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Abstract
As a specific case of graph transfer learning, un-
supervised domain adaptation on graphs aims for
knowledge transfer from label-rich source graphs
to unlabeled target graphs. However, graphs with
topology and attributes usually have considerable
cross-domain disparity and there are numerous
real-world scenarios where merely a subset of
nodes are labeled in the source graph. This im-
poses critical challenges on graph transfer learn-
ing due to serious domain shifts and label scarcity.
To address these challenges, we propose a method
named Semi-supervised Graph Domain Adaptation
(SGDA). To deal with the domain shift, we add
adaptive shift parameters to each of the source
nodes, which are trained in an adversarial manner
to align the cross-domain distributions of node em-
bedding, thus the node classifier trained on labeled
source nodes can be transferred to the target nodes.
Moreover, to address the label scarcity, we pro-
pose pseudo-labeling on unlabeled nodes, which
improves classification on the target graph via mea-
suring the posterior influence of nodes based on
their relative position to the class centroids. Finally,
extensive experiments on a range of publicly acces-
sible datasets validate the effectiveness of our pro-
posed SGDA in different experimental settings.

1 Introduction
In the real world, graphs have been gaining popularity for
their ability to represent structured data. As a basic prob-
lem, node classification has been applied in a variety of sce-
narios, including social networks [Fan et al., 2019; Ju et
al., 2023], academic networks [Kong et al., 2019; Wu et
al., 2020b], and biological networks [Ingraham et al., 2019;
Wang et al., 2018]. Graph transfer learning, which transfers
knowledge from a labeled source graph to help predict the
labels of nodes in a target graph with domain changes, has
attracted a growing amount of interest recently. This prob-
lem is crucial due to the prevalence of unlabeled graphs in
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Figure 1: The semi-supervised domain adaptation on graphs.

the real world and the anticipation of acquiring information
from known domains.

Despite the significant progress made by graph transfer
learning algorithms, they often assume that all nodes in the
source graph are labeled. However, annotating the whole
source graph becomes time-consuming and costly, particu-
larly for large-scale networks. It is worth noting that recent
semi-supervised node classification approaches can produce
superior performance with a small number of node labels.
This raises a natural problem, whether it is possible to use a
small number of labeled data and a large amount of unlabeled
data in the source network to infer label semantic information
in the target graph with significant domain discrepancy. In a
nutshell, this innovative application scenario is summarized
as a semi-supervised domain adaptation on graphs.

Nonetheless, formalizing a semi-supervised domain adap-
tive framework for node classification remains a non-trivial
task since it must address two basic issues: Issue 1: How to
overcome a significant domain shift cross graphs to give
domain-invariant predictions? The domain shift between
the source and target graphs roughly lies in the following
two views: graph topology and node attributes. For exam-
ple, distinct graphs may have different link densities and sub-
structure schemas, and hand-crafted node attributes from di-
verse sources could have significant biases individually. This
brings more considerable domain shifts than traditional data.
Issue 2: How to mitigate the label scarcity for the classi-
fier to give accurate and label-discriminative predictions?
Since the target graph is completely unlabeled, existing work
only performs domain alignment, without considering the sit-
uation that the overall distributions may be aligned well but
the class-level distributions may not match the classifier well.
Even worse, only a subset of node labels is available on the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2279



source graph, impeding effective classifier learning. Thus, it
is critical to leverage the graph topology to improve the dis-
criminative ability of the classifier on the unlabeled nodes.

In this paper, we address the aforementioned problems
by developing a novel Semi-supervised Graph Domain
Adaptation model named SGDA, as shown in Figure 1. The
core idea of SGDA is to transfer the label knowledge from
the source graph to the target graph via adversarial domain
transformation and improve the model’s prediction on unla-
beled target nodes via adaptive pseudo-labeling with poste-
rior scores. Specifically, we add pointwise node mutual in-
formation into the graph encoder, enabling the exploration
of high-order topological proximity to learn generalized node
representations. In addition, we add shift parameters onto the
source graph to align the distribution of cross-domain node
embeddings, so as to the classifier trained on source node em-
bedding can be used to predict the labels of the target node.
We propose an adversarial domain transformation module to
train the graph encoder and shift parameters. Furthermore,
to address the label scarcity problem, we introduce pseudo
labels to supervise the training of unlabeled nodes in both
domains, which adaptively increases the training weights of
nodes close to the pseudo labels’ cluster centroids, thus mak-
ing the model gives discriminative predictions on these unla-
beled nodes. The main contributions of our method for the
semi-supervised domain adaptation in graph transfer learning
can be summarized as follows:

• To eliminate the domain shift cross graphs, we introduce
the concept of shift parameters on the source graph en-
coding and propose an adversarial transformation mod-
ule to learn domain-invariant node embeddings.

