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Abstract
Despite the increasing interest in neural architec-
ture search (NAS), the significant computational
cost of NAS is a hindrance to researchers. Hence,
we propose to reduce the cost of NAS using proxy
data, i.e., a representative subset of the target
data, without sacrificing search performance. Even
though data selection has been used across various
fields, our evaluation of existing selection meth-
ods for NAS algorithms offered by NAS-Bench-
1shot1 reveals that they are not always appropri-
ate for NAS and a new selection method is nec-
essary. By analyzing proxy data constructed us-
ing various selection methods through data en-
tropy, we propose a novel proxy data selection
method tailored for NAS. To empirically demon-
strate the effectiveness, we conduct thorough ex-
periments across diverse datasets, search spaces,
and NAS algorithms. Consequently, NAS algo-
rithms with the proposed selection discover archi-
tectures that are competitive with those obtained
using the entire dataset. It significantly reduces the
search cost: executing DARTS with the proposed
selection requires only 40 minutes on CIFAR-10
and 7.5 hours on ImageNet with a single GPU. Ad-
ditionally, when the architecture searched on Im-
ageNet using the proposed selection is inversely
transferred to CIFAR-10, a state-of-the-art test er-
ror of 2.4% is yielded. Our code is available at
https://github.com/nabk89/NAS-with-Proxy-data.

1 Introduction
Neural architecture search (NAS), one of the most widely-
studied fields in automated machine learning, aims to reduce
the human cost of designing and testing hundreds of neural ar-
chitectures. In early studies pertaining to NAS [Zoph and Le,
2017; Zoph et al., 2018; Real et al., 2019], however, enor-
mous computational overhead occurred, thereby requiring a
significant amount of computing resources to execute search
algorithms. To reduce the search cost, most recently devel-
oped NAS algorithms employ weight-sharing on a super-
∗Contact Author

network and/or differentiable approach to optimize the archi-
tecture parameters in the super-network [Xie et al., 2020].
These techniques enable a more approximate yet faster eval-
uation of candidate neural architecture performance, thereby
significantly reducing the cost of NAS.

In this study, we further reduce the search cost of NAS
by incorporating proxy data, i.e., a representative subset of
the target data. Data selection is widely used across various
fields in deep learning, such as active learning [Settles, 2009;
Coleman et al., 2020] and curriculum learning [Graves et
al., 2017; Chang et al., 2017]. For instance, given a trained
model, the core-set selection methods used in active learning
aim to select the training data from a large unlabeled dataset
to label the selected data with minimum labeling costs, result-
ing in the effective reduction of the computational cost. How-
ever, comprehensive studies regarding the problem of data se-
lection for NAS do not exist. Developing an appropriate se-
lection for NAS is important because NAS algorithms could
benefit from the significant reduction in the search cost.

We first evaluate the proxy data constructed using five ex-
isting data selection methods on NAS-Bench-1shot1 [Zela et
al., 2020b]. While the substantial results provide strong em-
pirical support for our hypothesis, they also reveal the neces-
sity for a new, improved selection method, designed specifi-
cally for NAS. Subsequently, we analyze the relationship be-
tween the search performances and properties of different se-
lection methods based on the entropy [Shannon, 1948] of ex-
amples in the proxy data. Based on our analysis, the charac-
teristics of a selection method that renders proxy data effec-
tive in preserving the search performance of NAS algorithms
are identified. When the selection method chooses primarily
low-entropy examples, a competitive architecture is discov-
ered with the resulting proxy data, even when the size of the
proxy data is small. To achieve the search performance ob-
tained using the entire data, it is important to include addi-
tional high-entropy examples in the proxy data.

Based on these observations, we propose a new selection
method that prefers examples in the tail ends of the data en-
tropy distribution. The selection method can be implemented
in a deterministic or probabilistic manner. For the former, we
adopt the ratio between low- and high-entropy examples, such
that the examples from the opposite ends of the entropy distri-
bution are selected. For the probabilistic manner, we suggest
three sampling probabilities that satisfy the identified charac-
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teristics of the proxy data effective for NAS. We demonstrate
the superiority of the proposed selection to existing selections
using NAS-Bench-1shot1 and show that the search perfor-
mance is preserved even when using only 1.5K of training
examples selected from CIFAR-10.

