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Abstract
Multi-source domain adaptation has attracted great
attention in machine learning community. Most
of these methods focus on weighting the predic-
tions produced by the adaptation networks of dif-
ferent domains. Thus the domain shifts between
certain of domains and target domain are not effec-
tively relieved, resulting in that these domains are
not fully exploited and even may have a negative
influence on multi-source domain adaptation task.
To address such challenge, we propose a multi-
source domain adaptation method to gradually im-
prove the adaptation ability of each source domain
by producing more high-confident pseudo-labels
with self-paced learning for conditional distribu-
tion alignment. The proposed method first trains
several separate domain branch networks with sin-
gle domains and an ensemble branch network with
all domains. Then we obtain some high-confident
pseudo-labels with the branch networks and learn
the branch specific pseudo-labels with self-paced
learning. Each branch network reduces the domain
gap by aligning the conditional distribution with its
branch specific pseudo-labels and the pseudo-labels
provided by all branch networks. Experiments on
Office31, Office-Home and DomainNet show that
the proposed method outperforms the state-of-the-
art methods.

1 Introduction
The large-scale number of labeled data has promoted the
great success of deep learning in many applications, such as
object detection and localization [Zhang et al., 2021], med-
ical diagnosis and semantic segmentation [Ouyang et al.,
2020]. However, the available of labeled data is usually
very limited, since it is very expensive to label the large
amount of unlabeled data. Unsupervised domain adapta-
tion has been widely explored to address the scarce of la-
beled data in machine learning community. Generally, in
an unsupervised domain adaptation scenario, it adapts the
knowledge in the labeled source domain to the unlabeled
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Figure 1: (a) Most multi-source domain adaptation methods attempt
to weight the predictions of different domain models. (b) The pro-
posed method attempt to improve adaptation ability of each source
domain.

target domain by reducing the domain gap between the tar-
get domain and source domain. In most unsupervised do-
main adaptation methods, they mainly focus on minimizing
the distribution discrepancy between the target domain and
source domain for knowledge adaptation [Jiang et al., 2020;
Zhong et al., 2021], and these methods has achieved satis-
factory performance with a single source domain by learn-
ing the domain-invariant representations. In fact, there al-
ways exist many source domains for a specific task in the real
world applications, yet there is no effective approach to de-
cide which domain can achieve the optimal adaptation for the
task in target domain, since the domain-invariant structures
between different domains are various.

In recent years, to utilize the various knowledge from dif-
ferent domains effectively and guarantee that the model is
more practical in the real-world applications, multi-source
domain adaptation (MSDA) has attracted great attention in
both the academic field and the industrial field [Zhao et al.,
2018; Wen et al., 2020]. These methods mainly pay much
attention to the importance of each domain by weighting the
adaptation ability of different domains. They fail to reduce
the domain shifts between certain source domains and target
domain. Although the weights can balance the influence of
these domains, the poor adaptation ability may still have neg-
ative influence on the target prediction. Meanwhile, since the
domain shifts of these domains are not effectively reduced,
the ability of these domains to assist the target domain may
greatly decrease, resulting in that the multi-source domains
are hard to further improve the adaptation performance on
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target domain. The difference between the proposed method
and these methods is illustrated in Figure 1.

To address the above issues, this paper proposes a multi-
source domain adaptation method by self-paced supervision,
termed as SPS. In the proposed method, we design a deep
adaptation network by gradually assigning more and more
high-confident pseudo-labels in target domain for conditional
distribution alignment with self-paced learning. The pro-
posed architecture has several separate domain branch net-
works and a ensemble branch network. These branch net-
works are following a shared bottleneck network to extract
the common structures. The domain branch networks are
trained with single source domain and target domain respec-
tively while the ensemble branch network is trained with all
available domains. Generally, the ensemble branch network
trained with all source domains and target domain can learn
the discriminative features of different categories more ef-
fectively. Hence, we use a discrepancy loss to force the the
consistent prediction between domain branches and ensemble
branch to guarantee the adaption ability of different domains.

