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Abstract
Optimal execution is a sequential decision-making
problem for cost-saving in algorithmic trading.
Studies have found that reinforcement learning
(RL) can help decide the order-splitting sizes.
However, a problem remains unsolved: how to
place limit orders at appropriate limit prices?
The key challenge lies in the “continuous-discrete
duality” of the action space. On the one hand, the
continuous action space using percentage changes
in prices is preferred for generalization. On the
other hand, the trader eventually needs to choose
limit prices discretely due to the existence of the
tick size, which requires specialization for every
single stock with different characteristics (e.g., the
liquidity and the price range). So we need contin-
uous control for generalization and discrete control
for specialization. To this end, we propose a hy-
brid RL method to combine the advantages of both
of them. We first use a continuous control agent to
scope an action subset, then deploy a fine-grained
agent to choose a specific limit price. Extensive ex-
periments show that our method has higher sample
efficiency and better training stability than existing
RL algorithms and significantly outperforms previ-
ous learning-based methods for order execution.

1 Introduction
Since computer algorithms encompass the whole trading pro-
cess in modern financial markets, optimal execution has at-
tracted significant research attention for decades. For the buy-
side, optimal execution aims to save cost and reduce market
impact when executing large orders. It is often viewed as a
stochastic sequential decision-making process because large
orders need to be divided into a series of small sub-orders
within a period of time to be filled without influencing the
market too much. Traders or algorithmic trading systems
should decide the prices and volumes of the split sub-orders
during this process.

There are two fundamental types of transactions: market
orders and limit orders. Market orders are transactions meant
to be executed as quickly as possible at the market price.

Therefore, when using market orders, the agent only decides
the size of each sub-order. Many studies showed that modern
RL is powerful for such a problem [Nevmyvaka et al., 2006;
Hendricks and Wilcox, 2014; Ning et al., 2018; Fang et al.,
2021].

However, there are two disadvantages for such methods:
1) market orders have no control over the price and might be
filled at disappointing prices if the bid-ask spreads are wide,
and 2) the volume of sub-orders given by RL agents might
fluctuate too much because they work as a sort of market tim-
ing, potentially causing large market impact. So in this paper,
in contrast to previous work, we focus on optimal execution
with limit orders rather than market orders.

A limit order is an order to buy or sell a stock at a spe-
cific price or better, which can only be filled if the stock’s
market price reaches the limit price. Therefore, an agent for
optimal limit order placement should control both limit prices
and volumes of sub-orders.

A challenge emerges when using a learning-based agent
to decide the limit price: the action space can be viewed as
both discrete and continuous. From the perspective of the
original problem, the choices of limit prices are discrete due
to the existence of the tick size (the minimum price incre-
ment). For example, for a $10.00 stock, one may set bid
prices at $10.00 or $9.99, but not at $9.995. So an ideal end-
to-end agent should use discrete control to select the actual
prices precisely, but it is usually impossible to generalize be-
tween stocks with different price-level and liquidity. For ex-
ample, an action of −1 tick means −1% for a $1.00 stock but
−0.01% for a $100.00 stock.

On the other hand, people usually use percentages to un-
derstand the rise and fall of stock prices, which is a contin-
uous representation. As training deep RL agents with high-
dimensional and noisy state dynamics requires a lot of trial-
and-error, continuous control that determines the percentage
change is preferred for its generalization ability across stocks
with different prices. For example, a bid at -0.1% results in
$9.99 for a $10.00 stock, and results in $99.90 for a $100.00
stock. However, such a method is more inclined to learn the
strategy of stocks with high prices and liquidity, and fails
to specialize in determining the ticks for illiquid low-priced
stocks.

In light of these observations, we propose Hybrid Action-
space Limit Order Placement (HALOP), which trains an
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agent to learn continuously and act discretely. First, for
generalization, HALOP employs a continuous-control agent
to scope an action subset with high-dimensional market dy-
namics as input. Next, a fine-grained discrete-control agent
chooses a specific discrete limit price from the action subset,
which specializes well in stocks with different characteristics.
Both agents are trained end-to-end to maximize the long-term
return, i.e., the excess return in execution.

