state-action sequences and sometimes representing the actions
explicitly. We define τ(i)

.
= τi, length(τ)

.
= n + 1, and

τ(i, j)
.
= τi, τi+1, . . . , τj−1. When j > length(τ), τ(i, j)

.
=

τ(i, length(τ)). Given a finite trace τ , an LDLf formula ϕ,
and a position i, we define when ϕ is true at step i, written
τ, i |= ϕ, by (mutual) induction, as follows:
• τ, i |= tt ;
• τ, i |= ¬ϕ iff τ, i 6|= ϕ;
• τ, i |= ϕ1 ∧ ϕ2 iff τ, i |= ϕ1 and τ, i |= ϕ2;
• τ, i |= 〈%〉ϕ iff there exists i ≤ j such that τ(i, j) ∈
L(%) and τ, j |= ϕ, where the relation τ(i, j) ∈ L(%) is
as follows:

– τ(i, j) ∈ L(φ) if j=i+1, i < length(τ), and
τ(i) |= φ (φ propositional);

– τ(i, j) ∈ L(ϕ?) if j = i and τ, i |= ϕ;
– τ(i, j) ∈ L(%1+%2) if τ(i, j) ∈ L(%1) or τ(i, j) ∈
L(%2);

– τ(i, j) ∈ L(%1; %2) if there exists k ∈ [i, j] such
that τ(i, k) ∈ L(%1) and τ(k, j) ∈ L(%2);

– τ(i, j) ∈ L(%∗) if j = i or there exists k such that
τ(i, k) ∈ L(%) and τ(k, j) ∈ L(%∗).

Note that if i ≥ length(τ), the above definitions still apply;
though, 〈φ〉ϕ (φ prop.) and 〈%〉ϕ become trivially false.

We say that a trace τ satisfies an LDLf formula ϕ, written
τ |= ϕ, if τ, 0 |= ϕ.

In LDLf we can easily express temporal operators such as
next (◦) and until (U) using abbreviations ◦ϕ .

= 〈true〉(ϕ ∧
¬end) and ϕ1Uϕ2

.
= 〈(ϕ1?; true)∗〉(ϕ2 ∧ ¬end), and any

RE r, with the formula 〈r〉end , where end
.
= [true]ff ex-

presses that the trace has ended. We also use the abbreviation
atlast(%)

.
= 〈true∗; %〉end to say that the sequence % hap-

pened just before the end. For example, atlast(Rain) means
that at the very end of the trace it rained.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5517

Example 1. Here are some LDLf formulas and their in-
tuitive semantics: ϕ1 = 〈true∗;Rain; true∗〉end – it
rained in the past. ϕ2 = atlast(Rain; Rain; Rain)end
– it rained in the last 3 time steps (e.g., days). ϕ′2 =
atlast(Rain)∨atlast(Rain; true)∨atlast(Rain; true; true)
– it rained in one of the last 3 time steps. ϕ3 =
〈true∗;Rain; (¬(Tmp>5))∗〉end – it rained in the past,
and the temperature was not above 5oC since. ϕ4 =
〈true∗;Rain;Tmp<0; (¬(Tmp>2))∗〉end – it rained in the
past, then the temperature was below 0, and since, it was not
above 2oC.

3 Non-Markovian Decision Processes
We define the basic semantic model of a Non-Markovian De-
cision Process (NMDP) and the more restricted case of a RDP.

3.1 NMDPs
A NMDP is identical to an MDP, except that the transition
and reward functions depend on the entire history (trace).
Formally, a Non-Markovian Decision Process (NMDP) is a
tuple M = 〈P , A, S, tr, r, s0〉, where P, A, S, s0 are as in
an MDP, and we assume there are propositions A ⊆ P that
denote the action that just occurred; tr : S+×A×S → Π(S)
is the transition function, i.e., tr((s0, . . . , sk), a, s′) is the
probability of reaching state s′ when executing action a given
history s0, ..., sk; and r : S+ → [rmin, rmax]. Here S+ is the
set of all finite, non-empty, state sequences.

A policy for a NMDP is a partial function ρ : S+ → A
such that ρ is defined on every sequence w ∈ S+ reachable
from s0 under ρ, where reachability under ρ is defined induc-
tively as follows: s0 is reachable; if w ∈ S+ is reachable and
tr(w, a, s′) > 0 then w · s′ is reachable.

