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Abstract

Linear temporal logic over finite traces (LTLy)
satisfiability checking is a fundamental and hard
(PSPACE-complete) problem in the artificial intel-
ligence community. We explore teaching end-to-
end neural networks to check satisfiability in poly-
nomial time. It is a challenge to characterize the
syntactic and semantic features of LTL; via neu-
ral networks. To tackle this challenge, we propose
LTL{fNet, a recursive neural network that captures
syntactic features of LTL ¢ by recursively combin-
ing the embeddings of sub-formulae. LTLfNet
models permutation invariance and sequentiality in
the semantics of LTL; through different aggrega-
tion mechanisms of sub-formulae. Experimental
results demonstrate that LTLfNet achieves good
performance in synthetic datasets and generalizes
across large-scale datasets. They also show that
LTLfNet is competitive with state-of-the-art sym-
bolic approaches such as nuXmv and CDLSC.

1 Introduction

Linear temporal logic over finite traces (LTL¢) [Giacomo and
Vardi, 2013] is one of the popular modal logics in artificial
intelligence (AI). Since LTL is well-defined and unambigu-
ous, it has been widely applied to formalize and validate sys-
tem behaviors. LTL satisfiability checking is a fundamental
problem of LTLy, i.e., checking whether a given LTL for-
mula is satisfiable or unsatisfiable. Compared with Linear
temporal logic (LTL) [Pnueli, 19771, LTL  is interested in fi-
nite traces [Giacomo and Vardi, 2013]. Therefore, LTL is
more attractive in Al focusing on finite behaviors, such as
reinforcement learning [Xie et al., 2021], program synthe-
sis [Xiao et al., 2021], and explainable AI [Kim et al., 2019].

The complexity of LTL; satisfiability checking is
PSPACE-complete [Giacomo and Vardi, 2013]. Lots of ap-
proaches have tried to efficiently solve this problem. They
are all based on crafted symbolic reasoning, e.g., based on
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tableau [Li et al., 2014] and based on SAT [Fionda and Greco,
2016; Li et al., 2020]. We refer to these approaches as sym-
bolic approaches. A symbolic approach needs to be sound
and complete, i.e., it must correctly answer whether a given
formula is satisfiable or not. Given the inherent intractability
of LTL satisfiability checking, no symbolic approach scales
to all datasets [Li er al., 2020]. Therefore, developing new
methods for all different paradigms remains to be an interest-
ing research direction [Li et al., 2020].

Recently, some approaches tried to introduce end-to-end
neural networks to solve Boolean satisfiability (SAT) prob-
lems [Selsam et al., 2019; Cameron et al., 2020]. Their suc-
cess stems from the fact that neural networks are able to cap-
ture permutation invariance of the semantics of Boolean for-
mulae. A task is permutation invariant if permutations of its
input do not change the output. Although these works are
not competitive with state-of-the-art (SOTA) symbolic ap-
proaches, they show the potential of neural networks in solv-
ing hard computational problems. This poses an interesting
question: whether LTL satisfiability checking can be effec-
tively tackled by end-to-end neural networks?

To answer this question, we explore teaching end-to-end
neural networks to check LTL; satisfiability. It is a chal-
lenge to integrate symbolic reasoning of LTL with contin-
uous neural reasoning, as it requires neural networks to cap-
ture the permutation invariance of LTLy. Some logical op-
erators (e.g., A operators) of LTL are permutation invariant,
i.e., arbitrarily changing the position of the sub-formula, the
satisfiability of the formula remains unchanged. For exam-
ple, both (north vV west) U door and (west V north) U door
are satisfiable. Besides, neural networks need to model the
sequentiality of LTL ;. Some logical operators (e.g., U oper-
ator) of LTL; is sequential, i.e., changing the position of the
sub-formula, the satisfiability of the formula can be changed.
For example, (door U west) A G—door is satisfiable while
(west U door) A G—door is unsatisfiable.

