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ABSTRACT:

The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications.
To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular,
canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The
computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea,
Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 >73%) with the in-situ, ground truth LAI
measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics.
The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later
the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate
LAI in cases with sparse, weak, unhealthy plants and canopy.

1. INTRODUCTION

Biomass and leaf area index (LAI) are important variables in
many ecological, environmental and agricultural applications. Ac-
curate estimation of biomass is required for carbon stock account-
ing and monitoring, while LAI, which is defined as the one half
of the total leaf area per unit ground surface area, controls many
biological and physical processes in the water, nutrient and car-
bon cycle. These key crop parameters are frequently used to as-
sess crop health status, nutrient supply and effects of agricultural
management practices [Zarco-Tejada et al., 2013], [Duan et al.,
2014].

In particular, for precision agriculture applications LAI is asso-
ciated with agronomic, biological, environmental, and physio-
logic processes, which are related to growth analysis, photosyn-
thesis, transpiration, interception of radiation, and energy bal-
ance [Thenkabail et al., 2000], [Haboudane et al., 2004], [Liu et
al., 2012], [Kandylakis et al., 2013], [Atzberger et al., 2015]. It is
also one of the most relevant indices applied to experimentation,
even for crop yield prediction and water balance modelling in the
soil-water-atmosphere system [Verger et al., 2014].

Direct methods are the most precise, but they have the disadvan-
tage of being extremely time-consuming and as a consequence
making large-scale implementation only marginally feasible. Pre-
cision problems may in this case result from the definition of
LAI, the scaling-up method, or from the error accumulation due
to frequently repeated measurements. LAI estimation with direct
methods are the most precise and therefore are often implemented
as calibration tools for indirect measurement techniques. Indirect
optical observations on LAI can be well correlated with vegeta-
tion indices like NDVI for single plant species which are grown
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under uniform conditions. However, for mixed, dense and multi-
layered canopies, these indices have non-linear relationships and
can only be employed as proxies for crop-dependent vegetation
parameters such as fractional vegetation cover, LAI, albedo and
emissivity.

Recent advances in remote sensing and photogrammetry have
combined 3D measurements with rich spectral information, yield-
ing unprecedented capabilities for observing crops, biodiversity
and ecosystem functioning. Aerial manned and unmanned sys-
tems are gaining continually important research and development
efforts and also market share for several geospatial applications
due to the describing cost and increasing reliability. In particu-
lar, for precision agriculture applications many studies beyond
estimating a standard NDVI map aim to build consistent cali-
brated models and validate them against the accurate estimation
of crop LAI. The estimation of the canopy volume through the
calculation of 3D models and other metrics of vertical structure
have been, already, employed from several studies for estimating
aboveground biomass and carbon density, biomass change and
LAI [Dandois and Ellis, 2013], [Bendig et al., 2015]. While con-
ventional airborne LIDAR acquisitions have become less expen-
sive over time, they remain very costly for researchers and other
end-users, especially if required at high spatial resolution over
a few small areas or at high temporal frequencies [Dandois and
Ellis, 2013].

In this paper, the estimation of crop leaf area index is performed
based on three different imaging datasets acquired from an un-
manned aerial vehicle (UAV). Hyperspectral data, 2D RGB im-
age mosaics and 3D crop surface models have been used to es-
tablish relationships with the measured on the ground LAI from
several vine crops in Nemea, Greece. The overall evaluation in-
dicated that the joint use of both the hyperspectral data and the
crop surface model resulted into the highest correlation with the
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(a) The multicopter (OnyxStar BAT-F8, Altigator, Belgium) with
lightweight single board computer and frame grabber.

(b) The VNIR hyperspectral sensor (Micro-Hyperspec, Headwall
Photonics, USA) onboard the UAV.

Figure 1: The UAV system that was employed during the aerial
campaigns with a low cost standard RGB camera (i.e., GoPro
Hero3) and the push-broom hyperspectral sensor.

ground truth. The quite promising experimental results indicate
that hyperspectral sensors along with low cost RGB cameras can
provide high spatial and rich spectral information for estimating
accurately key crop paramters.

2. MATERIALS AND METHOD

Nemea Study Area: Our experiments were performed in the
study area of Nemea which is located in the North-East of Pelo-
ponnese, with the Agiorgitiko vine variety the dominating one for
red winemaking. In particular, Nemea- Agiorgitiko is the grape
allowed to use the Nemea Appellation (PDO Nemea). During
this study we focused on vineyards near the semi-mountainous
village of Asprokambos at an altitude of about 700m above sea
level. Aerial and concurrent field campaigns were conducted with
a low-cost standard RGB camera, a push-broom hyperspectral
sensor and a portable spectroradiometer.

Aerial campaign: An aerial campaign with an unmanned aerial
vehicle (Figure 1) was conducted on the 3rd of August 2014 at

(a) The resulted orthomosaic from the collected aerial RGB images.