We conduct extensive experiments and show that our new
optimal execution method with limit orders can beat the mar-
ket, and significantly improves the excess return upon previ-
ous learning-based order execution methods.

2 Related Work
2.1 Optimal Execution
Non-machine-learning Order Execution
Traditional optimal execution research tends to assume that
the market price movements follow some stochastic process
such as the Brownian motion, and then use stochastic op-
timal control method to derive the volume trajectory ana-
lytically [Almgren and Chriss, 2001; Huberman and Stanzl,
2000; Bertsimas and Lo, 1998]. However, practitioners rarely
use these methods to place orders in stock markets, because
the assumptions may not hold in the real-world. The most
widely used trade execution strategies are based on pure rules
or statistical rules. For example, the time-weighted aver-
age price (TWAP) [Bertsimas and Lo, 1998] strategy divides
a large order into equal-sized sub-orders and executes each
within equally divided time intervals.

The volume-weighted average price (VWAP) [Kakade et
al., 2004] strategy first estimates the average volume traded
for each time interval from historical data, then splits order
based on the estimates.

Although simple enough, TWAP and VWAP are still pop-
ular these days because their execution costs are always close
to the market. Specifically, we let the TWAP strategy with
market order be the benchmark in this paper.

Reinforcement Learning for Order Execution
As order execution is fundamentally a problem of making de-
cisions under uncertainty and the actual trading data is full
of noise, RL becomes the best choice to solve such a prob-
lem. Nevmyvaka [Nevmyvaka et al., 2006] is the pioneer
for RL in optimal execution where the agent is trained by
Q-Learning [Watkins and Dayan, 1992] to chooses the limit
price. However, they only considers a small limited set of dis-
crete actions (a few bid and ask prices) without considering
the more important percent changes in actions.

With the development of deep learning and deep RL in
the past few years, some studies use deep RL to learn to
execute orders with high-dimensional market data as inputs
[Hendricks and Wilcox, 2014; Ning et al., 2018; Lin and Bel-
ing, 2019; Lin and Beling, 2020; Fang et al., 2021]. While
[Hendricks and Wilcox, 2014] applies RL to modify a given
volume trajectory suggested by the traditional order execu-
tion model Almgren-Chriss [Hendricks and Wilcox, 2014].
Without any market assumptions, several variations of Deep
Q-Network (DQN) [Mnih et al., 2013] are proposed to choose

discrete volumes, which could address the high dimensions
and the complexity of the finance market and trading signals
with the deep neural network [Ning et al., 2018; Lin and Bel-
ing, 2019]. Instead of manually designed attributes, a PPO-
based optimal execution framework is designed to make de-
cisions based on raw level-2 market data [Lin and Beling,
2020]. Policy distillation paradigm is also deployed in or-
der execution [Fang et al., 2021], which uses a distilled PPO
agent to choose optimal order-splitting volumes. However,
most of the previous work studies the problem of volume-
splitting, which only addresses the order execution problem
partially.

3 Hybrid Action-Space Optimal Execution
3.1 Problem Setting
In this part, we first describe the general setting of the optimal
execution problem with limit orders, then formulate it as a
sequential Markov Decision Process (MDP). In particular, we
focus on setting the limit prices of sub-orders rather than the
volumes for clarity, although the proposed method can work
seamlessly together with previous volume-oriented methods.

General Problem Description
We simplify the problem as a discrete-time decision pro-
cess following [Cartea et al., 2015; Ning et al., 2018; Fang
et al., 2021], where the agent interacts with the environ-
ment multiple times within a predefined time period based
on discrete time space. So consider a horizon of T timesteps
t = 1, . . . , T , each represents a 1/T of a predefined total time
periods. For example, if there is a total time period of three
hours and T = 90, it has 90 small time periods of two min-
utes. At the t-th step (the beginning of the t-th small time
period), the environment reveals the recent market dynamics
to the agent, consisting of a series of history quotes and top
5 bid/ask prices and volumes. Then, the agent sends a limit
order with a limit price rounded to the tick size and a vol-
ume. Next, at the end of the 1/T period, the environment tells
the agent whether (or how much) the order has been filled,
and withdraw the rest of it. Then it moves to the (t + 1)-th
timestep. Specifically, at the end of the T -th period, if there
is still inventory remained, the system automatically send a
market order to execute it at once.

