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Abstract

Classical planning tasks are commonly described in
PDDL, while most planning systems operate on a
grounded finite-domain representation (FDR). The
translation of PDDL into FDR is complex and has
a lot of choice points—it involves identifying so
called mutex groups—but most systems rely on the
translator that comes with Fast Downward. Yet the
translation choice points can strongly impact per-
formance. Prior work has considered optimizing
FDR encodings in terms of the number of vari-
ables produced. Here we go one step further by
proposing to custom-design FDR encodings, op-
timizing the encoding to suit particular planning
techniques. We develop such a custom design here
for red-black planning, a partial delete relaxation
technique. The FDR encoding affects the causal
graph and the domain transition graph structures,
which govern the tractable fragment of red-black
planning and hence affects the respective heuristic
function. We develop integer linear programming
techniques optimizing the scope of that fragment in
the resulting FDR encoding. We empirically show
that the performance of red-black planning can be
improved through such FDR custom design.

1 Introduction
Classical planning tasks are usually defined in PDDL [Mc-
Dermott, 2000], which is a lifted representation based on
first-order logic. Yet, most state-of-the-are planners, in par-
ticular the systems based on Fast Downward (FD) [Helmert,
2006], use a finite-domain representation (FDR) encoding,
where subsets of propositional facts are grouped into finite-
domain state variables. This is possible only if reachable
states make at most one of the grouped facts true, i. e., if they
form a mutex group. FDR encodings are useful for a wide va-
riety of purposes like abstraction based heuristics [Haslum et
al., 2007; Katz and Domshlak, 2010; Helmert et al., 2014;
Seipp and Helmert, 2018], or red-black planning heuris-
tics [Domshlak et al., 2015; Gnad and Hoffmann, 2015;
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Katz, 2019], where a subset of (red) variables are delete-
relaxed while the rest (black) keep their true semantics.

The translation of PDDL into FDR is complex—deciding
whether a set of facts forms a mutex group is as hard as plan-
ning itself. There are many choice points in identifying mutex
groups and grouping facts into state variables. Systems based
on Fast Downward almost universally rely on its translator
[Helmert, 2009] and do not question the choices made there.

Yet the translation choices can impact performance. In
prior work [Dvořák et al., 2013; Dvořák et al., 2015], a min-
imization of the number of FDR variables was proposed as-
suming fewer variables result in more information being ag-
gregated into them. The results show that significantly re-
ducing the number of variables can improve the performance
of FDR-based techniques. The improvements are moderate
though, and there is a lot of variance depending on domain
and planning technique; a consistent picture does not emerge.

Here we show that this picture can change when going one
step further in the target of FDR optimization: we propose
to custom-design FDR encodings, optimizing the encoding to
suit particular planning techniques.1 We develop such a cus-
tom design for red-black planning, which distinguishes be-
tween relaxed (red) and non-relaxed (black) variables. We
focus on a polynomial-time solvable fragment of red-black
planning [Katz et al., 2013b] which uses a heuristic func-
tion based on generating a red-black plan for a given state
[Katz et al., 2013a]. The tractability of red-black planning
is determined by the decision which variables are painted red
or black. The state-of-the-art approach uses painting strate-
gies [Domshlak et al., 2015] assuming the FDR encoding is
given and fixed, and decides only on variable colors. Here,
we open up this design space and allow to custom-design the
FDR variables and their painting at the same time.

The tractability of red-black planning is governed by
the FDR encoding’s causal graph (whose projection onto
the black variables must be acyclic) and domain transition
graphs (that must be invertible for the black variables). We
develop techniques optimizing these explicit syntactic crite-
ria, to be able to choose from different viable FDR encodings

1Vallati et al. [2015; 2017] have explored domain model opti-
mization tailored to specific planners before, but for PDDL not for
FDR variable design, and changing only the ordering of artefacts in
the input model (which had previously been observed to be relevant
for the performance of some planners [Howe and Dahlman, 2002]).
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of tractable red-black planning tasks. The optimization itself
is then formulated as an integer linear program, where the al-
location of black (non-relaxed) variables is controlled by the
program’s objective function.

2 Background
A STRIPS planning task Π is specified by a tuple Π =
〈F ,O, sI , sG〉, where F = {f1, . . . , fn} is a set of facts, and
O = {o1, . . . , om} is a set of grounded operators. A state
s ⊆ F is a set of facts, sI ⊆ F is an initial state and sG ⊆ F
is a goal specification. A state s is a goal state iff sG ⊆ s.
An operator o is a tuple o = 〈pre(o), add(o), del(o)〉, where
pre(o) ⊆ F is the set of preconditions of o, and add(o) ⊆ F
and del(o) ⊆ F are the sets of add and delete effects, respec-
tively. All operators are well-formed, i.e., add(o) ∩ del(o) =
∅ and pre(o) ∩ add(o) = ∅. We assume unit costs. An oper-
ator o is applicable in a state s if pre(o) ⊆ s. The resulting
state of applying an applicable operator o in a state s is the
state oJsK = (s \ del(o)) ∪ add(o).

A sequence of operators π = 〈o1, . . . , on〉 is applicable in a
state s0 if there are states s1, . . . , sn such that oi is applicable
in si−1 and si = oiJsi−1K for 1 ≤ i ≤ n. The resulting state
of this application is πJs0K = sn. A sequence of operators π
is called a plan iff π is applicable in sI and sG ⊆ πJsK.