The value of a trace s0, s1, . . . , sn is its discounted sum of
rewards: v(s0, . . . , sn) =

∑n
i=0 γ

nr(s0, . . . si), where 0 <
γ < 1 is the discount factor. Because we assume the reward
value is lower and upper bounded, this discounted sum is
always finite and bounded from above and below. For every
finite horizon n, ρ and M define a distribution over possible
traces, and vn(ρ) denotes the expected value of length n traces
with respect to this distribution. We denote the value of a
policy ρ by v(ρ) = lim infn→∞ vn(ρ). Finally, ρ is an optimal
policy for M if for every policy ρ′, we have that v(ρ) ≥ v(ρ′).

For MDPs with infinite horizon, we know that there exists
an optimal stationary policy, i.e., a policy ρ : S → A. Thus,
in MDPs we can restrict attention to this finite set of policies.
For NMDPs, it is clear that we cannot restrict our attention to
stationary policies. In fact, it is not a-priori clear that there
exists an optimal policy. However, since the value of a policy
is bounded, there exists some value v∗ = suppolicy ρ v(ρ).

3.2 RDPs
NMDPs can refer to infinite objects and may not be finitely
representable, so one cannot specify or learn them, in general.
Hence, we restrict attention to a class of NMDPs in which a
finite, logic-based description is used to capture properties of
traces. Specifically, we use dynamic logic over finite trace,
LDLf , whose formulas are interpreted as sets of traces. We
note that there is much past work in the area of probabilistic

model-checking and control on computing the probability that
a trace will satisfy a given temporal formula [Kwiatkowska et
al., 2011], and on generating policies that ensure (or maximiz-
ing the probability) that it will be satisfied [Ding et al., 2014].
Unlike them, we use LDLf formula to describe the inherent
dynamics of the system.

We define a Regular Decision Processes (RDP) to be a
NMDP ML = 〈P , A, S, trL, rL, s0〉 whose transition and re-
ward functions are specified as follows: trL is represented
by a finite set T of quadruples of the form: (ϕ, a, P ′, π(P ′)),
where ϕ is an LDLf formula over P , a ∈ A, P ′ ⊆ P is the
set of propositions affected by a when ϕ holds, and π(P ′) is a
joint-distribution over P ′ describing its post-action distribu-
tion. The basic assumption is that the value of variables not in
P ′ is not impacted by a.

If {(ϕi, a, P ′i , πi(P ′)|i ∈ Ia} are all quadruples for a, then
the ϕi’s must be mutually exclusive, i.e., ϕi∧ϕj is inconsistent,
for i 6= j. But they need not be exhaustive, so that no a
transition may be possible given some traces.
trL((s0, ..., sk), a, s′) is now defined as follows:

1. trL((s0, ..., sk), a, s′) = π(s′|P ′) if exists a quadruple
(ϕ, a, P ′, π(P ′)) such that s0, ..., sk |= ϕ, and sk and s′
agree on all variables in P \ P ′. Here, s′|P ′ denotes the
restriction of s′ to the propositions in P ′.

2. trL((s0, ..., sk), a, s′) = 0 otherwise.
That is, given current trace s0, ..., sk and action a, if no quadru-
ple has a condition ϕ satisfied by s0, ..., sk, then no transition
is possible on a. Otherwise, let (ϕ, a, P ′, π(P ′)) be such a
quadruple. By our assumptions, it is the only one. The next
state s′ must assign exactly the same value to propositions
not in P ′ as in sk – i.e., they are not impacted by the action.
Its probability is equal to the probability that π assigns to the
value of the P ′ propositions in s′.