• To alleviate the label scarcity, we propose a novel
pseudo-labeling method using posterior scores to super-
vise the training of unlabeled nodes, improving the dis-
criminative ability of the model on the target graph.

• Extensive experiments on various graph transfer learn-
ing benchmark datasets demonstrate the superiority of
our SGDA over state-of-the-art methods.

2 Related Works
Domain Adaptation. Domain adaptation aims to transfer se-
mantic knowledge from a source domain to a target domain,
which has various applications in computer vision [Zhang
et al., 2022; Yan et al., 2022]. In the literature, current
methods can be roughly categorized into two types, i.e.,
distance-based methods [Chang et al., 2021; Li et al., 2020;
Zhang and Davison, 2021] and adversarial learning-based
methods [Zhang et al., 2018; Tzeng et al., 2017; Volpi et
al., 2018]. Distance-based methods explicitly calculate the
distribution distance between source and target domains and
minimize them in the embedding space. Typical metrics for
distribution difference include maximum mean discrepancy
(MMD) [Chang et al., 2021] and enhanced transport distance
(ETD) [Li et al., 2020]. Adversarial learning-based meth-
ods usually train a domain discriminator on top of the hidden
embeddings and attempt to fuse it for domain alignment in
an implicit fashion. Despite the enormous effectiveness of

domain adaptation, these methods typically focus on image
problems. We address the challenge of semi-supervised do-
main adaptation on graphs by exploiting the graph topology
information to enhance the model performance.
Graph Transfer Learning. Graph transfer learning has been
widely studied in recent years. Early models [Qiao et al.,
2022; Qiu et al., 2020; Hu et al., 2020] typically utilize source
data to construct a graph model for a different but related
task in the target data. The effectiveness of transfer learning
on graphs has been widely validated in a multi-task learn-
ing paradigm. Thus, graph transfer learning alleviates the
burden of collecting labels regarding new tasks. The recent
focus has been transformed into the problem of domain adap-
tation on graphs. Typically, these methods [Guo et al., 2022;
Shen et al., 2020a] combine graph model with domain adap-
tion techniques. In particular, they produce domain-invariant
node representations either implicitly confounding a domain
discriminator using adversarial learning [Zhang et al., 2021;
Wu et al., 2020a] or explicitly minimizing the distance [Shen
et al., 2020b] between representations in two domains. Still,
most work establishes methods on graphs similar to those on
images, without considering the complex structure of graphs
or explicitly exploiting the graph topology information.
Semi-supervised Learning on Graphs. Semi-supervised
learning on graphs refers to the node classification problem,
where only a small subset of nodes are labeled. Graph neu-
ral networks (GNNs) such as GCN [Welling and Kipf, 2016],
GraphSAGE [Hamilton et al., 2017], and GAT [Veličković
et al., 2018] have achieved great success on these problem.
These methods usually follow the paradigm of message pass-
ing where each node attains information from its connected
neighbors, followed by an aggregation operation for node
representation updating in a recursive fashion. Recently, a
range of GNN methods have been proposed to enhance the
model performance from the view of exploring augmenta-
tion [Wen et al., 2022; Wang et al., 2020], expanding con-
tinuous [Xhonneux et al., 2020], adversarial learning [Xu
et al., 2022; Jin et al., 2021] and etc [Qiao et al., 2023;
Tang et al., 2021]. However, these methods usually focus
on learning and evaluation from a single graph. By contrast,
we investigate a novel graph transfer learning problem named
semi-supervised domain adaptation on graphs in this paper.

3 Problem Definition
The source graph is expressed as Gs = {As, Xs} with
Vs,l,Vs,u, and Y s,l, where As ∈ RNs×Ns

is the adjacency
matrix and Ns is the number of nodes in Gs. As

ij = 1 if there
is an edge between nodes ni and nj , otherwise, As

ij = 0.
Xs ∈ RNs×d is the attribute matrix, where d is the dimen-
sion of node attributes. Vs,l is the labeled node set, yi ∈ RC

is the ground-truth of the node ni ∈ Vs,l where C is the num-
ber of classes and the k-th element yi,k = 1 if the i-th node
belong to the k-th class and otherwise yi,k = 0. Vs,u is rest
unlabeled node set in Gs, i.e, |Vs,l| + |Vs,u| = Ns. |Vs,l| is
much fewer than |Vs,u| due to the expensive labeling cost.

