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A B S T R A C T

The work describes a module that has been implemented for being included in a social humanoid
robot architecture, in particular a storyteller robot, named NarRob. This module gives a humanoid
robot the capability of mimicking and acquiring the motion of a human user in real-time. This allows
the robot to increase the population of his dataset of gestures. The module relies on a Kinect based
acquisition setup. The gestures are acquired by observing the typical gesture displayed by humans.
The movements are then annotated by several evaluators according to their particular meaning, and
they are organized considering a specific typology in the knowledge base of the robot. The properly
annotated gestures are then used to enrich the narration of the stories. During the narration, the
robot semantically analyses the textual content of the story in order to detect meaningful terms in
the sentences and emotions that can be expressed. This analysis drives the choice of the gesture that
accompanies the sentences when the story is read.

© 2020 KSI Research

1. Introduction
Nowadays, robots collaborate more and more with hu-

man beings, helping them to achieve different goals. In this
context, the recognition and subsequent reproduction of ges-
tures becomes extremely important.
Considering that communication between human beings is
based not only on verbal interaction but also through nonver-
bal cues, a humanoid robot capable of interacting with peo-
ple combining both speech and gestures would improve the
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effectiveness of social robots. On the other hand, other stud-
ies like [28, 22, 10] consider knowledge management tech-
niques (e.g., [10]) to improve this phase. Sometimes, it is
possible to enrich or even replace one’s narrative exposure
with gestures. This ability can be particularly relevant in a
storytelling context, and, in general, in assistive robotics. In
this context, a gestural expressiveness is indeed desirable to
strengthen the meaning conveyed by the words spoken by a
robot.
Processing the semantic content of a text and adding the ex-
ecution of proper gestures while the robot is telling some-
thing, or generally, while it is interacting with human beings,
is essential for improving the effectiveness of communica-
tion, avoiding trivial and boring situations. The capability
to exhibit emotions and to show expressiveness during sto-
rytelling is fundamental to obtain an effective engagement
[32] [13] [3]. As reported in [35], the use of bodily expres-
sions in robots facilitates a mood induction process of the
story and improves the storytelling experience.

In our Lab we are working on NarRob, a social robot
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which plays the role of a storyteller [4] [3]. It is embodied in
the Softbank robotic platforms Pepper and NAO, and it can
show a body expressiveness to emphasize the semantic and
the emotions arising from the text. In an early version, Nar-
Rob performs an analysis of the text in a story, and it then
annotates each sentence by a) the emotion expressed in the
text and b) the terms that can be associated with gestures,
which are then performed while the robot is telling the story.
In the specific, NarRob exploits: 1) a gesture module to ac-
quire gestures and store them in a knowledge base 2) a chat-
bot module integrating an OWL ontology, used by the robot
to have a conversation with users, before and after the nar-
ration, to deepen specific concepts involved in the narration;
3) an annotation module that makes it possible for the robot
to detect meaningful terms as well as an emotion expressed
in the text and to annotate the story with specific tags 4) an
expressivity module that is used by the robot to convert the
tags in gestures and expressions.

NarRob was equipped with a repository of manually an-
notated gestures. The gestures mainly came from the Pepper
gesture dataset, and some other samples have been added us-
ing the timeline utility from the SoftBank Choregraphe suite.
In this case, the gestures are acquired by using the timeline
of Choregraphe, recording the sequence of postures obtained
by using the robot like a puppet. Another modality consists
of using an acquisition device that allows for tracking of the
skeleton of a human performing the posture. This paper re-
ports the evolution of NarRob with the implementation of a
module designed to acquire and reproduce the gestures per-
formed by a human during an interactive session.

In particular, we illustrate the development of a module
of NarRob, named Gestures Module, aimed at acquiring in
real-time gestures from human users, recording them, and
executing them both as they are being recorded, and in a
mirrored version. The module allows the robot to reproduce
also simple poses instead of complete gestures. We have de-
fined a mapping algorithm to allow a SoftBank Pepper robot
to reproduce the tracked gestures as close as possible to the
original ones.

The development of this module makes it possible for the
robot to learn more and more gestures in real-time by using
a low-cost RGBD camera. This allows enriching in a faster
manner the gestures dataset of the robot.