The reward function rL is specified using a finite set R
of pairs of the form (ϕ, r), where ϕ is an LDLf formula
over P , and r ∈ R is a real-valued reward. Given a trace
s0, . . . , sk, the agent receives the reward: rL(s0, . . . , sk) =∑

(ϕ,r)∈R∧s0,...,sk|=ϕ r. As before, by definition rL is
bounded above and below.
Example 2. When driving from A to B after it has rained,
followed by temperature below zero and very low temper-
ature since, there is a 0.1 probability of reaching B with
some damage, and 0.1 probability of not reaching B at
all (with some damage). Using ϕ4 defined earlier, and
A,B, d for at A, at B, damaged, respectively, we can write:
(ϕ4 ∧ atlast(A ∧ ¬d), drive, {A,B, d}), π), where π(¬A ∧
B∧d) = 0.1, π(¬A∧¬B∧d) = 0.1, π(¬A∧B∧¬d) = 0.8.
If it has only rained and the temperature was not high
since, then these probabilities drop to 0.01. We can write:
(ϕ3 ∧ ¬ϕ4 ∧ atlast(A ∧ ¬d), drive, {A,B, d}), π), where
π(¬A ∧ B ∧ d) = 0.01, π(¬A ∧ ¬B ∧ d) = 0.01, π(¬A ∧
B ∧ ¬d) = 0.98. To reward the robot for delivering cof-
fee to Ann only if she requested it earlier, we can write
(〈true∗;RqstAnn, (¬DlvdAnn)∗;DlvdAnn〉end , 10).

LDLf has the same expressive power as RE. Hence, depen-
dence on non-regular constructs cannot be specified by RDPs.
For example, it is not possible to express something that says
that the robot will be rewarded if the number of coffee cups

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5518

served is equal precisely to the number of requests made – this
requires the strength of a context-free language.

4 Solving RDPs
RDPs are attractive because they provide a natural way of
using the rich, yet intuitive, language of regular expressions
to specify a decision process in which transitions and rewards
can depend on an unbounded history, unlike, for example,
k-order MDPs. Of course, the ability to specify them is of
little use if we cannot solve them. Using the well-known
relationship between LDLf formulas and automata, we can
exploit a construction used in past work on decision pro-
cesses with non-Markovian reward, to automatically trans-
form RDPs into MDPs, on which we can apply known meth-
ods. This makes RDPs a useful tool for specifying more
complex decision processes, that combined with existing au-
tomated tools for constructing a DFA from an LTLf /LDLf
formula (e.g., https://flloat.herokuapp.com [Favorito, 2018]
http://ltlf2dfa.diag.uniroma1.it [Fuggitti, 2018]), can save the
modeler the effort and potential errors associated with attempt-
ing to transform them manually into MDPs.

In principle, one could directly apply Monte-Carlo methods
to solve RDPs. Yet, one must still be able to recognize which
formulas are satisfied by the current trace, and this is most
efficiently and conveniently done by tracking the state of the
formula using the construction described above.

Given a RDP ML = 〈P , A, S, trL, rL, s0〉 as above, we
can construct an equivalent MDP M as follows: Let T be the
set of quadruples (ϕ, a, P ′, π(P ′)) defining trL. Let R be the
set of pairs (ϕ, r) defining rL. Enumerate the quadruples in
T as (ϕ1, a1, P

′
1, π(P ′1)), . . . , (ϕm, am, P

′
m, π(P ′m)), and the

pairs in R as (ϕm+1, rm+1), . . . , (ϕn, rn). For each formula
ϕi, build the corresponding DFA Ai = 〈2P , Qi, δi, Fi, , qi,0〉
that accepts exactly those traces that satisfy ϕi. Here, 2P , the
set of all truth assignments to the propositions in P , is Ai’s
alphabet, Qi is its state space, qi,0 is the initial state, δi is its
transition function, and Fi is the set of accepting/goal states.
For details of this well known construction see [De Giacomo
and Vardi, 2013; Brafman et al., 2018]. The complexity of
generating a deterministic automaton for ϕi is 2EXPTIME,
and its size is doubly exponential in the worst case. In practice,
this transformation often does not involve exponential blow
up and yields compact automata [Tabakov and Vardi, 2005].
We define the MDP M = 〈P ′, Q, tr, r, q0〉 where
• Q = S ×Q1 × · · · ×Qn
• P ′ extends P with propositions that capture the states of
A1, . . . , An. (The finite state of Ai can be encoded using
log(|Qi|) propositions.)
• tr((s, q1, . . . , qn), a, (s′, q′1, . . . , q

′
n)) = trL(s̄, a, s′) if

(1) there exists a (unique by assumption) 1 ≤ i ≤ m
such that qi ∈ Fi, (2) s̄ is some trace that satisfies ϕi,
and (3) for every 1 ≤ j ≤ n we have q′i = δi(qi, s

′).
Otherwise, tr((s, q1, . . . , qn), a, (s′, q′1, . . . , q

′
n)) = 0.