In addition, as we focus on the price, we assume there is
a predefined schedule of trading volume for the agent, de-
noted by v∗1 , . . . , v

∗
T , which sums to one

∑T
t=1 v

∗
t = 1. For

example, it can be the volumes of classic financial strategies
like TWAP or VWAP, or the outputs of any volume-oriented
algorithmic trading agent [Fang et al., 2021]. As the limit
orders are not guaranteed to be executed, let ṽ1, . . . , ṽT be
the executed volume within each period, which has ∆t =∑t
τ=1 v

∗
τ −

∑t
τ=1 ṽτ ≥ 0. So at step t, we assume that the

agent tries to catch up with the schedule, by placing a new
order with a volume

vt = v∗t + ∆t−1. (1)

MDP Formulations for Limit Order Placement
Now we formulate the problem as a finite-time MDP, and put
forward the continuous-discrete duality of the problem.
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pcta ticksa

ticksa

ticksa ticksa

(c) a discretized Gaussian policy

(b) the discrete Softmax policy(a) the continuous Gaussian policy

(d) HALOP stage-1: a continuous 
Gaussian policy to scope actions

(e) HALOP stage-2: a discrete Guassian-
and-Softmax policy to choose actions

Figure 1: Illustration of different types of policies for different types
of action-spaces.

The state consists of two types of information, the pub-
lic state and the private state st = (spub

t , spriv
t ). Sim-

ilar to [Nevmyvaka et al., 2006; Lin and Beling, 2020;
Fang et al., 2021], the public state includes past market dy-
namics obtained from the environment. Private observations
are real-time status of the running agent, including the re-
maining inventory 1 −∑t−1

τ=1 ṽτ ; the amount of unfulfilled
orders ∆t−1; and the remaining time fraction 1− t/T .

The action, by default, should be an actual price rounded
to the tick size. For example, for a $10.00 stock, the action of
a bid should be like $9.97. However, such an action changing
over time cannot directly be used to formulate an MDP. So
we put forward two types of action representations:

• Action measured by ticks aticks
t ∈ Aticks ⊂ Z, i.e.,

aticks
t = (LimitPricet − CurrentPricet)/TickSize

It is natural to represent price changes in ticks based on
the current price1. So it is a discrete number, e.g., a bid
at $9.97 for a $10.00 can be represented as aticks = −3,
if the tick size is one cent.

• Action measured by percentage apct
t ∈ Apct ⊂ R, i.e.,

apct
t = (LimitPricet/CurrentPricet − 1)× 100%

It is more general and easier to understand when mea-
suring price movements by percentages or basis points.
So any action can has a continuous representation by ba-
sis points, which is a continuous variable. E.g., the same
bid can be represented as apct = −0.3%.

So apparently one can calculate apct from any aticks, but not
from the opposite direction if without rounding. Note that
although here we only discuss the limit price, one can always
append the volume vt as the second term of the action.

Finally, we design the reward feedback. Like in real trading
systems, we give the agent a reward only at the end of the last

1Here “current price” refers to the latest executed price.

period. With the order schedule and the execution status of
t = 1, . . . , T , the reward is

R = D ·
[ T∑
t=1

v∗t p
∗
t −

( T∑
t=1

ṽtp̃t + ∆T p̃−1

)]
, (2)

with p∗t the market price of buying v∗t in the t-th period, p̃t
the agent’s average execution price, ∆T the final remained
inventory, p̃−1 the execution price of the final market order.
The multiplier D denotes the trading direction, D = 1 for
buying and D = −1 for selling. So using market orders yields
a reward of 0.

3.2 Policy Optimization with Hybrid
Action-spaces

In this part, we put forward our policy optimization method
that balances generalization with continuous control and spe-
cialization with discrete control. We use a general stochastic
policy optimization method, PPO [Schulman et al., 2017], as
our base learner.