The target graph is expressed as Gt = {At, Xt}with node
set Vt, where At ∈ RNt×Nt

is adjacency matrix and N t is
number of nodes in Gt. Xt ∈ RNt×d is the node attribute
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Figure 2: The framework of SGDA. The source graph and target graph with reconstructed high-order topologies P s and P t are fed into
a two-layer graph convolutional network to generate generalized node embeddings, where source graph are added with shift parameters ξ
to promote distribution alignment. Three losses LSup, LAT , and LPL perform supervised learning, domain adversarial transformation via
shifting, and pseudo-labeling with posterior scores, respectively.

matrix. Note that the attribute set of the source and target
graphs may have certain differences. However, one can create
a union attribute set between them to align the dimension.

The problem of semi-supervised domain adaptation on
graphs is given the source graph Gs with limited labels and
the target graph Gt completely unlabeled, and they have cer-
tain domain discrepancy on the data distributions but share
the same label space. The goal is to learn a model to accu-
rately predict the node classes in the target graph with the
assistance of the partially labeled source graph.

4 Methodology
As shown in Figure 2, our SGDA consists of three mod-
ules as below: (1) Node Embedding Generalization. To suf-
ficiently explore high-order structured information in both
graphs to learn generalized node representations; (2) Adver-
sarial Transformation. To eliminate serious domain discrep-
ancy between the source graph and the target graph, we in-
troduce adaptive distribution shift parameters to the source
graph, which are trained in an adversarial manner with re-
gard to a domain discriminator. Therefore, the source graph
is equipped with the target distribution. (3) Pseudo-Labeling
with Posterior Scores. To alleviate the label scarcity, we
propose pseudo-labeling loss on all unlabeled nodes cross-
domain, which improves classification on the target graph via
measuring the influence of nodes adaptively based on their
relative position to the class centroid.

4.1 Node Embedding Generalization
Considering that the model needs to perform the cross-
domain transfer and the labels are limited for the classifica-
tion task, learning generalized node embeddings is critical for
such a domain adaptation procedure. In view of this, we com-
pute the positive pointwise mutual information [Zhuang and
Ma, 2018] between nodes to fully explore high-order unla-
beled graph topology information and use the graph convolu-
tional network [Welling and Kipf, 2016] to encode nodes into
generalized low-dimensional embeddings.

Given a graph G = {A,X} with the adjacency matrix A ∈
RN×N , We use the random walk to sample a set of paths on
A and obtain a co-occurrence frequency matrix F ∈ RN×N ,
where Fij counts the times of the node nj occurs within a
predefined window in node ni’s context. Then, the positive
mutual information between nodes is computed by:

Pij =
Fij∑
i,j Fij

, Pi =

∑
j Fij∑
i,j Fij

, Pj =

∑
i Fij∑
i,j Fij

,

Pij = max{log( Pij

Pi × Pj
), 0},

(1)

where Pij is the probability of the node nj occurring in the
context of the node ni. Pi and Pj are the probability of the
node ni as the anchor and node nj as the context, respectively.
Pij is the positive mutual information between ni and nj ,
which reflects the high-order topological proximity between
nodes, as it assumes that if two nodes have high-frequency
co-occurrence, Pij should be greater than if they are expected
independent. i.e., Pij > Pi × Pj . We can obtain a mutual in-
formation matrix P as the new adjacency matrix of G. Then,
the l-th graph convolutional layer Conv(l)(·) is defined as:

H(l) = Conv(l)(P,H(l−1)),

= σ(D− 1
2 P̃D− 1

2H(l−1)W (l)),
(2)

where σ(·) denotes an activation function. P̃ = P + I where
I is the identity matrix and D is the diagonal degree matrix of
P (i.e., Dii =

∑
j P̃ij). W (l) is the l-th layer weight matrix.

H(l) is the l-th layer hidden output and H(0) = X . Finally,
we can build the backbone of our method by stacking L layers
of graph convolutional networks in Equation 2, expressed as
f(G; θ), where θ is the model parameters.

4.2 Adversarial Transformation via Shifting
Usually, the general learning objective of the domain adapta-
tion is to train a feature encoder to eliminate the distribution
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discrepancy between the source domain and the target domain
and then generate embeddings with similar distribution on
both domains. Therefore, the classifier learned on the source
domain can be adapted to the target domain. Most meth-
ods [Zhang et al., 2021; Xiao et al., 2022] attempt to match
embedding space distributions by optimizing the feature en-
coder itself. However, graphs with non-Euclidean topology
usually have more considerable input disparity than tradi-
tional data. Only using the parameters in the encoder (e.g.,
GNNs) may be insufficient to shift the distributions finely.
Performing transition by adding trainable parameters (e.g.,
transport, perturbation) on input spaces has been proven to
be effective in shifting one distribution to another one [Jiang
et al., 2020; Li et al., 2020]. Be aware that, we proposed an
adversarial transformation module, which aims to add shift
parameters on the source graph to modify its distribution and
use adversarial learning to train both the graph encoder and
shift parameters to align the cross-domain distributions.