In this paper, we propose LTLfNet, a recursive neural net-
work, to predict the satisfiability of a given LTL; formula
end-to-end. While symbolic approaches scales exponentially
with the formula size, LTLfNet spends only polynomial time
to predict the result. Although LTLfNet does not guarantee
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soundness, its efficient framework and highly confident pre-
diction are still worthwhile for some LTL ;-SAT-heavy tasks.
To bridge the gap between symbolic reasoning of LTL; and
continuous neural reasoning, LTLfNet not only captures the
syntactic features of LTL y by combining and aggregating fea-
tures recursively over the syntax tree, but also models the per-
mutation invariance and sequentiality of LTL ; (semantic fea-
tures). Specifically, to characterize the different semantics of
logical operators, LTLfNet learns independent combination
function for each logical operator as well as exploits aggrega-
tion functions fulfilling the permutation invariance or sequen-
tiality for each logical operator.

Empirical evaluation on synthetic datasets shows that
LTLfNet outperforms existing architectures that have been
used to embed LTL or LTL; formulae. Besides, we also
evaluate LTLfNet on some large-scale datasets. Results
demonstrate strong generalization of LTLfNet and compet-
itive results with the SOTA symbolic approaches such as
nuXmv [Cavada et al., 2014] and CDLSC [Li et al., 2020].

2 Related Work

Symbolic approaches to LTL satisfiability checking. The
classical solution to LTL satisfiability checking is reducing
it to LTL satisfiability checking, which has been studied for
decades and many tools are available, e.g., nuXmv [Cavada
et al., 2014]. However, an extra cost has to be paid when
checking LTL formulae, because the traces in LTL satisfia-
bility checking are infinite while those are finite in LTL f sat-
isfiability checking. Therefore, Li et al. (2014) presented
a tableau-style algorithm for LTL s satisfiability checking so
as to avoid this cost. Inspired by recent dramatic improve-
ments in propositional SAT solving, Li et al. (2020) proposed
an LTL ; satisfiability checker via SAT-based model checking
and demonstrated outstanding performance.

Permutation invariance. Permutation invariance is a key
property in many symbolic logical reasoning mechanisms. A
task is permutation invariant if permutations of its input leave
the output unchanged. Take SAT problem for example, sat-
isfiability status is unaffected by the permutation of variables
and clauses. A number of recent works have studied neu-
ral network based methods for permutation invariance, such
as sets [Zaheer et al., 2017; Lee et al., 2019], matrices and
tensors [Hartford et al., 2018; Cameron et al., 2020], pool-
ing [Murphy et al., 2019; Zhang et al., 20201, and graph struc-
tured data [Cameron et al., 2020]. All these methods build
neural network layers respecting the permutation invariance,
but they differ in how to aggregate the embeddings and which
permutation-invariant function will be used in aggregation.
End-to-end neural networks for SAT. End-to-end neural
networks for the SAT problem are often designed delicately to
keep the property of permutation invariance so as to improve
performance. Amizadeh ef al. (2019) used an aggregation
function in the model, which is invariant to the permutation
of its input, to keep the property. Selsam et al. (2019) built
a graph of the propositional formula and enforced permuta-
tion invariance by managing nodes and edges according to
the topology of the graph without any additional ordering.
Cameron et al. (2020) demonstrated that two different archi-
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tectural approaches, i.e., exchangeable architecture [Hartford
et al., 2018] and message passing [Selsam et al., 2019], can
outperform previous approaches on random 3-SAT problems.
Inspired by their work, we explore efficient end-to-end neu-
ral networks for LTL ; satisfiability checking that can capture
permutation invariance and sequentiality of LTL¢.

Continuous neural representation of logical expressions.
It is hard to embed logical expressions because of the gap
between the continuous neural representation and the dis-
crete semantic definition of logical expressions. Neverthe-
less, there is work attempting to bridge this gap. Allama-
nis et al. (2017) proposed a TreeNN [Socher et al., 2013]
based approach to learning the identical representation of the
syntactic parse tree for semantically equivalent Boolean ex-
pressions. Evans et al. (2018) compared the abilities of dif-
ferent approaches in capturing and exploiting the structure
of logical expressions against an entailment prediction task.
They also proposed a model class named PossibleWorldNets,
which computes entailment as a “convolution over possible
worlds”. Paliwal er al. (2020) used message passing graph
neural networks to learn the representation of the modified
abstract syntax tree of higher-order logic expressions. They
demonstrated the benefits of modeling syntactic features of
formulae to embed logical expressions.