There are two basic types of action-spaces, continuous and
discrete, and the corresponding stochastic policies, as shown
in Figure 1(a)(b). For the continuous action space Apct to
choose percentage changes in price, one can use a com-
mon parametric Gaussian policy with its mean µ and scale
σ learned with a policy neural network, i.e.,

apct
t |st ∼ N (µ(st), σ(st)).

For the discrete action space Aticks, a common choice is the
Softmax policy, which randomly choose actions from a multi-
noulli categorical distribution

aticks
t |st ∼ Categorical

{
Softmax(f1:m(st))

}
,

where f1:m(st) denotes the policy network’s output logits
for m candidate actions, and Categorical{·} is the categori-
cal (multinoulli) distribution.

Although straight-forward, these policies are hard to opti-
mize because the environment’s state dynamics are too com-
plex, the rewards are noisy and sparse, and the action space
is too large especially for the discrete policy. To further re-
strict the search space, we propose a new family of policies:
the discretized Gaussian policy, and its simplified version, the
Gaussian-and-Softmax policy.

Discretized Gaussian Policies
Consider that we have a policy network that outputs the mean
µ and scale σ of some Gaussian distribution N , and a in-
creasing series of predefined locations (candidate actions)
a∗1, . . . , a

∗
m for discretization.

Let a∗0 = −∞ and a∗m+1 = +∞, for 1 ≤ k ≤ m

dk = P(
a∗k−1 + a∗k

2
< a <

a∗k + a∗k+1

2
) (3)

= Φ(
a∗k + a∗k+1 − 2µ

2σ
)− Φ(

a∗k−1 + a∗k − 2µ

2σ
) (4)

where Φ(x) = 1√
2π

∫ x
−∞ exp{−u2

2 }du is the CDF of the
standard normal distribution.
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So now we can build a discretized Gaussian policy by using
a categorical distribution to choose the percentage action, i.e.,

apct
t |st ∼ Categorical

{
d1, · · · , dm

}
(5)

where the a∗s for calculating ds can be determined by the
actual tick actions. In this case, such a policy can take the
place of the original continuous Gaussian polices.

However, Eq.(4) involves an integral which is intractable
for a feed-forward neural network. Therefore, we use uni-
form samples from U(ak−1+ak

2 , ak+ak+1

2 ) and calculate the
averaged Gaussian density so that the output action probabil-
ity can be differentiable. I.e.,

d̂k =
ak+1 − ak−1

2
Ê
[

1

σ
√

2π
exp

{
− (a− µ)2

2σ2

}
∣∣ a ∼ U(

ak−1 + ak
2

,
ak + ak+1

2
)

]
(6)

In this way, any Gaussian policy can be transformed into a
trainable discrete policy, as demonstrated in Figure 1 (c). For
readability, for a continuous policy π(·|s) = N (µ(s), σ(s)),
we write the discretized policy as Discretize(N (µ(s), σ(s))).

Gaussian-and-Softmax Policy
A straight-forward simplification of the discretized Gaussian
policy is to replace the sampling of Eq.(6) with a determinis-
tic density function. So we can directly use a series of unnor-
malized logits l = (l1, . . . , lm) to get a Softmax policy,

apct
t |st ∼ Categorical

{
Softmax(l)

}
. (7)

where lk = − (ak−µ)2
2σ2 . We write GSoftmax(N (µ(s), σ(s)))

to denote such a Gaussian-and-Softmax policy.

HALOP with Two Stages
From the derivation, now we can get a discretized policy from
any continuous Gaussian policy. It motivates us to feel free to
design a two-stage generalization-first-specialization-second
method under the same policy family and network structure.