We further demonstrate that the proposed selection method
can be applied universally across various differentiable NAS
algorithms and four benchmark datasets for image classifi-
cation. The NAS algorithms with the proposed selection dis-
cover competitive neural architectures in a significantly re-
duced search time. For example, executing DARTS [Liu et
al., 2019] using our selection method requires only 40 GPU
minutes on a single GeForce RTX 2080ti GPU. Owing to
the reduction in search cost, searching on ImageNet can be
completed in 7.5 GPU hours on a single Tesla V100 GPU
when incorporating the proposed selection into DARTS. The
searched architecture achieves the top-1 test error of 24.6%,
surpassing the performance of the architecture, which is dis-
covered by DARTS on CIFAR-10 and then transferred to Im-
ageNet. In addition, when this architecture is evaluated on
CIFAR-10, it achieves a top-1 test error of 2.4%, demon-
strating state-of-the-art performance on CIFAR-10 among re-
cent NAS algorithms. This indicates that the architectures dis-
covered by NAS algorithms with proxy data selected from a
large-scale dataset are highly transferable to smaller datasets.

To summarize, our main contributions are as follows:

• We provide substantial experimental results conducted
on NAS-Bench-1shot1 to demonstrate that the existing
selection is inappropriate for NAS.

• By identifying the characteristics of effective proxy data
selection methods, we propose a novel selection method
and two approaches for implementing it.

• We demonstrate the efficacy of the proposed selection
for NAS and its general applicability to various NAS al-
gorithms and datasets. We expect the field of NAS to
benefit significantly from the reduced search cost af-
forded using the proposed proxy data selection.

2 Related Work
2.1 Neural Architecture Search
Recently, NAS methods have become diversified signifi-
cantly, as more complex algorithms have been developed
to achieve higher performance or lower search cost [Xie et
al., 2020]. Herein, we discuss studies that focus on reduc-
ing the search cost. To reduce the search cost, most differ-
entiable and one-shot NAS methods have adopted weight-
sharing [Pham et al., 2018] or a continuous architecture with
mixing weights [Liu et al., 2019] on a cell-based search
space [Zoph et al., 2018]. During the search, a super-network,
which stacks multiple cells but is smaller than the target net-
work, is trained.

To further reduce the cost, PC-DARTS [Xu et al., 2020]
reduced the number of trainable weight parameters in the
cells used during the search by partially bypassing chan-
nels in a shortcut. EcoNAS [Zhou et al., 2020] suggested
four reduction factors, resulting in a much smaller network

than the super-network of conventional cell-based NAS algo-
rithms, and proposed a hierarchical evolutionary algorithm-
based search strategy to improve the accuracy of architecture
performance estimation using the smaller super-networks.
Regarding data selection, EcoNAS briefly reported the search
result using a subset randomly sampled from CIFAR-10. In
this study, we evaluate various selection methods, including
random selection, and provide meaningful insights into the
selection method tailored to NAS.

NAS algorithms suffer from the lack of reproducibility, and
hence, a fair comparison of NAS algorithms is challenging.
Benchmarks for NAS [Ying et al., 2019; Zela et al., 2020b;
Dong and Yang, 2020; Dong et al., 2020] aim to alleviate
this issue in NAS research. Because these benchmarks pro-
vide architecture databases and easy-to-implement NAS al-
gorithm platforms, re-training searched architectures for eval-
uation can be omitted. Therefore, in this study, we utilize
two benchmarks, i.e., NAS-Bench-1shot1 [Zela et al., 2020b]
and NATS-Bench [Dong et al., 2020], to investigate selection
methods for constructing effective proxy data and evaluate
our proxy data selection method.

2.2 Data Selection in Deep Learning
Data selection or subsampling is a well-established method-
ology in deep learning, and it is used across various fields
in deep learning. Active learning [Settles, 2009; Sener and
Savarese, 2018; Beluch et al., 2018; Coleman et al., 2020]
adopts core-set selections to reduce the labeling cost by se-
lecting the smallest possible number of examples from a large
unlabeled dataset. As an application, the approach in core-set
selections can be applied to reduce the batch size for train-
ing generative adversarial networks [Sinha et al., 2020]. In
curriculum learning [Graves et al., 2017; Chang et al., 2017],
examples are fed into a neural network efficiently to avoid
catastrophic forgetting and accelerate training; hence, cur-
riculum learning ends up utilizing the entire dataset, rather
than a subset. However, our results reveal that existing selec-
tion methods are not always appropriate for NAS; as such, a
new selection method specifically for NAS is necessary.