Specifically, given the source graph Gs = {As, Xs} and
the target graph Gt = {At, Xt}, we first add the shift
parameters ξ onto the source graph and obtain the shifted
source node embeddings Hs,ξ = f(Gs; θ, ξ) with the dis-
tribution Hs,ξ, where Hs,ξ ∈ RNs×h and h is the output
dimension. Meanwhile the target node embeddings are ob-
tained by Ht = f(Gt; θ) with the distribution Ht, where
Ht ∈ RNt×h. The optimization objective is to make the dis-
tributions similar, i.e.,Hs,ξ ≈ Ht. We define the shift param-
eters as randomly initialized multi-layer parameter matrices,
i.e., ξ = {ξ(1), ξ(2), ..., ξ(L)}, where each ξ(i) is specific to
the i-th layer hidden output of f(·), formulated as:

Hs,(l) =

{
Conv(l)(P s, Xs) + ξ(l) l = 1

Conv(l)(P s, Hs,(l−1)) + ξ(l) 1 < l ≤ L
(3)

Then, we can obtain the shifted source node embeddings
Hs,ξ from the final output. We propose an adversarial trans-
formation optimization objective on the source node embed-
dings and target node embeddings, which is defined as:

max
θ,ξ

{
min
ϕd

{
LAT (H

s,ξ, Ht;ϕd)
}}

,

s.t., ||ξ(l)||F ≤ ϵ, ∀ξ(l) ∈ ξ.

(4)

The loss function LAT is defined as:

LAT =− Ehs,ξ
i ∼Hs,ξ

[
log

(
Dd(h

s,ξ
i , ϕd)

)]
− Eht

j∼Ht

[
log

(
1−Dd(h

t
j , ϕd)

)]
,

(5)

where hs,ξ
i , ht

i is the i-th row of Hs,ξ, Ht, respectively.
Dd(hi, ϕd) with the parameters ϕd is a domain discriminator
that learns a logistic regressor: Dd : Rh → R1 to model the
probability of the given the input node embedding hi from the
source graph or the target graph. The domain discriminator
is trained to distinguish which domain the node embeddings
are from, while the encoder with shift parameters is forced to
generate the source node embeddings as indistinguishable as
possible from target ones for the domain discriminator, thus
resulting in domain-invariant node embeddings, We constrain

the gradient of shift parameters in each training step within a
certain radius ϵ to avoid excessive distribution shift, making
the adversarial task impossible.

4.3 Pseudo-Labeling with Posterior Scores
In this module, we define the classifier on the node embed-
dings, e.g., Dc(hi, ϕc) : Rh → RC to model the label prob-
ability of nodes, which is a multi-layer perception followed
with a softmax layer. Then, we can obtain the probability
psi = Dc(h

s,ξ
i , ϕc) of each node in the source graph and the

probability ptj = Dc(h
t
j , ϕc) of each node in the target graph.

We define the supervised loss function on the probabilities of
nodes in the labeled node set Vs,l of the source graph:

LSup = − 1

|Vs,l|
∑

ni∈Vs,l

C∑
k=1

yi,k log(p
s
i,k). (6)

Since only a few nodes are labeled in the source graph
whereas all nodes are unlabeled in the target graph, the model
will be easily over-fitting if we only have Eq. 6. In partic-
ular, without any supervision, the nodes in the target graph
distributed near the border and far away from the centroid of
clusters of their corresponding classes are easily misclassi-
fied by the hyperplane learned from the label information of
the source graph. Thus, we propose a novel pseudo-labeling
strategy with posterior scores of nodes to improve the predic-
tion accuracy on unlabeled nodes.

