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Abstract
Video data is multimodal in its nature, where an
utterance can involve linguistic, visual and acous-
tic information. Therefore, a key challenge for
video sentiment analysis is how to combine differ-
ent modalities for sentiment recognition effectively.
The latest neural network approaches achieve state-
of-the-art performance, but they neglect to a large
degree of how humans understand and reason about
sentiment states. By contrast, recent advances in
quantum probabilistic neural models have achieved
comparable performance to the state-of-the-art, yet
with better transparency and increased level of
interpretability. However, the existing quantum-
inspired models treat quantum states as either a
classical mixture or as a separable tensor prod-
uct across modalities, without triggering their in-
teractions in a way that they are correlated or non-
separable (i.e., entangled). This means that the cur-
rent models have not fully exploited the expressive
power of quantum probabilities. To fill this gap, we
propose a transparent quantum probabilistic neural
model. The model induces different modalities to
interact in such a way that they may not be separa-
ble, encoding crossmodal information in the form
of non-classical correlations. Comprehensive eval-
uation on two benchmarking datasets for video sen-
timent analysis shows that the model achieves sig-
nificant performance improvement. We also show
that the degree of non-separability between modal-
ities optimizes the post-hoc interpretability.

1 Introduction
Video sentiment analysis is an emerging interdisciplinary
area in multimedia information processing, bringing together
Artificial Intelligence (AI) and cognitive science. In par-
ticular, it studies a speaker’s sentiment expressed by ver-
bal (i.e., linguistic) and non-verbal (i.e., visual, acoustic)
streams. At its core, this research area focuses on mod-
elling interactions among distinct modalities, a.k.a., cross-
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modal dynamics. In recent years, research has made signif-
icant strides towards the inference of human-like sentiment
judgments. In particular, neural approaches have been inves-
tigated to model crossmodal interactions by operating primar-
ily feature-level fusion [Tsai et al., 2019; Liu et al., 2018;
Zadeh et al., 2017]. However, current models neglect other
important aspects, such as model transparency, post-hoc in-
terpretability, and how people would understand and reason
about sentiment states.

The modelling of distinct modalities for sentiment analysis
is a challenging problem. This is due to the spectrum of sen-
timent polarities that an utterance can emerge (e.g., positive,
neutral, or negative), depending on the context of individual
modalities. For instance, let us consider that we want to iden-
tify the binary sentiment of the utterance “Well, what a sur-
prise!”. The utterance’s sentiment state is ambiguous, i.e., it
could be either positive or negative, since there is no specific
context to bias the sentiment state of the utterance. However,
once the context (i.e., other modalities) is informative, un-
ambiguous, and simultaneously present, the sentiment state
to a particular sentiment judgment becomes apparent. This
implies that we shall not consider distinct modalities in iso-
lation. Rather, we must model modalities as non-separable,
called entangled. Quantum Theory (QT) is the only theory
which models non-separability. Thus, there is a reason to
suppose that QT provides an adequate theory to capture the
crossmodal correlations and how such correlations influence
the final decision about the utterance’s sentiment.

Quantum probability theory has been extensively stud-
ied in the domain of human cognition and decision mak-
ing [Busemeyer and Bruza, 2012]. In particular, it has been
shown that in some cases human language understanding ex-
hibits certain non-classical properties [Bruza et al., 2008;
Bruza et al., 2009], enabling quantum probabilities a suitable
framework. Recent advances in quantum probabilistic neural
models [Li et al., 2019; Li et al., 2021] have demonstrated
improved performance and high-level explainability due to
their theoretical root on the well-established quantum physics
meanings. Nevertheless, they treated the interactions among
quantum states as either a classical mixture of states [Li et al.,
2019] or a separable product of states [Li et al., 2021], which
cannot fully exploit the potentials of quantum probabilities in
modelling the non-separability of multiple modalities. The
expressiveness of quantum probabilities goes beyond classi-
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cal correlations.
In line with the above observation, we propose a quantum