3 Exploration Study
In this study, we extensively evaluate the search performance
of NAS algorithms offered by NAS-Bench-1shot1 using dif-
ferent proxy data constructed using existing selection meth-
ods. Based on the results obtained, we identify the charac-
teristics of selection methods that yield particularly effective
proxy data for NAS.

3.1 Exploration Setting
NAS-Bench-1shot1 is used as the primary testing platform
to observe the effect of the proxy data on the search perfor-
mance of three NAS algorithms on CIFAR-10: DARTS [Liu
et al., 2019], ENAS [Pham et al., 2018], and GDAS [Dong
and Yang, 2019]. To construct proxy data of size k, k ex-
amples among 50K training examples of CIFAR-10 are se-
lected using selection methods. The selected examples are
segregated into two parts: one for updating weight parame-
ters and the other for updating architecture parameters. For
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Figure 1: Search performance (CIFAR-10 test accuracy) on NAS-Bench-1shot1 (DARTS) with various proxy data. Proposed (ours) indicates
the proposed selection method in Section 4, specifically, the probabilistic selection method based on P1.
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Figure 2: Histograms of data entropy in log scale. Blue histograms indicate the entropy distributions of 50K training examples of CIFAR-10
and the others indicate those of various proxy data constructed using selection methods.

a fair comparison, the same hyperparameter settings as those
offered in NAS-Bench-1shot1 are used for all the tested NAS
algorithms. To avoid cherry-picking results, we execute the
search process five times with different seeds and report the
average performance.

The five selection methods utilized in this study are: ran-
dom, entropy top-k, entropy bottom-k, forgetting events, and
k-center. Herein, we provide a brief description of each selec-
tion method; more details are included in the Appendix. Ran-
dom selection, as the name suggests, samples examples uni-
formly. For entropy-based selection [Settles, 2009], we use
the entropy value fentropy of example x calculated as:

fentropy(x;M) = −
∑

ỹ
P (ỹ|x;M) logP (ỹ|x;M), (1)

where ỹ = M(x) is the predictive distribution of x with re-
spect to the pre-trained baseline model M , i.e., the input of
softmax in a classifier. Entropy top-k selection selects ex-
amples that have top-k entropy, and entropy bottom-k se-
lection performs the opposite. For the forgetting event selec-
tion [Toneva et al., 2019], we train a model from scratch and
monitor the number of misclassifications referred to as for-
getting events per example. After training the model, exam-
ples whose number of forgetting events is in the top-k are se-
lected. In the k-center selection [Sener and Savarese, 2018],
given feature vectors extracted from a pre-trained model for
all examples, k examples are selected by a greedy k-center
algorithm. We set k ∈ {1.5, 2.5, 5, 10, 15}K, and pre-train
ResNet-20 [He et al., 2016] for the selection methods; the
test accuracy of the pre-trained model is 91.7%. Proxy data
constructed using the five selections are denoted by Drandom,
Dtop, Dbottom, Dforget, and Dcenter, correspondingly.

3.2 Observations and Analysis
The search results of DARTS are shown in Figure 1, and those
of ENAS and GDAS are provided in the Appendix. As k
changes, two interesting phenomena are observed. First, for
k ≤ 2.5K examples, searching with Dbottom consistently

yields a search performance closer to that of DARTS with the
entire data, namely the original performance. Second, as k in-
creases above 5K, searching with most proxy data results in a
rapid increase in the resulting search performance; in the case
of Dbottom, however, the improvement is less prominent, and
the original performance is hardly achieved.

We analyze different proxy data to identify the most signifi-
cant factor that contributes to the search performance compet-
itive to the original performance using data entropy, fentropy.
Data entropy is a typically used metric to quantify the diffi-
culty of an example; furthermore, it is used as the defining
property of proxy data in this study. Figure 2 shows the his-
tograms of data entropy of all proxy data in log scale.

