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ABSTRACT
In this paper, we present a general oligopolistic market equilibrium
model in which each firm produces several commodities in a time
interval. To this aim, we introduce tensor variational inequalities in
Hilbert spaceswhich are apowerful tool to analyse themodel. Indeed
we characterize the equilibrium condition by means of a suitable
time-dependent tensor variational inequality. In addition, we prove
some existence and regularity results and a numerical scheme to
compute the solution. Finally we provide a numerical example.

ARTICLE HISTORY
Received 1 July 2022
Accepted 26 February 2023

KEYWORDS
Tensor variational inequality;
existence and regularity
results; general oligopolistic
market equilibrium problem

AMS SUBJECT
CLASSIFICATIONS
49J40; 58E35; 65K10; 91A10

1. Introduction

In recent years, finite dimensional variational inequalities modelled in the class of ten-
sors have been introduced and studied. Results on existence, uniqueness and regularity of
solutions are available (see, for instance, [3,4,15] and the reference therein). This class of
inequalities has an important role to study some economic equilibrium problems.

The aim of this paper is to study a general dynamic oligopolistic market equilibrium
problem, which is the problem of finding a trade equilibrium in a supply–demand mar-
ket between a finite number of spatially separated firms which produce several different
goods in a time interval and act in a noncooperative behaviour. For this purpose, tensor
variational inequalities in Hilbert spaces are introduced and analysed. In particular some
existence results, a Minty–Browder-type characterization and some continuity theorems
are obtained. The regularity results allow us to introduce a numerical scheme for comput-
ing the dynamic variational solution. Thanks to a discretization of the time interval, we
are able to use the projection method presented in [6] to solve the static tensor variational
inequalities. After that we construct the dynamic solution by using a suitable interpolation.
Making use of theoretical arguments, the general dynamic oligopolisticmarket equilibrium
model is examined. It is the time-dependent version of the economic equilibrium problem
presented in [3] and extensively studied in [4] for what concerns the ill-posedness and the
stability analysis. The introduction of the time in equilibrium models is motivated by the
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fact it allows one to explore the dynamics of adjustment processes in which a delay on time
response is operating [14]. For this reason, the model appears as a more realistic general-
ization of the one presented in [3]. Moreover, we apply the theoretical results to establish
the existence and regularity of a dynamic equilibrium solution which allow us to provide
a computational procedure to compute such a distribution.

This economic model has been studied intensively in the last years. In [1], the
dynamic oligopolistic market equilibrium problem has been presented starting by the
time-dependent Cournot–Nash equilibrium principle. In [7] and [2], the behaviour of
the market is described through the Lagrange multipliers, by using the infinite dimen-
sional duality theory. In [8] and [9], the model introduced in [1] has been improved in a
more realistic way with the addition of production and demand excesses. In [11,12], the
model has been analysed from the policymaker’s point of view (with the aim to study how
the commodity shipment can be controlled by means of the imposition of taxes or incen-
tives) and the regulatory tax definition is formulated by an inverse variational inequality.
Different generalizations have been also studied: when the constraint set depends on the
expected equilibrium solution and, hence, the equilibrium conditions are expressed by an
evolutionary quasi-variational inequality [10,13] or when the uncertainty is considered
and consequently the random time-dependent oligopolistic market equilibrium problem
is modelled by a stochastic variational inequality [5].

We organize this paper as follows. In Section 2, we prove some existence and continu-
ity results for tensor variational inequalities in infinite dimensional spaces. Moreover, a
numerical method is presented and its convergence analysis is discussed. In Section 3, we
introduce a time-dependent version of a demand–supply market model and we establish
the equivalence between the general dynamic Cournot–Nash equilibrium principle and a
suitable evolutionary tensor variational inequality. We prove also existence and regularity
results for the dynamic equilibrium distribution. Then, a numerical example is examined.
Finally, Section 4 is devoted to some concluding remarks.

2. Tensor variational inequalities in infinite dimensional spaces

This section deals with the introduction and study of tensor variational inequalities in
infinite dimensional spaces to analyse a dynamic economic equilibrium model.

First, we recall some definitions on tensors. Let us fix finite dimensional vector spaces
Vi, i = 1, . . . ,N. An N-order tensor is an element of the N-product space V1 × · · · × VN .
Let us denote tensors by italic capital lettersA,B, . . . . A tensorA of order N is indicated
by its entries: the element (i1, . . . , iN) of A is denoted by ai1,...,iN . We note that vectors
are tensors of order 1 (denoted usually by small letters v,w, . . . ) whereas matrices, not
necessarily squared, are tensors of order 2 (denoted usually by capital letters A,B, . . . ).
When Vi = V , i = 1, . . . ,N, an N-order tensor on a vector space V of dimension m has
mN entries. In particular, we denote by R[m1...mN ] the class of N-order tensors made by
Rm1 × · · · × RmN . Whereas if mi = m, i = 1, . . . ,N, we indicate by R[N,m] the set of all
N-order m-dimensional real tensors. When we fix all indices except two, we obtain slices
(see, for instance, [16]): two-dimensional sections of a tensor. For examples, a third-order
tensor has horizontal, lateral and frontal slices.

The vector spaceR[N,m] becomes anHilbert space if we endow it with the inner product
〈·, ·〉 defined as follows.
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Definition 2.1: Let A,B ∈ R[N,m]. Let us define the application 〈·, ·〉 : R[N,m] ×
R[N,m] → R as

〈A,B〉 =
m∑

i1=1
. . .

m∑
iN=1

ai1,...,iN bi1,...,iN .

Let us denote by ‖ · ‖ the norm induced by the inner product 〈·, ·〉.
Let I ⊂ R, 1 < p, q < ∞ such that 1

p + 1
q = 1. Let us indicate by Lp(I,R[N,m]) the space

of tensor functionsA : I → R[N,m] such that

‖A‖p =
∫
I
‖A(s)‖p ds < +∞,

where ‖A(s)‖p = ∑m
i1=1 . . .

∑m
iN=1 |ai1,...,iN (s)|p. The pairing between the reflexive

Banach spaces Lq(I,R[N,m]) and Lp(I,R[N,m]) is denoted by 	 ·, · 
 and defined as

	 A,B 
=
∫
I
〈A(s),B(s)〉 ds,

whereA ∈ (Lp(I,R[N,m]))∗ = Lq(I,R[N,m]) and B ∈ Lp(I,R[N,m]).

Definition 2.2: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1. Let K be a nonempty,
closed and convex subset of Lp(I,R[N,m]) and let F : I × K → Lq(I,R[N,m]). An infinite
dimensional tensor variational inequality is the problem of finding X ∈ K such that

	 F(X ),Y − X 
≥ 0, ∀Y ∈ K, (1)

namely ∫
I
〈F(s,X (s)),Y(s) − X (s)〉 ds ≥ 0, ∀Y ∈ K.

In particular, if we consider the case p = q = 2 and, hence, the Hilbert space
L2([0,T],R[N,m]), an evolutionary tensor variational inequality is the problem of finding
X ∈ K such that ∫ T

0
〈F(t,X (t)),Y(t) − X (t)〉 dt ≥ 0, ∀Y ∈ K,

where K is a nonempty, closed and convex subset of L2([0,T],R[N,m]) and F : [0,T] ×
K → L2([0,T],R[N,m]).