(b) The calculated GRVI index on the detected canopy

Figure 2: The Green-Red Vegetation Index (GRVI) was calcu-
lated on the detected canopy from the aerial RGB orthomosaic.

the Nemea study area. A multicopter (OnyxStar BAT-F8, Altiga-
tor, Belgium) with electronic controllers and navigation systems
(BL-Ctrl V2.0, Navi-Ctrl v2.0, Mikrokopter, Germnay) equipped
with:

• a push-broom hyperspectral VNIR imaging sensor (Micro-
Hyperspec A-Series 380nm-1000nm, Headwall Photonics,
USA)

• a low-cost standard RGB camera (i.e., GoPro Hero3)

was employed. The sensors were mounted and stabilized thought
a camera gimbal (AV200, PhotoHigher, New Zealand). The hy-
perspectral sensor was connected through a frame grabber with a
custom-made lightweight mini-ITX with low power consumption
(Figure 1). A GoPro HERO3+ Black Edition was, also, concur-
rently onboard the UAV delivering video and images at certain
time intervals.

Field campaign: Along with the aerial an intensive field cam-
paign was conducted in order to collect reference/ ground truth
data including the precise location and variety of each parcel,
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(a) The resulted DSM from the aerial dataset with texture from the RGB
orthomosaic.

(b) The 3D model of the canopy after the estimation of the soil in-between
the vine rows.

Figure 3: The estimated DSM and 3D model of the canopy derived from the aerial imagery and the low-cost standard RGB lightweight
camera.

vineyard or vine row [Karakizi et al., 2015]. Existing maps with
geographic information and varietal plantation were verified or
updated during field surveys. In situ reflectance measurements
were performed using the GER 1500 (Spectra Vista Corporation,
US) portable spectroradiometer which provides spectra with 512
spectral bands distributed in the spectral region from 350nm to
1050nm with 3.2 nm FWHM. The position of each measurement
was recorded using a portable GPS. Moreover, at certain locations
with vigour and non vigorous plants, LAI was assessed directly
by a non-destructive precise counting of all leaves per vine. In
particular, after collecting the aerial and ground reflectance data
the mean leaf area was estimated along with the number of leaves
per sampling location.

Automatic aerial image orientation: An indispensable step
for the generation of both 2D RGB orthomosaic and 3D canopy
model is the estimation of image orientations and camera calibra-
tion. This is performed via an automatic image-based framework.
In a first step all GoPro views are corrected from severe radial
distortion effects due to the fish-eye lens. Following a hierarchi-
cal image orientation process (structure from motion, SFM) all
available images are relatively oriented and optimally calibrated.
This procedure incorporates 2D feature extraction and matching
among images, outlier detection for the elimination of false point
correspondences, orientation initialization through closed-form
algorithms and a final self-calibrating bundle adjustment solution.
It should be noted that all these steps are applied at successive im-
age scales in order to handle effectively the large number of high
resolution images. The resulted orthophotomosaic from the col-
lected aerial RGB images is shown in (Figure 2a).

3D canopy model: Once all aerial images are oriented a dense
point cloud is generated by employing dense stereo and multi-
image matching algorithms. The 3D point cloud is then converted
to a 3D model (3D Mesh) through 3D triangulation and finally to
a DSM by keeping the highest elevation for every planimetric
ground position. Appropriate texture is also computed for each
3D triangle via a multi-view algorithm, using a weighted blend-
ing scheme. The resulted DSM from the collected aerial RGB
images is shown in (Figure 3a). In order to estimate more pre-
cisely the volume of the canopy the soil between the vine rows
was detected. Having detected both the canopy and the soil in 2D,
the DTM was estimated based on a morphological reconstruction
approach. The 3D model of the detected canopy was then calcu-
lated after projecting the estimated from the DSM canopy height
on the DTM (Figure 3b).

2D RGB imaging mosaics: Combining the oriented image set
with the reconstructed DSM of the vineyard, a 2D orthomosaic
is produced by a multi-image algorithm based on automatic visi-
bility checking and texture blending that can compensate for dif-
ferent orientations, scale and resolution of the images involved.
The resulted orthomosaic from the collected aerial RGB images
is shown in Figure 2a.

2D hyperspectral canopy greenness: Due to the movement
and the vibrations of the UAV platform the raw hyperspectral data
acquired from the push-broom sensor were highly distorted. In
order to perform a rough geometric correction, every single scan
line was aligned with the precedent, via a 1D transformation that
minimized their intensity differences. In particular, each scanline
is shifted (upwards and downwards) relatively to the precedent
one for a range of different displacements by one pixel step at a
time (e.g. from -20 to 20 pixels). At each discrete displacement
a cost is computed as the sum of the intensities absolute differ-
ence of the current scanline to the previous one. By a winner
takes all (WTA) scheme the displacement with the minimum cost
is chosen and applied to the selected scanline. The same pro-
cedure is repeated for every consecutive scanline and a final 2D
roughly undistorted hyperspectral mosaic is generated. All the
above computations for estimating the required displacements are
performed based a (narrow) color composite which resembles a
standard RGB and the final estimated shifts are then applied to
entire hypercube.