Embedding LTL/LTL; formulae. In recent years, some
works have tried to find a good way to embed LTL/LTL for-
mulae and explored the applications of LTL/LTL; formula
embeddings. Xie et al. (2021) sought to incorporate tempo-
ral knowledge into deep sequential learning. They transferred
an LTL; formula to a semantically equivalent deterministic
finite-state automaton (DFA) and used the graph embeddings
of the DFA as the representation of the LTL; formula. Em-
pirical results confirmed that their approach improved deep
models for sequential human action recognition and imitation
learning. However, their approach is hard to handle long for-
mulae because the size of the DFA grows exponentially with
the formula size. Since the size of most formulae in industrial
datasets is more than 1k, we do not compare their approach
with ours in our experiments. Vaezipoor et al. (2021) taught
a deep reinforcement learning agent to follow instructions ex-
pressed in LTL in multi-task environments. They used rela-
tional graph convolutional network (R-GCN) [Schlichtkrull
et al., 2018] to embed the parse tree for LTL formulae. Hahn
et al. (2021) explored the ability of Transformer [Vaswani et
al., 2017] to predict a trace satisfying the given LTL formula.
They directly employed Transformer to encode the LTL ¢ for-
mulae in Polish notation and decode a satisfying trace. Since
experimental results show the potential of neural networks
in predicting a satisfying trace of LTL; formulae, they sug-
gested that deep learning can already augment combinatorial
approaches in automatic verification and the broader formal
methods community [Hahn et al., 2021]. In comparison with
Transformer and R-GCN in LTL satisfiability checking, our
proposed approach is shown to have more advantages in our
experiments. Our superiority is probably due to the fact that
our approach explicitly models permutation invariance and
sequentiality, but Transformer and R-GCN do not.
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3 Preliminaries

The syntax of LTL for a finite set of atomic propositions
P includes true (T), standard logical operators (conjunction
(A) and negation (—)), and temporal logical operators (next
(X) and until (U)), described as follows:

¢:=T|p|=01]d1 ANd2| X | p1Udg,

where p € P U {T} and ¢, ¢1, and ¢ are LTL; formulae.
For brevity, we only consider the above fundamental opera-
tors in this paper. Operator disjunction (V), weak next (N), re-
lease (R), eventually (F), and always (G) are commonly used,
and can be defined as ¢1 V ¢2 := —(—¢d1 A ¢a), Nop =
“XT V Xo1, ¢1Rp2 1= =(=¢1 U =¢2), Fé1 := T U ¢,
and Gy := —(T U —¢y ) respectively. The sub-formula of an
LTL ; formula ¢ is defined as follows, where p € PU{T} and
@1, @2 are LTL; formulae: (1) if ¢ = p, then p is sub-formula
of ¢; (2) if ¢ = —¢1, then —¢; and the sub-formulae of ¢, are
sub-formulae of ¢; (3) if ¢ = @1 A ¢2, then ¢1 A ¢, the sub-
formulae of ¢1, and the sub-formulae of ¢, are sub-formulae
of ¢; (4) if ¢ = X¢1, then X¢; and the sub-formulae of ¢, are
sub-formulae of ¢; (5) if @ = ¢1 U ¢o, then ¢ U ¢o, the sub-
formulae of ¢1, and the sub-formulae of ¢, are sub-formulae
of ¢. The set of sub-formulae of ¢ is denoted by sub(¢). The
size of an LTL; formula ¢ is the number of logical operators
and atomic propositions in ¢, denoted by |®|.