A set of facts M ⊆ F is called a mutex if M 6⊆ s for
every reachable state s. A set of facts M ⊆ F is called a
mutex group if |M ∩ s| ≤ 1 for every reachable state s, and
M is called a fact-alternating mutex group (fam-group) if
|M ∩ sI | ≤ 1 and |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)|
for every operator o ∈ O. Every fam-group is a mutex group.
Every subset of a mutex group is a mutex group, but not every
subset of a fam-group is a fam-group. Facts from every mutex
group form pairwise mutexes [Fišer and Komenda, 2018].

Given a set of mutex groups G, MG ⊆ 2F denotes an
upper set of mutexes induced by G, i.e., for every mutex group
G ∈ G and every f, f ′ ∈ G, f 6= f ′, it holds that {f, f ′} ∈
MG , and for every M ∈ MG and every f ∈ F it holds that
M ∪ {f} ∈ MG .

An FDR planning task P is specified by a tuple P =
〈V ,O, ψI , ψG〉. V is a finite set of variables, each variable
V ∈ V has a finite domain dom(V ). A fact 〈V, v〉 is a pair
of a variable V ∈ V and one of its values v ∈ dom(V ). A
partial state p is a variable assignment over some variables
vars(p) ⊆ V . We write p[V ] for the value assigned to the
variable V ∈ vars(p) in the partial state p. Given a set of
variables U ⊆ V , p[U ] denotes a partial state p restricted to
U . We also identify p with the set of facts contained in p, i.e.,
p = {〈V, p[V ]〉 | V ∈ vars(p)}. A partial state s is a state if
vars(s) = V . ψI is an initial state. ψG is a partial state called
goal, and a state s is a goal state iff ψG ⊆ s. O is a finite set
of operators, each operator o ∈ O has a precondition pre(o)
and effect eff(o), which are partial states. An operator o is
applicable in a state s iff pre(o) ⊆ s. The resulting state of
applying an applicable operator o in a state s is the state oJsK
where oJsK[V ] = eff(o)[V ] for every V ∈ vars(eff(o)), and
oJsK[V ] = s[V ] for every V ∈ V \ vars(eff(o)). Operator
sequences and plans are defined analogously to STRIPS.

The domain transition graph (DTG) of a variable V , de-

noted by DV , is an edge-labeled multi-digraph with vertices
dom(V ) and with an edge from d to d′ induced by an opera-
tor q ∈ O and denoted by (d, q, d′) iff d 6= d′, eff(q)[V ] = d′,
and either pre(q)[V ] = d or V 6∈ vars(pre(q)).

Let U ⊆ V denote a subset of variables. The causal graph
CGU of U is a digraph with vertices U . An edge (V, V ′) is in
CGU iff V 6= V ′ and there exists an operator o ∈ O such that
(V, V ′) ∈ (vars(pre(o)) ∪ vars(eff(o)))× vars(eff(o)).

A red-black planning task Π is specified by a tuple Π =
〈VR,VB ,O, ψI , ψG〉, where VR and VB are state variables,
called red variables and black variables, respectively. Black
variables have the value-switching semantics as in FDR. Red
variables have the value-accumulating semantics, i.e., opera-
tors “extend” the value of V ∈ VR from {x} to {x, y}. Ap-
plicability of operators, sequences of operators, and red-black
plans are defined accordingly [see Domshlak et al., 2015].

Given a variable V ∈ V , an edge (d, q, d′) from DV is re-
laxed side effects invertible (RSE-invertible) if there exists
an edge (d′, q′, d) such that pre(q′)[V \V ] ⊆ pre(q)[V \V ]∪
eff(q)[V \ V ]. V is RSE-invertible if every edge in DV is
RSE-invertible.

RSE-invertibility is a sufficient criterion for tractability in
the case when the subgraph of the causal graph restricted to
the black variables is acyclic [Katz et al., 2013a]. The ac-
tual algorithm presented in that work handles only the arc-less
black causal graph case. Later, an algorithm for devising red-
black plans for the acyclic causal graph case was presented
[Katz and Hoffmann, 2014; Domshlak et al., 2015]. In what
follows, we focus on the red-black heuristic hRB for a state
s, that returns the length of a red-black plan for s, computed
for that tractable fragment.

3 Translation from STRIPS to FDR
A concise translation from STRIPS to FDR requires mutex
groups that are used for creating FDR variables from STRIPS
facts. Before we formalize the translation process, we formu-
late an intermediate STRIPS representation where we assume
the mutex groups are already inferred and the STRIPS plan-
ning task is pruned with the mutex information contained in
them. Moreover, we need to preserve the DTG structure of
mutex groups from which black variables are created to pre-
serve their RSE-invertibility. For this purpose, we introduce a
mapping from mutex groups to fam-groups containing these
mutex groups, called fam-group map. We choose specifi-
cally fam-groups because of their simpler structure [Fišer and
Komenda, 2018]. It is not a limitation, since fam-groups are
the most commonly used type of mutex groups anyway [Fišer,
2020].

Definition 1. Given a set of mutex groups G, γ : G 7→ 2F

is a fam-group map if for every G ∈ G it holds that either
γ(G) = ∅ or γ(G) is a fam-group such that G ⊆ γ(G).

Definition 2. Given a STRIPS planning task Π =
〈F ,O, sI , sG〉, and a set of non-empty mutex groups G,
and a fam-group map γ over G, EΠ = 〈Π,G, γ〉 denotes
a STRIPS planning task extended with mutex groups
(MGE-STRIPS) if all of the following hold:

(S1) F =
⋃

o∈O add(o) ∪ del(o),
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(S2) for every operator o ∈ O it holds that pre(o) 6∈ MG and
oJpre(o)K 6∈ MG and for every f ∈ del(o) it holds that
{f} ∪ pre(o) 6∈ MG ,

(S3) sI 6∈ MG and sG 6∈ MG ,

(S4)
⋃

G∈G G = F ,

(S5) for every G,G′ ∈ G, G 6= G′ it holds that G ∩G′ = ∅,
(S6) {f} ∈ G for every f ∈

⋃
o∈O(del(o) \ pre(o)),

(S7) γ(G) 6= ∅ for every G ∈ G such that |G| ≥ 2.