In our approach, we exploited a Microsoft Kinect sen-
sor to capture the motion data from a user. The Microsoft
Kinect is a popular choice for any research that involves body
motion capture. It is an affordable and low-cost device that
can be used for noninvasive, marker-less tracking of body
gestures. In particular, we used the OpenNi driver for the
Kinect, the NiTE 2.2 libraries for detecting the user skele-
ton, and the Kinetic version of ROS with the module pep-
per_dcm to provide package exchange and bridging between
the computer and the robot and Ubuntu 16.04. We focused
on the movements of the arms and the head, laying the ba-
sis for the extension of the same approach to the remaining
parts.

In what follows, after a section where related works are

reported, we describe the NarRob components, focusing on
the module aimed at the acquisition and reproduction of ges-
tures.

2. Related Works
Using motion capture to control or teach a robot is a

concept that have gained more and more attention in recent
years, due to the many applications that it can have, from in-
dustrial work to social interactions. A device often used for
this purpose is Microsoft Kinect, due to the cost and com-
plexity of a standard motion capture setup. For example,
Baron et al. [6] controlled a Mindstorm NXT artificial arm
with sensor Kinect, employing gesture recognition to regu-
late arm movement. Chang et al. [8] developed a Kinect-
based gesture command control method for driving a hu-
manoid robot to learn human actions, using a Kinect sensor
and three different recognition mechanisms: dynamic time
wrapping (DTW), Hidden Markov model (HMM) and prin-
cipal component analysis (PCA).

Sylvain Filiatrault and Ana-Maria Cretu [18] used sen-
sor Kinect to mimic the motion of a human arm to a NAO
humanoid robot. In their case, the software architecture is
based on three modules: Kinect Manager, Interaction Man-
ager, and NAO manager. The Kinect Manager deals with
the events and data captured by the Kinect. The class Kinect
Transformer is used to get the Euler angles of the desired
joints. The Interaction Manager is the intermediary between
the Kinect and the robot and contains the repository for the
joints used by the other two modules. The use of a joint
repository of all articulations allows reducing the data to be
processed as some joints are not needed. Finally, the NAO
manager contains the static and dynamic constraints to apply
to each one of the articulations, as well as the methods that
allow the control of the robot movements. To be sure that
the robot has enough time to execute the gesture, a delay of
200 ms between one cycle and the next has been introduced.

Augello et al. [1] modelled a computational creativity
behavior in a dancing robot using deep learning . The data-
set used as a base was collected using a Kinect and together
with a Variational Autoencoder that allows mapping input
patterns in a latent space it allowed the robot to create new
dancing moves in real time as it listened to music. Itauma et
al. [19] used a Kinect to teach an NAO robot some basic Sign
Language gestures. The aim was teaching Sign Language to
impaired children by employing different machine learning
techniques in the process. Shohin et al. [24] used three dif-
ferent methods to make a robot NAO imitate human motion:
direct angle mapping, inverse kinematics using fuzzy logic
and iterative Jacobian.

Miguel et al. [25] used a Kinect sensor and a Convo-
lutional Neural Network (CNN) trained with the MSRC-12
dataset [33] to capture and classify gestures of a user and
send related commands to a mobile robot. The used data-
set was created by Microsft and had 6244 gesture instances
of 12 actions. To have gestures of the same length, with-
out losing relevant information, the system used a Fast Dy-
namic Time Warping algorithm (FastDTW) to find the opti-
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mal match between sequences by non linearly warping them
along the time axis. This resulted in all gestures normalized
to sequences of 667 frames, with each frame having 80 vari-
ables, corresponding to the x,y,z values for each of the 20
joints, plus a separation value for each joint. The resulting
667x80 matrix is used as the input of the CNN, which clas-
sifies i t in one of the 12 possible g estures. The CNN was
trained using two strategies, combined training consisting
of a single CNN to recognize all 12 gestures and individual
training with 12 different CNN, each capable of recogniz-
ing only one gesture. The accuracy rates were 72.08% for
combined training and 81.25% for the individual training.