• r((s, q1, . . . , qn), a) =
∑
{i∈{m+1...,n}|qi∈Fi} ri

• q0 = (s0, q1,0, . . . , qn,0)

In words: the MDP state reflects the states of the RDP and all
automata tracking the satisfaction of ϕ1, . . . , ϕn. The initial

state is the RDP’s initial state combined with the initial states
of all automata. The transition function updates the RDP state
component identically to trL, and deterministically updates
the state of each automaton using its transition function. Note
that the automata transitions depend on the new RDP state s′,
and recall s′ reflects the last action, too. Our requirement on
the quadruples ensures that for every action, there is exactly
one formula that is satisfied (or, for inapplicable actions, no
formula). Finally, the reward is the sum of the rewards as-
sociated with formulas satisfied by the current trace, which
correspond exactly to all automata entering an accepting state.

The computation tree ΥM of NMDP M =
〈P , A, S, tr, r, s0〉 is defined by induction as follows.

• The root of ΥM is s0.

• If s0, . . . , sk is a node of ΥM , then for each ac-
tion a and state s′ such that tr((s0, . . . , sk), a, s′) >
0, the node s0, . . . , sk in ΥM has a successor
s0, . . . , sk, s

′, and the edge between them is labeled
a, (tr((s0, . . . , sk), a, s′), r(s0, . . . , sk, s

′).

The computation tree of an MDP is similarly defined.

Lemma 1. Given RDP ML = 〈P , A, S, trL, rL, s0〉 let M =
〈P , A, S, tr, r, s0〉 be the MDP constructed as above. ML and
M generate computation trees (and hence sets of traces) that
are isomorphic.

Proof (sketch). We map nodes in ML’s computation tree to
nodes in M ’s computation tree as follows: The RDP state
component of the MDP state is identical to the RDP state in
ML. The value of Q1 × · · · ×Qn is a deterministic function
of the sequence of RDP states. Since the Qi states encode the
satisfiability of the formulas ϕ1, . . . , ϕn, there is a one-to-one
correspondence between traces in which Qi reaches a final
state and ones in which ϕi is satisfied. This implies that the
same transitions are possible in both cases, and the same
rewards are obtained. The formal proof proceeds by induction
on the length of the trace/branch.

Theorem 1. An optimal RDP policy can be computed in 2EX-
PTIME; finding a policy with value ≥ c is 2EXPTIME-hard.

Proof (sketch). Membership comes from the construction
above: the generation of the automata from the formulas is in
2EXPTIME (but their factored encoding is only exponential)
while computing a policy for an MDP is polynomial in |S||A|.
Hardness comes from Planning for LDLf (actually its fragment
LTLf) goals in fair FOND, see [De Giacomo and Rubin, 2018]
which is a special case of stochastic planning, and a goal can
be captured by a reward + transition to a sink state.

A policy ρ is regular if it has the form {(ϕi, ai)} where ϕi
is an LDLf formula and ai an action, such that for every trace
s0, . . . , sk reachable given ρ, either no transition is possible
after s0, . . . , sk, or there exists exactly one (ϕi, ai) ∈ ρ such
that s0, . . . , sk |= ϕi. A by-product of the results above is:

Theorem 2. Every RDP has a regular policy which is optimal.

Due to space restrictions, proofs of most results are omitted.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5519

5 Partially Observable Stochastic Domains
MDPs assume the agent is always aware of its current state.
This is unrealistic for many, if not most, real-world do-
mains in which the state is only partially observable. Con-
sequently, much effort has been made to solve partially ob-
servable Markov decision processes (POMDPs) [Cassandra et
al., 1994] and partially observable contingent planning prob-
lems [Albore et al., 2009].

The standard approach for solving partially observable prob-
lems is to transform them into fully observable problems over
a different state space. POMDPs can be transformed into an
(fully observable) MDP over (probabilistic) belief states, i.e.,
distributions over world states, and contingent planning prob-
lems can be transformed into classical planning problems over
classical belief states, i.e., sets of world states.