Condition (S1) makes sure that there are no “static” facts,
i.e., facts that either do not appear in any reachable state, or
that are set in the initial state and remain set in all reachable
states. (S2) corresponds to pruning of unreachable operators
and delete effects that are not applicable. (S3) can be false
only for unsolvable tasks. (S4) ensures that the set of mutex
groups cover all facts. Pairwise disjoint mutex groups (S5)
ensure that each STRIPS fact is encoded only once. (S6) en-
sures a polynomial translation without conditional effects (for
a detailed explanation see [Helmert, 2009, Section 7.3]). The
fam-group γ is used for encoding preconditions of operators
in the translation to FDR, and, as we described before, we
assume all mutex groups G to be based on fam-groups, i.e.,
each mutex group from G is either a singleton or it is mapped
to some fam-group (S7).

Our formulation of the translation from MGE-STRIPS to
an FDR planning task differs from the translation described
by Helmert [2009] in the way preconditions of operators
are encoded. We use the value ⊥G to express that none
of the facts from the mutex group G is set. Whenever the
fam-group map γ maps G to a non-empty fam-group and
pre(o) ∩ (γ(G) \ G) 6= ∅, we set the variable VG to ⊥G

in a precondition of operator qo, i.e., VG is set to ⊥G only if
pre(o) is mutex with G and we can infer this fact from the
given fam-group map. Note also that if γ(G) = ∅ for ev-
ery G ∈ G, then we get the same FDR encoding as Helmert
[2009].

Definition 3. Given an MGE-STRIPS planning task EΠ =
〈Π = 〈F ,O, sI , sG〉,G, γ〉, P(EΠ) = 〈V ,O, ψI , ψG〉 is an
FDR planning task such that:

(T1) V = {VG | G ∈ G} where dom(VG) = G ∪ {⊥G} for
every VG ∈ V;

(T2) O = {qo | o ∈ O} where

(T2a) pre(qo) = {〈VG, f〉 | G ∈ G, G ∩ pre(o) 6= ∅, f ∈
G ∩ pre(o)} ∪ {〈VG,⊥G〉 | G ∈ G, G ∩ pre(o) =
∅, γ(G) ∩ pre(o) 6= ∅},

(T2b) eff(qo) = {〈VG, f〉 | G ∈ G, G ∩ add(o) 6= ∅, f ∈
G ∩ add(o)} ∪ {〈VG,⊥G〉 | G ∈ G, G ∩ del(o) 6=
∅, G ∩ add(o) = ∅},

(T3) ψI = {〈VG, f〉 | G ∈ G, G ∩ sI 6= ∅, f ∈ G ∩ sI} ∪
{〈VG,⊥G〉 | G ∈ G, G ∩ sI = ∅}

(T4) ψG = {〈VG, f〉 | G ∈ G, G ∩ sG 6= ∅, f ∈ G ∩ sG}
Although encoding ⊥G in preconditions of operators is

not necessary, because this fact is true implicitly, we use
it to ensure that the structure of a projection to the mutex
group in STRIPS is preserved in the corresponding DTG in

f1 f2

f3 f4

o13 o31 o24 o42

o34

(a)

f1 f2

⊥G

o13
o31 o24

o42

(b)

f1 f2

⊥G

o13
o31 o24

o42

o42

o31

(c)

Figure 1: F = {f1, f2, f3, f4} is a fam-group and G = {f1, f2}
a mutex group. (a) is a projection to F ; (b) a DTG of VG if ⊥G is
encoded in operator preconditions, i.e., if γ(G) = F ; (c) a DTG of
VG if ⊥G is not encoded in operator preconditions, i.e., if γ(G) = ∅.

FDR. Why we need this will become clear in the next sec-
tion where we deal with RSE-invertibility. For now, see the
example depicted in Figure 1. The projection to the fam-
group F = {f1, . . . , f4} is shown in Figure 1a. Now suppose
we decide to encode only a subset of F as an FDR variable,
namely G = {f1, f2}. If we set γ(G) = ∅, then the resulting
DTG of VG will be as depicted in Figure 1c, i.e., it will have
additional edges between f1 and f2 not present in the original
projection, because the operators o31 and o42 have f3 and f4,
respectively, in their preconditions. Therefore VG is not set in
pre(qo31) and pre(qo42). However, if we set γ(G) = F , then
we preserve the structure, as depicted in Figure 1b, because
VG will be set to ⊥G in the preconditions of qo31 and qo42 .

Proposition 4. Let EΠ = 〈Π = 〈F ,O, sI , sG〉,G, γ〉 denote
an MGE-STRIPS planning task. π = 〈o1, . . . , on〉 is a plan
for EΠ iff π′ = 〈qo1 , . . . , qon〉 is a plan for P(EΠ).

Proof Sketch. P(EΠ) is well-defined, because (T3) assigns
one value to every variable, i.e., ψI is a state. Similarly, (T4)
ensures that ψG is a partial state, and (T2a-b) produce partial
states, because only one value is assigned to each variable.