Moreover, Unai et al. [36] developed a natural talking
gesture generation behavior for 𝑃𝑒𝑝𝑝𝑒𝑟 by feeding a Gener-
ative Adversarial Network (GAN) with human talking ges-
tures recorded by a Kinect. Their approach in mapping the
movements detected by Kinect on the robot is very similar
to what we used, but while they feed the resulting values to a
neural network (a GAN), we use the (filtered) values directly.

3. The Humanoid Storyteller Modules
In what follows we mainly describe the new Gestures

Module that has been implemented in NarRob and its inter-
action with the other storytelling modules of NarRob, i.e. the
Annotation Module, the Chatbot Module, and the Expressiv-
ity Module.

3.1. Gestures Module
The Gesture module deals with collecting acquired ges-

tures, saving them in a knowledge base. In a previous imple-
mentation of this module [4] the dataset was mainly based on
the animations available in the NAO robot animations pack-
age, and enriched with a limited set created by recording and
annotating a sequence of postures of the robot through Soft-
bank Choreographe Suite.

The gesture module has been improved to enrich the data-
set with new gestures acquired by capturing the movements
of human people with a low cost RGB-D camera.

The module is structured in a set of components, to in-
crease its versatility for future projects and to simplify ex-
tensions of the current project.

The first module is named Viewer, and it extracts data
frames from the Kinect camera (consisting of nine float val-
ues: three values for a joint position in 3D space, four values
for quaternion from the origin and reliability values for both)
and sends them in a pipe. The module also provides the feed
of the Kinect camera with the overlay of the tracked user’s
skeleton. The frame data is long 8640 bytes. It is composed
of 15 joints, with 9 values each and a representation of 64
bytes for each value. The data is sent to the Gesture_Brain
module.

The Gesture_Brain module works both as a gateway for
the ROS system [34] and as the module where actual data
processing takes place. The gathered data cannot be used
directly: a mapping is required to correctly associate each
joint user position to the equivalent one in the Pepper robot.
For this reason, the data is parsed and structured in a 15 × 9

float matrix, which is then split into three matrices: one for
coordinates, one for quaternions, and one for reliability val-
ues. In our approach, we exploit only the first matrix con-
sidering always high the reliability. We, therefore, assume
at this stage that the captured joint data is accurate enough
for our purpose, as the Kinect already discards joints whose
reliability values are too low.

The joint position data is then used to estimate Pepper
joint angles, specifically shoulder pitch, shoulder roll, elbow
roll and elbow yaw for both arms and head yaw for the head.

The additional left and right wrist yaw and head pitch
joint angles have been set to 0, since the Kinect camera is
too imprecise to give a good estimate of that points.

When all the required values have been collected, the
joint angles are sent to the robot using the ROS threads pro-
vided by the pepper_dcm bridge. These threads consist of
multiple joint angles divided into groups, each group repre-
senting a body part. As we are interested only in the move-
ment of arms and head, we use three of them: head, left arm,
and right arm.

The bridge reads the sent values and the time stamp be-
tween each capture to dynamically compute in real-time the
gesture trajectory. The spatio-temporal information allow
the system to be as accurate as possible so that the gesture
can be properly executed. The bridge itself is endowed with
the in-built Self Collision Avoidance (part of the NaoQi li-
brary) while the wait and breathe animations have been de-
activated, since they interfere with the commands sent by the
pepper_dcm.

3.1.1. Mapping user Gestures into Pepper Movements
The Pepper robot has five degrees of freedom for each

arm (each one associated with a joint), unlike human beings
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who have seven. A mapping is thus required between the
detected user gestures and their reproduction by the robot.