However, just the formulation of a partially observable
model presupposes knowledge of the nature of the unobserv-
able part of the world. This is a serious drawback when we
consider the problem of learning such domains from observ-
able data when no additional domain knowledge exists. This
problem is well-known, and has given rise to models such
as predictive-state representations (PSR) [Singh et al., 2001]
whose core idea is to work with the observations only. NMDPs
and RDPs have this feature, too.
Lemma 2. For every POMDP M =
〈P , S,A, Tr,R,O,PO, b0〉, there exists an NMDP
M ′ = 〈PO, A, 2PO , tr, r, ε〉, where ε, the empty string,
denotes the initial, empty observation, and tr and r are
defined based on Tr,R, and O, such that the computation
trees for M and M ′ are isomorphic.

This essentially follows from the history-based MDP for-
mulation of a POMDP.

The key difference between the NMDP and POMDP for-
mulation is that the former makes no reference to hidden
variables/state. Thus, its policy is also based on observables
only. But as noted, general NMDPs are not practically useful.
Therefore, the history-based view is used only to represent
finite-horizon policies. We suggest investigating RDPs as a
tractable approximation of POMDPs. To understand this op-
tion, first we characterise the type of POMDPs that RDPs can
capture – this can be understood from the construction of the
equivalent MDP in Section 4.
Lemma 3. For every POMDP M =
〈P , S,A, Tr,R,O,PO, b0〉 if in all reachable states
the value of every p ∈ P is a regular function of the past
and current values (trace) of PO (i.e., p is true iff some RE
over PO is satisfied), there exists an RDP with an equivalent
computation tree.

Proof (sketch). If the POMDP’s hidden variables are a regular
function of the observable variables, then we know that they
can be represented using an automaton whose alphabet is 2PO ,
and so its language can be represented by an LDLf formula.

The converse is also easy to show:
Lemma 4. Every RDP can be transformed into a POMDP
with the same set of observable variables in which the hidden
variables are a regular function of the observable variables.

This establishes the equivalence between RDPs and the
restricted class of POMDPs whose hidden variables are a
regular function of their observable variables.

However, we can show the following:

Theorem 3. For every infinite horizon discounted reward
POMDP M , and for every ε > 0, there exists a RDP ML over
PO, such that the optimal policy for ML is ε-optimal for M .

Proof (sketch). First, we prove the following claim: ev-
ery finite horizon POMDP M is equivalent to a RDP with
variables P = PO. Starting from the POMDP M =
〈P , S,A, Tr,R,O,PO, b0〉, we construct the history-based
MDP Mh = 〈Q,A, tr, r, ε〉. Q contains all histories bounded
by the horizon, and is thus finite. We define the corresponding
RDP ML = 〈P , A, S, trL, rL, s0〉. trL is defined as follows:
first, we partition, for each action, the states in Q into subsets
{Qi|i ∈ Ia} such that a changes the values of exactly the
same set of propositions when applied in each q ∈ Qi, and
such that the marginal distribution over P ′ values in a(q) is
identical for all q ∈ Qi. Note that some Qi can be singletons.
Let {(Qi, aj)|i ∈ Iaj , aj ∈ A} denote all pairs of such state
set and relevant action.

For every (Qi, aj) pair we consider the DFA AQi

Tr defined as
AQi

Tr = 〈2P , Q, δ,Qi, q0〉, where δ(q, s) = q · s. That is the
new state is the history obtained by concatenating the new state
with the current history. (Recall the last action is represented
in the new state). The final states are Qi. Notice that all the
DFAs AQi

Tr for all Qi are identical except for their accepting
state. From basic automata theory, we know that there is a
regular expression rQi

that accepts the paths, i.e., the traces
in S+ leading from the initial state q0 to Qi. Hence we can
express reaching Qi by the LDLf formula ϕi = 〈rQi

〉end .
As noted above, the next state distribution for states in Qi

and action a is characterised by some common (P ′, π(P ′)).
Hence, we can represent this transition by the quadruple:
(ϕi, a, P

′, π(P ′)), and we add it to the set of quadruples T . A
similar method will let us generate the elements of R. Thus,
this concluded the proof of the claim.