For applications, it is very useful the point-to-point equivalent formulation of infinite
dimensional tensor variational inequality (1), as the next lemma establishes.

Lemma2.3: Let I ⊂ R, 1 < p, q < ∞ such that 1p + 1
q = 1. Let K be a nonempty, closed and

convex subset of Lp(I,R[N,m]) and let F : I × K → Lq(I,R[N,m]). The infinite dimensional
tensor variational inequality (1) is equivalent to

〈F(s,X (s)),Y(s) − X (s)〉 ≥ 0, ∀Y(s) ∈ K(s), a.e. in I, (2)

where K(s) = {Y(s) ∈ R[N,m] : Y ∈ K}, a.e. in I.
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Proof: We only have to show that (1) implies (2), since the opposite implication is trivial.
Arguing by contradiction, if (2) is false, there exists a subset J ⊂ I with positive measure
such that

∃ Ȳ ∈ K : 〈F(s,X (s)), Ȳ(s) − X (s)〉 < 0, a.e. in J.

Setting

Y(s) =
{
X (s), a.e. in I \ J,
Ȳ(s), a.e. in J,

we have

	 F(X ),Y − X 
=
∫
J
〈F(s,X (s)), Ȳ(s) − X (s)〉 ds < 0,

which is a contradiction. �

2.1. Existence results

Some existence results are proved in this section. To this purpose, let us give some
preliminary definitions.

Definition 2.4: Let I ⊂ R, 1 < p, q < ∞ such that 1p + 1
q = 1 andK be a nonempty subset

of Lp(I,R[N,m]). A tensor mapping F : I × K → Lq(I,R[N,m]) is said to be

• monotone on K if

	 F(X ) − F(Y),X − Y 
≥ 0, ∀X ,Y ∈ K;

• strictly monotone on K if

	 F(X ) − F(Y),X − Y 
> 0, ∀X ,Y ∈ K, X �= Y ;

• strongly monotone on K if there exists ν > 0 such that

	 F(X ) − F(Y),X − Y 
≥ ν‖X − Y‖2, ∀X ,Y ∈ K;

• pseudomonotone (in the sense of Karamadian) on K if

	 F(Y),X − Y 
≥ 0 =⇒ 	 F(X ),X − Y 
≥ 0, ∀X ,Y ∈ K;

• strictly pseudomonotone on K if

	 F(Y),X − Y 
≥ 0 =⇒ 	 F(X ),X − Y 
> 0, ∀X ,Y ∈ K, X �= Y .

Definition 2.5: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1 and K be a convex subset
of Lp(I,R[N,m]). A tensor mapping F : I × K → Lq(I,R[N,m]) is said to be

• hemicontinuous along line segments if the function

ξ �→	 F(ξX + (1 − ξ)Y),W 
, ξ ∈ [0, 1]

is continuous for all X ,Y ,W ∈ K;
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• continuous on finite dimensional subspaces if for any finite dimensional subspace M of
Lp(I,R[N,m]), with K ∩ M �= ∅, the restricted operator F : K ∩ M → Lq(I,R[N,m]) is
continuous from the norm topology of K ∩ M to the weak∗ topology of Lq(I,R[N,m]).

A preliminary result is the following Minty–Browder-type Lemma.

Lemma 2.6: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1 and K be a nonempty, convex
and closed subset of Lp(I,R[N,m]). Let F : I × K → Lq(I,R[N,m]) be a pseudomonotone and
continuous on finite dimensional subspaces tensor mapping. ThenX ∈ K is a solution to (1)
if and only if

	 F(Y),Y − X 
≥ 0, ∀Y ∈ K. (3)

Proof: First we suppose that X ∈ K is a solution to (1). Since F is pseudomonotone, it
implies

	 F(Y),Y − X 
≥ 0, ∀Y ∈ K.

Conversely, taking X ∈ K a solution to (3), we consider

Xθ = θY + (1 − θ)X ∈ K,

for arbitrary θ ∈]0, 1] and Y ∈ K. Then Xθ ∈ K and, making use of (3), we have θ 	
F(Xθ ),Y − X 
≥ 0. Hence, we obtain

	 F(Xθ ),Y − X 
≥ 0. (4)

Letting θ → 0+, by the continuity of F on finite-dimensional subspaces, we have that
F(Xθ ) weak∗-converges to F(X ). Taking into account (4), we deduce that 	 F(X ),Y −
X 
≥ 0. Therefore X is a solution to (1). �

Weare able to establish the following result which has verymild hypothesis on the tensor
mapping F.

Theorem 2.7: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1 and K be a nonempty, weakly
compact and convex subset of Lp(I,R[N,m]). Let F : I × K → Lq(I,R[N,m]) be a pseu-
domonotone and continuous on finite dimensional subspaces tensor mapping. Then tensor
variational inequality (1) admits at least a solution.

Proof: Let A be a finite dimensional subspace of Lp(I,R[N,m]) such that A ∩ K is
nonempty. Let us introduce the injection map

PA : A ↪→ Lp(I,R[N,m])

and its adjoint

P∗
A : Lq(I,R[N,m]) → A∗.

Then the map P∗
AFPA from A ∩ K into A∗ is continuous. Since K is weakly compact and,

hence, bounded, the set K ∩ A is closed, bounded and convex in A. Moreover, since A
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is finite dimensional, without loss of generality, we may assume A = R[N,m] and we may
identify A∗ with A. Then there exists XA ∈ A ∩ K such that

	 P∗
AFPA(XA),X − XA 
≥ 0, ∀X ∈ A ∩ K.

From the previous inequality, it follows

	 F(XA),X − XA 
≥ 0, ∀X ∈ A ∩ K.

By virtue of Lemma 2.6, we have

	 F(X ),X − XA 
≥ 0, ∀X ∈ A ∩ K. (5)

Now, for all Y ∈ K, we define

S(Y) = {X ∈ K : 	 F(Y),Y − X 
≥ 0}.

The family {S(Y) : Y ∈ K} has the finite intersection property. Indeed, for any finite
family of subsets {Xi}1≤i≤m of K, let A be the finite dimensional subspace spanned by
{Xi}1≤i≤m. By the finite dimensional case, (5) has a solution XA. Then, in particular, we
obtain

	 F(Xi),Xi − XA 
≥ 0, ∀ 1 ≤ i ≤ m.

Consequently, XA ∈ ⋂m
i=1 S(Xi). Then S(Y) is nonempty, for every Y ∈ K. Since S(Y)

is weakly closed, for all Y ∈ K, and K is weakly compact, it follows that
⋂

X∈K S(X ) is
nonempty. Choosing Z ∈ ⋂X∈K S(X ) it results

	 F(Z),X − Z 
≥ 0, ∀X ∈ K,

which concludes the proof. �

It is possible to weaken the hypothesis in the previous theorem assuming that the ten-
sor mapping F is not continuous on finite dimensional subspace but only hemicontinuous
along line segments. Precisely we have:

Theorem 2.8: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1 and K be a nonempty,
weakly compact and convex subset of Lp(I,R[N,m]). Let F : I × K → Lq(I,R[N,m]) be a
pseudomonotone and hemicontinuous along line segments tensor mapping. Then tensor
variational inequality (1) admits at least a solution.
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Proof: Let us consider the following nonempty sets:

S(Y) = {X ∈ K : 	 F(X ),Y − X 
≥ 0}

M(Y) = {X ∈ K : 	 F(Y),Y − X 
≥ 0}.
As first step, we show that

⋂
Y∈K M(Y) �= ∅. Since F is pseudomonotone, then S(Y) ⊂

M(Y). Moreover, sinceM(Y) is closed, it follows that

S(Y) ⊂ M(Y). (6)

Let {Y1, . . . ,Yn} be a finite subset of K and let Y ∈ conv({Y1, . . . ,Yn}), which means

Y =
n∑
i=1

αiYi, withαi ≥ 0 and
n∑
i=1

αi = 1.