From the Kinect camera the Cartesian coordinates for
each joint, the quaternion for each segment (both referenced
globally), and a reliability value for both are extracted. The
bridge pepper_dcm uses the Euler angles to communicate to
the robot the new position of its joint angles. We preferred to
use the 3D space coordinates since the extracted quaternions
do not represent the rotation from the previous position, but
rather the rotation from a reference quaternion. This could
lead to excessive inaccuracies when the values are converted
in Euler angles.
Let 𝑥 , 𝑦 and 𝑧 be the unit vectors for each axis, that is:

𝑥 = (1, 0, 0)
𝑦 = (0, 1, 0)
𝑧 = (0, 0, 1)

Let 𝑆𝐿 , 𝐸𝐿 and 𝑊𝐿 be the coordinates of the shoulder, the
elbow and the wrist of the left arm respectively, 𝑆𝐿𝐸𝐿 and
𝐸𝐿𝑊𝐿 are defined as:

𝑆𝐿𝐸𝐿 = 𝐸𝐿 − 𝑆𝐿

𝐸𝐿𝑊𝐿 = 𝑊𝐿 − 𝐸𝐿

𝑆𝑅𝐿is the supplementary to the angle between 𝑆𝐿𝐸𝐿 and
−𝑥 axis:

𝑆𝑅𝐿 = 𝜋

2
− 𝑎𝑟𝑐𝑜𝑠(𝑆𝐿𝐸𝐿 ⋅ −𝑥) (1)

𝑆𝑃𝐿is the angle between the projection of𝑆𝐿𝐸𝐿 on 𝑧𝑦 plane
and 𝑧 axis, shifted in range to avoid the jump discontinuity
at 𝜋 and −𝜋:

𝑆𝑃𝐿 = 𝜋 − 𝑚𝑜𝑑2𝜋(
3
2
𝜋 + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑆𝐿𝐸𝐿𝑧, 𝑆𝐿𝐸𝐿𝑦) (2)

For values of 𝑆𝑅𝐿 close to 𝜋

2 , 𝑆𝑃𝐿 become unstable. As
such, in the algorithm is assigned a value of 0 for𝑆𝑅𝐿 > 1.3.
𝐸𝑅𝐿is the angle between 𝐸𝐿𝑊𝐿 and 𝑆𝐿𝐸𝐿, shifted by 𝜋

2 :

𝐸𝑅𝐿 = 𝜋

2
+ 𝑎𝑟𝑐𝑜𝑠(𝐸𝐿𝑊𝐿 ⋅ 𝑆𝐿𝐸𝐿) (3)

𝐸𝑌𝐿is the angle between the projection of 𝐸𝐿𝑊𝐿 on 𝑧𝑦

plane and 𝑧 axis, shifted in range for stability reasons, plus
−𝑆𝑃𝐿:

𝐸𝑌𝐿 = 𝜋 − 𝑚𝑜𝑑2𝜋(
3
2
𝜋+

+ 𝑎𝑟𝑐𝑡𝑎𝑛(𝐸𝐿𝑊𝐿𝑧, 𝐸𝐿𝑊𝐿𝑦) − 𝑆𝑃𝐿 (4)

The right arm is almost the same as the left arm, the only
difference is that some angles have the opposite sign.

Let 𝐻𝑁 be the difference between the coordinates of the
joints 𝐻 (head) and 𝑁 :

𝐻𝑁 = 𝐻 −𝑁

The head yaw 𝐻𝑌 is the angle between the projection of
𝐻𝑁 on the 𝑥𝑧 plane and the 𝑧 axis:

𝐻𝑌 = −𝑎𝑟𝑐𝑡𝑎𝑛(𝐻𝑁𝑧,𝐻𝑁𝑦) −
𝜋

2
(5)

Smoothing movements through a Line of Best Fit: The
Kinect joint detection is based on the shape of the user, which
is redrawn at every frame. While calibrating the sensor helps
to reduce the resulting jerkiness but a significant amount of
noise can still remain. This noise can be approximately clas-
sified in two categories:

• a constant gaussian noise caused by small alteration
on the detected shape and

• large "spikes" when the 𝐾𝑖𝑛𝑒𝑐𝑡 fail to guess the posi-
tion of one or more joints (especially common when
part of the limb is outside the frame or when two or
more joints overlap).

A simple way to compensate part of this noise is to use a line
of best fit.

In particular, given 𝑘 points in (𝑥, 𝑦) coordinates system,
we must find the values 𝑐0 and 𝑐1 in the equation

𝑝(𝑥) = 𝑐0𝑥 + 𝑐1

that define the straight line minimizing the squared error

𝐸 =
∑𝑘

𝑗=0 |𝑝(𝑥𝑗) − 𝑦𝑗|2
in the equations

𝑥0𝑐0 + 𝑐1 = 𝑦0
𝑥1𝑐0 + 𝑐1 = 𝑦1

...