Note that f ∈ sI iff 〈VG, f〉 ∈ ψI for everyG s.t. G∩sI =
{f}, and 〈VG,⊥G〉 ∈ ψI only if sI ∩ G = ∅. Similarly,
f ∈ sG iff 〈VG, f〉 ∈ ψG; and for every o ∈ O it holds that
f ∈ pre(o) iff 〈VG, f〉 ∈ pre(qo), and 〈VG,⊥G〉 ∈ pre(qo)
only if pre(o) ∩ G = ∅ and pre(o) ∩ γ(G) 6= ∅. Hence o
is applicable in sI iff qo is applicable in ψI for every o ∈
O. Furthermore, from (T2b) it follows that f ∈ oJsIK iff
〈VG, f〉 ∈ qoJψIK for every G s.t. G ∩ oJsIK = {f}, and
〈VG,⊥G〉 ∈ qoJψIK only if G is mutex with oJsIK. The rest
follows by induction.

4 RSE-Invertible Variables
Now, we show how to identify mutex groups in EΠ whose
counterparts form variables in P(EΠ) that are RSE-invertible.
This condition is required for black variables in the tractable
fragment of red-black planning we consider. First, we for-
mulate conditions for RSE-invertibility of facts and mu-
tex groups. Then, we show that, given a fam-group map,
these conditions are both sufficient and necessary for RSE-
invertibility of the resulting FDR variables.

For the rest of this section, let EΠ = 〈Π,G, γ〉 for Π =
〈F ,O, sI , sG〉 denote an MGE-STRIPS planning task, and
let P(EΠ) = 〈V ,O, ψI , ψG〉 denote an FDR planning task
constructed from EΠ according to Definition 3.
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Definition 5. A fact f ∈ F is RSE-invertible if
(I1) there exist o, o′ ∈ O such that f ∈ add(o) and f ∈

del(o′), and
(I2) for every operator o ∈ O such that f ∈ del(o) it

holds that there exists an operator o′ ∈ O such that
f ∈ add(o′) and pre(o′) ⊆ pre(o) ∪ add(o), and

(I3) for every operator o ∈ O such that f ∈ add(o) it holds
that there exists an operator o′ ∈ O such that f ∈ del(o′)
and pre(o′) ⊆ pre(o) ∪ add(o).

We also call a set of facts (or mutex group) F ⊆ F RSE-
invertible if every f ∈ F is RSE-invertible.

For the main result of this section (Theorem 9), we need to
prove several auxiliary lemmas first. We start by showing that
the condition pre(o) ⊆ pre(o′) ∪ add(o′) from (I2-3) corre-
sponds to the RSE-invertibility condition on edges in DTGs
as long as we have transitions in both directions.
Lemma 6. LetG ∈ G be a mutex group and o, o′ ∈ O be two
operators with edges (x, qo, x

′) and (x′, qo′ , x) in the DTG of
VG. Then pre(o) ⊆ pre(o′) ∪ add(o′) iff pre(qo)[V \ VG] ⊆
pre(qo′)[V \ VG] ∪ eff(qo′)[V \ VG].

Proof. “⇐”: It is easy to see that f ∈ pre(o) iff 〈VG′ , f〉 ∈
pre(qo), and f ∈ pre(o′) iff 〈VG′ , f〉 ∈ pre(qo′), and f ∈
add(o′) iff 〈VG′ , f〉 ∈ eff(qo′) for every G′ ∈ G, therefore it
holds that pre(o)\G ⊆ (pre(o′)∪add(o′))\G. It remains to
show that also pre(o)∩G ⊆ (pre(o′)∪add(o′))∩G (because,
for all G′ ∈ G, 〈VG′ ,⊥G′〉 is never explicitly represented as
a fact in pre(o)). There are two cases:

(1) If VG ∈ vars(pre(qo)), then pre(o)[VG] = f = x ∈ G,
because (x, qo, x

′) is an edge in the DTG of VG, therefore
pre(o) = f . Moreover, since there is also an edge (x′, qo′ , f)
in the DTG of VG, it follows that eff(qo′)[VG] = f and
therefore f ∈ add(o′). (2) If VG 6∈ vars(pre(qo)) or
pre(qo)[VG] = ⊥G, then G ∩ pre(o) = ∅.

“⇒”: For everyG ∈ G s.t. G∩pre(o) 6= ∅ there exists f ∈
G s.t. f ∈ pre(o), and pre(qo)[VG] = f , and pre(qo′)[VG] =
f or eff(qo′)[VG] = f . So, it remains to show that the claim
holds also for everyH ∈ G,H 6= G, such thatH∩pre(o) = ∅
and VH ∈ vars(pre(qo)) and therefore pre(qo)[VH ] = ⊥H .
If pre(qo)[VH ] = ⊥H , then γ(H) ∩ pre(o) 6= ∅. Let y ∈
γ(H) ∩ pre(o). Therefore, y ∈ pre(o′) or y ∈ add(o′).

(1) If y ∈ pre(o′) then H ∩ pre(o′) = ∅, because pre(o′)
is not a mutex (S2). Therefore, pre(qo′)[VH ] = ⊥H .

(2) If y ∈ add(o′) then H ∩ add(o′) = ∅ (because
o′Jpre(o′)K is not mutex (S2)) and there exists y′ ∈ pre(o′)∩
del(o′) s.t. y′ ∈ γ(H) (because γ(H) is a fam-group). (2a) If
y′ ∈ H , then eff(qo′)[VH ] = ⊥H , because H ∩ add(o′) = ∅.
(2b) If y′ ∈ γ(H) \H , then H ∩ pre(o′) = ∅ (because y′ ∈
pre(o′) and pre(o′) 6∈ MG), therefore pre(qo′)[VH ] = ⊥H .