probabilistic neural network, which captures non-classical
correlations of sememes across distinct modalities. In par-
ticular, we transform the real-valued input features of differ-
ent modalities into pure quantum states of complex values.
The particular way in which the modality states interact with
each other allows modelling of both classical correlation and
non-separability (entanglement) between modalities in a uni-
fied framework. Our work is fundamentally different from
the previous probabilistic neural network approaches in that
we address the issues of contextuality, i.e., a modality acti-
vates ambiguous sentiment polarities in the context of other
modalities, and non-separability, i.e., a modality cannot be
separated from the rest of modalities occurred concurrently.
The proposed model is empirically evaluated on two bench-
mark datasets for video sentiment analysis. Experimental re-
sults show that our model significantly improves performance
over a wide variety of state-of-the-art (SOTA) approaches.
We also show that the degree of non-separability of entangled
states can be used to improve the post-hoc interpretability.

2 Related Work

The application of quantum theory in representation learn-
ing began after van Rijsbergen’s pioneering work [Van Ri-
jsbergen, 2004] by integrating geometric spaces, probabili-
ties, and logic into a unified theoretical framework. Then, the
probabilities of quantum theory were exploited for various
representation learning tasks [Uprety et al., 2020]. Among
them, quantum formalism was successfully utilised for mod-
elling word dependencies through density matrices [Sordoni
et al., 2013] and formulating the semantic composition of
words [Sordoni et al., 2013] in IR tasks. Quantum-inspired
models were also introduced to address NLP tasks. Re-
cently, the deployment of quantum measurement into a joint
complex-valued neural network led to improved performance
and better interpretability [Li et al., 2019].

Quantum-inspired strategies were also investigated for
multimodal representation learning. Early work exploited a
tensor-based representation for an image-text IR task [Wang
et al., 2010]. Preliminary work investigated non-classical
correlations, i.e., entanglement, based on the combination
of uni-modal decisions [Gkoumas et al., 2018]. The notion
of quantum incompatibility has been exploited to fuse deci-
sions from different modalities for video sentiment analysis
[Gkoumas et al., 2021a]. Recently, a quantum-inspired net-
work for videos sentiment analysis exploits an early fusion
of tri-modals via the tensor product of modalities [Li et al.,
2021]. However, the interactions across different modalities
are largely neglected, assuming the interactions are decom-
posable. Instead, inter-modal interactions are implemented in
the sentiment decision process. Our model is fundamentally
different from [Li et al., 2021] in that we take a quantum-
cognitively motivated view on the non-decomposability of
cross-modality interactions, which is modelled as quantum
entanglement.

3 Preliminaries on Quantum Theory
In this section, we present fundamental concepts of quantum
theory (QT) [Melucci, 2015; Busemeyer and Bruza, 2012]
that we exploit to construct the quantum probabilistic neural
model. In consistency with the convention of QT, we adopt
the widely-used Dirac Notations, known as “bra-ket” nota-
tion. A complex-valued unit vector ~u and its conjugate trans-
pose ~u∗T are denoted as a ket |u〉 and a bra 〈u|, respectively.
The inner product of two vectors |u〉 and |v〉 is defined by
〈u|v〉, while |u〉 〈u| and |v〉 〈v| define operators.

The starting point to modelling quantum states is a set of
basis states. A basis is a set of n mutually orthogonal vectors
{|ej〉}nj=1 of unit length. The vector space employed in QT
is a vector space over complex numbers, called Hilbert space
H, offering the structure of an inner product to enable the
measurement of angles and lengths [Halmos, 1987].

Any pure state |s〉 of a quantum system is regarded as a lin-
ear superposition, i.e., an appropriate weighted sum, of one
set of n basis states, represented by a unit vector in Hn. That
is, the pure state |s〉 can be written as a probability distribu-
tion of complex probability amplitudes, as follows:

|s〉 =

n∑
j=1

√
rje

iφj |ej〉 , (1)

where √rjeiφj correspond to complex probability ampli-
tudes, rj are non-negative scalars∈ R satisfying

∑n
j=1 |rj | =

1, i is imaginary number, and φj are phases ∈ [0, 2π].
Quantum measurement with respect to a basis (i.e., a set of

eigenvectors), yields one out of all the observable eigenval-
ues and causes the collapse of the state to the corresponding
eigenvector. The probability of a given outcome is obtained
via the projection postulate. That is, according to the Born’s
rule [Halmos, 1987], the probability of the pure state |s〉 to
collapse onto the basis state |ej〉 is calculated by the inner
product of the two vectors as follows:

P (s|ej) = |〈ej |s〉|2. (2)

A composite quantum system describes a compound sys-
tem composed of multiple individual quantum systems. For
two nA-dimensional and nB-dimensional spaces, the state
vector sc ∈ A ⊗ B is expressed as a linear combination of
an arbitrary basis of the product space |i〉 ⊗ |j〉, as follows:

|sc〉 =

nA∑
i=1

nB∑
j=1

√
ci,j |i〉 ⊗ |j〉 , (3)

where√ci,j are probability amplitudes so that
∑
i,j ci,j = 1.

When a composite quantum system evolves under a Hamil-
tonian that includes interactions between individual sub-
systems, the resulting state of the composite system is no
longer separable, a.k.a. entanglement [Melucci, 2015]. That
is, Eq. 3 cannot be expressed as a tensor product of individual
systems. The bipartite Von Neumann entanglement entropy
[Vivo et al., 2016] is a measurement of the degree of quantum
entanglement for a composite pure state. For instance, for an
arbitrary bipartite quantum state consisting of two sub-states,
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i.e., A ∈ HnA and B ∈ HnB , the Von Neumann entropy is
calculated as follows:

S = SA = SB = −
min(HnA ,HnB )∑

i

|ai|log(|ai|), (4)

where ai are singular values of the Schmidt decomposition of
the bipartite quantum state over the sub-systemA orB. Eq. 4
makes clear that the entanglement entropy is the same regard-
less of whether the decomposition is overA orB sub-system.
Crucially, if the entropy S is zero, there is no entanglement.

4 Task Formulation
The goal is to infer the sentiment of video utterances. The
multimodal dataset consists of N labeled video utterances
U = (U1, ..., Ui, ..., UN ). Each utterance Ui is associated
with linguistic, visual, and acoustic features, denoted as Ui =
(U li , U

v
i , U

a
i ). The corresponding labels for the N utterances

are denoted as y = (y1, ..., yi, ..., yN ), yi ∈ R. Essentially,
the objective is to establish a function, mapping each video
utterance Ui to its corresponding sentiment label yi.

5 Entanglement-driven Fusion Neural
Network

We propose a quantum probabilistic neural model, namely,
Entanglement-driven Fusion Neural Network (EFNN).

5.1 General Architecture
The architecture of EFNN is illustrated in Fig. 1. In particu-
lar, we deploy an intermediate fusion strategy into a neural
network modelling paradigm that incorporates QT-inspired
complex representation of information, composite quantum
system and entanglement to capture the non-separability of
modalities, and quantum measurement for abstract sentiment
concept extraction.

Specifically, EFNN first takes multimodal information, i.e.,
linguistic, visual, and acoustic, and feed it into three sepa-
rated neural branches, one for each modality (see Fig. 1).
At the outset, multimodal information is projected into a
common-dimensional space, and then a preparation step con-
verts the information to its quantum analogues, i.e., quantum
states. Afterwards, we operate a pairwise fusion of modal-
ities, i.e., linguistic-visual, linguistic-acoustic, and visual-
acoustic, via the tensor product of bi-modals (any of two
modalities). A weight vector captures the correlations within
the bi-modal tensor-based representations (see Fig. 1, Entan-
gled Bi-Modals step). A set of parameterized measurements
map the complex-valued representation to a real-valued high-
level representation via the quantum measurement postulate.
Then, a row-max pooling operator is applied, followed by a
fully connected layer passed to a softmax function for classi-
fication. In the remaining part of the section, we elaborate on
the methodology according to the above procedural steps.

5.2 Preparation of States
In this work, each utterance is modelled as a uni-modal
pure quantum state into modality-specific Hilbert spaces Hm,

where m ∈ {l, v, a}, for linguistic, visual and audio modali-
ties. In line with previous works [Li et al., 2019], we consider
the exponential form of complex numbers to express quantum
states: z = reiθ, where amplitude r is a real non-negative
coefficient, phase θ ∈ [0, 2π), and i is imaginary number sat-
isfying i2 = −1.