𝑥𝑘𝑐0 + 𝑐1 = 𝑦𝑘

The result is a smoother movement, especially when the
Kinect camera is not able to detect the exact coordinates of
a given joint. This is because, given a disturbing signal, the
line of best fit can be seen as an approximation of the tangent
line that the signal would have at that point if all the noise
were removed. This is not always true, especially when the
signal changes rapidly, but it’s close enough in most cases to
give a generally cleaner movement.

3.1.2. Modes of Operation
Besides acquiring the user movements in order to in-

crease the gestures knowledge base of the robot, the Ges-
ture module has also some additional features implemented
to increase the breadth of experiments that can be performed
with the system or to help with future projects. In particular,
the module can act into three modalities: 1) Mimic mode, 2)
pose mode, and 3) Playback mode.

The behavior of the module is managed by a set of input
parameters, named mode, mirror_flag, json_file_name, LA-
jpos, RAjpos, Hjpos. The first parameter determines which
one of the three different modes of operation will be used
(default 0), the second one determines if the mirror mode is
activated or not (default false), the third defines the name of
the text file used to record (in mode 0 and 1) or read (mode
2) the gestures (the default value is NULL, that is no record-
ing) and set a flag (record_flag) to 1, the fourth, fifth and
sixth ones are used to determine the pose to use in mode
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1 (as default, the robot will spread its arms parallel to the
ground, in a pose that in animation is known as "T-pose").
More in details, the modes of operation of the main program
are:

• Mode 0, or "Mimic Mode", is the default mode and it
allows the robot mimicking the movements of the user.
The record flag is used to store the data, so the output
is not just sent to the ROS publishers, but recorded in
a JSON(JavaScript Object Notation) file. This file is
then linked to a dataset of gestures that can be stored
and annotated in order to be reproduced later. If the
mirror flag is active, each movement is mirrored dur-
ing the execution. In case both the record and mir-
ror flags are active, the mirrored movement will be
recorded and saved in a specific file to be linked to the
gesture dataset.

• Mode 1, or "Pose Mode", make the robot execute a
pose (defined at the beginning by the value of the given
parameters) already stored in the gestures ontology.
We considered a scenario where the Pepper robot showed
a specific pose and the user had to replicate it as closely
as possible. The scenario involves the use of both the
normal mode and the mirror mode. A proper distance
algorithm calculates how close is the pose of the user
to that one performed by the robot. The distance is
separately evaluated for the head, the right upper arm,
the left upper arm, the right forearm, and the left fore-
arm. If the user pose keeps all body parts below their
respective distance thresholds (defined separately for
each body part), the pose is assumed to be correctly
replicated. If the record flag is activated the returned
distance values are saved. When the mirror flag is set
to "on" the user should try to replicate the mirrored
version of the shown pose.

• Mode 2, or "Playback Mode", consists of reproducing
a previously recorded gesture. The mirror flag, even
if selected, doesn’t have any effect on this procedure.
The name, necessary to activate the record flag, is used
as the name of the gesture linked to the gesture ontol-
ogy. In this case the goal is twofold: just emulating
a gesture or asking a user to emulate the gesture it-
self. This could be done either for learning activities
(e.g. teach pupils some gestures) or for therapeutic
ones (e.g. physical exercises for elderly).

3.1.3. Auxiliary Algorithms
In the following we describe a set of auxiliary algorithms

that we have included in the Gesture Module to implement
its tasks.

Distance measurement To measure the distance between
the robot pose and the detected pose, we used a distance mea-
surement algorithm. For each arm, the related joint angle
group (consisting of Elbow roll, Elbow yaw, Shoulder pitch,

Shoulder roll, and Wrist yaw) is split into two vectors, rep-
resenting the upper arm (Shoulder pitch and Shoulder roll)
and the forearm (Elbow roll, Elbow yaw, and Wrist yaw).
Including the joint angle group for the head (Head yaw and
Head pitch). The position is represented with five vectors.
To avoid that joint angles with a larger range of values could
excessively affect the final result, each angle is normalized
dividing the value by its maximum value. This process is ap-
plied both to the robot pose and the detected pose of the user,
producing five pairs of vectors. Finally, a Mean Squared Er-
ror algorithm is applied at each pair of vectors, resulting in
five distances defined in the interval [0,1]. With this sep-
arated evaluation we found that the final measure is more
precise and reliable allowing to define separate thresholds if
a pass/fail system is implemented (like in our case).