Now, we are ready to prove that RSE-invertibility of mutex
groups implies RSE-invertibility of the corresponding FDR
variables, and vice versa. We separate the case of singleton
mutex groups, and larger mutex groups, which require the
additional condition (S7).
Lemma 7. Let G = {f} be a mutex group. Then f is RSE-
invertible iff VG is RSE-invertible.

Proof. “⇒”: Since dom(VG) = {f,⊥G} and we need to
prove that every edge in the DTG of VG is RSE-invertible,
we need to investigate two cases:

(1) Let (f, qo,⊥G) be an edge in the DTG of VG. Then
eff(qo)[V ] = ⊥G and either pre(qo)[V ] = f or V 6∈
vars(pre(qo)). So we have f 6∈ add(o) and f ∈ del(o),
therefore there exists o′ s.t. f ∈ add(o′) and pre(o′) ⊆
pre(o)∪add(o). So, f 6∈ pre(o′) because f ∈ add(o′), there-
fore pre(qo′)[VG] = ⊥G or VG 6∈ vars(pre(qo′)), therefore
there is an edge (⊥G, qo′ , f). The rest follows from Lemma 6.

(2) Let (⊥G, qo, f) be an edge in the DTG of VG. Then
eff(qo)[VG] = f and either pre(qo)[VG] = ⊥G or V 6∈
vars(pre(qo)). So, we have f ∈ add(o) and therefore
f 6∈ pre(o) and f 6∈ del(o). Therefore, there exists
o′ ∈ O s.t. f ∈ del(o′) and pre(o′) ⊆ pre(o) ∪ add(o).
Now, to prove that there is an edge (f, qo′ ,⊥G) (and there-
fore this lemma follows from Lemma 6), we need to show
that pre(qo′)[VG] 6= ⊥G, i.e., pre(qo′)[VG] = f or V 6∈
vars(pre(qo′)). If pre(qo′)[VG] = ⊥G, then there is f ′ ∈
γ(G) s.t. f ′ ∈ pre(o′) ∩ del(o′), because γ(G) is a fam-
group. Therefore, {f, f ′} ⊆ del(o′), which is a contradiction
because {f} ∪ pre(o′) is a mutex (S2).

“⇐”: If VG is RSE-invertible, then for every edge
(x, qo, x

′) in DVG
there exists (x′, qo′ , x) such that

pre(qo′)[V \ VG] ⊆ pre(qo)[V \ VG] ∪ eff(qo)[V \ VG].
Therefore, it follows from Lemma 6 that also pre(o′) ⊆
pre(o) ∪ add(o). Moreover, from the construction (T2b) it
follows that if x′ = f , then f ∈ add(o) and f ∈ del(o′),
and vice versa, if x = f , then f ∈ del(o) and f ∈ add(o′).
Therefore, the conditions (I1-3) are satisfied.

A mutex group M ∈ G such that |M | ≥ 2 requires the
fam-group map γ to map M to its superset fam-group (S7).
Recall the example in Figure 1. The facts f1 and f2 are RSE-
invertible, but f3 and f4 are not, because of the operator o34.
So, we would like to construct an RSE-invertible variable
from G = {f1, f2}. If we set γ(G) = ∅, then the resulting
DTG (Figure 1c) will have edges between f1 and f2 that are
not RSE-invertible, because the operator o31 has f3 as its pre-
condition, which is not part of pre(o42)∪add(o42). However,
γ(G) = F results in the RSE-invertible DTG (Figure 1b).

Lemma 8. Let G ∈ G be a mutex group with |G| ≥ 2 and
γ(G) 6= ∅. Then G is RSE-invertible iff VG is RSE-invertible.

Proof. “⇒”: Since γ(G) is a fam-group s.t. G ⊆ γ(G) and
|G| ≥ 2 and (S6), for every operator o ∈ O and every f ∈ G
it holds that f ∈ del(o) implies f ∈ pre(o). Let (d, qo, d

′)
denote an edge in the DTG of VG. Then eff(qo)[VG] = d′ and
either pre(qo)[VG] = d or VG 6∈ vars(pre(qo)). Now, if we
show that there also exist an edge (d′, qo′d) for some o′ ∈ O
s.t. pre(o′) ⊆ pre(o) ∪ add(o), then the rest follows from
Lemma 6. So three cases need to be investigated.

(1) If d, d′ ∈ G, then d′ ∈ add(o). And since γ(G) is a
fam-group, we have VG ∈ vars(pre(qo)) and d ∈ pre(o) ∩
del(o). Therefore, there exists o′ ∈ O s.t. d ∈ add(o′) and
pre(o′) ⊆ pre(o) ∪ add(o). Thus, d′ ∈ pre(o′), because d 6∈
pre(o′) and γ(G) ∩ (pre(o) ∪ add(o)) = {d, d′}. Therefore,
there exists an edge (d′, qo′ , d).
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(2) If d ∈ G and d′ = ⊥G, then add(o) ∩ G = ∅ and
del(o) ∩ G 6= ∅, therefore d ∈ del(o), because otherwise
there would exist x ∈ G, x 6= d, s.t. x ∈ del(o), there-
fore x ∈ pre(o), therefore pre(qo)[VG] = x which is in con-
tradiction. So we have d ∈ del(o) and also d ∈ pre(o).
Therefore, there exists o′ s.t. d ∈ add(o′) and pre(o′) ⊆
pre(o) ∪ add(o). So since d ∈ pre(o) and add(o) ∩ G = ∅,
then pre(o′)∩G = ∅, therefore we have eff(qo′)[VG] = d and
either pre(qo′)[VG] = ⊥G or VG 6∈ vars(pre(qo′)). There-
fore, we have an edge (⊥G, qo′ , d).