Assume by contradiction that Y �∈ ⋃n
i=1 S(Yi). Then, we get

	 F(Y),Y − Yi 
< 0, ∀i = 1, . . . , n.

We have
n∑
i=1

αi 	 F(Y),Y − Yi 
=	 F(Y),Y −
n∑

i=1
αiYi 
< 0,

which is a contradiction. Thus conv({Y1, . . . ,Yn}) ⊂ ⋃n
i=1 S(Yi) and, since for arbitrary

Y0 ∈ K the set S(Y0) is compact, it results that
⋂

Y∈K S(Y) �= ∅. Therefore, by (6), we
deduce that

⋂
Y∈K M(Y) �= ∅. An element Z ∈ ⋂Y∈K M(Y) �= ∅ is such that

	 F(Y),Y − Z 
≥ 0.

By using same arguments of Lemma 2.6, we conclude that Z is the desired solution. �

Remark 2.1: Let us note that if F is in addition strictly pseudomonotone, then the solution
to the infinite tensor variational inequality is unique. Indeed, let us suppose that (1) has two
solutions X1,X2 ∈ K such that X1 �= X2, that is

	 F(X1),Y − X1 
≥ 0, ∀Y ∈ K, (7)

and

	 F(X2),Y − X2〉 
≥ 0, ∀Y ∈ K. (8)

We write (7) with Y = X2 and (8) with Y = X1:

	 F(X1),X2 − X1 
≥ 0, (9)

	 F(X2),X1 − X2 
≥ 0. (10)

Taking into account the strict pseudomonotonicity of F and (9), it results

	 F(X2),X2 − X1 
> 0,

which is in contradiction with (10).
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Now we deal with the case in which the set K is not weakly compact. In this case is
necessary an additional coercivity condition, as in the following result.

Theorem 2.9: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1 and K be a nonempty, con-
vex and closed subset of Lp(I,R[N,m]). Let F : I × K → Lq(I,R[N,m]) be a pseudomonotone
and hemicontinuous along line segments tensor mapping. Suppose also that there exists a
nonempty, weakly compact and convex subset C of K such that for every X ∈ K \ C there
exists Z ∈ C with 	 F(X ),X − Z 
> 0. Then, tensor variational inequality (1) admits
at least a solution.

Proof: Let A = {Y1, . . . ,Yn} be a finite subset of K and let us consider the convex sub-
set C1 = conv(A ∪ C), which is weakly compact since C is a convex and weakly compact
subset of K. Then taking into account Theorem 2.8, there exists X ∈ C1 such that

	 F(X ),Y − X 
≥ 0, ∀Y ∈ C1. (11)

We note thatX ∈ C. Otherwise ifX ∈ K \ C andmaking use of the coercivity assumption,
we obtain a contradiction with (11). Consider now the following nonempty sets:

S(Y) = {X ∈ K : 	 F(X ),Y − X 
≥ 0},

M(Y) = {X ∈ K : 	 F(Y),Y − X 
≥ 0}.
By using (11), it follows that

⋂n
i=1 S(Yi) �= ∅ and, therefore,

⋂n
i=1 S(Yi) �= ∅. Since F is

pseudomonotone, it follows

∅ �=
n⋂

i=1
S(Yi) ⊂

n⋂
i=1

M(Yi).

Thus the family of closed subsets {M(Y)}Y∈K has the finite intersection property. By
the weak compactness of C, we have that

⋂n
i=1M(Yi) �= ∅. By virtue of Lemma 2.6,

X ∈ ⋂n
i=1M(Yi) is also a solution to (1). �

Finally we remark that if F is a Carathéodory function such that

‖F(s,X (s))‖q ≤ α(s) + ‖X (s)‖p, ∀X ∈ K, a.e. in I,

where α ∈ L1(I,R), then it is hemicontinuous along line segments. Indeed for each
sequence {λr} such that λr → λ ∈ [0, 1], as r → +∞, and for every X ,Y ∈ K, it results

lim
r

∫
I
‖F(s, λrX (s) + (1 − λr)Y(s)) − F(s, λX (s) + (1 − λ)Y(s))‖qds = 0,

and, hence,

lim
r

∫
I
〈F(s, λrX (s) + (1 − λr)Y(s)),X (s) − Y(s)〉 ds

=
∫
I
〈F(s, λX (s) + (1 − λ)Y(s)),X (s) − Y(s)〉 ds.
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2.2. Continuity results

In this section, we prove continuity results for tensor variational inequalities. A theoretical
concept we use in the following is the set convergence introduced by Kuratowski in the
1960s [17] for a set sequence in a given metric space (X, d).

Let {Kr} be a sequence of subsets of X. Recall that

d − limrKr = {x ∈ X : ∃{xr} eventually in Kr such that xr → x}

and

d − limrKr = {x ∈ X : ∃{xr} frequently in Kr such that xr → x},

where eventually means that there exists δ ∈ N such that xr ∈ Kr, for any r ≥ δ, and fre-
quentlymeans that there exists an infinite subsetN ⊆ N such that xr ∈ Kr, for every r ∈ N
(in this last case, according to the notation given above, we also write that there exists a
subsequence {xkr} ⊆ {xr} such that xkr ∈ Kkr , for every r ∈ N).

By definitions, it is easy to verify that d − limrKr ⊆ d − limrKr. Nowwe can present the
set convergence in Kuratowski’s sense.

Definition 2.10: We say that {Kr} converges to some subset K ⊆ X in Kuratowski’s sense
if and only if d − limrKr = d − limrKr = K.

We observe that the set convergence in Kuratowski’s sense can also be shown verifying
the following conditions:

(K1) for any x ∈ K, there exists a sequence {xr} strongly converging to x ∈ X such that
xr ∈ Kr, for every r ∈ N,

(K2) for any subsequence {xr} converging to x ∈ X such that xr ∈ Kr, for every r ∈ N,
then the limit x belongs to K.

Let us say that a nonempty subset K of Lp(I,R[N,m]) verifies the Kuratowski con-
vergence property if and only if for every t ∈ I and every {tr} ⊆ I such that tr → t, as
r → +∞, the sequence {K(tr)}, where K(tr) = {Y(tr) ∈ R[N,m] : Y ∈ K}, converges to
K(t) in Kuratowski’s sense.

Now, we are able to establish the continuity results for evolutionary tensor variational
inequality (2) under the strong monotonicity assumption on the tensor mapping F.

