KEGG   PATHWAY: crf00552
Entry
crf00552                    Pathway                                
Name
Teichoic acid biosynthesis - Corynebacterium rouxii
Description
Teichoic acids (TAs) are a class of cell surface glycopolymers found in the cell wall of Gram-positive bacteria. They are anionic polymers consisting of glycerol phosphate (GroP) or ribitol phosphate (RboP) repeat units linked by phosphodiester bonds. There are two types of teichoic acids: wall teichoic acid (WTA), which is attached to peptidoglycan by a disaccharide linkage unit, and lipoteichoic acid (LTA), which is attached to the plasma membrane by the Glc-DAG anchor. The repat units of both WTA and LTA may further be modified by glycosyl residues and/or D-alanine esters, generating structural variations.
Class
Metabolism; Glycan biosynthesis and metabolism
Pathway map
crf00552  Teichoic acid biosynthesis
crf00552

Organism
Corynebacterium rouxii [GN:crf]
Gene
FRC0190_01237  undecaprenyl-diphosphate phosphatase [KO:K06153] [EC:3.6.1.27]
FRC0190_02240  phosphatase PAP2 family protein [KO:K19302] [EC:3.6.1.27]
FRC0190_01006  undecaprenyl/decaprenyl-phosphate alpha-N-acetylglucosaminyl 1-phosphate transferase [KO:K02851] [EC:2.7.8.33 2.7.8.35]
Compound
C00043  UDP-N-acetyl-alpha-D-glucosamine
C00114  Choline
C00133  D-Alanine
C00307  CDP-choline
C00344  Phosphatidylglycerol
C00513  CDP-glycerol
C00588  Choline phosphate
C00641  1,2-Diacyl-sn-glycerol
C00789  CDP-ribitol
C04574  di-trans,poly-cis-Undecaprenyl diphosphate
C04613  UDP-2-acetamido-4-dehydro-2,6-dideoxyglucose
C17556  di-trans,poly-cis-Undecaprenyl phosphate
G00177  N-Acetyl-beta-D-mannosaminyl-(1->4)-N-acetyl-alpha-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
G10608  UDP-D-glucose
G10609  UDP-D-galactose
G10610  UDP-N-acetyl-D-glucosamine
G10611  UDP-N-acetyl-D-galactosamine
G11112  UDP-N-acetyl-D-mannosamine
G13163  beta-GlcNAc-P-undecaprenol
G13164  N-Acetyl-alpha-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
G13165  4-O-[(2R)-1-Glycerophospho]-N-acetyl-beta-D-mannosaminyl-(1->4)-N-acetyl-alpha-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
G13166  PolyGroP-WTA
G13167  alpha-Glycosylated WTA
G13168  Und-PP-GlcNAc-ManNAc-GroP-RboP
G13169  PolyRboP-WTA
G13170  beta-Glycosylated WTA
G13171   
G13172   
G13173   
G13174  alpha-O-GlcNAcylated WTA
G13175   
G13176  beta-O-GlcNAcylated WTA
G13177   
G13178   
G13179   
G13180   
G13181  beta-Glc-DAG
G13182  Glc2-DAG
G13183  GroP-Glc2DAG
G13184  Polyglycerolphosphate lipoteichoic acid
G13185   
G13186   
G13187  alpha-Glc-DAG
G13188  GalGlc-DAG
G13189  GroP-Gal-Glc-DAG
G13190  Polyglycerolphosphate lipoteichoic acid
G13191  Und-P-Gal
G13192   
G13193   
G13194  UDP-AATGal
G13195   
G13196   
G13197   
G13198   
G13199   
G13200   
G13201   
G13202   
G13203   
Reference
  Authors
Rismondo J, Gillis A, Grundling A
  Title
Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems.
  Journal
Curr Opin Microbiol 60:24-33 (2021)
DOI:10.1016/j.mib.2021.01.007
Reference
  Authors
Guo Y, Pfahler NM, Volpel SL, Stehle T
  Title
Cell wall glycosylation in Staphylococcus aureus: targeting the tar glycosyltransferases.
  Journal
Curr Opin Struct Biol 68:166-174 (2021)
DOI:10.1016/j.sbi.2021.01.003
Reference
  Authors
Han X, Sun R, Sandalova T, Achour A.