LTL, is interpreted over finite fraces. An finite trace is
represented in the form © = s¢, $1,. .., Sy, Where s; € 2P ig
a state at time ¢t. For every state s; of m and every p € P, p
holds if p € s; or —p holds otherwise. The traces mentioned
in this paper are finite. The size of 7 is the number of states of
m, denoted by |7|. 7; denotes a sub-trace of 7 beginning from
the state s;. Let 7 is a trace and |7| = n. The satisfaction
relation = is defined as follows:

T ED iff pes;
T = o iff o o
iy ’:¢)1/\¢2 iff T ):le andm ':¢2
T )ZXQS iff 7;<TLaIld7T7;+1 ':¢

v ‘:¢1U¢2 iff ngkgn,ﬂ'k ):(bgand

Vi <ji< ]C,Tl'j ':¢1

where ¢, ¢1, ¢2 are LTL; formulae, and p € PU{T}. An
LTL formula ¢ is satisfiable if and only if there is a trace 7
such that o = ¢; otherwise it is satisfiable.

In this paper, we focus on the task of LTL satisfiabil-
ity checking. Its input is an LTL; formula ¢ and the out-
put is a binary classification predicting whether ¢ is satisfi-
able or unsatisfiable. For example, given an LTL; formula
(west V north) U door, it is satisfiable because there is a
trace such that west V north is true until the door is true. In
contrast, ((west V north) U door) A G—door is unsatisfiable
because door being always false (G—door) contradicts door
being true in the future ((west V north) U door)).

4 Approach

The core neural network of our approach is named LTLfNet.
Overall, LTLfNet first embeds a given LTL; formula, then
uses the embedding to perform a binary classification (satis-
fiable or unsatisfiable). In order to capture the syntactic fea-
tures and handle formulae of any size, we employ the general

Ly (¢3) = west Ly () = north

Figure 1: The syntax tree of (west V north) U Xdoor.

framework of recursive neural networks (TreeNN) [Socher et
al., 2011] to embed the syntax tree of a given LTL s formula.
The syntax tree of LTLy formula is defined as follows. An
example of syntax tree is shown in Figure 1.

Definition 1. Let ¢ be an LTL¢ formula. Its syntax tree G
is a four-tuple (Vy, Eg,74,Ly) defined as follows, where V
is a set of vertices, vy € Vg is the root vertex, Ey C Vg x Vg
is a set of undirected edges, and Ly: Vy, — {THUPU
{=. A, X,U}. Vi, and E, are initialized as {vy} and (), re-
spectively. vy = vg. For each sub-formula ¢; € sub(¢), Vy,
Ey, and Ly are constructed as follows:

o if ¢; =p, then Ly(¢;) = p;

o if ¢y = 01 ¢, then Vi = Vy U{vg, }, By = Ey U
{(Wm v%’)}’ and Ly(¢p;) = o1,

o if ¢y = ¢j 02 Py, then Vy = Vy U {%p%k}» Ey =
By U{(v4:,08,) s (V4,5 v, )}, and Ly (¢) = 02,

wherep € PU{T}, 01 € {=,X}, 02 € {A,U}, and ¢;, ¢i.
are LTL ¢ formulae.

Algorithm 1: LTLFEMBEDDING
Input

: a syntax tree (Vy, Eg,74,Le) of ¢ and
current vertex 7y, .
Output : the embedding ry, of ¢;.

1 ifLy(ry,) = p, wherep € PU{T} then

2 | rg, <~ ONE-HOTEMBEDDING(p)

3 elseif Ly(ry,) = op1, where opy € {—, X} then

4 getry, € Vqs s.1. (r¢i,r¢j) S E¢

s | rg, < LTLFEMBEDDING((Vy, Ey,74,Lg).7g,)

6 ry, <~ COMBINE(T4,;,0p1)

7 else

8 getry,,Te, € V¢ s.1. (T(bi,’l“%) , (’r‘¢i,7“¢k) S E¢
9 | 1y, < LTLFEMBEDDING((Vy, Ey,74,Lg).r¢,)

10 | r4, < LTLFEMBEDDING((Vy, Eg,7¢,Le).T¢,)