Specifically, in each training iteration, we update the
pseudo-labels for the unlabeled nodes in both the source and
target graph by mapping their output probabilities into one-
hot encoding, denoted as ŷi = M(pi), where M(·) is the
one-hot map and pi is the probability of node ni ∈ Vs,u∪Vt.
Note that we treat all unlabeled nodes cross-domain in the
same level and omit the notations of domain superscript for
brevity. We assume that the nodes close to the structural cen-
troid of their pseudo-label cluster on the graph are more likely
classified correctly, while the pseudo-labels of those close to
the cluster boundary are less reliable. Based on the hypothe-
sis, we treat the pseudo-labels of former nodes as more high-
quality self-supervised signals and aim to improve the dis-
criminative ability of these node embeddings. Thus, we intro-
duce a posterior score to define how ni is close to the struc-
tural centroid of its pseudo label cluster on its reconstructed
adjacency matrix P computed in Section 4.1:

wi =
N∑
j=1

(Pij ∗ PCŷi
,j −

1

C − 1

C∑
k=1,k ̸=ŷi

Pij ∗ PCk,j), (7)

where PCŷi
,j = 1

|Cŷi
|
∑

x∈Cŷi
Px,j indicates the overall mu-

tual information from the nodes belonging to the class ŷi to
the node nj . The posterior score defines that if a node ni with
the pseudo label ŷi encounters high mutual information from
other nodes in terms of the class ŷi and low ones from other
nodes in terms of other classes, we have the conclusion that
node ni close to the centroid of class ŷi and wi has a high
value, and vice versa. Then, we apply a cosine annealing
function [Chen et al., 2021] to scale wi into a certain range:

ŵi = α+
1

2
(β − α)(1 + cos(

Rank(wi)

|V|
π)), (8)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2282



where V ∈ {Vs,u,Vt} and ni ∈ V . [α, β] controls the scale
range. Rank(wi) is the ranking order of wi from the largest
to the smallest. Then, we define a pseudo-labeling loss func-
tion with posterior scores as follows:

LPL = − 1

|V|
∑
ni∈V

ŵi

C∑
k=1

ŷi,k log(pi,k)+
C∑

k=1

p̂k log p̂k, (9)

where p̂k = Eni∈V [pi,k] and the second term is a diversity
regularization to promote the diversity of output probabili-
ties, which can circumvent the problem of some large poste-
rior scores dominating in training to make all unlabeled nodes
over-fit into the same pseudo-label. By LSL, the model is
more encouraged to focus on the high-confidence nodes close
to its corresponding cluster centroid and less influenced by
those ambiguous nodes near the boundary, so as to improve
the discriminative ability on unlabeled nodes.

4.4 Optimization
By combining the three losses above, the optimization of the
proposed method SGDA is as follows:

min
θ,ξ,ϕc

{
LSup + λ1LPL + λ2 max

ϕd

{−LAT }
}
,

s.t., ||ξ(l)||F ≤ ϵ, ∀ξ(l) ∈ ξ.

(10)

where λ1 and λ2 is the weights to balance different losses. In
practice, we introduce a gradient reversal layer (GRL) [Ganin
et al., 2016] between the graph encoder and the domain dis-
criminator so as to conveniently perform min-max optimiza-
tion under LAT in one training step. The GRL acts as an
identity transformation during the forward propagation and
changes the signs of the gradient from the subsequent net-
works during the backpropagation. Particularly, for each
ξ(l) ∈ ξ, the update rule is defined as follow:

g(ξ(l)) =

(
∂LSup

∂ξ(l)
+ λ1

∂LPL

∂ξ(l)
− λ2

∂LAT

∂ξ(l)

)
,

ξ(l) ← ξ(l) + µg(ξ(l))/||g(ξ(l))||F .
(11)

where µ is the learning rate. The shift parameters ξ are
optimized by Projected Gradient Descent (PGD). Following
[Yang et al., 2021; Kong et al., 2020], we use the unbounded
adversarial transformation as one is not aware of the shifting
scale in advance.

5 Experiments
5.1 Dataset
We conduct experiments on three real-world graphs: ACMv9
(A), Citationv1 (C), and DBLPv7 (D) from ArnetMiner [Tang
et al., 2008]. These graphs are constructed from three differ-
ent source datasets in different periods, i.e., Association for
Computer Machinery (after the year 2010), Microsoft Aca-
demic Graph (before the year 2008), and DBLP Computer
Science Bibliography (between years 2004 and 2008), re-
spectively so that they have varied distributions in their do-
main spaces. Each node in these graphs represents a paper

Dataset #Nodes #Edges #Attr. Avg.
Degree

Label Proportion
(%)

ACMv9 9,360 15,602 5,571 1.667 20.5/29.6/22.5/8.6/18.8
Citationv1 8,935 15,113 5,379 1.691 25.3/26.0/22.5/7.7/18.5
DBLPv7 5,484 8,130 4,412 1.482 21.7/33.0/23.8/6.0/15.5

Table 1: The statistics of three graphs. ‘#’ means ‘the number of’.
‘Attr.’ means ‘Attributes’. ‘Avg.’ means ‘Average’.

whose attribute is the sparse bag-of-words vector of the pa-
per’s title. The edges represent a citation relationship between
these papers, where the direction is ignored. As these graphs
do not share the same feature set of node attributes, we union
their attribute set and reshape the attribute dimension as 6775.
Each node is assigned a five-classes label based on its rel-
evant research areas, including Artificial Intelligence, Com-
puter Version, Database, Information Security, and Network-
ing. Table 1 presents the statistics of graph scale, attributes,
average degree, and label proportion, indicating the intrinsic
discrepancy between the three graphs. In our paper, we alter-
nately select one of these graphs as the source domain and the
rest two as the target domain.