With the above branch networks, we assign pseudo-labels
to samples whose predictions between the average of domain
branch networks and the ensemble branch network are the
same. Then each branch network is trained with self-paced
approach to gradually produce more and more high-confident
branch specific pseudo-labels. The adaptation ability of each
branch network is further improved by aligning the condi-
tional distribution between the source domain and the target
domain with pseudo-labels, which includes the pseudo-labels
produced by the branch networks and branch specific pseudo-
labels. In this way, the adaptation ability of each branch net-
work can be gradually improved with the common knowledge
and domain specific knowledge.

We conduct experiments on Office31, Office-Home and
DomainNet. Compared with state-of-the-art methods, the
proposed method has achieved the best performance for
all adaptation tasks on Office31 and Office-Home. It also
achieves the best performance at most cases and second best
for some adaptation tasks on DomainNet.

The main contributions of the paper can be summarized as:

• We propose a multi-source domain adaptation method
to improve the domain adaptation ability of several sep-
arate branch networks by gradually producing more
high-confident pseudo-labels with self-paced learning
for conditional distribution alignment.

• Self-paced learning is successfully applied in multi-
source domain adaptation to improve the adaptation
ability of each domain. It can learn not only the en-
semble knowledge of all domains but also the domain
specific knowledge effectively.

• Extensive experiments show that the proposed method
outperforms most of the state-of-the-art methods.

2 Related Works
In this section, according to our motivation, we will investi-
gate the works on unsupervised domain adaptation with sin-
gle source domain and multi-source domain.

2.1 Single Source Domain Adaptation
Due to the expensive cost for the labeling of large-scale un-
labeled data, many unsupervised domain adaptation methods
have been developed to learn the well adaptation models with
single source domain. Maximum mean discrepancy(MMD)
is a popular technique for domain adaptation task [Yan et
al., 2017; Wang et al., 2017]. [Yan et al., 2017] proposed to
introduce class-specific auxiliary weights into the MMD for
exploiting the class prior probability on source and target do-
mains. The EM algorithm is adopted by alternating between
assigning the pseudo-labels, estimating auxiliary weights and
updating model parameters to align the conditional distribu-
tion. In recent years, the gradient reversal layer has been
widely adopted to align the distribution between source do-
main and target domain [Zhang et al., 2019]. These methods
mainly focus on designing various discrepancy distance be-
tween source and target domain, and then minimize the dis-
crepancy to optimize the feature extraction network.

2.2 Multiple Source Domain Adaptation
In many real-world applications, there exist several domains
that can be adapted to the target domain. However, it is a chal-
lenge to decide which domain can obtain optimal adaptation
for the target task. Multi-source domain adaptation utilizes
all the available source domains simultaneously for adapta-
tion tasks.

Compared with single source domain adaptation, the effi-
cient MSDA approaches has been not fully developed [Zhao
et al., 2020]. [Zhao et al., 2018] proposed a multi-source
domain adaptation method with adversarial neural network
to learn the feature representation. The invariant features
of multi-source domains are obtained by optimizing task-
adaptive generalization bounds. [Guo et al., 2020] claimed
that different measures can only provide specific estimates
of domain similarities and each measure has its pathological
cases. Therefore, they consider the mixture of several mea-
sures to minimize the distribution between target and source
domains. [Zhu et al., 2019] attempted to align the distribu-
tion between target and each source domain respectively with
several branch networks. Then the discrepancy between dif-
ferent branch networks on target domain is minimized simul-
taneously. [Wang et al., 2020] constructed knowledge graph
on the prototypes of various domains to realize the informa-
tion propagation within the semantic structures, and then a
relation alignment loss is proposed to promote the feature of
intra-class invariance and inter-class separately. [He et al.,
2021] used the pseudo-labels online generated by an ensem-
ble model in target domain to update the multiple adaptation
models. In this way, the performance of the multiple adap-
tation models are further improved. In [Zhao et al., 2021], it
proposed a multi-source adversarial domain aggregation net-
work to make different adapted domains more closely aggre-
gated with domain adversarial training.