1 if Ly (’I"¢) = A then

12 L ry, < COMBINE(MP(ry,.,rg,),N)
13 else /* & = o, U ¢ */
in | rg, < COMBINE([rg,,ry,].U)

15 returnrg

Algorithm 1 shows the pseudo-code of embedding LTL ¢
formulae. LTLFEMBEDDING learns embeddings of sub-
formula for each vertex in the syntax tree by recursively com-
bining and aggregating the embeddings of its sub-formulae
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using a neural network. If the sub-formula is an atomic
proposition or T, we use a one-hot vector r,, € R (line 2
of Algorithm 1). Otherwise, we perform the function COM-
BINE with different learnable parameters for different logical
operators. The pseudo-code of COMBINE is shown in Algo-
rithm 2. We use a two-layer multilayer perceptron (MLP)
with a residual-like connection to compute the combination
representation of sub-formulae, which is the same as the
work [Allamanis et al., 2017]. Note that the dimensions of
Wo.op, Wi 0p, Wa,, are different from each other and re-
lated to the array of the operators.

Algorithm 2: COMBINE

Input : an aggregated representation r of
sub-formulae and the logical operator op.
Output : the combination representation r ;.
1 1/ < ReLU(Wy ,, - 1)
2 Tout = Wi gp - r’ + Waop-T
3 return v, /||rout 2

We define aggregation function for each operator fulfilling
permutation invariance or sequentiality as follows.

e Permutation invariance. If a formula and its sub-
formulae are connected by an unary operator (line 6 of
Algorithm1) or the A operator (line 12 of Algorithm 1),
we aggregate the embeddings of sub-formulae by per-
forming a mean pooling (MP).

e Sequentiality. If they are connected by the U operator
(line 14 of Algorithm 1), we aggregate the embeddings
of sub-formulae by concatenating them.

Given an LTL formula ¢, LTLfNet computes the proba-
bility 4 for ¢ being satisfiable as follow:

ry = LTLFEMBEDDING((Vy, Ey,7¢,Lg) , @),
Yo = MLPyqt(Ts),

where MLP,,; is an MLP. We train LTLfNet to minimize the
sigmoid cross-entropy loss between 7/ and the ground truth
Ys, Where yg = 1if ¢ is satisfiable; y4 = 0 otherwise.

5 Evaluation and Analysis

In this section, we conduct a comprehensive evaluation
among different approaches for LTL satisfiability checking
on a large amount of datasets'.

5.1 Dataset

Synthetic dataset. In order to generate synthetic datasets,
we used the randitl tool in the SPOT framework? to gener-
ate random formulae. The tool can generate unique formulae
following a specified symbol distribution (P, T, L, standard
logical operators, and temporal logical operators) in a speci-
fied size interval. Our symbol distribution sets weights to: P

'Our code and benchmarks are publicly available at https://
github.com/wanderer0205/LTLfNet.
2SPOT is available in https:/spot.Irde.epita.fr/.
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25, T1,11,-1,v1, X1, and U 1. The propositions in PP
obey the uniform distribution.

We generate synthetic datasets where the formula size is
in the interval [20, 100) and the number of different atomic
propositions is less than 100 for every formula. The synthetic
datasets include a training set with 16K formulae and a vali-
dation set with 2K formulae. Besides, we generate formulae
and divide them into 6 test sets according to their size inter-
vals: [20, 100), [100, 120), [120, 140), [140, 160), [160, 180),
and [180,200). For each test set, we randomly generate 2K
formulae. We keep the balance of the number of satisfiable
formulae and that of unsatisfiable formulae.

Following the evaluation of the work [Li et al., 2020], we
also evaluate our approaches on large-scale datasets that are
available so far, which have been used to evaluate symbolic
approaches. These datasets are summarized as follows, where
the latter two come from industries and generally have larger
sizes than the former two.

LTL-as-LTL;. It consists of 4668 formulae coming from
LTL satisfiability checking.

LTL ¢-Specific. It consists of 1700 formulae generated by
common LTL patterns.

NASA-Boeing. It consists of 63 real-world LTL specifica-
tions used in the Boeing AIR 6110 wheelbraking system and
the NASA NextGen air traffic control (ATC) system.
DECLARE. 1t consists of 112 LTL patterns widely used in
the business process management.

The distribution of NASA-Boeing and DECLARE and that
of the synthetic datasets are different because they are real-
world LTL ¢ specifications.