  Title
Structural and functional studies of Spr1654: an essential aminotransferase in teichoic acid biosynthesis in Streptococcus pneumoniae.
  Journal
Open Biol 8:170248 (2018)
DOI:10.1098/rsob.170248
Reference
  Authors
Rismondo J, Percy MG, Grundling A.
  Title
Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation.
  Journal
J Biol Chem 293:3293-3306 (2018)
DOI:10.1074/jbc.RA117.001614
Reference
  Authors
Gisch N, Schwudke D, Thomsen S, Hess N, Hakenbeck R, Denapaite D.
  Title
Lipoteichoic acid of Streptococcus oralis Uo5: a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to Streptococcus pneumoniae.
  Journal
Sci Rep 5:16718 (2015)
DOI:10.1038/srep16718
Reference
  Authors
Percy MG, Grundling A.
  Title
Lipoteichoic acid synthesis and function in gram-positive bacteria.
  Journal
Annu Rev Microbiol 68:81-100 (2014)
DOI:10.1146/annurev-micro-091213-112949
Reference
  Authors
Brown S, Santa Maria JP Jr, Walker S.
  Title
Wall teichoic acids of gram-positive bacteria.
  Journal
Annu Rev Microbiol 67:313-36 (2013)
DOI:10.1146/annurev-micro-092412-155620
Reference
  Authors
Reichmann NT, Cassona CP, Grundling A.
  Title
Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria.
  Journal
Microbiology (Reading) 159:1868-1877 (2013)
DOI:10.1099/mic.0.069898-0
Reference
  Authors
Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S
  Title
Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids.
  Journal
Proc Natl Acad Sci U S A 109:18909-14 (2012)
DOI:10.1073/pnas.1209126109
Reference
  Authors
Allison SE, D'Elia MA, Arar S, Monteiro MA, Brown ED
  Title
Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168.
  Journal
J Biol Chem 286:23708-16 (2011)
DOI:10.1074/jbc.M111.241265
Reference
  Authors
Reichmann NT, Grundling A.
  Title
Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes.
  Journal
FEMS Microbiol Lett 319:97-105 (2011)
DOI:10.1111/j.1574-6968.2011.02260.x
Reference
  Authors
Brown S, Meredith T, Swoboda J, Walker S
  Title
Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways.
  Journal
Chem Biol 17:1101-10 (2010)
DOI:10.1016/j.chembiol.2010.07.017
Reference
  Authors
Webb AJ, Karatsa-Dodgson M, Grundling A.
  Title
Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes.
  Journal
Mol Microbiol 74:299-314 (2009)
DOI:10.1111/j.1365-2958.2009.06829.x
Reference
  Authors
Sewell EW, Pereira MP, Brown ED
  Title
The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis.
  Journal
J Biol Chem 284:21132-8 (2009)
DOI:10.1074/jbc.M109.010215
Reference
  Authors
Meredith TC, Swoboda JG, Walker S.
  Title
Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.
  Journal
J Bacteriol 190:3046-56 (2008)
DOI:10.1128/JB.01880-07
Reference
  Authors
Brown S, Zhang YH, Walker S
  Title
A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps.
  Journal
Chem Biol 15:12-21 (2008)
DOI:10.1016/j.chembiol.2007.11.011
Reference
  Authors
Zhang YH, Ginsberg C, Yuan Y, Walker S
  Title
Acceptor substrate selectivity and kinetic mechanism of Bacillus subtilis TagA.
  Journal
Biochemistry 45:10895-904 (2006)
DOI:10.1021/bi060872z
Reference
  Authors
Bhavsar AP, Truant R, Brown ED
  Title
The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro.
  Journal
J Biol Chem 280:36691-700 (2005)
DOI:10.1074/jbc.M507154200
Reference
  Authors
Soldo B, Lazarevic V, Karamata D
  Title
tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168.
  Journal
Microbiology 148:2079-87 (2002)
DOI:10.1099/00221287-148-7-2079
Related
pathway
crf00561  Glycerolipid metabolism
crf00900  Terpenoid backbone biosynthesis
KO pathway
ko00552   
LinkDB

DBGET integrated database retrieval system