Then, according to Eq. 1, the modality-specific pure state
of an utterance |um〉 could generally be expressed by the fol-
lowing modulus-augment form:

|um〉 = [r1,me
iθ1,m , r2,me

iθ2,m , ..., rd,me
iθd,m ]T

= [r1,m, r2,m, ..., rd,m]T � ei[θ1,m,θ2,m,...,θd,m]T
(5)

where d is the dimension of modality features and� refers to
element-wise vector product. In the modulus-argument form,
any operation on the complex numbers will lead to a non-
linear combination of the constituent moduli and arguments.
This implies that a non-linear feature combination is inher-
ently produced when we assign Eq. 5 with linguistic, visual,
and acoustic features.

In Eq. 5, the first vector, i.e., rm = [r1,m, r2,m, ..., rd,m]T ,
corresponds to amplitudes, where the moduli r is a real-
valued vector of unit length. To construct amplitudes, we
transform the input real-valued features to their quantum ana-
logues as follows. Suppose the input word-level features
are X l ∈ RL×dl , Xv ∈ RL×dv , Xa ∈ RL×da , where
dl, dv, da represents feature dimensions for linguistic, vi-
sual, and acoustic modalities respectively, and L is the se-
quence length, i.e., total number of words in an utterance.
At the outset, we project the input features into the same
dimension d via convolutional neural networks [Lai et al.,
2015] from the respective input features with Rectified Lin-
ear Unit (ReLU) as the activation function in the last hid-
den layer, to ensure all elements {ri,m}di=1 are non-negative:
m̂ = ReLU(CNNm(Xm)) ∈ Rd, where m ∈ {l, v, a}. De-
spite the projection of modalities into a common-dimensional
space, the convolutional neural networks CNNm capture lo-
cal structure of words in an utterance. Then, we normalize
the outputs to create vectors of unit length: rm = m̂

||m̂||2 .
The second vector, i.e., θ = [θ1,m, θ2,m, ..., θd,m]T , is also

real-valued, with all its elements in [0, 2π]. The assignment
of the phases θ is an open research question. In this work, to
enable each utterance to carry temporal information, i.e., we
assign the position of words in a sentence to the phase part.
With this way, we capture the global structure of words in an
utterance. The phase θ is hence calculated by

θ = θ(k) = fpe(k), (6)

where fpe(k) defines a map fpe : N → Rd from a discrete
position index to a d−dimensional real-valued vector.

5.3 Entanglement-driven Modality Fusion
After the transformation of feature inputs to quantum states
into uni-modal Hilbert spaces, we feed them into the modal-
ity fusion component (see Fig. 1). In particular, we deploy
a fusion module, which takes the utterance states of pair-
wise modalities, i.e., linguistic-visual, linguistic-acoustic,
visual-acoustic. For each pairwise of states, a composite
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Figure 1: Entanglement-driven Fusion Neural Network (EFNN) architecture. The symbol ⊗ stands for the tensor product of vectors, � the
element-wise vector product, and 〈〉 the inner product of vectors. Different shades imply transformations.

but separable state is created by computing the tensor prod-
uct of them. The composite separable state is defined on a
d2−dimensional joint space Hm1,m2

:= ⊗2(Hm)2 and for-
mulated as

|um1,m2
〉 = |um1

〉 ⊗ |um2
〉 , (7)

where m1,m2 are any of two modalities, and ⊗ defines the
outer product of two states.

Then, a complex-valued neural layer W is injected to in-
duce interactions of pairwise modalities (see Fig. 1), as fol-
lows:

|ûm1,m2
〉 = W � |um1,m2

〉 , (8)

where W in H ∈ Rd2 is a shared weight vector, and � stands
for element-wise vector product. The output is an unnor-
malized vector |ûm1,m2

〉, which is then normalized to get a
unit vector in Hm1,m2

∈ Rd2 , i.e., a valid quantum state:

|ûm1,m2
〉 =

| ̂um1,m2
〉

|| ̂um1,m2
||2 , in short |ûm1,m2

〉 = |um1,m2
〉.