5.2 Competitor

Our competitors include some neural approaches and some
symbolic approaches. The details are shown as follows.
Transformer. We follow the work [Hahn er al., 2021].
Specifically, we use Transformer to encode an LTL ; formula
and take the embedding of ‘[CLS]" as the representation of
the formula, where ‘[CLS] is a special token meaning the
beginning of the sentence in Transformer. Then we apply an
MLP to the embedding of ‘[CLS]’ to obtain the classification
result. We use one-hot embeddings for atomic propositions
and trainable embeddings for other tokens.

RGCN. We follow the work [Vaezipoor et al., 2021] to exploit
R-GCN [Schlichtkrull et al., 2018] to encode LTL y formulae
and then to apply an MLP to obtain the classification result.
Every LTL ; formula is represented as a directed graph by first
creating the parse tree and then adding self-loops for all the
nodes, where each sub-formula is connected to its parent op-
erator via a directed edge. The edges in graph are divided into
four types: 1. Self-loops, 2. Unary: the edges from the sub-
formula of a unary operator to its parent node, 3. Binary_left
(resp. 4. Binary _right): the edges from the left (resp. right)
sub-formula of a binary operator to its parent node. We use
one-hot (resp. trainable) embeddings for atomic propositions
(resp. other tokens) as initialization. The graphs are fed into
R-GCN to get the embeddings of the root node as the embed-
dings of LTL; formulae.

TreeNN. We follow TreeNN described in [Allamanis et al.,
2017] to obtain the representation of LTL; formulae, where
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the “LOOKUPLEAFEMBEDDING” is set as one-hot em-
beddings. Different from our method, TreeNN does not apply
different ‘COMBINE’ functions to different operators, thus it
does not guarantee permutation invariance or ordering of op-
erators to be kept.

CDLSC. It is a SOTA symbolic approach to LTL  satisfiability
checking [Li et al., 2020]. CDLSC conducts LTL ; satisfiability
checking by reducing the problem to a path-search problem
over the transition system constructed by iteratively solving
certain Boolean SAT problems. Besides, it leverages infor-
mation produced by SAT solving from both satisfiable and
unsatisfiable results to speed up the checking.

nuXmv. It is one of the SOTA approaches to model check-
ing [Cavada ef al., 2014]. As LTL satisfiability checking is
reducible to model checking, we can compare with nuXmv us-
ing the LTL ¢-to-LTL satisfiability-preserving reduction [Gi-
acomo and Vardi, 2013].

5.3 Setup

We train all compared neural approaches with the Adam op-
timizer. The hyperparameters of these approaches are as fol-
lows. For Transformer, the number of heads is 4, the num-
ber of layers is 3, and the dimension of hidden layers is 256
in the encoder layer. The dimension of embeddings d,, is
1024 and the classification layer is an MLP. The batch size is
512, the learning rate is le — 5, and the number of training
epochs is 1000 with early stopping when the loss does not de-
crease for 30 epochs. For LTLfNet and TreeNN, the dimen-
sion of embeddings d,, is 1024 and the classification layer is
an MLP. The batch size is 128, the learning rate is le — 3,
and the number of training epochs is 256 with early stopping
when the loss does not decrease for 30 epochs. For RGCN,
the dimension of embeddings d,,, is 1024, the dimension of
the hidden layer in R-GCN is 32, and the classification layer
is a two-layer MLP with the dimension of the hidden layer
128. The batch size is 128, the learning rate is le — 3, and the
number of training epochs is 256 with early stopping when
the loss does not decrease for 30 epochs. The loss function
of all these approaches is CrossEntropyLoss and the activa-
tion functions for all MLPs are ReLU. All experiments were
conducted on a single GPU (NVIDIA A100).

We train all compared approaches on the synthetic datasets
and directly test them on datasets with different formula sizes
and different distributions. We use the accuracy (acc.), preci-
sion (pre.), recall (rec.) and F1 score (F1) of binary classifi-
cation as the metrics to evaluate the performance.