5.2 Baselines
We select two groups of baseline methods. The first group
is traditional solutions for graph semi-supervised learning,
which learns a node classification model on the source graph
and directly uses the model to perform inductive prediction
on the target graph without explicit transfer learning. We
first use Multi-Layer Perceptron (MLP), which is directly
trained on the attributes of nodes in the source graph. We
choose four GNN variants, including GCN [Welling and
Kipf, 2016], GraphSAGE (GSAGE) [Hamilton et al., 2017],
GAT [Veličković et al., 2018], and GIN [Xu et al., 2018],
which are acknowledged as state-of-the-art models for graph
semi-supervised learning. The second group is specific to
domain adaptation. We first choose two general approaches
DANN [Ganin et al., 2016] and CDAN [Ganin et al., 2016],
which are initially designed for transfer learning on images
or text. We train them on node attributes. For graph semi-
supervised learning, we create their variants DANNGCN and
CDANGCN by replacing the encoder from MLP to GCN
and training them on graphs. Finally, we select two meth-
ods most similar to us, UDA-GCN [Wu et al., 2020a] and
AdaGCN [Dai et al., 2022], which are also designed for semi-
supervised domain adaptation on graphs.

5.3 Experimental Setting
We choose a two-layer GCN as the backbone of SGDA. We
set the loss wrights λ1 always as 1 and λ2 ∈ [0, 1] as a dy-
namic value that is linearly increased with the training epoch,
i.e., λ2 = m/M where m is the current epoch and M is the
maximum epoch. We consider that at the early training steps,
the classifier is not completely converged, making the pseudo
labels produced by the classifier inferior for self-supervised
learning. We randomly initialize the ξ under the uniform dis-
tribution U(−ϵ, ϵ) and set the ϵ always as 0.5. We set the scale
range α and β always as 0.8 and 1.2. We train SGDA for 200
epochs with the learning rate as 0.001, the weight decay as
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Methods A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

MLP 41.3±1.15 35.8±0.72 42.8±0.88 36.3±0.77 39.4±0.57 33.7±0.58 43.7±0.69 36.7±0.55 37.3±0.32 30.8±0.37 39.4±0.99 32.8±0.99

GCN 54.4±1.52 52.0±1.62 56.9±2.33 53.4±2.81 54.1±1.40 52.3±1.98 58.9±0.99 54.5±1.55 50.1±2.14 48.0±3.28 56.0±1.24 51.9±1.49

GSAGE 49.3±2.18 46.4±2.06 51.8±1.35 47.4±1.62 46.8±2.56 45.0±2.78 51.7±1.95 48.1±1.97 41.7±2.17 37.4±4.59 45.4±2.11 39.3±3.45

GAT 55.1±3.22 50.8±1.45 55.3±2.52 51.8±2.60 50.0±1.20 45.6±2.36 55.4±2.73 49.2±2.59 44.8±2.74 38.3±4.84 50.4±3.35 42.0±4.46

GIN 64.6±2.47 56.0±2.73 60.0±2.09 51.3±3.99 57.1±1.19 54.4±2.57 62.0±1.05 56.8±1.40 51.9±2.00 45.4±2.16 60.2±3.05 53.0±2.10

DANN 44.3±2.03 39.3±1.86 44.0±1.42 38.7±1.47 41.8±1.95 37.6±1.24 45.5±0.71 39.6±1.55 37.8±3.66 33.2±2.23 41.7±2.32 35.6±2.55

CDAN 44.6±1.30 38.6±1.07 45.5±0.85 38.0±0.86 42.4±0.64 36.2±1.17 46.7±1.17 39.2±0.96 39.0±1.08 32.3±1.09 41.7±1.55 34.8±1.56

DANNGCN 63.0±6.75 59.6±6.02 62.2±1.90 57.7±3.16 56.7±0.38 55.2±1.03 65.3±2.04 59.0±2.39 52.3±2.59 48.6±4.52 58.1±2.78 52.4±3.81

CDANGCN 70.3±0.84 66.5±0.66 65.0±1.00 61.3±0.96 56.3±1.78 53.6±2.70 65.2±2.19 58.8±2.38 53.0±1.34 48.7±3.51 59.0±1.52 53.3±1.99