These methods mainly focus on learning the adaptation
network with the well adapted source domains and the in-
fluence of domains with poor adaptation is ignored, resulting
in that the different knowledge of different domains are not
effectively aggregated.
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3 Methodology
In this section, we will introduce the proposed SPS in de-
tail. Suppose there are N source domains with K classes
and we define these source domains as {Si}Ni=1. Meanwhile,
the target domain is denoted as T . In SPS, there are N + 1
branch networks following a shared bottleneck network. For
each branch network, it is designed with a feature extraction
network and a classification network. The first N branch net-
works are domain branch networks, which are trained with
one of the source domains and the target domain, i.e. the
ith domain branch network is trained with Si and T . While
the N +1th branch network is the ensemble branch network,
which is trained with all source domain and the target domain.
For the ith branch network, we define the feature extraction
network as Fi and the classification network as Ci. Then the
ith branch network can be represented as Fi ◦ Ci and all the
branch networks in SPS can be represented as {Fi ◦Ci}N+1

i=1 .
◦ represents the composition of two functions. The shared
bottleneck network is defined as F .

3.1 Pseudo Labeling
To improve the performance of unsupervised domain adap-
tation, pseudo-labels are usually adopted to align the dis-
tribution between source domain and target domain [Jiang
et al., 2020]. Generally, the high-confident pseudo-
labels are selected with high prediction probability over a
threshold[Zheng and Yang, 2021]. However, the wrong pre-
diction may have high prediction probability while the correct
prediction may have small prediction probability, since the
domain gap exists and the adaptation model may be not very
strong. In the proposed method, we select the high-confident
labels adaptively based on the branch networks which are
trained with the different domains. For example, the ith do-
main branch network can be trained with the ith source do-
main by

LSi

cls = min
Fi,Ci

∑
xj∈Si

ℓ((Ci ◦ Fi)(F (xj)), y
Si
j ) (1)

where ℓ is the crossentropy loss, ySi
j is the label of jth sam-

ple in Si. ◦ represents the composition of two functions, for
example, (g ◦ f)(x) is equal to g(f(x)). For the ensemble
branch network CN+1◦FN+1, it is trained with all the source
domain, which can be represented as

LS
cls = min

FN+1,CN+1

N∑
i=1

∑
xj∈Si

ℓ((CN+1 ◦FN+1)(F (xj)), y
Si
j )

(2)
Then with all the source domains, the proposed architecture
can be trained with

Lcls = min
F,{Ci◦Fi}N+1

i=1

N∑
i=1

LSi

cls + LS
cls (3)

We should note that the optimal adaptation is that all the
branch networks can predict the target domain precisely.
However, the adaptation ability of each source domain is
different due to the different distribution shifts between the

multi-source domains and target domain. In the proposed
method, the domain branch networks learn the invariant fea-
ture from single source domain and the target domain while
the ensemble branch network learns the invariant feature from
all source domains and the target domain. We treat the en-
semble branch network as strong classifier, since it can guar-
antee that the invariant features are discriminative for the
multi-source domains. To guarantee the adaptation ability
of each source domain, we force the predictions of target
domain from domain branch networks to be consistent with
that from ensemble branch network and a discrepancy loss is
adopted[Saito et al., 2018]. We adopt the the absolute values
of the difference between the probabilistic outputs of the en-
semble branch network and the domain branch networks as
discrepancy loss, and it can be represented as

Ldis = min
F,{Ci◦Fi}N+1

i=1

N∑
i=1

∑
xj∈T

|pSi
j − pN+1

j | (4)

where pSi
j is the probabilities of xj in target domain from

the ith domain branch network, which can be formulated as
pSi
j = softmax((Ci ◦ Fi)(F (xj))). softmax is a soft-

max function to normalize the outputs of the classification
networks. pN+1

j represents the probabilities of xj in target
domain from the ensemble branch network. Then the pro-
posed adaptation network can be trained with

min
F,{Ci◦Fi}N+1

i=1

Lcls + λLdis (5)

where λ is a trade-off parameter. Based on the proposed
method, N + 1 predictions can be obtained for each sample
in the target domain. Since each source domain has different
distributions, we first use the ensemble of domain branch net-
works to generate high-confident predictions, which can be
represented as

pe =
p1 + p2 + ...+ pN

N
(6)