Theorem 2.11: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1 and K be a nonempty, con-
vex and closed subset of Lp(I,R[N,m]) verifying the Kuratowski convergence property. Let
F : I × K → Lq(I,R[N,m]) be a continuous and strongly monotone tensor mapping. Then
the solution to tensor variational inequality (2) is continuous in I.

Proof: The existence of a unique solution X (t) to (2) is ensured by Theorem 2.8 and
Remark 2.1. Let us fix t ∈ I and a sequence {tr} ⊆ I such that tr → t, as r → +∞. Let
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X (tr) be the unique solution to the tensor variational inequality

〈F(tr,X (tr)),Y(tr) − X (tr)〉 ≥ 0, ∀Y(tr) ∈ K(tr). (12)

We have to verify that X (tr) → X (t), as r → +∞. Taking into account the type
Minty–Browder Lemma, for any s ∈ I we have

〈F(s,Y(s)),Y(s) − X (s)〉 ≥ 0, ∀Y(s) ∈ K(s).

By using (K1) applied to X (t) ∈ K(t), there exists a sequence {Z(tr)} such that Z(tr) ∈
K(tr), for r large enough, and Z(tr) → X (t), as r → +∞. Moreover, we derive that
F(tr,Z(tr)) → F(t,X (t)), as r → +∞, by the continuity of F. Setting, for r large enough,
Y(tr) = Z(tr) in (12), we have

〈F(tr,X (tr)),Z(tr) − X (tr)〉 ≥ 0.

Making use of the strongly monotonicity assumption, we have

ν‖X (tr) − Z(tr)‖2 ≤ −〈F(tr,Z(tr)),X (tr) − Z(tr)〉 ≤ ‖F(Z(tr))‖‖X (tr) − Z(tr)‖
and, consequently,

ν‖X (tr) − Z(tr)‖ ≤ ‖F(Z(tr))‖.
Hence, it results

‖X (tr)‖ ≤ ‖X (tr) − Z(tr)‖ + ‖Z(tr)‖ ≤ ‖F(tr,Z(tr))‖
ν

+ ‖Z(tr)‖.

As a consequence, we have that {X (tr)} is bounded. Therefore there existsW ∈ R[N,m] and
there exists a subsequence denoted again by {X (tr)}, such thatX (tr) ∈ K(tr) andX (tr) →
W . Making use of (K2), we obtain that W ∈ K(t). We show that W = X (t). Applying
again the type Minty–Browder Lemma, we get

〈F(tr,Y(tr)),Y(tr) − X (tr)〉 ≥ 0, ∀Y(tr) ∈ K(tr).

By using (K1) once more again for any Y(t) ∈ K(t), there exists {V(tr)} such that V(tr) ∈
K(tr), for r large enough, and V(tr) → Y(t). Then, we obtain

〈F(tr,V(tr)),V(tr) − X (tr)〉 ≥ 0.

Passing to the limit as r → +∞, it follows

〈F(t,Y(t)),Y(t) − W〉 ≥ 0, ∀Y(t) ∈ K(t).

From the Minty–Browder Lemma again, it results

〈F(t,W),Y(t) − W〉 ≥ 0, ∀Y(t) ∈ K(t).

From the uniqueness of the solution to (2) we deduce that W = X (t) and that X (tr) →
X (t). Finally, since F is continuous, by the inequality

ν‖X (tr) − Z(tr)‖2 ≤ 〈F(tr,Z(tr)),Z(tr) − X (tr)〉,
and the fact that (X (tr) − Z(tr)) → 0, the claim holds. �
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Weestablish now an analogous result for tensor variational inequalities under themilder
hypothesis of strict monotonicity on F. We show the following continuity result.

Theorem 2.12: Let I ⊂ R, 1 < p, q < ∞ such that 1
p + 1

q = 1 and K be a nonempty, con-
vex, bounded and closed subset of Lp(I,R[N,m]) verifying the Kuratowski convergence prop-
erty. Let F : I × K → Lq(I,R[N,m]) be a continuous and strictly monotone tensor mapping.
Then the solution to tensor variational inequality (2) is continuous in I.

Proof: Let {tr} be a sequence in I such that tr → t, as r → +∞. Let X (t) be the solution
to tensor variational inequality (2) and X (tr), ∀r ∈ N, be the solutions to the following
tensor variational inequalities:

〈F(tr,X (tr)),Y(tr) − X (tr)〉 ≥ 0, ∀Y(tr) ∈ K(tr), ∀r ∈ N. (13)

Fixed ε > 0, letXε(t) be the unique solution to the following perturbed stronglymonotone
tensor variational inequality

〈F(t,Xε(t)) + εXε(t),Y(t) − Xε(t)〉 ≥ 0, ∀Y(t) ∈ K(t), in I. (14)

Taking into account Theorem 2.11, it follows that Xε(t) is continuous in I. Hence the
sequence of solutionsXε(tr), for every r ∈ N, to the following tensor variational inequali-
ties:

〈F(tr,Xε(tr)) + εXε(tr),Y(tr) − Xε(tr)〉 ≥ 0, ∀Y(tr) ∈ K(tr), ∀r ∈ N (15)

converges to Xε(t), as r → +∞. Furthermore, we note that Xε(t) → X (t), as ε → 0, in
I. Indeed, considering Y(t) = Xε(t), in I, in (2) and Y(t) = X (t), in I, in (14) and adding
the inequalities, we have

〈F(t,X (t)) − F(t,Xε(t)),Xε(t) − X (t)〉 + ε〈Xε(t),X (t) − Xε(t)〉 ≥ 0, in I. (16)

For the strict monotonicity assumption on F, it results

〈F(t,X (t)) − F(t,Xε(t)),Xε(t) − X (t)〉 < 0, in I.

Therefore, by (16), we obtain

ε〈Xε(t),X (t) − Xε(t)〉 ≥ 0, in I,

and, then,

‖Xε(t)‖2 ≤ 〈Xε(t),X (t)〉 ≤ ‖X (t)‖‖Xε(t)‖, in I.

Hence, we deduce

‖Xε(t)‖ ≤ ‖X (t)‖, in I.

Since X (t) ∈ K(t) and K is a bounded subset of Lp(I,R[N,m]), it results

‖Xε(t)‖ ≤ C, ∀ε > 0, in I.
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Then, there exists a subsequence denoted again by {Xε(t)} converging in R[N,m] to an
element X (t) ∈ K(t), in I. We need to show that

X (t) = X (t), in I.

To this aim, taking into account the continuity ofF andpassing to the limit as ε → 0 in (14),
we obtain

〈F(t,X (t)),Y(t) − X (t)〉 ≥ 0, ∀Y(t) ∈ K(t), in I. (17)

ThenX is a solution to (2), in I. Since the solution to (2) is unique, then theXε(t) → X (t),
as ε → 0, in I.

By repeating the same arguments with Y(tr) = X (tr), ∀r ∈ N, in (15), and Y(tr) =
Xε(tr), for every r ∈ N, in (13), we obtain that there exists a subsequence still denoted
by {X (tr)}, with X (tr) ∈ K(tr), for every r ∈ N, converging to X (t) in R[N,m], namely
X (tr) → X (t), as r → +∞. Furthermore, by (13), we have

〈F(t,X (t)),Y(t) − X (t)〉 ≥ 0, ∀Y(t) ∈ K(t),

and, for the uniqueness of the solution to (2), we deduce

lim
r→+∞X (tr) = X (t). �

We would like to underline that the previous results hold also for evolutionary tensor
variational inequalities. In such a case, we obtain the continuity with respect to the time
variable.