UDA-GCN 72.4±2.75 65.2±6.51 68.0±6.38 64.3±7.12 62.9±0.33 62.2±1.44 71.4±2.56 67.5±2.25 55.8±3.50 52.4±2.68 65.2±4.41 60.7±6.84

AdaGCN 70.8±0.95 68.5±0.73 68.2±3.84 64.2±3.91 61.5±2.20 60.4±3.15 69.1±1.96 65.8±2.87 56.1±1.75 53.8±2.95 64.1±0.91 62.8±1.56

SGDA 75.6±0.57 71.4±0.82 69.2±0.73 64.7±2.36 66.3±0.68 62.3±0.96 72.9±1.26 68.9±1.83 60.6±0.86 56.0±0.90 73.2±0.59 69.3±1.01

Table 2: The model performance comparison on six domain adaptation tasks with source label rate as 5%. A: ACMv9; C:Citationv1; D:
DBLPv7. A⇒C represents that A is the source graph and C is the target graph. The same applies to other tasks.

0.001, and the dropout rate as 0.1 on all datasets. For base-
lines, we implement DANN, CDAN, AdaGCN, and UDA-
GCN by their own codes and report the best results. The di-
mension of node embeddings is as 512 for all approaches.

5.4 Performance Comparison
This experiment aims to answer: How is SGDA performance
on the semi-supervised domain adaptation task on graphs?
We randomly select 5% of nodes in the source graph as la-
beled nodes and others as unlabeled nodes while the target
graph is completely unlabeled. We use Micro-F1 and Macro-
F1 as the metric and report the classification results of dif-
ferent approaches on the target graph in Table 2. Notably,
we ran each experiment 5 times, and each time we sampled
different label sets to alleviate the randomness. The average
results with standard deviation are reported.

From the results, we can observe that: Firstly, SGDA con-
sistently achieved the best results on six transfer learning
tasks. Particularly, SGDA achieved a significant improve-
ment compared with two methods of semi-supervised domain
adaption across graphs—AdaGCN and UDA-GCN, indicat-
ing the effectiveness of SGDA in solving this problem. An-
other observation is that the performance of MLP is worse
than GNNs; two general domain adaptation methods DANN
and CDAN are worse than their two variants DANNGCN and
CDANGCN , indicating incorporating graph topology infor-
mation is critical. Thirdly, the domain adaptation methods
generally performed better than the inductive learning meth-
ods. That proves that it is necessary to perform domain trans-
formation to eliminate the cross-domain distribution discrep-
ancy in the graph transfer learning task. Lastly, as the domain
adaptation methods with the GNN-based encoders, AdaGCN
and UDA-GCN achieved better results than DANNGCN and
CDANGCN . That is because they use more complex graph
encoders and improved optimization objectives. Still, they
are worse than SGDA due to the shortages of domain trans-
formation and incompetence in handling the label scarcity.

5.5 Ablation Study
This experiment aims to answer: Are all the proposed tech-
nologies of SGDA have the claimed contribution to the semi-
supervised domain adaptation on graphs? For that, we de-
sign four variant methods for SGDA to verify the effective-

SGDA
w/o NEG
w/o Shift
w/o AT
w/o PL

0.65

0.70

0.75

Micro-F1 Macro-F1

SGDA
w/o NEG
w/o Shift
w/o AT
w/o PL

0.60

0.65

0.70

Micro-F1 Macro-F1

Figure 3: The results of ablation study on the A ⇒ C task (left) and
the A ⇒ D task (right).

ness of node embedding generalization, adversarial transfor-
mation via shifting, and pseudo-labeling: w/o NEG: we di-
rectly use the original graph adjacency matrix rather than re-
construct the adjacency. w/o Shift: we remove the shift pa-
rameters added on the source graph and only use the graph
encoder to learn domain-invariant node embeddings. w/o AT:
we remove the loss LAT so the transformation of the source
graph to the target graph is deactivated. w/o PL: we remove
the loss LPL so pseudo-labeling on unlabeled nodes is deac-
tivated. Figure 3 reported the performance of these variants.
Effect of node embedding generalization.w/o NEG per-
forms worse than SGDA. The reason is that without exploit-
ing high-order graph topology information, the node embed-
dings only incorporated local neighborhood information are
not generalized enough to perform the transformation.
Effect of shift parameters. w/o Shift performs worse than
SGDA. The reason is that the shift parameters in LAT can
facilitate the transfer ability of the model. Only utilizing the
graph encoder is inefficient to shift distributions finely. Apart
from this, we can observe that w/o Shift is still superior to
other SOTA domain adaptation methods. This phenomenon
shows the limitation of those baselines on an incomplete la-
beled source graph and proves the advantage of LPL.
Effect of adversarial transformation. w/o AT without any
cross-domain distribution alignment performs worse but still
achieves considerable performance compared with baselines
in Table 2. That is because our proposed pseudo-labeling on
the target graph can adaptively pay more attention to those
nodes close to the class centroid, who are more convinced to
be correctly classified, and thus can constantly optimize the
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(a) Source graph, UDAGCN (b) Target graph, UDAGCN