Stage 1: learn the most generalized knowledge without
distinguishing different types of stocks. Therefore, we have
the following configuration. Firstly, the input states in this
stage only contains the standardized public state spub

t (by pre-
processing all the prices and volumes to the same scale for
different stocks), without the private execution status that re-
flects the characteristics of stocks. Second, the agent out-
puts the discretized percentage changes of price movements
according to the realizable limit prices in order that the pol-
icy learned can be smoothly connected with the second stage.
Formally, let pc

t be the current price of a stock, and θ1 be the
parameters of the policy network in stage-1,

AS1 =

{
apct
∣∣∣∣apct =

aticks · TickSize
pc
t

, aticks ∈ Aticks
}
, (8)

apct
S1,t ∼πS1(·|spub

t ) = Discretize(N (µθ1(spub
t ), σθ1(spub

t ))),
(9)

aticks
S1,t = apct

S1,t · pc
t/TickSize. (10)

So the resulted output of the policy is a discrete action aticks
S1,t

in the tick action space, which represents a general guess of
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Figure 2: The architecture of HALOP.

the limit price. We would like to use this action to scope a
subset of actions around it, as illustrated in Figure 1(d).

Stage 2: After generalization, now for the specialization.
We use the action offered by the policy of stage 1 as a medium
point and search a fine-grained action around it in stage 2. We
predefine a fixed-length window to scope the action subset of
stage 2, i.e., consider a window-size of 2K + 1, the action
subset of stage 2 isAS2 =

{
−K, . . . , 0, . . . ,K

}
. Therefore,

as illustrated in Figure 1(e), for any stock with arbitrary price,
the action-space in stage-2 is always 2K+1 integers, encour-
aging the agent to focus on localized optimization. The state
in stage 2 st includes the raw public state without standardiza-
tion and the private states, which contains the absolute value
of prices, volumes, and the agent’s execution status, charac-
terizing each single stock. For stabilized learning, we scale
the prices and volumes by taking the logarithms of the ab-
solute values. Formally, let θ2 denote the parameters of the
policy network in stage-2, we have

aS2,t ∼ πS2(·|st) = GSoftmax(N (µθ2(st), σθ2(st))) (11)

aticks
S2,t = aticks

S1,t + aS2,t. (12)

3.3 Architectures and Implementation Details
In this part, we detail the choice of neural network archi-
tecture for learning from high-dimensional sequence data, as
well as the learning details of PPO.

The overall network structure is shown in Figure 2. The
input of the representation learning network is a sequence of
high-dimensional tick snapshot data, i.e., the public states,
with tens of real-valued features and hundreds of timesteps.
First, we use two stacked neural blocks for sequence encod-
ing, each block consists of a residual network with an 1-D
convolutional neural network (1DCNN) to capture temporal
patterns and shorten the sequence length, and a multi-head
self-attention layer [Vaswani et al., 2017] to learn the corre-
lation among time steps. Finally, we get a dense representa-
tion h(s) for the state by attentive pooling the output of the
self-attention matrix.

Second, we use an actor-critic architecture [Schulman et
al., 2017; Pan et al., 2019] for the policy optimization. For
both stage-1 and stage-2, we use two fully-connected layers
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as the policy and value networks. In stage-1, for generaliza-
tion, the networks directly take the public h(spub

t ) as input.
In stage-2, we concatenate the private state to h(spub

t ) to get
a new dense vector as input. The two stages share the same
representation learning network for better sample efficiency.

For policy optimization, we regard the order execution pro-
cess of each (trading day, stock) pair as a single episode,
which has T steps. Then, we group the episodes of all the
stocks in each trading day as an epoch. For example, if there
are 250 trade days and 300 stocks, then it groups into 250
epochs and 250 × 300 episodes. During training, we iterates
between rollouts and updates in a batch RL manner. At each
round, we randomly select one trading day from the training
set, and run parallel rollout for all the episodes in that trad-
ing day. After finished, we perform the on-policy policy up-
date with the collected data like the standard PPO algorithm
[Schulman et al., 2017].

4 Experiments
Our experiments are designed to investigate the following
questions:

Q1. Can HALOP beat the market?
Q2. Can HALOP improve upon other volume-oriented or-

der splitting strategies? Is HALOP stable and robust?
Q3. What benefits can we get from HALOP compared with

vanilla continuous or discrete control?
Q4. Can HALOP address the trade-off between general-

ization and specialization better than other methods?

4.1 Experiment Setup
The Simulation Environment
We conduct experiments in simulation environments which is
built over historical high-frequency transaction data of stocks
of the CSI 300 index in the China A-shares. Specifically, we
test all the methods in the buying direction and directly use
the raw market information as the agent’s state, which con-
sists of the top 5 bid/ask prices and volumes, and the cur-
rent (last) price. As described in the previous section, we use
the data from January 2010 to December 2019 to build the
training episodes, and use the data from January 2020 to June
2020 to build the testing episodes.