We define the pseudo-labels of target domain T as ŷe based
on pe. Meanwhile, we define the predictions that obtained
from ensemble branch network as ŷN+1. Then for a sample
xi in target domain, if its prediction label ŷei and ŷN+1

i are the
same, we assign the prediction label to xi. We denote these
samples in T as TE and their pseudo-labels as ŷE .

3.2 Self-paced Training
In the self-paced learning, it considers a weighted loss term
for all samples and a general self-paced regularizer with re-
spect to sample weights, which can be represented as

min
f,v∈[0,1]n

n∑
i=1

(viℓ(yi, f(xi)) + Ω(vi, λ) (7)

where λ is the age parameter for controlling the learning
space, and Ω(v, λ) represents the self-paced regularizer. The
model parameter f and the latent weight v are alternatively
optimized with gradually increasing age parameter. Then
more samples can be adopted for training from easy to com-
plex in a purely self-paced way.
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In the proposed method, we hope each branch network
can learn the branch specific samples to assign pseudo-labels.
Hence, we train each branch network with a self-paced strat-
egy. Since the samples in TE are labeled with different
branch networks and their pseudo-labels are very confident,
the self-paced way are trained from easy to complex with the
samples T/TE . The self-paced training procedure for the ith
branch network can be represented as

Li
sp = min

F,Fi,Ci,ŷ,vi

∑
xj∈TE

ℓ(Ci ◦ Fi(F (xj)), ŷ
E
j )

+
∑

xj∈T/TE

(vijℓ(Ci ◦ Fi(F (xj)), ŷj)− λivij)
(8)

where vij denotes the weight of xj in T/TE with the ith do-
main branch network. λi is the age parameter controlling the
training scale in each iteration with respect to the ith domain
branch network. Based on the self-paced learning, we can ob-
tain the easy training samples in target domain for a specific
branch work. To be convenient, we denote the training sam-
ples and their pseudo-labels obtained by self-paced learning
during the training of the ith branch network as T i and ŷTi

respectively.

3.3 Distribution Alignment
The conditional distribution matching between target domain
and source domain is very effective to improve the adap-
tation ability. In the proposed method, we propose to use
the pseudo-labels to align the conditional distribution be-
tween target domain and each source domain respectively
with MMD, which is a popular technique to align the distri-
bution in domain adaptation. For the alignment between each
source domain and target domain, we not only use the sam-
ples that are assigned with pseudo-labels based on the ensem-
ble of branch networks but also the branch specific pseudo-
labels obtained by the self-paced learning. In this way, the
distribution alignment with MMD to optimize the ith domain
branch network can be represented as

Li
align = min

F,Fi

||
K∑

k=1

[
1∑

yj∈ŷE∪ŷTi

δ(yj , k)

∑
xt∈T i∪TE

δ(ŷit, k)ϕ(Fi ◦ F (xt))

− 1∑
yj∈ySi

δ(yj , k)

∑
xs∈Si

δ(ySi
j , k)ϕ(Fi ◦ F (xs))] ||2H

(9)

where δ(a, b) is a function to indicate whether a is equal to
b. If a is equal to b, δ(a, b) = 1, otherwise δ(a, b) = 0.
The same optimization is adopted to align the features of the
target domain and source domain for the other domain branch
networks.

We should note that the ensemble branch network is trained
with all the source domains. Hence, the alignment in the (N+
1)th branch network should use the pseudo-labels to align
with each source domain respectively.