(c) Source graph, SGDA (d) Target graph, SGDA

Figure 4: Visualization of node embeddings learned by UDAGCN
and SGDA on the A ⇒ C task.

classifier to have better discrimination on the target graph.
Effect of pseudo-labeling. w/o PL performs worse because,
without LPL, the model is easier to get over-fitting on the
source graph under limited labels. Additionally, the model
may learn similar distributions between the source and target
graph, but their class-level distributions may be inconsistent.
The proposed pseudo-labeling can utilize the unlabeled graph
topology to find better label space for nodes adaptively.

5.6 Visualization of Distributions
This experiment aims to answer that: How is the distribu-
tion of SGDA-generated node embeddings compared to the
SOTA domain adaptation method? To illustrate the differ-
ence, we obtained the source and target node embeddings
learned from SGDA and UDA-GCN with the same 5% la-
bel rate setting. Then we separately projected them in 2-D
by t-SNE and visualized them in Figure 4. We colored each
node by its class. The first observation is that the distribu-
tion learned by SGDA could generate more generalized node
embeddings, showing that nodes are dispersedly distributed
in the space, which is contributed by preserving high-order
topology information via random walks. Also, the distribu-
tions of source space and target space learned by SGDA are
clearly more consistent with each other, proving it can well
eliminate the cross-domain discrepancy and learn domain-
invariant node embeddings. Lastly, SGDA can significantly
separate each class of nodes in both the source and the target
graph. On the contrary, UDA-GCN can hardly differentiate
each group of nodes, which is more apparent in the target
space. That is because SGDA can well handle label scarcity
and train a more discriminative classifier on the target nodes.

5.7 Hyper-Paramter Experiment
Effect of Label Rate. This experiment aims to answer:
Is SGDA robust with different ratios of labeled data on the
source graph? We evaluate the performance of different

   DANN
   CDAN
CDANGCN

DANNGCN
AdaGCN
UDA-GCN

SGDA

0.4

0.6

0.8

Label Rate
0.01 0.03 0.05 0.07 0.09 0.10

   DANN
   CDAN
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UDA-GCN

SGDA
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0.5

0.6

0.7
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0.01 0.03 0.05 0.07 0.09 0.10

Figure 5: The model performance with different label rates on the A
⇒ C task (left) and the A ⇒ D task (right).
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Figure 6: The model performance with different shift values on the
A ⇒ C task (left) and the A ⇒ D task (right).

methods with the label rate of the source graph as 1%, 5%,
7%, 9%, and 10%, respectively. The results are reported in
Figure 5. The first observation is that SGDA has a remarkable
margin compared with other selected baselines, even with
only 1% labeled data in the source graph. This shows the
proposed pseudo-labeling can significantly handle the label
scarcity problem. Also, the GNN-based methods have a great
leap compared with NN-based approaches, proving the great
potential of utilizing unlabeled graph topology information in
improving the model’s robustness under limited labels.
Effect of Shift Value. This experiment aims to answer: How
do different shift values affect the performance of SGDA? The
constraint shift value ϵ of the shift parameters is significant to
control the scale of distribution shifting. We evaluated SGDA
with ϵ as 0.01, 0.05, 0.1, 0.5, 1. 5, and 10, respectively and
report the results in Figure 6. We can observe that with low
shift values, the model’s performance is less robust, showing
high standard deviations. Within ϵ ∈ [0.1, 1], shift parameters
have more impact in training, so SGDA can achieve relatively
high and stable results. However, when ϵ is large, the adver-
sarial learning becomes difficult, thus dampening the results.

6 Conclusion
This work presents a novel research problem of semi-
supervised domain adaptation on graphs. We propose a
method called SGDA that uses shift parameters and adver-
sarial learning to achieve model transferring. Also, SGDA
uses pseudo labels with adaptive posterior scores to alleviate
the label scarity. Extensive experiments on a variety of pub-
licly available datasets demonstrate the efficacy of SGDA. In
future work, we will expand our SGDA to a variety of graph
transfer learning tasks including source-free domain adapta-
tion and out-of-domain generalization on graphs.
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