(3) If d = ⊥G and d′ ∈ G, then d′ ∈ add(o), there-
fore there exists f ∈ γ(G) \ G s.t. f ∈ pre(o) ∩ del(o).
Thus, there exists o′ ∈ O s.t. f ∈ add(o′) and pre(o′) ⊆
pre(o) ∪ add(o). Hence, d′ ∈ pre(o′) ∩ del(o′) because
γ(G) ∩ pre(o′) ∩ del(o′) 6= ∅ (γ(G) is a fam-group) and
(pre(o)∪ add(o))∩γ(G) = {f, d′} and f 6∈ pre(o′). There-
fore, pre(qo′)[VG] = d′ and eff(qo′)[VG] = ⊥G, and thus we
have (d′, qo′ ,⊥G).

“⇐”: Let (x, qo, x
′) denote an edge in DVG

. If x′ ∈ G,
then x′ ∈ add(o) (T2b). Since γ(G) is a fam-group, either
pre(qo)[VG] = ⊥G, or pre(qo)[VG] = x s.t. x ∈ G. There-
fore if x ∈ G, then x ∈ pre(o) ∩ del(o). Therefore, for every
such qo it holds that eitherG∩del(o) 6= ∅ orG∩add(o) 6= ∅.
Since VG is RSE-invertible, for every edge (x, qo, x

′) there
exist an edge (x′, qo′ , x) s.t. pre(qo′)[V \ VG] ⊆ pre(qo)[V \
VG]∪eff(qo)[V \VG], therefore it follows from Lemma 6 that
pre(o′) ⊆ pre(o) ∪ add(o). Hence, the conditions (I1-3) are
satisfied.

Theorem 9. Let G ∈ G be a mutex group with |G| = 1 or
γ(G) 6= ∅. Then G is RSE-invertible iff VG is RSE-invertible.

Proof. It follows directly from Lemma 7 and Lemma 8.

5 Causal Graph
Besides RSE-invertibility of black variables, the tractable
fragment of red-black planning requires the black causal
graph to be acyclic. To achieve that, we show how to find a
causal link between mutex groups that is translated into FDR.

Definition 10. Given a mutex group G ∈ 2F , two distinct
facts f ∈ G and f ′ 6∈ G, and a fam-group map γ on 2F ,
we say that there is a causal link from (G, f) to f ′ iff there
exists an operator o ∈ O such that (i) f ′ ∈ del(o) ∪ add(o),
and (ii) f ∈ pre(o)∪del(o)∪ add(o), or γ(G)∩pre(o) 6= ∅.
Theorem 11. Let EΠ = 〈Π,G, γ〉 be an MGE-STRIPS task
with operators O, A,B ∈ G be two distinct mutex groups,
and CGV be the causal graph of P(EΠ). There is an edge
(VA, VB) in CGV iff there exist f ∈ A and f ′ ∈ B such that
there is a causal link from (A, f) to f ′.

Proof. “⇐”: Let o ∈ O be the operator inducing the causal
link from (A, f) to f ′. If f ∈ pre(o), then pre(qo)[VA] = f .
If f ∈ add(o), then eff(qo)[VA] = f . If f ∈ del(o),
then either eff(qo)[VA] = ⊥A or there exist x ∈ A s.t.
eff(qo)[VA] = x. If γ(A) 6= ∅ and γ(A)∩pre(o) 6= ∅, then ei-
ther pre(qo)[VA] = x for some x ∈ A, or pre(qo)[VA] = ⊥A.
Therefore, VA ∈ (vars(pre(qo))∪vars(eff(qo)), and for sim-
ilar reasons VB ∈ vars(eff(qo)).

“⇒”: If (VA, VB) in CG{VA,VB}, then there exists qo ∈
O s.t. VA ∈ (vars(pre(qo)) ∪ vars(eff(qo))) and VB ∈
vars(eff(qo)). If pre(qo)[VA] ∈ A or eff(qo)[VA] ∈ A, and
eff(qo)[VB ] ∈ B, then it follows trivially that A ∩ (pre(o) ∪
add(o)) 6= ∅ and B ∩ add(o) 6= ∅. So what remains is
to show that (i) if pre(qo)[VA] = ⊥A, then γ(A) 6= ∅ and
γ(A) ∩ pre(o) 6= ∅ (T2a); (ii) if eff(qo)[VA] = ⊥A, then
A ∩ del(o) 6= ∅ (T2b); (iii) if eff(qo)[VB ] = ⊥B , then
B ∩ del(o) 6= ∅ (T2b).

Theorem 11 shows that causal graphs in the FDR planning
task P(EΠ) correspond exactly to the causal links in EΠ as
per Definition 10. So, extracting acyclic causal graphs needed
for the tractable fragment of red-black planning require to
find subsets of mutex groups consisting of facts whose causal
links form an acyclic graph. In the next section, we show how
to find such subsets of mutex groups.