3.4 The Proposed Method
In the proposed SPS, we force the various distribution shifts
between the source domains and target domain to be re-
duced respectively, and the invariant representations between
each source domain and target domain are learned effectively.
Generally, the samples around the classification boundaries
are easy to be misclassified. In SPS, the discrepancy loss by
measuring the absolute values of the difference between the
probabilistic outputs of the ensemble branch network and the
domain branches network is adopted. It can guarantee that
all the branch networks can predict the target domain with
similar predictions without considering the distribution shifts.
To further improve the domain adaptation ability of all the
source domains, we learn each domain branch network with
self-paced strategy to gradually produce more high-confident
pseudo-labels. Then the distribution alignment is adopted to
training each branch network. Meanwhile, the entropy loss
for the target domain is adopted to further improve the clas-
sification ability of each branch network, which can be repre-
sented as

Lent = min
F,{Ci◦Fi}N+1

i=1

N+1∑
i=1

− 1

nt

∑
xt∈T

pitlog(p
i
t) (10)

where pit is the prediction probabilities of xt obtained by the
ith branch network.

The total loss of SPS is to minimize the classification loss,
self-paced loss, the entropy loss, discrepancy loss and the dis-
tribution alignment loss. We represent the total loss of SPS as

L = Lcls + Lent + Lsp + λLdis + βLalign (11)
where λ and β are two trade-off parameters. For testing, we
use the average of domain branch networks and the ensem-
ble branch network for prediction. The final prediction of an
image xi can be represented as

pi =
1

2

[(
p1i + p2i + ...+ pNi

)
N

+ pN+1
i

]
(12)

where pk is the prediction probability obtained with Ck ◦F k.

4 Experiments
In this section, we will verify the effectiveness of the pro-
posed method with three popular datasets in domain adapta-
tion, including Office-31, Office-Home and DomainNet[Zhu
et al., 2019; Li et al., 2021]. For each dataset, one domain
in it is treated as target domain while the other domains are
treated as the source domains.

4.1 Implementation Details
To verify the effectiveness of the proposed method, several
baseline and state-of-the-art methods are compared. These
methods are set under three scenarios. 1) Single Best(SB), it
shows the best result among the adaptation tasks with differ-
ent source domain and the same target domain. 2) Source
Combine(SC), it treats all source domains as a single do-
main to perform single source domain adaptation. 3) Multi-
ple Source(MS), the methods are developed for multi-source
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(a) Source Only (b) MSFAN (c) SPS(ours)

Figure 2: The t-SNE visualization on the task → product in Office-Home dataset.

Standards Methods Office31 Office-Home
→ A → D → W Avg → Ar → Pr → Cl → Rw Avg

Single Best

Source only 62.5 99.3 96.7 86.2 65.3 79.7 49.6 75.4 67.5
DAN(ICML’15) 66.7 99.5 96.8 87.7 68.2 80.3 56.5 75.9 70.2
D-CORAL(ECCV’16) 65.3 99.7 98.0 87.7 67.0 80.3 53.6 76.3 69.3
DANN(ICML’15) 68.2 99.4 96.8 88.1 67.9 80.4 55.9 75.8 70.0
MCD(CVPR’18) 69.7 100.0 98.5 89.4 69.1 79.6 52.2 75.1 69.0

Source Combine

DAN(ICML’15) 67.6 99.6 97.8 88.3 68.5 79.0 59.4 82.5 72.4
D-CORAL(ECCV’16) 67.1 99.3 98.0 88.1 68.1 79.5 58.6 82.7 72.2
DANN(ICML’15) 67.6 99.7 98.1 88.5 68.4 79.5 59.1 82.7 72.4
MCD(CVPR’18) 68.5 99.4 99.3 89.0 67.8 79.2 59.9 80.9 71.9

Multi-Source

MFSAN(AAAI’19) 72.7 99.5 98.5 90.2 72.1 80.3 62.0 81.8 74.1
MDDA(AAAI’20) 56.2 99.2 97.1 84.2 66.7 79.5 62.3 79.6 71.0
SImpAI(NIPS’20) 70.6 99.2 97.4 89.0 70.8 80.2 56.3 81.5 72.2
MADAN(IJCV’21) 63.9 99.4 98.4 87.2 66.8 78.2 54.9 81.5 70.4
SPS(ours) 73.8 100.0 99.3 91.0 75.1 84.4 66.0 84.2 77.4