5.4 Result

Evaluation on Synthetic Datasets

We omit the results of symbolic approaches in the synthetic
datasets because they can solve all formulae very quickly. In
Table 1, LTLfNet works best. TreeNN and LTLfNet sig-
nificantly outperform Transformer and RGCN, because the
model structures of TreeNN and LTLfNet are the same re-
cursive structures as the parse tree of LTL formulae, while
Transformer only explicitly represents an ordered sequence
of symbols and RGCN considers redundant additional edges.
Compared with TreeNN, LTLfNet performs better especially
on longer formulae as shown in Figure 2 because LTLfNet
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Model \ acc. (%) pre. (%) rec. (%) FI1 (%) time(s)
Transformer 83.95 93.58 72.90 81.96 5.63
RGCN 73.85 72.31 77.30 74.72 97.01
TreeNN 94.05 94.54 93.50 94.02 13.83
LTLfNet (our) \ 99.25 98.91 99.60 99.25 14.72

Table 1: Evaluation on the synthetic datasets as the same size of
training formulae ([20, 100)), where boldface numbers are the best
results and the column “time (s)” records the total time (s) to solve
all formulae.

100 % - - - = M- - - - - - = ommm = N m - - X
0.
90
g ) “ @ ................ @ ................ @ ................ O ............... O
9 704 -A- Transformer
®
RGCN
607 (> TreeNN
- LTLfNet
e
[20,100) [100,120) [120,140) [140,160) [160,180) [180,200)
formulae size interval
1001 - - -
X Kol X----- NI I X
951 QA‘_
90+ -A-- Transformer
& 851 R RGCN
= a0l A\ O [ ER @ O Treell
. RN -X  LTLfNet
751 NG
704 N
Armnmmna- Y PN A
[20,100) [100,120) [120,140) [140,160) [160,180) [180,200)

formulae size interval

Figure 2: Results of different approaches on test sets with formulae
of different sizes.

keeps the sequentiality of the U operator. It is worth to note
that Transformer runs very quickly. Similar results are also
reported by Table 2. This is due to the fact that Transformer
is implemented by efficient parallel matrix operations.

As shown in Figure 2, the performance of Transformer
and TreeNN drops sharply as the formulae become larger
while that of RGCN and LTLfNet keeps steady. LTLfNet out-
performs other approaches and keeps the high performance
even when formulae become larger. It suggests that our ap-
proach has scale generalizability to a certain extent.

Evaluation on Large Scale Datasets

The results are shown in Table 2. It is occasional that some
neural networks including ours have the same accuracy or F1.
These occasional cases occur on relatively small datasets. In
these cases, all compared neural approaches result in the same
numbers of true positives, false positives, true negatives, and
false negatives.

The neural approaches are much faster than the sym-
bolic approaches generally. Particularly, the running time of
the symbolic approaches is unacceptable on LTL-as-LTLy,
NASA-Boeing, and DECLARE, although they guarantee the
correctness. The results on the performance of neural ap-
proaches are surprising, such as the results on NASA-Boeing
and DECLARE, which contain only satisfiable formulae. This
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LTL-as-LTL; LTL¢-Specific NASA-Boeing DECLARE
Model acc. (%) F1 (%) time (s) acc. (%) F1 (%) time(s) | acc. (%) FI1 (%) time(s) | acc. (%) FIl (%) time (s)
CDLSC 100.00 100.00 75,979.65 100.00  100.00 27.47 100.00 100.00 3,604.41 100.00  100.00  60,905.95
nuXmv 100.00  100.00 75,560.60 100.00 100.00 2,483.38 100.00 100.00 3,695.72 100.00 100.00 18,096.68
Transformer 4733  62.63 12.98 61.71 61.27 4.25 98.39  99.19 1.34 100.00  100.00 3.71
RGCN 39.17  55.16 4412.20 54.18  70.28 3,309.81 100.00  100.00 216.92 100.00 100.00  6,854.66
TreeNN 88.65  93.94 311.08 54.18  70.28 101.42 100.00  100.00 27.50 100.00  100.00 170.78
LTLfNet (our) | 89.77  94.61 32725 | 5418  70.28 130.93 | 100.00 100.00 2870 | 100.00  100.00 177.36

Table 2: Evaluation on the large-scale datasets.

shows that neural approaches are able to learn biases that are
widely present in industrial datasets. LTLfNet achieves the
best accuracy and F1 score on almost all the four datasets
among all compared neural approaches while keeping a de-
cent running time. These results confirm that LTLfNet
achieves highly confident prediction for LTL; satisfiability
checking in relatively short time.