Because of discounting, we can compute an ε-optimal pol-
icy to an infinite horizon POMDP by solving a finite-horizon
POMDP with a sufficiently long horizon.

An important challenge for future work is finding more ef-
fective strategies for generating approximate RDP, and bound-
ing their size. Such strategies would open the possibility of
solving POMDPs by first approximating them using RDPs,
and then solving the resulting RDP.

6 RDP Learning
We now outline a potential approach for learning RDPs with
no background information by combining ideas from automata
learning and RL. This is a purely theoretic proposal attempting
to lay foundations for future practical methods. Learning
algorithms might also prove useful for constructing RDPs that
approximate a known POMDP.

Algorithm 1 outlines an RDP learning method. The algo-
rithm requires access to an automata learning algorithm, such
as [Lang et al., 1998; Lambeau et al., 2008], and assumes

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5520

restarts. Recall that we assume there are observable variables
denoting the action performed. Hence, we do not mention ac-
tions explicitly in the algorithm. Also, note that the automata
for transitions are constructed so that only traces from one
set Htr

i are accepted. This ensures that we are never in an
accepting state in more than one component M tr

i , and so only
one quadruple formula is satisfied.

Algorithm 1 Pseudocode for Learning Finite NMDPs

1: Generate a set of traces with their associated rewards
2: The set of propositions of the RDP corresponds to the set

of observable propositions
3: for all traces τ do
4: Compute (a, P ′, π(P ′))τ the empirical distribution

over traces extending τ with action a and one observa-
tion.

5: Group traces with identical (a, P ′i , π(P ′i)) into sets
{Htr

i |i ∈ T }.
6: Group traces with identical reward into sets {Hr

j |j ∈ R}
7: for all i ∈ T do
8: Learn an automaton M tr

i that accepts Htr
i and rejects

all Htr
j for j 6= i

9: Generate formula ϕtri that captures language of M tr
i

10: Insert the quadruple (ϕtri , a, P
′
i , π(P ′i)) to trL

11: for all i ∈ R do
12: Learn an automaton Mr

i that accepts Hr
i and rejects all

Hr
j for j 6= i

13: Generate formula ϕri that captures language of Mr
i

14: Insert the pair (ϕri , ri) into rL

We can control the quality of the approximation by increas-
ing the number of samples in each set of traces to obtain more
accurate estimates of (P ′i , π(P ′i)). We note that, unfortunately,
automata learning, used in Lines 8 and 12, is a difficult prob-
lem, with many hardness results as far as sample complexity,
unless input beyond positive and negative instances is avail-
able [Angluin et al., 2013]. However, practical algorithms
developed in the area of grammatical inferences exist [Lang et
al., 1998; Lambeau et al., 2008].

7 Discussion and Summary
It is worthwhile to compare RDPs with the Predictive State
Representation model (PSR) [Singh et al., 2001]. PSRs were
introduced explicitly to model dynamical systems without
referring to a hidden state, and RDPs are also motivated by the
desire to model rich dynamical systems without postulating
some hidden state structure. A basic element of a PSR is its
set of core tests, where a test is simply a sequence of actions
and observations q = a1o1 · · · anon. A key computation for a
test is its probability given a history h = a1o1 · · · amom. That
is, p(q|h) is the probability that following history h, one will
observe o1 · · · on if one performs a1 · · · an. In a linear PSR,
one can compute p(q|h) for every q and every finite h as a
linear combination of p(q1|h), · · · , p(qn|h), where q1, . . . qn
are the core tests. n is called the dimensionality of the system.
[Singh et al., 2001] proved that a linear PSR can represent
any POMDP using no more core tests than the number of
underlying states of the POMDP. Later work showed examples
of non-linear PSRs that require exponentially fewer tests than

an equivalent POMDP model [Rudary and Singh, 2003] and
algorithms for learning PSRs [Singh et al., 2003].

Given this representational power of PSRs, we have the
following progression in terms of expressivity:
MDP < k−orderMDP < RDP ≤ POMDP < PSR

Earlier, we saw that RDPs are equivalent to a (most likely
strict) sub-class of POMDPs. So RDPs are most likely less
expressive than POMDPs. Support for this conjecture comes
from the fact that, unlike POMDPs, RDPs can be translated
into a, possibly much larger, but still finite MDP. Interestingly,
if we replace the stochastic transition function in RDPs and
POMDPs with a non-deterministic one (obtaining the contin-
gent planning model in the latter), the two models have equiv-
alent expressive power [Brafman and De Giacomo, 2019].