2.3. Computational procedure

The continuity results allow us to provide a numerical method, by using a discretization
procedure, for the calculation of solutions to evolutionary tensor variational inequalities.
Under the assumptions of Theorem 2.12, the solution belongs to C0([0,T],R[N,m]). As a
consequence, we can write (2) with I = [0,T] and p = q = 2 as

〈F(t,X (t)),Y(t) − X (t)〉 ≥ 0, ∀Y(t) ∈ K(t), in [0,T]. (18)

We describe now a procedure to compute the solution to tensor variational inequality (18)
by discretizing the time interval. In detail, we consider a partition of [0,T] such that

0 = t0 < t1 < . . . < ti < . . . < tN = T.

For each value ti, i = 0, 1, . . . ,N, we make use of the projection method presented in [6]
to solve the static tensor variational inequalities

〈F(ti,X (ti)),Y(ti) − X (ti)〉 ≥ 0, ∀Y(ti) ∈ K(ti), i = 0, 1, . . . ,N.

Precisely, starting from anyX0(ti) fixed, iterativelyX (ti) updates according to the formula

Xk+1(ti) = PK(ti)(Xk(ti) − αF(ti,Xk(ti))),

for k ∈ N, where PK(ti)(·) is the orthogonal projection map onto K(ti) and α is a suitable
chosen positive step length. We remark that PK(ti)(Xk(ti) − αF(ti,Xk(ti))) is the solution
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of the following quadratic programming problem:

min
Y(ti)∈K(ti)

1
2
〈Y(ti),Y(ti)〉 − 〈Xk(ti) − αF(ti,Xk(ti)),Y(ti)〉,

for k ∈ N. Furthermore X ∗ is a solution to the tensor variational inequality if and only if

X ∗(ti) = PK(ti)(X ∗(ti) − αF(ti,X ∗(ti))).

An accurate analysis on the convergence of such a method has been investigated in [6].
This method gives us the solution of each point-to-point variational problems. To obtain
the solution in the time interval [0,T], the next step is to interpolate, in a suitable way, such
static solutions.

Let us introduce a sequence {πr} of partitions (made up of not necessarily equidistant
points) of the time interval [0,T] such thatπr = {t0r , t1r , . . . , tNr

r }, with 0 = t0r < t1r < . . . <

tNr
r = T, assuming that

kr = max{tsr − ts−1
r : s = 1, 2, . . . ,Nr},

approaches zero, as r → +∞.
We construct then the numerical solution to (18) by considering piecewise constant

functions, as below

Xr(t) =
Nr∑
s=1

X (tsr)1[ts−1
r ,tsr[(t), (19)

where X (tsr) is the solution to (18) for t = tsr and 1[ts−1
r ,tsr[ is the characteristic function of

the interval [ts−1
r , tsr[, namely

1[ts−1
r ,tsr[(t) =

{
1 t ∈ [ts−1

r , tsr[
0 t /∈ [ts−1

r , tsr[
.

Weprove that such a sequence converges inL1 to the solution to (18). Indeed, let us estimate
the following integral:∫ T

0

∥∥∥∥X (t) −
Nr∑
s=1

X (tsr)1[ts−1
r ,tsr[(t)

∥∥∥∥dt
=
∫ T

0

∥∥∥∥ Nr∑
s=1

X (t)1[ts−1
r ,tsr[(t) −

Nr∑
s=1

X (tsr)1[ts−1
r ,tsr[(t)

∥∥∥∥dt
≤

Nr∑
s=1

∫ tsr

ts−1
r

‖X (t) − X(tsr)‖dt.

BeingX uniformly continuous, we deduce that for every ε > 0 there exists δ > 0 such that
if t ∈ [ts−1

r , tsr] satisfies the condition |t − tsr| < δ it results

‖X (t) − X (tsr)‖ <
ε

T
, ∀ s = 1, 2, . . . ,Nr, ∀r ∈ N.
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We choose now r large enough such that kr < δ, hence, we obtain∫ T

0

∥∥∥∥X (t) −
Nr∑
s=1

X (tsr)1[ts−1
r ,tsr[(t)

∥∥∥∥dt <

Nr∑
s=1

ε

T
(tsr − ts−1

r ) = ε. (20)

The last estimate implies that sequence (19) converges in L1-sense to the solution to
evolutionary tensor variational inequality (18).

3. The general dynamic oligopolistic market equilibriummodel

We are going to present an oligopolistic market equilibrium model in which each firm
produces several different commodities and acts in a time interval. Due to the introduction
of the time dependence, the new model discussed in this section is an extension of the
one introduced in [3]. Moreover, since each firm produces several commodities, it is a
generalization of the model analysed in [1].

Let us considerm firms Pi, i = 1, . . . ,m, and n demand marketsQj, j = 1, . . . , n, which
are generally spatially separated. Assume that the commodities, produced by the m firms
and consumed by the n markets, are involved during a period of time [0,T], T>0. Let
us suppose that every firm Pi produces l different commodities. Let us indicate by xkij(t)
the commodities of kind k shipment between the firm Pi and the markets Qj at the time
t ∈ [0,T], i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l. Let us indicate by pki (t) the commodity
output of kind k produced by the firm Pi, at the time t ∈ [0,T], i = 1, . . . ,m, k = 1, . . . , l.
Let us indicate by qkj (t) the demand for the commodity of kind k of the demand market
Qj, at the time t ∈ [0,T], j = 1, . . . , n, k = 1, . . . , l. The variables xkij(t), p

k
i (t) and q

k
j (t) are

nonnegative, for every i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l, a.e. in [0,T]. For technical
reasons, we assume that X = (xkij) ∈ L2([0,T],R[nml]).

We suppose also that the commodity shipment of kind k between the producer Pi and
the market Qj has to satisfy time-dependent capacity constraints, namely

0 ≤ xkij(t) ≤ xkij(t) ≤ xkij(t), ∀i = 1, . . . ,m, ∀j = 1, . . . , n, ∀k = 1, . . . , l, a.e. in [0,T],

where X = (xkij) and X = (xkij) are tensor mappings belonging to L2([0,T],R[nml]). Fur-
thermore, we suppose that the following feasibility conditions hold:

pki (t) =
n∑
j=1

xkij(t), ∀i = 1, . . . ,m, ∀k = 1, . . . , l, a.e. in [0,T], (21)

qkj (t) =
m∑
i=1

xkij(t), ∀j = 1, . . . , n, ∀k = 1, . . . , l, a.e. in [0,T]. (22)