Mirroring: The activation of the mirror flag activates the
mirror algorithm for any detected movement. This means
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that in mode 0, the robot will mirror the user (and if the pro-
gram is recording, it will record the mirrored movement),
while in mode 1, the user will have to mirror the shown pose.
The mirroring mode consists in switching the detected an-
gles between the left and the right arm, changing the sign of
every angle except shoulder pitch. For the head yaw angle,
a simple change in the sign is enough.

Recording and Playback: If the recording flag is active,
the program will write a text file in JSON syntax with the
joint angles sent to the robot (mode 0) or the distance from
the given pose (mode 1) for each frame.
In mode 2, the records created in mode 0 can be reproduced
by the robot.
In mode 0, the fields for each frame are:

• AbsTime: Date and time when the frame was cap-
tured, to the microsecond.

• Left_Arm: Vector containing the joint angles of the
left arm joint group.

• Right_Arm: Vector containing the joint angles of the
right arm joint group.

• Head: Vector containing the joint angles of the joint
head group.

In mode 1, the fields for each frame are:

• AbsTime: Date and time when the frame was cap-
tured, to the microsecond.

• Error_Left_Arm_Shoulder: the measured distance be-
tween the given position and the detected position of
the left upper arm.

• Error_Left_Arm_Elbow: the measured distance be-
tween the given position and the detected position of
the left forearm.

• Error_Right_Arm_Shoulder: the measured distance
between the given position and the detected position
of the right upper arm.

• Error_Right_Arm_Elbow: the measured distance be-
tween the given position and the detected position of
the right forearm.

• Error_Head: the measured distance between the given
position and the detected position of the head.

4. From Words to Gestures and Expressions
The gestures acquired by the kinect are used by the robot

in order to improving its communication abilities by adding
expressiveness to the narration, by including gesticulation to
emphasize what is being said by the robot.

The operation of the module that draws the gestures from
the dataset has two main phase; during the first phase, it
parses the sentence that has to be said, looking for the terms

that directly correspond to a given gesture; if a match is
found, the term is annotated for being associated with a ges-
ture; otherwise, the focus of the parser in oriented at finding
the verbs in a sentence. A POS is then executed and the
verbs present in the sentence are analyzed by using Word-
net: in particular, a lemmatization task is run in order to
find the lemma of the verb under exam; once the lemma has
been found, a score 𝑠(𝑙𝑒𝑚𝑚𝑎_𝑣𝑒𝑟𝑏1, 𝑙𝑒𝑚𝑚𝑎_𝑘𝑏) ∈ [0, 1] is
computed between the lemma of the verb in a sentence and
the lemmas that are associated, in the knowledge base of the
annotated gestures. The score is determined by calculating
the shortest path linking two senses in WordNet by consid-
ering the “is-a” relationship [23]. In this first version of the
system, the score computation takes into account only the
most frequent sense for each lemma, speeding up the anal-
ysis. A similarity threshold 𝑇𝑠𝑖𝑚 ∈ [0, 1] is experimen-
tally fixed. If 𝑠(𝑙𝑒𝑚𝑚𝑎𝑣𝑒𝑟𝑏1, 𝑙𝑒𝑚𝑚𝑎𝑘𝑏) g 𝑇𝑠𝑖𝑚), the action
corresponding to the 𝑙𝑒𝑚𝑚𝑎𝑘𝑏 that gives the highest value
of 𝑠(𝑙𝑒𝑚𝑚𝑎𝑣𝑒𝑟𝑏1, 𝑙𝑒𝑚𝑚𝑎𝑘𝑏) between the lemma associated to
the verb detected in the sentence and the lemma associated to
the action stored in the list of gestures that can be performed
by the robot. If the value of 𝑠(𝑙𝑒𝑚𝑚𝑎_𝑣𝑒𝑟𝑏1, 𝑙𝑒𝑚𝑚𝑎_𝑘𝑏) is
below the value of 𝑇𝑠𝑖𝑚), the verb is ignored and no specific
gesture is performed by the robot.