Complexity-wise, a similar relation exists. There is a poly-
nomial reduction from POMDPs to linear PSRs, so PSRs are
at least as hard to solve as POMDPs. POMDP optimization is
undecidable for the infinite horizon case, while for (factored)
RDPs, it is 2EXPTIME, thus much easier. For finite horizons,
solving flat POMDPs is in PSPACE. For a factored model, one
likely incurs another exponential blowup (thus EXPSPACE)
so it is likely no easier then RDP optimization. However, the
2EXPTIME complexity of RDPs is for unbounded plan sizes,
and with bounded horizon, the problem should be easier.

Moreover, one exponential in the complexity of RDP opti-
mization comes from the need to generate a factored represen-
tation of the automaton for each formula, which is worst-case
exponential in the size of the formulas used (and thus, the
reduction from RDPs to POMDPs is not polynomial). There is
evidence that this transformation is fast in practice, and yields
compact automata [Tabakov and Vardi, 2005], and if one were
to restrict attention to RDPs with bounded size formulas, one
could still refer to arbitrary events in the past, yet get rid of
this exponential factor. Hence, RDPs with bounded formulas
should be much easier to solve than POMDPs.

So while precise characterization of the finite-horizon case
for RDPs is still missing, RDPs seem to offer a middle ground
between MDPs and POMDPs: they are more expressive and
potentially more succinct than k-order MDPs, are easier to
solve than POMDPS, yet refer only to observable variables.
Summary. We studied a new model for controlled dynami-
cal systems. This model allows for compact and convenient
specification of non-Markovian transitions and rewards, gener-
alizes k-order MDPs, can ε-approximate POMDPs, yet makes
no reference to hidden variables. This last property makes it a
potential target model for learning dynamical system without
background knowledge. In future work we hope to farther ex-
plore methods for approximating POMDPs using RDPs, and
to develop practical RDP learning algorithms. Finally, RDPs
suggest that it may be worth studying additional models that
restrict the nature of the hidden state of a POMDP for which
better inference and learning algorithms may exist.

Acknowledgements
This work is supported in part by the Israel Ministry of Sci-
ence and Technology grant 877017, the Lynn and William
Frankel Center for Computer Science, and Sapienza project
”Immersive Cognitive Environments”.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5521

References
[Albore et al., 2009] Alexandre Albore, Héctor Palacios, and

Hector Geffner. A translation-based approach to contingent
planning. In IJCAI’09, pages 1623–1628, 2009.

[Angluin et al., 2013] Dana Angluin, James Aspnes, Sarah
Eisenstat, and Aryeh Kontorovich. On the learnability of
shuffle ideals. JMLR, 14:1513–1531, 2013.

[Bacchus et al., 1996] Fahiem Bacchus, Craig Boutilier, and
Adam J. Grove. Rewarding behaviors. In AAAI, 1996.

[Boutilier et al., 1999] Craig Boutilier, Tom Dean, and Steve
Hanks. Decision-theoretic planning: Structural assump-
tions and computational leverage. JAIR, 11:1–94, 1999.

[Brafman and De Giacomo, 2019] Ronen Brafman and
Giuseppe De Giacomo. Planning for LTLf/LDLf goals in
non-markovian fully observable nondeterministic domains.
In IJCAI’19, 2019.

[Brafman et al., 2018] Ronen Brafman, Giuseppe De Gia-
como, and Fabio Patrizi. LTLf/LDLf non-Markovian re-
wards. In AAAI, 2018.

[Camacho et al., 2017] Alberto Camacho, Oscar Chen, Scott
Sanner, and Sheila A. McIlraith. Non-markovian rewards
expressed in LTL: guiding search via reward shaping. In
SOC, pages 159–160, 2017.

[Cassandra et al., 1994] Anthony R. Cassandra, Leslie Pack
Kaelbling, and Michael L. Littman. Acting optimally in par-
tially observable stochastic domains. In AAAI’94, volume 2,
pages 1023–1028, 1994.