Thesemean that the quantity produced by each firm Pi of kind k, at time t ∈ [0,T], must be
equal to the sumof the commodities of such kind from that firm to all the demandmarkets,
at the same time t ∈ [0,T]. Moreover, the quantity demanded by each demand market Qj
of kind k, at time t ∈ [0,T], must be equal to the sum of all the commodity shipments
of such kind from all the firms to that demand market, at the same time t ∈ [0,T]. As a
consequence, for every i = 1, . . . ,m, j = 1, . . . , n and a.e. in [0,T], the total production pi
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by the firm Pi, i = 1, . . . ,m, and the total demand qj of the demandmarketQj, j = 1 . . . , n,
are given by

pi(t) =
l∑

k=1

n∑
j=1

xkij(t), ∀i = 1, . . . ,m, a.e. in [0,T],

qj(t) =
l∑

k=1

m∑
i=1

xkij(t), ∀j = 1, . . . , n, a.e. in [0,T],

respectively.
We consider, then, the following convex, closed and bounded subset of theHilbert space

L2([0,T],R[nml]) of feasible tensor mappings X ∈ L2([0,T],R[nml]):

K =
{
X ∈ L2([0,T],R[nml]) : 0 ≤ xkij(t) ≤ xkij(t) ≤ x̄kij(t),

∀i = 1, . . . ,m, ∀j = 1, . . . , n, ∀k = 1, . . . , l
}
. (23)

Moreover, let us introduce f ki (t,X (t)), denoting the production cost of the firm Pi for
each good of type k, at time t ∈ [0,T], i = 1, . . . ,m, k = 1, . . . , l, which depends upon the
entire production pattern. Analogously, let us denote by dkj (t,X (t)) the demand price for
unity of the commodity of kind k for each demand market Qj, j = 1, . . . , n, k = 1, . . . , l,
assuming that depends upon the entire consumption pattern, at time t ∈ [0,T]. Finally, let
ckij(t,X (t)) be the transaction cost, which includes the transportation cost associated with
trading the commodity between the firm Pi and the demandmarketQj regarding the good
of kind k, at time t ∈ [0,T], i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l, and depending upon
the entire shipment pattern.

In our model, the profit vi of the firm Pi, i = 1, . . . ,m, at time t ∈ [0,T], is given by

vi(t,X (t)) =
l∑

k=1

⎡⎣ n∑
j=1

dkj (t,X (t))xkij(t) − f ki (t,X (t)) −
n∑
j=1

ckij(t,X (t))xkij(t)

⎤⎦ ,

namely the sum of the difference between the price that the demand markets are disposed
to pay minus the production costs and the transportation costs.

The goal is to find a nonnegative commodity distribution tensor mapping X for which
the m firms and the n demand markets will be in a state of equilibrium as defined below
by means of a generalization of the Cournot–Nash equilibrium principle.

Definition 3.1: A feasible tensor mapping X ∗ ∈ K is a general dynamic oligopolistic
market equilibrium distribution if and only if, for each i = 1, . . . ,m, it results

vi(t,X ∗(t)) ≥ vi(t,Xi(t), X̂ ∗
−i(t)), ∀X ∈ K, a.e. in [0,T], (24)

where X̂ ∗−i(t) = (X∗
1 (t), . . . ,X

∗
i−1(t),X

∗
i+1(t), . . . ,X

∗
m(t)) and Xi(t) is a slice of dimension

nl.
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Assuming that the profit function v is continuously differentiable, let us consider the
tensor mapping

∇Dv =
(

∂vi
∂xkij

)
.

Moreover, we will say that∇Dv satisfies Assumption (C) if the following conditions hold:

(i) ∇Dv is a Carathèodory function;
(ii) there exists h ∈ L2([0,T],R) such that

‖∇Dv(t,X (t))‖ ≤ h(t)‖X (t)‖, ∀X ∈ L2([0,T],R[mnl]).

Let us recall that the function vi, i = 1, . . . ,m, is said to be pseudoconcave with respect
to the variable Xi, if〈

∂vi
∂Xi

(X1, . . . ,Xi, . . . ,Xm),Xi − Yi

〉
≥ 0

⇒ vi(X1, . . . ,Xi, . . . ,Xm) ≥ vi(X1, . . . ,Yi, . . . ,Xm).

Now, we can establish the following variational formulation.

Theorem 3.2: Let us suppose that, for every firm Pi, the profit function vi(t,X (t)) is
pseudoconcave with respect to the variable Xi, i = 1, . . . ,m, a.e. in [0,T], and continu-
ously differentiable. Let us suppose that the tensor mapping ∇Dv satisfies Assumption (C).
Then, X ∗ ∈ K is a general dynamic Cournot–Nash equilibrium if and only if it satisfies the
evolutionary tensor variational inequality

	 −∇Dv(X ∗),X − X ∗ 


= −
∫ T

0

m∑
i=1

n∑
j=1

l∑
k=1

∂vi(t,X ∗(t))
∂xkij

(xkij(t) − (xkij)
∗(t))dt ≥ 0, ∀X ∈ K. (25)

Proof: By Lemma 2.3, the evolutionary tensor variational inequality (25) is equivalent to

〈−∇Dv(t,X ∗(t)),X (t) − X ∗(t)〉 ≥ 0, ∀X (t) ∈ K(t), a.e. in [0,T]. (26)

To prove our claim, we assume first that X ∗(t) satisfies the equilibrium condition (24),
which is equivalent to

〈−∇Dvi(t,X ∗(t)),Xi(t) − X∗
i (t)〉 ≥ 0, ∀X (t) ∈ K(t), a.e. in [0,T], i = 1, . . . ,m.

Since ∇Dvi is a continuous function and X ,X ∗ ∈ L2([0,T],R[nml]), it follows that t �→
〈−∇Dvi(t,X ∗(t)),Xi(t) − X∗

i (t)〉 ∈ L2([0,T],R) and, moreover, it results∫ T

0
〈−∇Dvi(t,X ∗(t)),Xi(t) − X∗

i (t)〉 dt ≥ 0, ∀X ∈ K, i = 1, . . . ,m.

Summing up the previous inequality over all i = 1, . . . ,m, we obtain (25).
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We assume now thatX ∗ ∈ K is a solution to (25) but is not an equilibrium distribution
according to (24). As a consequence, there exist I ⊆ [0,T], with m(I) > 0, ī ∈ {1, . . . ,m}
and X̂ī such that

vī(t,X ∗(t)) < vī(t, X̂ī(t),X ∗
−ī(t)), a.e. in I.

By using the pseudoconcavity of the function vī, we deduce

∂vī(t,X (t))
∂Xī

(X∗
ī (t) − X̂ī(t)) < 0, a.e. in I.

Choosing X ∈ K such that

Xi(t) =

⎧⎪⎨⎪⎩
X∗
i (t), a.e. in [0,T] \ I, ∀i = 1, . . . ,m,

X∗
i (t), a.e. in I, for i �= ī,

X̂ī(t), a.e. in I, for i = ī,

in the left-hand side of inequality (25), we have

	 −∇Dv(X ∗),X − X ∗ 
=
∫ T

0
〈−∇Dvī(t,X ∗(t)), X̂ī(t) − X∗

ī (t)〉dt < 0,

which is a contradiction. �

The existence of the equilibrium solution follows by Theorem 2.8 taking into account
that the feasible set K is a convex, closed and bounded subset of L2([0,T],R[nml]). In
particular it results:

Theorem 3.3: Let us suppose that, for every firm Pi, the profit function vi(t,X (t)) is pseu-
doconcave with respect to the variable Xi, i = 1, . . . ,m, a.e. in [0,T], and continuously
differentiable. Furthermore if−∇Dv is a pseudomonotone tensormapping satisfying Assump-
tion (C). Then there exists at least a general dynamic Cournot–Nash equilibrium distribution
X ∗ ∈ K.