6 Inference of Black Variables
We have shown how to find RSE-invertible mutex groups and
what conditions must be met in order to form a causal link
between FDR variables created from mutex groups. Now, we
put everything together and show how to select mutex groups
that can be translated into RSE-invertible FDR variables that
form an acyclic causal graph, and thus can be painted black.
Definition 12. Given a STRIPS planning task Π with facts
F , a fam-group map γ over 2F , and a set of mutex groups
K ⊆ 2F such that for every G ∈ K it holds that either |G| =
1, or γ(G) 6= ∅, X(Π,K, γ) = (V,E) denotes a digraph with
vertices V ⊆ K×F and edgesE ⊆ V ×V , where (G, f) ∈ V
iff G ∈ K and f ∈ G, and ((G, f), (G′, f ′)) ∈ E iff f = f ′

or there is a causal link from (G, f) to f ′. Given a cycle c in
X(Π,K), let C(c) = {G | (G, f) ∈ c}.
Theorem 13. Let EΠ = 〈Π,G,MG〉 be an MGE-STRIPS
planning task,K ⊆ G be a set of RSE-invertible mutex groups
such that |G| = 1 or γ(G) 6= ∅ for every G ∈ K, and
VK be the set of corresponding variables from P(EΠ). Then
CGVK is acyclic iff for every cycle c in X(Π,K, γ) it holds
that |C(c)| = 1.

Proof Sketch. It follows directly from Theorem 11, because
if |C(c)| = 1, then every cycle of causal links is contained
within one mutex group.

Algorithm 1 encapsulates the algorithm for inference of a
set of RSE-invertible mutex groups K, and a fam-group map
γ, that can be translated into red-black planning task as black
variables. We assume we are given a STRIPS planning task
Π, and a set of fam-groups H ⊆ 2F that can be inferred
by one of the algorithm proposed by Helmert [2009], Fišer
and Komenda [2018], or Fišer [2020]. In steps 1-3, we pre-
pare RSE-invertible mutex groups and a mapping to the cor-
responding fam-groups. In step 1, H′ is constructed as a set
of singletons, each corresponding to the RSE-invertible fact
that is not covered by any input fam-group, i.e., these facts
can be translated only to binary FDR variables. In step 2, the
fam-group map is constructed in the following way: (i) each
singleton fromH′ is mapped to an empty set, and (ii) for each
fam-group G containing at least one RSE-invertible fact, we
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Algorithm 1: Inference of RSE-invertible mutex
groups forming acyclic causal graph.
Input: A STRIPS planning task Π = 〈F ,O, sI , sG〉,

a set of fam-groupsH ⊆ 2F , a set of
RSE-invertible facts N ⊆ F .

Output: A set of RSE-invertible mutex groups K, a
fam-group map γ over K

1 H′ ← {{f} | f ∈ N \
⋃

G∈HG};
2 Construct a fam-group map γ′: γ′(G) = ∅ for every
G ∈ H′, and γ′(G ∩N ) = G for every G ∈ H s.t.
G ∩N 6= ∅;

3 H? ← H′ ∪ {G ∩N | G ∈ H, G ∩N 6= ∅};
4 Construct the digraph X(Π,H?, γ′) = (V,E).;
5 Find vertices V ′ ⊆ V such that for every cycle c in the

subgraph of X(Π,H?, γ) induced by V ′ it holds that
|C(c)| = 1;

6 Z ← {(G, {f | (G, f) ∈ V ′}) | (G, f ′) ∈ V ′}.;
7 Construct a fam-group map γ: For every (G,X) ∈ Z,

set γ(X) = ∅ if |X| = 1 and γ(X) = G otherwise;
8 K ← {X | (G,X) ∈ Z};

map its RSE-invertible subset G ∩ N to G. In step 3, H? is
constructed as a set of RSE-invertible mutex groups covering
all RSE-invertible facts. In step 4, the graph defined in Def-
inition 12 is constructed, and in step 5, we find a subset of
vertices having cycles only within each mutex group. Finally,
in the last three steps we extract the solution.

Note that the step 5 is a variant of an NP-complete feed-
back vertex set problem [Karp, 1972]. We decided to use a
naive approach and solve this problem by an integer linear
program (ILP), where each vertex from X(Π,H?, γ′) corre-
sponds to a binary variable, and each constraint corresponds
to a cycle that has to be avoided. Instead of listing all cycles,
we first add all cycles between pairs of vertices from different
mutex groups, then we solve the problem, and check whether
the resulting solution has a cycle. If we find a cycle, we add it
as another constraint, solve the problem, and continue in this
manner until we find a feasible solution.

As objective function of the ILP, we tried two variants. The
first variant is simply a maximization of the number of facts
in the resulting mutex groups. The second variant weights
facts using the number of conflicts in a relaxed plan π+ ob-
tained from the FF heuristic [Hoffmann and Nebel, 2001]
computed on the STRIPS representation. Following prior
work [Domshlak et al., 2015], we say a fact f has a conflict if
there is an operator o in π+ such that f ∈ pre(o) and f is not
satisfied when executing π+ with the non-relaxed semantics.
For each mutex group M , we sum the number of conflicts
from all f ∈ M , and we set the weight of each fact f ∈ M
as the sum over |M |. This way we prioritize mutex groups
containing facts with most conflicts in the relaxed plan.

Note that Algorithm 1 describes only the inference of RSE-
invertible variables. The rest of the FDR variables, i.e., the
red variables, are constructed from the remaining facts not
covered by the resulting black variables by greedy approach
described by Helmert [2009], i.e., we greedily maximize the
size of red variables.
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Figure 2: Per-task comparison of the translation time (in seconds).

7 Experimental Evaluation
We implemented Algorithm 1 in C, used fam-groups inferred
from PDDL [Fišer, 2020]2, and used the red-black heuristic
hRB [Domshlak et al., 2015] implemented in FD [Helmert,
2006]. The experiments were performed on Intel(R) Xeon(R)
Scalable Gold 6146 machines with CPLEX solver v12.6, and
time and memory limits of 30min and 8GiB. Out of all bench-
marks from International Planning Competitions of 1998 to
2018 satisficing planning tracks, we selected all tasks where
no conditional effects were created and at least one variable
could be painted black.