From the representation point of view, Eq. 7 can be con-
sidered as a weighted linear transformation layer. From the
quantum point of view, W can be realized as a unitary opera-
torU [Banchi et al., 2018]. Throughout the bipartite modality
interaction process,W acts as a quantum Hamiltonian control
on different Hilbert spaces, i.e., Hm1 , Hm2 , and entanglement
is hence generated after the transformation. This means that
the output after the transformation cannot be written in the
decomposable form, thus giving the potential to capture non-
classical correlations across pairwise modalities.

5.4 Measurement
The measurement component acts upon the set of three non-
separable pairwise modalities to identify the discriminating
information for sentiment classification. In particular, a set of

parameterized measurements {Ok}Kk=1 are performed on the
set of non-separable pairwise modalities (see Fig. 1), generat-
ing a sequence of positive scalars for each pair of modalities,

P (k) = |〈Ok|um1,m2
〉|2, (9)

where m1,m2 are any pair of modalities and each Ok repre-
sents an abstract sentiment concept. The output is aK×3 ma-
trix of positive real values produced by measurement. Each
value corresponds to the likelihood of a non-separable pair-
wise modality state collapsing to a basis state Ok, which is
in effect a basis context representing abstract sentiment con-
cepts. Note that the measurement component can be thought
of as a dictionary learning approach.

Then a row-wise maximum pooling operator is conducted
to cascade the three sequences of abstract concepts into one
high-level utterance representation (see Fig. 1). Finally, the
high-level representation is passed to a fully connected layer
followed by a softmax classifier.

6 Experiments
6.1 Experimental Settings
We performed experiments on two widely used benchmark-
ing video sentiment analysis datasets: CMU Multimodal
Opinion-level Sentiment Intensity (CMU-MOSI) [Zadeh et
al., 2016], and the largest available dataset for multimodal
sentiment analysis, CMU Multimodal Opinion Sentiment and
Emotion Intensity (CMU-MOSEI) [Zadeh et al., 2018c]. We
refer the curious readers who are interested in the feature ex-
traction process to [Gkoumas et al., 2021b].

In line with [Gkoumas et al., 2021b], we chose Early-
Fusion LSTM (EF-LSTM) and Late-Fusion LSTM (LF-
LSTM) as baselines, Multi-Attention Recurrent Network
(MARN) [Zadeh et al., 2018b], Memory Fusion Network
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(MFN) [Zadeh et al., 2018a] and Contextual GRU with At-
tention (c-GRU) [Ghosal et al., 2018] as advanced LSTM ap-
proaches, Tensor Fusion Network (TFN) [Zadeh et al., 2017]
and Low-rank Multimodal Fusion (LMF) [Liu et al., 2018]
as tensor-based fusion approaches, Multimodal Transformer
(MulT) [Tsai et al., 2019] as a seq-to-seq approach, and
QMF [Li et al., 2021] as a quantum-inspired fusion approach.

To evaluate the effectiveness of our model on CMU-MOSI
and CMU-MOSEI tasks, we adopted a series of evaluation
performance metrics used in prior work [Gkoumas et al.,
2021b; Zadeh et al., 2018c; Zadeh et al., 2018a], including:
binary accuracy (i.e., Acc2 : positive sentiment if values ≥
0, and negative sentiment if values < 0), 7-class accuracy
(i.e., Acc7 : sentiment score classification in Z ∩ [−3, 3]),
F1 score, Mean Absolute Error (MAE) of the score, and the
Pearson’s correlation (Corr) between the model predictions
and regression ground truth. For all the metrics, the higher
values denote a better performance, except MAE where the
lower values denote better performance.

A grid search for the best hyper-parameters was conducted
for all models. At each search, the models were trained for
100 epochs. Out of 50 searches, the model with the lowest
validation loss was used to produce the test performance. The
parameters in the proposed EFNN model were determined by
the set of hyper-parameters Θ = {D,K}, whereD is the em-
bedding dimension of input features into same dimensional
spaces and K is the number of measurement vectors. For
both datasets, we searched over a parameter pool.

We trained EFNN by feeding the real and imaginary parts
of the complex-valued layers as different input parts and sim-
ulated complex operations using real values. EFNN was
hence trained via the backpropagation algorithm. Measure-
ments were initialized from standard normal distributions.
All the parameters were trainable with respect to L1-loss de-
fined on the extracted features. We chose Adam as the opti-
mization algorithm.