3.1. Continuity results for equilibrium distributions

It is also possible to establish conditions under which the general dynamic oligopolistic
market equilibrium problem has continuous solutions with respect to the time variable.
Before to prove such results, we show a preliminary lemma which states that the feasible
set K satisfies the property of the Kuratowski set convergence.

Lemma 3.4: Let X ,X ∈ C0([0,T],R[nml]) be nonnegative tensor functions, t ∈ [0,T] and
{tr} be a sequence such that tr → t, as r → +∞. Then, the set sequence

K(tr) = {X (tr) ∈ R
[nml] : 0 ≤ xkij(tr) ≤ xkij(tr) ≤ x̄kij(tr),
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i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l
}
, ∀r ∈ N,

converges to

K(t) = {X (t) ∈ R
[nml] : 0 ≤ xkij(t) ≤ xkij(t) ≤ x̄kij(t),

i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l
}
,

in Kuratowski’s sense.

Proof: Let us fix t ∈ [0,T] and a sequence {tr} ⊆ [0,T] such that tr → t, as r → +∞. To
reach the claim, it is enough to show that conditions (K1) and (K2) hold. LetX (t) ∈ K(t)
be fixed and let us consider the following sequence:

X (tr) = X (tr) + min{X (t) − X (t),X (tr) − X (tr)}, ∀r ∈ N.

Let us note thatX (tr) ∈ K(tr), for every r ∈ N. Indeed, being min{X (t) − X (t),X (tr) −
X (tr)} ≥ 0, for every r ∈ N, we have X (tr) ≥ X (tr), for every r ∈ N. On the other
hand, since min{X (t) − X (t),X (tr) − X (tr)} ≤ X (tr) − X (tr), for every r ∈ N, it fol-
lows X (tr) ≤ X (tr), for every r ∈ N. Being X (t) ≤ X (t) ≤ X (t), in [0,T], we deduce

lim
r→+∞X (tr) = lim

r→+∞

{
X (tr) + min{X (t) − X (t),X (tr) − X (tr)}

}
= X (t) + min{X (t) − X (t),X (t) − X (t)} = X (t).

Then condition (K1) holds.
We prove now condition (K2). Let {X (tr)} be a fixed sequence, withX (tr) ∈ K(tr), for

every r ∈ N, such that X (tr) → X (t), as r → +∞. It remains to show that X (t) ∈ K(t).
SinceX (tr) ∈ K(tr), for every r ∈ N, i.e.X (tr) ≤ X (tr) ≤ X (tr), for every r ∈ N, passing
to the limit as r → +∞, we obtainX (t) ≤ X (t) ≤ X (t). Hence, the claim is achieved. �

Making use of Theorem 2.11 and Lemma 3.4, we obtain:

Theorem 3.5: Let X ,X ∈ C0([0,T],R[nml]) be nonnegative tensor functions. Let us sup-
pose that, for each firm Pi, the profit function vi(t,X (t)) is pseudoconcave with respect
to the variable Xi, i = 1, . . . , n, belonging to C1([0,T] × K,R). Furthermore if −∇Dv is
a strongly monotone tensor function satisfying Assumption (C). Then the unique general
dynamic Cournot–Nash equilibrium distribution X ∗ ∈ K is continuous in [0,T].

Taking into account Theorem 2.12, Lemma 3.4 and the boundness of K, we deduce:

Theorem 3.6: Let X ,X ∈ C0([0,T],R[nml]) be nonnegative tensor functions. Let us sup-
pose that, for each firm Pi, the profit function vi(t,X (t)) is pseudoconcave with respect to the
variable Xi, i = 1, . . . ,m, belonging to C1([0,T] × K,R). Furthermore if −∇Dv is a strictly
monotone tensor function satisfying Assumption (C). Then the unique general dynamic
Cournot–Nash equilibrium distribution X ∗ ∈ K is continuous in [0,T].
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3.2. An example

Let us now consider an economic network consisting of two supply markets and two
demand markets. Each firm produces two different kind of commodities. In Figure 1, the
network is represented, precisely dashed and continuous lines depict the two kinds of com-
modities. We analyse the noncooperative behaviour of the firms in the time interval [0, 2]
computing its evolution in time. The feasible set is

K =
{
X ∈ L2([0, 2],R[8]) : 2t ≤ xkij(t)

≤ 10t + 5, i = 1, 2, j = 1, 2, k = 1, 2, a.e. in [0, 2]
}
.

We consider the production cost function defined by

f 11 (t,X (t)) = tx111(t) + 2x112(t), a.e. in [0, 2],

f 21 (t,X (t)) = x211(t) + tx212(t), a.e. in [0, 2],

f 12 (t,X (t)) = 3x121(t) + 2tx122(t), a.e. in [0, 2],

f 22 (t,X (t)) = (t − 11
2 )x221(t) + x222(t), a.e. in [0, 2],

and the demand price function given by

d11(t,X (t)) = tx111(t) + x121(t) + 2t − 1, a.e. in [0, 2],

d21(t,X (t)) = 1
2
x211(t) + x221(t) + 3, a.e. in [0, 2],

d12(t,X (t)) = x112(t) + (t + 1)x122(t) + 2t, a.e. in [0, 2],

d22(t,X (t)) = 2x212(t) + tx222(t) + 1, a.e. in [0, 2].

The cost transportation function is

c111(t,X (t)) = tx111(t) + 1
2
x112(t) + 3t, a.e. in [0, 2],

c121(t,X (t)) = 5
2
x121(t) + tx122(t) + 4, a.e. in [0, 2],

c112(t,X (t)) = 3
2
x112(t) − 1

2
x111(t) − 3, a.e. in [0, 2],

c221(t,X (t)) = x122(t) + x212(t), a.e. in [0, 2],

c211(t,X (t)) = x211(t) − x212(t), a.e. in [0, 2],

c221(t,X (t)) = 1
2
x221(t) + 2x222(t) + 1

2
x211(t) + 2, a.e. in [0, 2],

c212(t,X (t)) = 1
2
x212(t) + x211(t) + t

2
(t), a.e. in [0, 2],

c222(t,X (t)) = x222(t) + tx222(t) − 2x221(t), a.e. in [0, 2].
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Then, the profit function becomes

v1(t,X (t)) = x111(t)x
1
21(t) − (2t + 1)x111(t) − 1

2
(x211(t))

2 + x211(t)x
2
21(t) + 2x211(t)

− 1
2
(x112(t))

2 + (t + 1)x112(t)x
1
22(t) + (2t + 1)x112(t) + 3

2
(x212(t))

2

+ tx212(t)x
2
22(t) − x212(t) − 3

2
tx212(t), a.e. in [0, 2],

v2(t,X (t)) = tx111(t)x
1
21(t) − 3

4
(x121(t))

2 +
(
2t + 3

2

)
x121(t) + 1

2
(x221(t))

2 − (t + 1)x221(t)

+ t(x122(t))
2 + 2x212(t)x

2
22(t) − (x222(t))

2 − tx121(t)x
1
22(t), a.e. in [0, 2].