We compare the following configurations: the baseline
configuration B runs the painting strategy denoted as A3

by Domshlak et al. [2015] on the default FDR encoding
[Helmert, 2009]; M maximizes the number of black facts us-
ing Algorithm 1; C is the variant of Algorithm 1 using con-
flicts in a relaxed plan; and the “oracle” O picks the best FDR
encoding and painting for each tested task. It considers B, and
five best encodings (by objective value) from each of M and
C, which we obtain by repeatedly solving the corresponding
ILP, each time disallowing previous solutions by additional
constraints. The encodings are chosen in terms of coverage,
preferring tasks solved in the initial state by hRB. O serves to
illustrate the potential of our customized encodings, assum-
ing perfect knowledge about which encoding works best for
a given task.

The most time-demanding part of Algorithm 1 is solving
the ILP (step 5). The average and median time spent in this
step was 3.3 seconds and 12 milliseconds, respectively, for
both C and M. The maximum was more than six minutes,
but it took more than a minute only for 15 tasks in transport,
7 tasks in visitall, and 1 task in the satellite domain. Fig-
ure 2 shows a comparison of running times (in seconds) of
the whole translation process. Although Algorithm 1 often
requires more time in comparison to the greedy approach of
the baseline, it, for most cases, leaves enough time for the
planner, as we describe below.

The scatter plots in Figure 3 show that our methods are
able to increase the number of black facts by several orders of
magnitude. The oracle often uses significantly less black facts
than B, indicating that it is not necessarily beneficial to have
more black facts. In fact, having more black variables (facts)
can negatively impact heuristic computation time, without
improving informativeness.

2https://gitlab.com/danfis/cpddl, branch ijcai21-fdr-red-black
3The painting strategy greedily paints variables red until the

black causal graph is acyclic, preferring keeping variables with
larger number of incident edges to black variables.
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Figure 3: Per-task comparison of the number of black FDR facts.

Table 1 shows the number of tasks solved (coverage) in
the left, and the number of tasks solved by hRB in the ini-
tial state in the center. B clearly outperforms M which, again,
shows that maximizing the number of black facts is not nec-
essarily the best painting strategy. C and B are very similar
in coverage, with strengths in different domains. C can solve
six more tasks in the initial state resulting from only two do-
mains, blocks and satellite.

The oracle variant O demonstrates the potential of our ap-
proach if we better understand how to select the best encoding
for a given task. B already solves a large portion of tasks, but
here we show that it is still possible to create an encoding and
painting that could further increase this number by at least
25 tasks, and 14 more can be solved in the initial state. Un-
fortunately, it is unclear how to directly compare the quality
of individual encodings for a given task without running the
search. Maximizing the number of black facts turned out to
be too simplistic as an optimization criterion. Considering
conflicts in a relaxed plan improves the results in some do-
mains, but it is still unclear what properties identify a good
FDR encoding and painting for red-black planning.

The rightmost column in Table 1 shows the number of
tasks with a single maximal set of black variables. That is,
it shows the number of tasks where different paintings can
only be achieved by painting black a subset of the facts that
were already painted black by C and M. In other words, both
C and M created exactly the same set of black variables, but
B could paint only less variables black. This is exactly what
happened in the depot domain where painting less variables
black proved to generate a more suitable FDR for the red-
black heuristic.

8 Conclusion

We devised a method to custom-design FDR encodings of
classical planning tasks, showcasing how a tractable fragment
of red-black planning can be formulated into the translation
from PDDL to FDR. By describing this translation as an in-
teger linear program, we can explore the space of possible
tractable red-black FDR encodings. Our evaluation shows
an increase in the number of black facts by several orders
of magnitude. Our approach is flexible, allowing to express
complex properties based on, e.g., DTGs or causal graphs.
Thus, custom-designed FDR encodings have the potential of
benefiting planning techniques beyond red-black planning,
opening up a wide range of possibilities for future research.

domain coverage solved initial state sgl
B M C O B M C O

barman11 (20) 9 2 3 9 0 0 0 0 0
blocks00 (35) 35 33 32 35 0 1 2 2 0
depot02 (22) 17 14 14 17 1 1 1 1 22
driverlog02 (20) 19 19 19 20 1 1 1 2 0
elevators08/11 (50) 50 41 50 50 50 2 50 50 0
floortile11 (20) 8 8 7 8 0 0 0 0 20
hiking14 (20) 13 16 16 20 0 0 0 0 0
mystery98 (28) 18 18 19 19 0 0 0 0 0
pipesw-notank04 (40) 24 23 23 24 0 0 0 0 30
pipesw-tank04 (40) 16 16 16 18 0 0 0 0 0
satellite02 (36) 36 36 36 36 10 10 14 21 2
scanalyzer08/11 (35) 31 35 35 35 0 0 0 0 0
sokoban08/11 (50) 46 46 48 48 0 0 0 0 23
storage06 (30) 19 19 19 21 3 3 3 3 0
termes18 (20) 14 14 14 16 0 0 0 0 0
tidybot11 (20) 16 15 16 18 0 0 0 0 0
transport08/11/14 (70) 70 65 70 70 70 0 70 70 0
trucks06 (30) 15 16 16 17 0 0 0 0 0
others (647) 497 497 497 497 172 172 172 172 428
Σ (1 233) 953 933 950 978 307 190 313 321 525

Table 1: Number of tasks solved (left), number of tasks solved in
the initial state (center), and number of tasks with a single maximal
set of black variables (right). B, M, C, and O are described in the text.
Domains with identical results are summarized in “others”.
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