Table 1: The accuracy(%) of different adaptation tasks on Office31 and Office-Home. The best performance is emphasized in bold.

domain adaptation. In the experiments, we compare the pro-
posed method with several popular domain adaptation meth-
ods, i.e., DAN [Long et al., 2015], D-CORAL [Sun and
Saenko, 2016], DANN [Ganin and Lempitsky, 2015], and
MCD [Saito et al., 2018]. These methods are widely fo-
cused in the domain adaptation field with deep learning. For
the multi-source domain adaptation methods, we compare
SPS with MFSAN [Zhu et al., 2019], MADAN [Zhao et
al., 2021], MDDA [Zhao et al., 2020], SImpAI [Venkat and
Kundu, 2020], M3SDA [Peng et al., 2019], T-SVDNet [Li et
al., 2021] and FPDA [Fu et al., 2021], which are the state-of-
the-art methods for multi-source domain adaptation tasks.

For the compared method, the Resnet-50 is adopted as the
bottleneck network and we report their results according to
[Venkat and Kundu, 2020] or the experiments are conducted
with the settings in their original paper. In SPS, the same bot-
tleneck network is adopted and its learning rate is set to be 10
times than that of the other layers. We set the learning rate
as 0.001 while the optimizer and the learning schedule are set
same with [Zhu et al., 2019]. Meanwhile, there are two trade-
off parameters λ and β. We set β as 0.01 in all experiments
and set λ as 0.1 in Office31 while set it as 1 in Office-Home
and DomainNet for practical application. Meanwhile, at the
initialization, the deep network is pre-trained without domain
alignment at the first some iterations,which is 2000 for Of-
fice31, 1000 for Office-Home and 10000 for DomainNet. We

Multi-Source
Methods

→
Clp

→
Inf

→
Pnt

→
Qdr

→
Rel

→
Skt Avg

M3SDA(ICCV’19) 58.6 26 52.3 6.3 62.7 49.5 42.6
MDDA(AAAI’2020) 59.4 23.8 53.2 12.5 61.8 48.6 43.2
SImPAI101(NIPS’20) 66.4 26.5 56.6 18.9 68.0 55.5 48.6
T-SVDNet(ICCV’21) 66.1 25.0 54.3 16.5 65.4 54.6 47.0
PFDA(CVPR’21) 64.5 29.2 57.6 17.2 67.2 55.1 48.5
SPS(ours) 70.8 24.6 55.2 19.4 67.5 57.6 49.2

Table 2: The accuracy(%) of different adaptation tasks on Domain-
Net. The best performance is emphasized in bold.

set a random seed 8 over 5 runs in the experiments, and the
average results are reported.

4.2 Experimental Results
We report the results of SPS and the comparison methods
on Office31 and Office-Home in Table 1 while the results
on DomainNet in Table 2. From the results in Table 1, we
can directly observe that SPS has achieved the best perfor-
mance. Compared with SB and SC, the multi-source domain
adaptation methods achieve better performance at most cases.
This demonstrates that the multi-source domain adaptation
methods can improve the adaptation ability well. MFSAN
and SImpAl are two state-of-the-art methods to reduce the
domain gap with distribution alignment and implicit align-
ment respectively. MMD is adopted to minimize the distri-
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(a) → Ar (b) → skt

Figure 3: The results of SPS with different pair weights (λ, β) on
the tasks → Ar in Office-Home dataset and → skt in DomainNet
dataset.

bution shift between each source domain and target domain
in MFSAN while the pseudo-labels are adopted in SImpAI
by enforcing classifier agreement. However, we note that
SImpAI performs a little worse than MFSAN. The reason
may be that the pseudo-labels in SImpAI are not very con-
fident and the classifier is influenced by the noise labels. In
SPS, we provide different pseudo-labels to align with each
source domain. The performance of SPS is significantly im-
proved. This demonstrates that the proposed method can pro-
vide more high-confident pseudo labels with self-paced learn-
ing and improve the adaptation ability of each source well.