Therefore the components of ∇Dv different from zero are given by

∂v1
x111

(t,X (t)) = x121(t) − 2t − 1, a.e. in [0, 2],

∂v1
x112

(t,X (t)) = −x112(t) + (t + 1)x122(t) + 2t + 1, a.e. in [0, 2],

∂v1
x211

(t,X (t)) = −x211(t) + x221(t) + 2, a.e. in [0, 2],

∂v1
x212

(t,X (t)) = 3x212(t) + tx222(t) − 1 − 3
2
t, a.e. in [0, 2],

∂v2
x121

(t,X (t)) = tx111(t) − 3
2x

1
21(t) + 2t + 3

2 − tx122(t), a.e. in [0, 2],

∂v2
x122

(t,X (t)) = 2tx122(t) − tx121(t), a.e. in [0, 2],

∂v2
x221

(t,X (t)) = x221(t) − t − 1, a.e. in [0, 2],

∂v2
x222

(t,X (t)) = 2x212(t) − 2x222(t), a.e. in [0, 2].

By Theorem 3.2, the equilibrium distribution is a solution to the following evolutionary
tensor variational inequality:

−
∫ 2

0

2∑
i=1

2∑
j=1

2∑
k=1

∂vi(t,X ∗(t))
∂xkij

(xkij(t) − (xkij)
∗(t))dt ≥ 0, ∀X ∈ K.

It can be verified that the tensor mapping −∇Dv satisfies the assumptions of Theorem 3.5,
thus the general dynamic oligopolistic market equilibrium example has a unique continu-
ous equilibrium solution. We compute an approximate solution to the example by using
the combination of a discretization procedure and the projection method presented in
Section 2.3. Making use of Matlab computations to implement the algorithm, we obtain
the equilibrium distribution curves represented in Figure 2.
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Figure 1. Network structure of the oligopoly.

Figure 2. Computed equilibrium solution.

4. Concluding remarks

We introduced tensor variational inequalities in Hilbert spaces. Some existence and regu-
larity results are proved. Furthermore a numerical discretization method combined with a
projection one is presented to solve an evolutionary tensor variational inequality. The the-
oretical results are preliminary to analyse a general oligopolistic market equilibriummodel
in which each firmproduces several commodities in a time interval. The firms act in a non-
cooperative behaviour. Therefore, the equilibrium condition is established as an extension
of the time-dependent Cournot–Nash principle. In addition, it is characterized by means
of an evolutionary tensor variational inequality. Thanks to the variational formulation, the
existence and the regularity of the time-dependent equilibrium distribution are obtained
applying the results proved in the first part of the paper. At last a numerical example is
discussed and solved with the approximate method presented.



OPTIMIZATION METHODS & SOFTWARE 1079

Acknowledgments

The authors were partially supported by PRIN 2017Nonlinear Differential Problems via Variational,
Topological and Set-valued Methods (Grant 2017AYM8XW). The authors are members of Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of INdAM.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

A. Barbagallo is Associate Professor of Mathematical Analysis at University of Naples Federico II
since 2015. She received her PhD degree in Computation and Information Sciences at University
of Naples ’Federico II’, on February 6th, 2007. Form 2007 to 2010 she had a post-doctoral fellow at
University of Guelph, Canada, and University of Catania. FromDecember, 2010 to September, 2015
she was assistant professor of Mathematical Analysis, at University of Naples Federico II. Her main
research topics are optimization, variational analysis and PDEs.

S. Guarino Lo Bianco is Assistant professor of Mathematical Analysis at University of Modena and
Reggio Emilia from 2022. She received her PhD degree in Mathematics at university of Pisa in 2014.
Then she spent some years at University of Naples Federico II as post-doc. Her main research topics
are calculus of variation, PDEs and variational analysis.

References

[1] A. Barbagallo and M.-G. Cojocaru, Dynamic equilibrium formulation of oligopolistic market
problem, Math. Comput. Model. 49(5-6)(2009), pp. 966–976.

[2] A. Barbagallo and R. Di Vincenzo, Lipschitz continuity and duality for dynamic oligopolistic
market equilibrium problemwithmemory term, J.Math. Anal. Appl. 382(1)(2011), pp. 231–247.

[3] A. Barbagallo and S. Guarino Lo Bianco,Variational inequalities on a class of structured tensors,
J. Nonconvex Anal. 19 (2018), pp. 711–729.

[4] A. Barbagallo and S. Guarino Lo Bianco, On ill-posedness and stability of tensor variational
inequalities: application to an economic equilibrium, J. Global Optim. 77(1)(2020), pp. 125–141.

[5] A. Barbagallo and S.Guarino LoBianco, Stochastic variational formulation for a general random
time-dependent economic equilibrium problem, Optim. Lett. 14(8)(2020), pp. 2479–2493.

[6] A. Barbagallo, S. Guarino Lo Bianco, and G. Toraldo, Tensor variational inequalities: theoretical
results, numerical methods and applications to an economic equilibriummodel, J. Nonlinear Var.
Anal.4 (2020), pp. 87–105.

[7] A. Barbagallo and A. Maugeri, Duality theory for the dynamic oligopolistic market equilibrium
problem, Optim 60(1-2)(2011), pp. 29–52.

[8] A. Barbagallo and P. Mauro, Evolutionary variational formulation for oligopolistic market equi-
librium problems with production excesses, J. Optim. Theory Appl. 155(1)(2012), pp. 288–314.

[9] A. Barbagallo and P. Mauro, Time-dependent variational inequality for an oligopolistic mar-
ket equilibrium problem with production and demand excesses, Abstr. Appl. Anal. 2012 (2012),
pp. 1–35.

[10] A. Barbagallo and P. Mauro, A quasi variational approach for the dynamic oligopolistic market
equilibrium problem, Abstr. Appl. Anal. 2013 (2013), pp. 1–12.

[11] A. Barbagallo and P. Mauro, Inverse variational inequality approach and applications, Numer.
Funct. Anal. Optim. 35(7-9)(2014), pp. 851–867.

[12] A. Barbagallo and P.Mauro,An inverse problem for the dynamic oligopolistic market equilibrium
problem in presence of excesses, Procedia. Soc. Behavioral Sci. 108 (2014), pp. 270–284.

[13] A. Barbagallo and P. Mauro, A general quasi-variational problem of Cournot–Nash type and its
inverse formulation, J. Optim. Theory Appl. 170(2)(2016), pp. 476–492.



1080 A. BARBAGALLO AND S. GUARINO LO BIANCO

[14] M.J. Beckmann and J.P. Wallace, Continuous lags and the stability of market equilibrium,
Econom. New Ser. 36(141)(1969), pp. 58–68.

[15] Z.-H. Huang and L. Qi, Tensor complementarity problems. Part I: basic theory, J. Optim. Theory
Appl. 183(1)(2019), pp. 1–23.

[16] T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51(3)(2009),
pp. 455–500.

[17] K. Kuratowski, Topology, Academic Press, New York, 1966.


	1. Introduction
	2. Tensor variational inequalities in infinite dimensional spaces
	2.1. Existence results
	2.2. Continuity results
	2.3. Computational procedure

	3. The general dynamic oligopolistic market equilibrium model
	3.1. Continuity results for equilibrium distributions
	3.2. An example

	4. Concluding remarks
	Acknowledgments
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