As shown in Figure 2(a)-(e), the composition of Dbottom

differs significantly from those of the other proxy data. When
k ≤ 2.5K, Dbottom, which achieves a more competitive
search performance than other proxy data, contains a signifi-
cantly larger number of easy examples. It suggests that to con-
struct proxy data with a number of easy examples is effective
for minimizing the size of proxy data and obtaining the orig-
inal search performance. Meanwhile, Drandom (or Dcenter)
gradually includes easy, middle, and difficult examples, and
most additional examples in Dforget (or Dtop) are difficult. It
appears that NAS with the proxy data, which appropriately in-
cludes middle and difficult examples, can achieve the original
search performance when k is sufficiently large; the appro-
priate value of k differs for each selection. Comprehensively,
based on the observed correlations in the search performance
and the compositions in the proxy data, we deduce that selec-
tion methods for NAS satisfy the following characteristics:

•When a small number of examples are selected, easy ex-
amples are more likely to discover a relatively competitive
architecture than difficult examples.

• When easy examples are already selected, adding mid-
dle and difficult examples enables the original search perfor-
mance to be achieved.
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Figure 3: Search performance on NAS-Bench-1shot1 (DARTS) us-
ing the proposed methods. P{1,2,3}(x) are sampling probabilities
used in the proposed probabilistic selection, and Deter. indicates the
proposed deterministic selection with β = 0.9.

4 Proposed Selection Method
Figure 1 shows that the size of the smallest effective proxy
data obtained using the existing selection methods is 5K. Al-
though random selection may be considered a strong baseline
selection method, its performance deteriorates significantly
when k ≤ 2.5K. In addition, it is noticeable that Dbottom

with k ≤ 2.5K achieves the better search performance than
the other proxy data. Therefore, to further minimize the size
of the proxy data, we propose a new selection method that
weighs on examples belonging to both-sided tailed distribu-
tion in the data entropy. It is intuitive that the increase in dif-
ficult examples provides more information to NAS with easy
examples than additional middle examples. As shown in Fig-
ure 1, this is supported by results of Dbottom with k = 15K,
which includes a large number of easy examples and a small
number of middle examples.

Herein, we suggest two methods for implementing the pro-
posed selection method: deterministic and probabilistic meth-
ods. For deterministic selection, we adopt the composition
ratio parameter β of low-entropy examples. With respect to
data entropy, bottom-βk examples and top-(1 − β)k exam-
ples are selected, where 0 < β < 1. For probabilistic selec-
tion, the probability distribution of examples should be de-
signed to satisfy the two aforementioned characteristics. Uti-
lizing histogram information, which can be obtained using
a pre-trained baseline model, we design and evaluate three
probabilities, denoted by P1, P2, and P3, for probabilistic se-
lection. Let hx denote a bin where example x belongs in data
entropy histogram H , and |hx| denote the height of hx, i.e.,
the number of examples in hx. The three probabilities are de-
fined as follows:

P{1,2,3}(x;H) = norm(W{1,2,3}(hx;H)/|hx|), (2)

where norm() normalizes the inside term such that∑
x∈D P{1,2,3}(x;H) = 1 for target data D. In the inside

term, selection weights denoted by W{1,2,3}(hx;H) are de-
fined as follows:

W1(hx;H) =
maxh′∈H |h′| − |hx|+ 1∑

h′′∈H maxh′∈H |h′| − |h′′|+ 1
, (3)

W2(hx;H) =
1

the number of bins in H
, (4)

W3(hx;H) =
1/|hx|∑

h′′∈H 1/|h′′|
. (5)

In Eq. 2 with W2(hx;H), which places equal weights on all
bins, examples from tail-ends of H are more likely to be se-
lected.W1 andW3 further penalize middle examples by using
the difference between height of hx and the maximum height
of the bin near the center in H .

For evaluation on NAS-Bench-1shot1, we execute the pro-
posed selections using 10 different seeds. Among the de-
terministic selections with β = {0.9, 0.8, 0.7, 0.6, 0.5}, the
search performance with β = 0.9 is the best; the other results
are provided in the Appendix. For probabilistic selection, we
quantify |hx| based on a data entropy histogram of CIFAR-
10, which is the blue histogram in Figure 2. Figure 2(f) shows
that the entropy distribution of examples selected by the pro-
posed selection.