Furthermore, an emotion detection module, presented in
[26], has been exploited to find if there is a basic emotion
that could be associated to that particular sentence that will
be said. The emotion detection module acts on the com-
municative channels of the robot that could be associated
by a human observer to some emotions, e.g., the color of its
LEDs, the speed of its speech, and the inclination of the head
[17][20] [5].

The emotion that can be associated to a given sentence
is one of the well known Ekman basic emotions: anger, dis-
gust, fear, joy, sadness and surprise. If no emotion is de-
tected, the neutral label is used. The module exploits a lit-
erature lexicon derived from the Word-Net Affect Lexicon
[30] [31] and the methodology, based on the Latent Seman-
tic Analysis (LSA)[21] paradigm, that has been presented in
[26].

That approach assumes that a sentence 𝑑 can be encoded
as a point in a Data Driven “conceptual” space, by calculat-
ing a vector 𝐝 whose 𝑖-th component is the number of times
the 𝑖-th word of the vocabulary is present in 𝑑. The vector 𝐝
is subsequently mapped into a reduced-dimensionality “con-
ceptual” space induced by LSA.
At the same time, a set of vectors acting as emotional “bea-
cons” have been used to map a text from the conceptual space
to an emotional space. In particular, six sets 𝐸𝑎𝑛𝑔𝑒𝑟 , 𝐸𝑑𝑖𝑠𝑔𝑢𝑠𝑡

, ⋯ , 𝐸𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 of vectors constituting the sub-symbolic cod-
ing of each “beacon” identifying a basic emotion have been
used. The generic vector belonging to one of the sets is en-
coded in the same “conceptual” space together with the sen-
tence 𝑠 of the story that has to be said. Once the sentence
𝑠 is mapped into the “conceptual” space, it is possible to
compute its emotional fingerprint following the methodol-
ogy illustrated in [26], which consists in exploiting seman-
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tic similarity with the vectors that are associated to each
one of the six 𝐸𝑖 sets. The emotional space is build as a
six-dimensional hypersphere where all the sentences are en-
codes. Each region of this hypersphere is associated to a set
of emotional expression of the robot. The element associated
to the highest value of emotion determines the main emotion
expressed by the sentence. A minimum value of threshold
𝑇ℎ_𝑒 ∈ [0, 1] has been experimentally established in order
to label sentences that do not carry any emotion as “neutral”.

Thanks to this encoding, the system is provided with a
module that makes it possible to generate an expressive be-
havior, according to the story annotations. In particular a
gesture tag triggers a proper movement according to what is
is stored in the gestures dataset, and to produce an emotional
expression.

For the emotions, we have encoded six possible emo-
tional expressions, corresponding to the Ekman categories
(i.e., anger, disgust, fear, joy, sadness, surprise), that has
been defined by s etting s ome o f t he r obot communicative
channels that can be correlated by a human observer to some
emotions, such as the color of its LEDs, the pitch and speech
rate, and the head inclination. [17] [20] [5] [29].

4.1. Annotation Module
This module of NarRob is aimed at the semantic annota-

tion of possible actions and the emotional labelling of sen-
tences.

The gestures acquired with the Gestures Module are an-
notated in an interactive manner according to their specific
meaning and labelled into the gesture ontology.

The robot, before reading a story, analyzes its composing
sentences, extracts the actions to perform and the emotions
to manifest as well.

Each story is then offline analysed through a dependency-
parsing by using the Stanford CoreNLP tool. This analy-
sis is performed to obtain the dependencies graphs of the
sentences. Each graph is then analyzed starting from the
root, where each node is compared with the annotations of
the gestures in the KB. Each time a match is found, the tag
𝑠𝑡𝑎𝑟𝑡(𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑛𝑎𝑚𝑒) is added to the text to give an indication
of the gesture that robot should perform in that specific point
of the story. Figure 5 shows an example for the sentence
“When they were gone, Cinderella, whose heart was very
sad, cried bitterly”, extracted from the well known story of
Cinderella 1. In the specific case there are two words cor-
responding to the annotations in the gestures dataset. How-
ever, the priority is given according to the order of the de-
pendencies, in this case one of the words (the verb cry), is the
root of the sentence and will be chosen to add the gestures
tag.