We also show the distribution alignment in feature space on
the task → product in Figure 2, and it also directly shows that
the distribution alignment of SPS is much better than source
only and MSFAN. In Table 2, we also can observe that SPS
performs much better at most cases than the state-of-the-art
methods. Overall, SPS is very effective to align the target
domain with multi-source domains and the self-paced super-
vision is very useful to produce much more high-confident
pseudo-labels to improve the domain adaptation ability of
multi-source domains.

4.3 Trade-off Parameters

There are two parameters λ and β. We report the results on
the tasks → Ar and → Skt by choosing λ from the candidate
set {0.1, 1, 2} and β from the candidate set {0.001, 0.01, 0.1}
respectively in Figure 3. From Figure 3, we can observe that
the performance of the proposed method changes obviously
when β is set with different values. Hence, the proposed
method is sensitive to β. This demonstrates that the alignment
with self-paced supervision is very important to improve the
performance of the proposed method. When β is fixed and λ
is set with different values, we can observe that the results of
the proposed method almost show the similar performance at
most cases. This indicates that the predictions for the target
domain with different source domain are similar, and the pro-
posed method can align the conditional distribution between
multi-source domains and target domain well. The results
also support that the proposed method can improve the adap-
tation ability for each source domain effectively. Generally,
we can set β as 0.01 and λ as 1 for practice.

4.4 Ablation Study
To verify the components in the proposed method, the abla-
tion study is reported in Table 3 on task → Ar and → Skt.
Cross sign (%) represents SPS is trained without the corre-
sponding component while Check sign (") represents SPS is
trained with the corresponding component. When any com-
ponent in the proposed model is ignored, the performance
degrades 0.3% ∼ 1.0% in terms of average accuracy. This
strongly illustrates that all components are essential in im-
proving performance. Meanwhile, to demonstrate that the ef-
fectiveness of the pseudo-labels provided by the self-paced
strategy, we show the results of each branch network in SPS
on Office-Home dataset. S1, S2 and S3 represents the do-
main branch networks while Ensemble represents the ensem-
ble branch network. Avg is the average results of the branch
networks. Compared with single best and single worse, we
can observe that the adaptation ability of each domain is sig-
nificantly improved. Hence, the self-paced supervision can
improve the adaptation ability of different sources well.

Lsp Lent Lalign Ldis → Ar → Skt

% " " " 74.6 57.3
" % " " 74.2 56.6
" " % " 74.3 57.0
" " " % 74.3 57.3
" " " " 75.1 57.6

Table 3: The ablation study on the task → Ar in Office-Home
dataset and → Skt in DomainNet dataset.

Methods → Rw → Cl → Pr → Ar

Single Best 74.1 46.2 78.3 65.8
Single Worst 64.8 40.9 62.8 53.3
S1 83.5 65.5 84.1 74.6
S2 83.9 65.2 84.4 75.1
S3 83.2 65.7 84.6 75.0
Ensemble 83.5 66.2 84.3 75.3
Avg 83.5 65.6 84.3 75.0
SPS 84.2 66.0 84.4 75.1

Table 4: The accuracy(%) of the branch networks in SPS on Office-
Home.

5 Conclusion
In this paper, a multi-source domain adaptation method is
proposed with self-paced supervision to produce more high-
confident pseudo-labels for domain alignment. The pseudo-
labels are assigned adaptively based on the consistent predic-
tions between the domain branch networks and the ensem-
ble branch network. Meanwhile, much more pseudo-labels
are produced based self-paced learning. Then the adaptation
ability of each source domain can be improved with the con-
ditional alignment. The extensive experiments show that the
proposed method outperforms several state-of-the-art multi-
source domain adaptation methods.
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