At each episode (i.e., for one stock on one trading day), our
agent’s execution mission starts at 10:00:00 (half an hour af-
ter opening) and ends at 14:30:00 (half an hour before close)
which is an 180-minute trading hour. The time period is then
split into T = 90 intervals evenly. At each step, the agents
observes the market information and send an order to the mar-
ket. We simulate a three second communication delay so as to
make the experiment close to reality. For example, an order
sent at 10:02:00 can be executed after 10:02:03. Moreover,
to avoid potential large market impact, our environment does
not execute any large order whose size is larger than 1/10
of the agent’s total inventory of the day. So on receiving an
order with size vt, the environment executes no more than
min(vt, 1/10) and cancels the rest of it, if there is.

Evaluation Metrics
Our evaluation metrics are designed around two core con-
cepts in quantitative finance: the excess return and the risk.

We use the average excess return over TWAP-with-market-
order as the Return metric. That is, the TWAP strategy using
market orders always get a return of 0, and other methods get
positive returns if it beats TWAP. The returns are displayed in
basis points (bps, 1 bp equals to 0.01%).

Next, we compute the standard deviation of excess returns
as a risk indicator, denoted as Std. Smaller standard deviation
of returns means that the algorithm is more stable throughout
different time and stocks.

With the computed Return and Std metrics, we calculate
the t-value for paired student’s t-test, to show the significance
of the excess return. For any method, given the metric Return
and Std, the t-value can be computed by

t-value =
Return

Std/
√
n− 1

, (13)

where n is the number of episodes. A larger t-value indicates
more significant results. When n is large enough, t > 3.29
means that there is a improvement over the benchmark in con-
fidence level 99.9%.

Finally, we need a more realistic metric that takes both re-
turn and safety constaints into consideration, which is our
PnL (or Profit and Loss) for order execution. The profit is the
excess return. For the loss, we take a regulation constraint
into consideration: the cancellation rate for institutional in-
vestors cannot be greater than 50%. So when the cancellation
rate exceeds 50%, we penalize the agent by -5 bps. So

PnL = Return−
n∑
i

5 · I
[
∆T +

T∑
t=1

vt > 2
]
, (14)

with vt defined in Eq.(1) and ∆T the size of market order at
the end of an episode.

4.2 Compared Methods
There are two categories of methods we compared: the price-
and volume-oriented optimization methods. For the first part,
we compare the following methods:
• Market Order which place market orders at all steps,

meant to be executed as quickly as possible.
• PPO-Gaussian which is PPO [Schulman et al., 2017]

with a Gaussian policy (Figure 1(a)).
• PPO-Softmax which is PPO [Schulman et al., 2017]

with a Softmax policy (Figure 1(b)).
• HALOP is our proposed method with two stages.
• HALOP Stage-1 is HALOP with only one stage (using

the discretized Gaussian policy). It takes both public and
private states as inputs. We test it to see whether it can
improve upon the ordinary Gaussian policy.

For a fair comparison, all the RL algorithms are tested with
the same network architecture (shown in Figure 2). The num-
ber of actions in HALOP stage-2 is set to 7 = 2× 3 + 1.

To see how the agents perform under different volume
schedule, we test the following volume-oriented methods:
• TWAP which evenly splits the order to T pieces and

execute the same amount of shares at each step.
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Method TWAP VWAP ODP

Return PnL Std t-value Return PnL Std t-value Return PnL Std t-value

Market Order 0.00 0.00 0.00 0.0 0.14 0.14 8.72 3.1 1.64 0.92 65.34 4.8

PPO-Gaussian 1.41 1.33 4.61 58.7 1.38 1.31 8.94 29.7 2.20 1.12 64.55 6.5
PPO-Softmax 2.12 -1.46 35.88 11.3 2.36 -1.17 35.47 12.8 3.34 -0.53 66.73 9.6

HALOP Stage-1 3.69 1.46 17.05 41.5 3.87 1.68 17.51 42.4 4.51 1.45 63.67 13.6
HALOP 4.41 2.98 6.87 123.2 4.52 3.12 9.24 93.8 5.04 2.46 63.42 15.3

Table 1: Main results.