As shown in Figure 3, among the selections, the deter-
ministic selection with β = 0.9 and the probabilistic selec-
tion based on P1(x;H) achieve the best search performance.
In particular, in search space 1, the P1(x;H)-based proba-
bilistic selection achieves the original performance with only
k = 1.5K examples. Although the deterministic selection
with β = 0.9 achieves a competitive performance as well,
finding the optimal β is nontrivial because the optimal β can
be dependent on the target data or pre-trained baseline mod-
els. By contrast, probabilistic selection does not require addi-
tional hyperparameters; as such, an exhaustive hyperparame-
ter search is not necessary for selecting proxy data. Therefore,
we set the P1(x;H)-based probabilistic selection as our main
method for the remainder of the study.

As shown in Figure 1, the proposed proxy data selection
demonstrates better search performance compared with the
other existing selections. We include evaluation results on
NATS-Bench [Dong et al., 2020] in the Appendix, where the
results also show our method is valid on NAS algorithms of-
fered by NATS-Bench. We further demonstrate its effective-
ness on an enlarged cell-based search space [Liu et al., 2019]
and various NAS algorithms in Section 5.

4.1 Discussion Regarding Efficacy of Proposed
Selection

In this section, the factor contributing to the effectiveness of
the proposed selection method particularly for NAS is dis-
cussed. Many differentible NAS algorithms focus on training
a super-network [Xie et al., 2020]. When a super-network is
trained to fit only the easier examples, it will naturally con-
verge faster than when it is attempting to fit difficult exam-
ples. The side effect of this phenomenon is that the gradient
of the loss will become small only after a few epochs of train-
ing [Chang et al., 2017] and hence will no longer backprop-
agate useful signals for the super-network. Therefore, when
deriving an architecture from such super-network, it is likely
that the resulting architecture will have limited generaliza-
tion capacity to difficult examples. Using difficult examples
allows the super-network to learn more meaningful informa-
tion, which is difficult to be obtained from easy examples.
Using the t-SNE [Maaten and Hinton, 2008] visualization
of different proxy data, we can speculate that the missing
information from the easy examples is related to the deci-
sion boundaries obtained from the pre-trained network and
the dataset. As mentioned in Section 4, we use ResNet-20 to
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Figure 4: Histograms of data entropy (log scale in x-axis). In each
histogram, c indicates the number of filters in the first convolutional
layer in each ResNet. The histograms from (a) to (d) are obtained by
setting a bin width as 0.5, 0.25, 0.2, and 0.25, respectively.

extract features from different proxy data of CIFAR-10; the
corresponding t-SNE visualization results are shown in the
Appendix. The easy examples tend to be distant from the de-
cision boundaries, unlike the difficult ones. Therefore, for a
super-network to learn such decision boundaries, proxy data
with difficult examples is required.

Meanwhile, if proxy data is comprised primarily of diffi-
cult examples, the stable training of a super-network may be
hindered, which is consistent with the results of Dtop in Fig-
ure 1. This issue can be resolved using a sufficient number of
easy examples. Consequently, the proposed selection method
that satisfies the characteristics identified in Section 3 yields
a super-network that is similar to that trained with the entire
dataset while the size of the proxy data is minimized.

5 Experiments and Results
We used the pre-trained ResNet-50 in Pytorch model zoo
for ImageNet, and trained the three models for CIFAR-
10, CIFAR-100, and SVHN; the training took 0.015, 0.033,
and 0.022 GPUdays, where the additional cost is negligi-
ble. We prepared proxy data using log-scaled data entropy
histograms in Figure 4. Although the data entropy distribu-
tions of CIFAR-100 and ImageNet show different patterns
than those of CIFAR-10 and SVHN, our experimental results
consistently indicate that the proposed proxy data selection
is valid for CIFAR-100 and ImageNet, as it is for the other
two datasets. For the evaluation, we used two types of GPUs:
Tesla V100 for searching and training neural architectures
on ImageNet, and GeForce RTX 2080ti for the remaining
datasets. We execute the search processes using three differ-
ent seeds and report the averaged values. More details regard-
ing the experimental settings are included in the Appendix.