[De Giacomo and Rubin, 2018] Giuseppe De Giacomo and
Sasha Rubin. Automata-theoretic foundations of FOND
planning for LTLf and LDLf goals. In IJCAI’18, 2018.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI’13, 2013.

[Ding et al., 2014] Xu Chu Ding, Stephen L. Smith, Calin
Belta, and Daniela Rus. Optimal control of markov decision
processes with linear temporal logic constraints. IEEE
Trans. Automat. Contr., 59(5):1244–1257, 2014.

[Favorito, 2018] Marco Favorito. Reinforcement learning for
LTLf/LDLf goals: Theory and implementation. Master’s
thesis, DIAG, Sapienza Univ. Rome, 2018.

[Fischer and Ladner, 1979] Michael J. Fischer and Richard E.
Ladner. Propositional dynamic logic of regular programs.
J. Com. Systems and Science, 18, 1979.

[Fuggitti, 2018] Francesco Fuggitti. LTL and past LTL on
finite traces for planning and declarative process mining.
Master’s thesis, DIAG, Sapienza Univ. Rome, 2018.

[Harel et al., 2000] David Harel, Dexter Kozen, and Jerzy
Tiuryn. Dynamic Logic. MIT Press, 2000.

[Kwiatkowska et al., 2011] Marta Kwiatkowska, Gethin Nor-
man, and David Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In G. Gopalakrishnan and
S. Qadeer, editors, ICGI’11, volume 6806 of LNCS, pages
585–591. Springer, 2011.

[Lambeau et al., 2008] Bernard Lambeau, Christophe
Damas, and Pierre Dupont. State-merging DFA induc-
tion algorithms with mandatory merge constraints. In
Grammatical Inference: Algorithms and Applications, 9th
International Colloquium, ICGI 2008, Saint-Malo, France,
September 22-24, 2008, Proceedings, pages 139–153,
2008.

[Lang et al., 1998] Kevin J. Lang, Barak A. Pearlmutter, and
Rodney A. Price. Results of the abbadingo one DFA learn-
ing competition and a new evidence-driven state merging
algorithm. In ICGI’98, pages 1–12, 1998.

[Littman et al., 1998] Michael L. Littman, Judy Goldsmith,
and Martin Mundhenk. The computational complexity of
probabilistic planning. Journal of AI Research, 9:1–36,
1998.

[Littman et al., 2017] Michael L. Littman, Ufuk Topcu, Jie
Fu, Charles Lee Isbell Jr., Min Wen, and James Mac-
Glashan. Environment-independent task specifications via
GLTL. CoRR, abs/1704.04341, 2017.

[Madani et al., 2003] Omid Madani, Steve Hanks, and Anne
Condon. On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell.,
147(1-2):5–34, 2003.

[Papadimitriou and Tsitsiklis, 1987] Christos Papadimitriou
and John N. Tsitsiklis. The complexity of markov decision
processes. Math. Oper. Res., 12(3):441–450, 1987.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, 1977.

[Puterman, 2005] Martin L. Puterman. Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Programming. Wiley,
2005.

[Rudary and Singh, 2003] Matthew R. Rudary and Satinder P.
Singh. A nonlinear predictive state representation. In
NIPS’03, pages 855–862, 2003.

[Singh et al., 2001] Satinder P. Singh, Michael L. Littman,
and Richard S. Sutton. Predictive representations of state.
In NIPS’01, pages 1555–1561. MIT Press, December 2001.

[Singh et al., 2003] Satinder P. Singh, Michael L. Littman,
Nicholas K. Jong, David Pardoe, and Peter Stone. Learn-
ing predictive state representations. In Proceedings of the
Twentieth International Conference on Machine Learning,
pages 712–719, August 2003.

[Tabakov and Vardi, 2005] Deian Tabakov and Moshe Y.
Vardi. Experimental evaluation of classical automata con-
structions. In LPAR, 2005.

[Vardi, 2011] Moshe Y. Vardi. The rise and fall of linear time
logic. In GandALF, 2011.

[Zhang et al., 2012] Zongzhang Zhang, Michael L. Littman,
and Xiaoping Chen. Covering number as a complexity
measure for POMDP planning and learning. In AAAI’12,
2012.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5522