All neural approaches were trained on the synthetic dataset
and then tested in the industrial datasets. This way aims to
evaluate the generalization ability of neural networks across
distributions, which is useful for industrial instances where
the distribution cannot be clarified and the number of data is
small. However, we also notice that the generalization abil-
ity of neural networks is limited for different distributions of
data, e.g., on the LTL;-Specific dataset. The development
of an effective way to perform LTL; satisfiability checking
across distributions is left in our future work.

6 Discussion

The scale of the sampling formulae. We check the sat-
isfiability of formulae to label the ground truth using exact
symbolic reasoning. Due to the high complexity (PSPACE-
complete) of LTL satisfiability checking, the SOTA sym-
bolic approach is time-consuming to check the formula with
a large number of atomic propositions and long sizes, which
is confirmed by the experimental results of CDLSC on DE-
CLARE. In order to generate a large amount of data to train
neural networks in an acceptable time, we sample the formu-
lae whose size and the number of atomic propositions are less
than 100 in the synthetic datasets.

Sparsity of unsatisfiable formulae. We discover that unsat-
isfiable formulae are sparse when generating random formu-
lae via the technique described in Section 5.1. Specifically,
we sample 50M formulae, of which there are only about 0.4M
unsatisfiable formulae. In order to deal with long-tailed distri-
butions, we balance the satisfiable and unsatisfiable instances
in the synthetic datasets. Balanced and sufficient sampling
of the minority class (unsatisfiable formulae) allows our ap-
proach to precisely characterize the boundary of unsatisfiable
formulae. Making the boundary of unsatisfiable formulae
precise also improves the performance for satisfiable formu-
lae since our problem is a binary classification problem.
LTL satisfiability checking. Although LTL and LTL; have
different semantics, they have the same set of logical con-
structs, including permutation invariance and sequentiality.
Hence, as an approximate approach to LTL; satisfiability
checking, our proposed approach can naturally be applied to

LTL satisfiability checking.

Applicability. Our approach is practical as it is able to ob-
tain a highly confident result of LTL satisfiability check-
ing in polynomial time. This makes our approach poten-
tially applicable to some LTL ;-SAT-heavy tasks, e.g., goal-
conflict identification [Degiovanni et al., 2018; Luo et al.,
2021]. Our approach can act as a highly confident and effi-
cient pre-identifier, which can not only increase the number of
traversed solutions (thanks to the polynomial time complex-
ity) but can also pre-screen candidates that are obviously not
valid (thanks to the high confidence). Symbolic approaches
can be used in post-processing to ensure soundness.

7 Conclusion and Future Work

This paper is the first to teach an end-to-end neural network
to check LTL satisfiability. Our main motivation is to ex-
plore a new solving paradigm for LTL satisfiability check-
ing, a symbolic reasoning problem in PSPACE-complete, to
improve the SOTA. Combining symbolic reasoning of LTL ¢
with continuous neural reasoning is a grand challenge. Our
work has established that, by designing the neural archi-
tecture (LTLfNet) to characterize syntactic features and se-
mantic features (permutation invariance and sequentiality) of
LTL, neural networks can learn to distinguish the satisfiable
and unsatisfiable instances in LTL ; and can generalize across
large-scale datasets. Moreover, the experimental results show
the competitive results of LTLfNet compared with the SOTA
symbolic approaches. Our work makes it possible to ob-
tain a highly confident result of LTL satisfiability checking
in polynomial time, which has great implications for some
LTL ;-SAT-heavy tasks.

Our future work will improve our approach to generalize
across distributions, evaluate our approach in LTL satisfiabil-
ity checking, and extend our approach to generate a trace as
evidence of satisfiability.
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