6.2 Performance Analysis
Table 1 shows the comparison results between EFNN and the
SOTA baseline approaches for the CMU-MOSI task. The ap-
proaches that apply attention mechanism to align pairwise
modalities, i.e., c-GRU and MulT, exhibit the highest bi-
nary accuracy as compared to the rest of the baselines. TFN
achieves the highest accuracy for Acc7 among the baselines.

Finally, the results show that the proposed EFNN is the
most effective approach for the CMU-MOSI task. In par-
ticular, it achieves an increased binary accuracy 80.9% as
compared to 78.7% of MulT, which is the next best model in
terms of binary accuracy. That is a significant improvement
of 2.7% (t-test<.05). Overall, EFNN shows performance im-
provements for all evaluation metrics.

Table 2 presents the results for the CMU-MOSEI task. All
approaches attain an improved performance compared to that
of the CMU-MOSI dataset. We suspect this is because CMU-
MOSEI is a much larger dataset. c-GRU is the most effec-
tive model among the baselines for the CMU-MOSEI task.
MulT achieves similar performance to c-GRU, without a sig-
nificant difference. EFNN gains an increased binary accu-
racy of 82.8% as compared to 80.7% of c-GRU, which is a

Approach Acc7 Acc2 F1 MAE Corr

Baseline
EF-LSTM 32.7 75.8 75.6 1.00 0.63
LF-LSTM 32.7 76.2 76.2 0.99 0.62
LSTM
MARN 31.8 76.4 76.2 0.98 0.63
MFN 31.9 76.2 75.8 0.99 0.62
c-GRU 33.8 78.2 78.1 0.95 0.68
Tensor
TFN 34.9 75.6 75.5 1.01 0.61
LMF 30.5 75.3 75.2 1.02 0.61
Seq-to-Seq
MulT 33.6 78.7 78.4 0.96 0.66
Quantum
QMF 34.2 78.1 77.9 0.99 0.67
EFNN 35.9 80.9 80.8 0.91 0.69
(∆%) 2.8% 2.7% 2.9% 3.7% 2.2%
(∆EF%) 8.9% 6.3% 6.4% 9.5% 8.7%

Table 1: Effectiveness on CMU-MOSI. Best results are highlighted
in bold. (∆%) and (∆EF %) indicate absolute relative percentage
improvement over the next best model and the baseline EF-LSTM.

significant improvement of 2.6% (t-test<.05). Finally, EFNN
achieves an improvement for all evaluation metrics on CMU-
MOSEI.

In summary, EFNN significantly outperforms the baselines
for both CMU-MOSI and CMU-MOSEI tasks. The analysis
of results has shown that EFNN is capable of coping with
both balanced and skewed datasets.

6.3 Ablation Test
We also carried out an ablation test on CMU-MOSEI to
investigate the effect of introduced quantum components.
In particular, to examine the effectiveness of convolution
neural networks CNNm projecting modalities to common-
dimensional spaces, we replace the component with GRU
layers (a.k.a. EFNNgru). Furthermore, we would like to in-
vestigate the impact of non-separable modalities, by introduc-
ing two other variants of EFNN, after removing the weight
vector W (see Figure 1): a) EFNNtensor fuses all modali-
ties into a unified tensor-based representation, i.e., trimodal
fusion; and b) EFNNcon concatenates all modalities into a
vector representation, and then the outputs interact with the
measurement component. Moreover, we also consider the
impact words’ position in an utterance by initializing phases
from standard normal distributions (a.k.a. EFNNrand). We
finally replace the measurements with a convolutional neural
network (CNN), whereby the K filters of CNN serve as K
measurements, in order to investigate the impact of the mea-
surement component (a.k.a. EFNNcnn).