5.1 Comparison with Random Selection
Based on Section 3, it is apparent that random selection is
an effective, reasonable baseline. Hence, we compare the

Selection CIFAR-10 IN
5K 10K 15K 20K 25K 128K

Random 3.21 2.95 2.99 2.72 3.22 25.2
Proposed 2.94 2.92 2.88 2.78 2.76 24.6

Table 1: Evaluation (top-1 test error (%)) of DARTS with varying
sizes of proxy data of CIFAR-10 and ImageNet denoted by IN.

NAS Base Proposed
algorithm Err. (%) Cost Err. (%) Cost

CIFAR-10 (Base: 50K, Proposed: 5K)
DARTS 3.00 0.26 2.94 0.03

PC-DARTS 2.67 0.08 2.91 0.01
EcoDARTS-c4r2 2.80 0.23 2.81 0.02

SDARTS-RS 2.67 0.23 2.83 0.03
SGAS-Cri.1 2.66 0.19 2.72 0.02

ImageNet (Base: 1.28M, Proposed: 128K)
DARTS 26.7 - 24.6 0.32

PC-DARTS 24.2 3.8† 24.3 0.26

Table 2: Evaluation of various NAS methods used on cell-based
search space using proposed proxy data selection. Search cost is
GPU days and single 2080ti GPU and V100 GPU are used for
searching on CIFAR-10 and ImageNet, respectively. †Authors of
PC-DARTS reported that search process on ImageNet required 11.5
hours with eight V100 GPUs, i.e., 3.8 GPU days.

proposed selection with random selection in the cell-based
search space using DARTS [Liu et al., 2019] with CIFAR-10;
search results with the other selections evaluated in Section 3
are included in the Appendix. We change the size of proxy
data from 5K to 25K; the search cost decreases proportionally
to the size of proxy data. As shown in Table 1, on CIFAR-10,
searching with the proposed selection is usually superior to
that using random selection. Furthermore, the search perfor-
mance with the random selection fluctuates with varying sizes
of proxy data. Result of searching with 128K training exam-
ples chosen from ImageNet by the proposed selection, is also
superior to that of random selection.

5.2 Applicability to NAS Algorithms
Recently, various differentiable NAS algorithms based on
a cell-based search space have been proposed [Xie et al.,
2020]. We apply the proposed proxy data selection to the re-
cently proposed NAS, i.e., DARTS [Liu et al., 2019], PC-
DARTS [Xu et al., 2020], SDARTS [Chen and Hsieh, 2020],
SGAS [Li et al., 2020], and EcoDARTS that is a DARTS-
based variant of EcoNAS [Zhou et al., 2020], respectively. As
shown in Table 2, all of the tested NAS algorithms achieve the
comparable performance to their respective original search
performance. While on CIFAR-10, PC-DARTS with the pro-
pose selection experiences a slight decrease in performance,
on ImageNet, it succesfully achieves the original search per-
formance with significantly reduced search cost.

None of the existing NAS algorithms searched directly on
ImageNet, with the exception of PC-DARTS. To perform the
direct search on ImageNet, we incorporate the proposed se-
lection with PC-DARTS and DARTS. DARTS with the pro-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2852



NAS Data Search Base Proposed
alg. space 100% 10% 20%

D
A

R
T

S

CIFAR-10

S1 3.84 3.60 2.96
S2 4.85 3.54 3.46
S3 3.34 2.71 2.72
S4 7.20 6.60 5.82

CIFAR-100

S1 29.46 26.41 28.79
S2 26.05 21.65 22.66
S3 28.90 22.10 23.51
S4 22.85 98.91 25.74

SVHN

S1 4.58 3.12 4.11
S2 3.53 2.81 3.03
S3 3.41 2.77 3.11
S4 3.05 3.06 2.42

R
ob

us
tD

A
R

T
S

(L
2)

CIFAR-10

S1 2.78 2.79 2.86
S2 3.31 3.33 2.98
S3 2.51 2.74 2.80
S4 3.56 3.41 3.43

CIFAR-100

S1 24.25 26.13 23.67
S2 22.24 22.21 21.39
S3 23.99 21.71 22.31
S4 21.94 27.83 21.10

SVHN

S1 4.79 2.46 2.60
S2 2.51 2.45 2.49
S3 2.48 2.53 2.42
S4 2.50 5.16 2.62

Table 3: Evaluation (top-1 test error (%)) in four restricted cell-based
search spaces and three datasets.