Moreover, in the same locations with the in-situ reflectance data
the relationship with the aerial hyperspectral data were estimated.

Figure 4: The estimated canopy greenness map based on the cal-
culation of a narrow NDVI from the UAV hyperspectral data
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(a) Correlating the 2D GRVI with the 3D canopy volume

(b) Correlating the 2D GRVI with the canopy greenness map from the
hyperspectral data

(c) Correlating the canopy greenness map from the hyperspectral data
with the 3D canopy model

Figure 5: The relation between the estimated canopy levels be-
tween the 2D RGB mosaic and (a) the 3D canopy (b) the hyper-
spectral map.

The high correlation rate (r2 >94%) indicated the consistency of
the acquired dataset [Karakizi et al., 2015]. The narrow NDVI
was calculated from the hyperspectral data and through a fur-
ther classification the different canopy greenness levels were esti-
mated which can be associated with the vegetative canopy vigour,
biomass, leaf chlorophyll content, canopy cover and structure.
The resulted canopy greenness map is shown in Figure 4.

3. EXPERIMENTAL RESULTS AND EVALUATION

Aerial and in-situ data were collected during the veraison period
at the Nemea study area. Aerial data were collected from a multi-
copter with a low cost standard RGB camera (i.e., GoPro Hero3),

a push-broom hyperspectral sensor, a lightweight single board
computer and a frame grabber Figure 1. The goal was to bench-
mark the estimation of LAI from the acquired hyperspectral data,
the RGB orthomosaic and the 3D canopy model against the in-
situ LAI measurements.

The resulted orthomosaic from the collected aerial RGB images
and the calculated GRVI index on the detected canopy are shown
in Figure 2. The resulted DSM from the aerial dataset with tex-
ture from the RGB orthomosaic and the calculated 3D canopy
model after the estimation of the soil in-between the vine rows are
shown in Figure 3. The estiamted canopy greenness map based
on the calculation of a narrow NDVI from the UAV hyperspectral
data are shown in Figure 4.

For the quantitative evaluation firstly the relation between the es-

(a) Correlating the calculated LAI (GT) with the 2D GRVI map from the
aerial RGB orthomosaic

(b) Correlating the calculated LAI (GT) with the 3D canopy volume

(c) Correlating the calculated LAI (GT) with the canopy greenness map
from the hyperspectral UAV data

Figure 6: The relation between the calculated LAI (ground truth,
GT) and the estimated canopy (a) from the 2D GRVI map, (b)
from the 3D model and (c) from the hyperspectral map.
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timated canopy levels between the 2D RGB mosaic and (a) the
3D canopy (b) the hyperspectral map were performed in (Fig-
ure 5). The correlation between the calculated GRVI (from the
2D RGB orthomosaic) and the canopy greenness from the hyper-
spectral data were relative high and above 84%, while the one
between the calculated GRVI and the 3D canopy was lower at
approximately 79%. The highest relations (r2 > 90%) were es-
tablished between the estimations from the hyperspectral data and
the 3D canopy model.

Regarding the relations against the ground truth (direct, in-situ
LAI measurements) the experimental results followed a similar
pattern Figure 6. The LAI estimation from the hyperspectral data
and the 3D canopy model resulted in higher correlations rates
(r2 > 80%), while the ones from the 2D RGB orthomosaic rela-
tive lower (r2 < 73%).

The aforementioned results indicate that LAI was estimated more
accurately from the hyperspectral data and 3D canopy model. It
should be noted that for the hyperspectral data just a standard nar-
row NDVI was employed, while more sophisticated indices may
would have correlated better in terms of chlorophyll concentra-
tions, etc. Both datasets seems to fail more in cases with lower
LAI values over sparse, weak, unhealthy plants and canopy.

4. CONCLUSION AND FUTURE PERSPECTIVES

In this paper, LAI estimation from three different UAV-based
imaging sources was validated against direct, in-situ LAI mea-
surements. In particular, canopy levels were estimated from i.e.,
(i) hyperspectral data, (ii) 2D RGB orthomosaics and (iii) 3D
crop surface models. The computed canopy levels have been
used to establish relationships with the measured LAI (ground
truth) from several vines in Nemea, Greece. The overall evalu-
ation indicated that the estimated canopy levels were correlated
(r2 >73%) with the ground truth. Between the different observa-
tions the hyperspectral and the 3D model established the highest
relations. Moreover, as expected, the lowest correlations against
the ground truth data were derived from the calculated greenness
levels from the 2D RGB orthomosaics. The highest correlation
rates were established for the hyperspectral and the 3D canopy
levels. The experimental results and the evaluation indicated that
the leaf area index in vineyards can be approximated from both
hyperspectral sensors and 3D canopy models. For the later the
accurate detection of canopy, soil and other materials in between
the vine rows is required. Further validation in several vineyards,
vine varieties and other crop types is required in order to con-
clude on the optimal, efficient and cost-effective manner for LAI
estimation from UAVs.
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