The results of the ablation test, illustrated in Table 3, show
that each component plays a crucial role in the EFNN. In
particular, the comparison with EFNNrand shows the effec-
tiveness of modelling words’ position into the phase part of
complex-valued representations. At the same time, the de-
creased performance of EFNNtensor and EFNNcon reveals
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Approach Acc7 Acc2 F1 MAE Corr

Baseline
EF-LSTM 45.7 78.2 77.1 0.69 0.57
LF-LSTM 47.1 79.2 78.5 0.66 0.61
LSTM
MARN 47.7 79.3 77.8 0.65 0.63
MFN 47.4 79.9 79.1 0.65 0.63
c-GRU 48.4 80.7 80.2 0.63 0.67
Tensor
TFN 47.3 79.3 78.2 0.66 0.62
LMF 47.6 78.2 77.6 0.66 0.62
Seq-to-Seq
MulT 46.6 80.2 79.8 0.64 0.65
Quantum
QMF 47.2 79.8 79.4 0.65 0.66
EFNN 50.2 82.8 82.6 0.60 0.69
(∆%) 3.6% 2.6% 2.9% 5.4% 2.5%
(∆EF%) 9.0% 5.6% 6.7% 15.5% 16.8%

Table 2: Effectiveness on CMU-MOSEI. Best results are highlighted
in bold. (∆%) and (∆EF %) indicate absolute relative percentage
improvement over the next best model and the baseline EF-LSTM.

Approach Acc7 Acc2 F1 MAE Corr

EFNNgru -1.5% -1.3% -1.3% -1.2% -1.1%
EFNNtensor -2.2% -1.8% -1.8% -1.5% -1.7%
EFNNcon -2.8% -2.5% -2.5% -2.4% -2.2%
EFNNrandom -1.5% -1.2% -1.2% -1.2% -1.4%
EFNNcnn -1.9% -1.4% -1.4% -1.6% -1.7%

Table 3: Ablation test on CMU-MOSEI. Absolute relative percent-
age difference from EFNN.

the superiority of encoding the non-classical correlations (i.e.,
entanglements) between modalities. Moreover, the compari-
son with EFNNcnn shows the usefulness of trainable mea-
surements. Finally, EFNNgru shows that convolutional neu-
ral networks could be a more appropriate way to project
modalities into common-dimensional spaces. Overall, the ab-
lation test reveals that the entanglement-driven fusion compo-
nent plays the most crucial role in the architecture of EFNN.

6.4 Post-hoc Interpretability
Further, we evaluated the post-hoc interpretability by inves-
tigating the bi-modal correlations within composite utterance
states after the modality context interaction. In particular, ac-
cording to Eq.4, we calculated the degree of quantum entan-
glement for bipartite composite utterance states of linguistic
and visual modalities.

Table 4 illustrates some examples of the most and least
entangled linguistic-visual modalities according to entangle-
ment entropy. The most entangled pairs are those that one of
two modalities is ambiguous or uninformative. For example,
in Table 4, the linguistic content of the first utterance is am-
biguous, while the visual content of the second utterance is
uninformative. By contrast, when the context of both modali-

Linguistic Visual Sentiment

The story was all right. Positive

I do not wanna see any
more of this.

Negative

The voice acting was
phenomenal!

Positive

Yeap a horrible protago-
nist!

Negative

Table 4: The first two examples illustrate cases of the most entan-
gled bi-modals for the linguistic and visual modalities. The last two
examples illustrates cases of the least entangled bi-modals.

ties is informative, unambiguous, and simultaneously present
(e.g., the last two utterances in Table 4), the entanglement en-
tropy is close to zero. In those cases, the composite represen-
tation is separable, and there is no need to exploit the quan-
tum probabilistic interpretation. However, through the con-
cept of non-separability, EFNN is able to capture both sepa-
rable and non-separable bi-modal interactions, as a general-
ization of existing probabilistic modality fusion approaches.
This attribute is the core reason that EFNN has achieved per-
formance improvement.

7 Conclusion
In this work, we have introduced a transparent and joint quan-
tum probabilistic neural model for video sentiment analy-
sis. The concept and formalism of non-separability as quan-
tum entanglement to fuse bi-modalities enables the model to
capture both classical and non-classical correlations between
modalities. The information encoded in the non-classical
correlations yielded significant improvements in performance
over a range of strong baselines. Besides, non-classical cor-
relations were quantified by an appropriate measure, which
optimized post-hoc interpretability. In the future, we would
like to extend the framework for video emotion detection in
conversations that requires leveraging the conversational con-
text and evolution of systems.
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