• VWAP which sends orders in proportion to an estimated
volume ratio of each time period of the day, which is
estimated from the previous 21 trading days.
• OPD [Fang et al., 2021] which leverages RL with policy

distillation to determine the size of each sub-order.

4.3 Main Experimental Results
Table ?? reports the overall performance.

First, to answer question Q1, it is clear that our HALOP
method can indeed outperform the market orders with a large
margin. When using the basic TWAP, HALOP beats Market
Order with 4.41 bps and a PnL of 2.98, with a t-value of 123.2
which proves the significance of improvements.

Second, to answer Q2, we would like to see how HALOP
performs under other volume allocation methods. We firstly
see that the superiority of HALOP againest Market Order still
holds with either TWAP, VWAP or ODP. Also, surprisingly,
we find that when using HALOP, the Std of ODP decreased
comparing to the original ODP with market order, indicating
that HALOP can even stabilize the order execution process in
certain circumstances.

Third, to answer Q3, we need to compare HALOP with
ordinary PPOs as well as the lite version of HALOP with
only stage-1. We find that though PPO-Gaussian and PPO-
Softmax all yields positive excess returns, the improvements
are not as large as that of HALOP. Moreover, while PPO-
Softmax gets a higher excess-return than PPO-Gaussian, it
has negative PnL and very large Std. It indicates that although
the Softmax policy is capable of finding the best action, it
is unstable and unreliable. We also see that HALOP Stage-
1 yields significantly better result than the ordinary PPOs,
showing its ability of taking the advantages of both Gaussian
policy and discrete control. Finally, the comparison between
HALOP and HALOP Stage-1 shows that the specialization in
stage-2 indeed helps improve both excess return and stability.

4.4 Grouping Study
We further design a grouping study to see whether HALOP
address the trade-off between generalization and specializa-
tion well. We group the test episodes by stock close prices:
“low-priced” for price less than 10.00 CNY, “medium-
priced” for price between 10.00-50.00 CNY, and “high-
priced” for larger than 50.00 CNY.

As shown in Figure 3, we find PPO-Gaussian more in fa-
vor of high-priced stocks than low-priced stocks. Next, we
observe that HALOP Stage-1 has a strong ability of gener-
alization in all the groups: the excess returns are all over

low-priced medium-priced high-priced
group

0

1

2

3

4

5

R

Extra return in different price groups

PPO-Gaussian
HALOP Stage-1
HALOP

Figure 3: Results of grouping study

3.5. Further, the two-stage HALOP further improves the re-
sults especially for low-priced stocks, which indicates that the
fine-grained discrete control in stage-2 indeed achieves better
specialization for different types of stocks. Specifically, for
penny stocks which are known to have less liquidity, the dis-
cretization in HALOP Stage-2 is shown to be more beneficial.

5 Conclusion

This paper focuses on optimal execution with limit orders by
setting better limit prices. We propose a novel reinforcement
solution, Hybrid Action-Space Order Placement, to address
the generalization-specialization trade-off by combining both
advantages of continuous and discrete control. The proposed
method has two stages: in stage-1, the agent selects a target
percentage change in price with a discretized Gaussian pol-
icy and scopes a subset of discrete actions thereby; in stage-
2, the agent uses a fine-grained Gaussian-and-Softmax pol-
icy to select a tick-based action. Extensive simulation-based
experiments show that our method can beat the market and
improve upon other volume-oriented order splitting strate-
gies. It shows stable and robust improvements comparing
with vanilla continuous or discrete control methods. Specif-
ically, the discretized Gaussian policy of stage-1 helps im-
prove the generalization ability, and meanwhile in stage-2 the
agent specializes in policy for different types of stocks espe-
cially for low-priced stocks. In a broader sense, we believe
that HALOP offers a reference of applying RL in real-world
applications where the trade-off between generalization and
specialization should be taken into consideration.
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