posed selection discovers a better architecture than the orig-
inal DARTS, which transfers the architecture searched on
CIFAR-10 to ImageNet. The original PC-DARTS searched
on ImageNet with 12.5% of examples randomly sampled
from the dataset. It required 3.8 GPU days, i.e., 11.5 hours
with eight V100 GPUs, with a batch size of 1024; we specu-
late that the parallel execution on the eight GPUs resulted in
a non-negligible overhead. By contrast, PC-DARTS with the
proxy data which consists of 10% of examples constructed
using the proposed selection, can discover the competitive ar-
chitecture using a single V100 GPU with a batch size of 256
in approximately 0.26 GPU days, i.e., 14.6 times less cost
than that of the original PC-DARTS.

5.3 Applicability to Datasets
To demonstrate the general applicability of the proposed se-
lection to datasets, we test it on CIFAR-10, CIFAR-100, and
SVHN using DARTS and RobustDARTS [Zela et al., 2020a]
in four different search spaces. These search spaces were
modified from the cell-based search space by reducing the
types of candidate operations (S1-S3) and inserting harmful
noise operation (S4); the details are provided in the Appendix.
Following the experimental protocols in RobustDARTS, the
weight decay factors for DARTS and RobustDARTS (L2)
during search are set to be 0.0003 and 0.0243, respectively.

As shown in Table 3, most results of the two NAS al-
gorithms using the proposed selection are within a reason-

able range of the original search performance. However,
when DARTS is executed on S4 with 10% of examples from
CIFAR-100, a significant search failure occurs. This failure
is caused because noise operations in S4 occupy most of the
edges in the cell structure after search. Note that the noise op-
eration is intended for inducing failure in DARTS [Zela et al.,
2020a] and is generally not used in practice. Nevertheless, the
original search performance on CIFAR-100 can be obtained
when using 20% of examples.

5.4 Inverse Transferability
Typically, in most NAS algorithms, the transferability of ar-
chitectures discovered using CIFAR-10 is demonstrated by
their performance on ImageNet. Using DARTS with the pro-
posed selection, the computational cost of searching with Im-
ageNet is reduced by 1

10 , i.e., 0.26 GPU days. The resulting
search time on the proxy data of ImageNet is similar to those
of other NAS algorithms on the entire CIFAR-10. Therefore,
granted the similar amounts of search cost for fair compari-
son, architectures discovered on ImageNet using the proposed
selection can be evaluated on CIFAR-10, which is the inverse
way from conventional studies.

Consequently, the architecture searched on ImageNet us-
ing the proposed selection yields a top-1 test error of 2.4%
on CIFAR-10, i.e., the best performance among cell-based
NAS algorithms; the results with recent NAS algorithms are
provided in the Appendix. It is noteworthy that we do not
utilize additional techniques introduced in recent studies, and
that the architecture above is discovered only by executing
DARTS on the proxy data of a large-scale dataset. We spec-
ulate that the use of ImageNet provides DARTS with more
helpful visual representations than CIFAR-10. We refer to
such an approach of transferring an architecture from a large-
scale dataset to a smaller dataset as inverse transfer. Our
study reveals that if the search cost on a large-scale dataset
is reasonably low, then the inverse transfer of an architecture
can provide new directions for NAS research.

6 Conclusion
For the first time in NAS research, we introduced proxy data
for accelerating NAS algorithms without sacrificing search
performance. After evaluating existing selection methods on
NAS-Bench-1shot1, we obtained the insights and proposed a
novel selection method for NAS, which prefers examples in
tail-end of entropy distribution of the target data. We thor-
oughly demonstrated the NAS acceleration and applicabil-
ity of the proposed probabilistic selection on various datasets
and NAS algorithms. Notably, a direct search on ImageNet
was completed in 7.5 GPU hours, suggesting that the inverse
transfer approach is valid. We expect other studies on NAS
to benefit from the significant reduction in the search cost
through the use of proxy data.
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