The annotations related to the emotional content of the
story are inserted according the six Ekman categories. These
categories have been widely used also in other contexts [27]
[16] [14]. Here we exploit the approach described in section
4 When a specific emotion is detected, the t ag mood( “Emo-

1The text is extracted from https://www.storyberries.com/fairy-tales-

cinderella-or-the-little-glass-slipper/
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tionName”, EmotionWeight) is added in the text, where the
weight specify how intense is the emotion according to the
emotion detection algorithm.

This text passage is an example of annotated story, taken
from “ The Real Princess”2 by Hans Christian Andersen:

mood("SADNESS") gesture(ThunderGesture)
One evening a fearful tempest arose, it thun-
dered and lightened, and the rain poured down
from the sky in torrents:
mood("SADNESS")
besides, it was as dark as pitch.
mood("ANGER") gesture("HearGesture")
All at once there was heard a violent knocking
at the door, and the old King, the Prince’s fa-
ther, went out himself to open it.

4.2. The Chatbot Module
This module relies on a chat-bot engine based on the

SALVE architecture [2], and a conversational Knowledge
Base described through a set of question-answers modules,
named categories, and written in an enhanced AIML mark-
up language, named S-AIML. This rule engine manages the
interaction according to typical practices of interaction.

The chatbot exploits also an OWL3 ontology, formal-
izing the main concepts related to the specific domain for
which the robot has been suited[4].

Moreover, the Chatbot is not only aimed at interacting
with the user during the storytelling activity. It is exploited
also to label the recently acquired gestures with proper de-
scriptions through an interactive session. An example of di-
alogue is reported below:
U: NarRob, please pay attention to this new gesture
R: Ok. I am waiting and recording
The user makes a gesture that is acquired by the Kinect
U:End of gesture
R: I have acquired a new gesture. I can repeat it
Narrob executes the PlayBack mode of the recently acquired
gesture
R: Has the gesture been correctly reproduced?
U: Yes, it has
R: What label should I assign to the gesture?
U: The gesture can be labelled with “come here”

2http://www.gutenberg.org/cache/epub/1597/pg1597.txt
3W3C Web Ontology Language (OWL)
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R: Ok. Done. Gesture acquired, labelled and saved for fu-
ture storytelling.

5. Conclusions and Developments
We have presented in detail the realisation of a specific

module for our NarRob Architecture aimed at acquiring ges-
tures from an user by using a low-cost RGB-D Camera, such
as the Kinect.

NarRob exploits an annotated corpus of text and an on-
tology of gestures to associate body signs and emotional ex-
pressions to the narration, by selecting the best appropriate
gestures fitting the meaning of a sentence or part of a sen-
tence. The goal is to obtain a not trivial, not pre-defined, and
a more involving interaction with a user. Gestures have been
acquired by a Gesture Module, which is capable of detecting,
storing and reproducing the user poses with a Kinect camera
with sufficient accuracy.

The first experiments show that the reproduced move-
ments are quite accurate and smooth; the recording and ex-
ecution of the gestures are very close to the real-time move-
ments. However, sometimes, certain positions cannot be re-
liably detected, due to imprecise behavior of the Kinect out-
put when joints overlap each other, and to excessive reliance
on the silhouette to detect the human body and the lack of
joints in key points of the detected skeleton (like the hands).
There is also an environmental factor, like lightning and po-
sitioning, that can make accurate user detection problem.

The robot can acquire gestures form an human user and
reproduce them in an adequate manner by using also a proper
mapping procedure that allows to approximate the gestures
of human beings. Furthermore, the robot, thanks to the Ges-
ture Module, is potentially autonomously capable of acting
both as an instructor and a learner by exploiting the gesture
mirroring feature.

In future works, a neural network will be also trained
to recognize and classify the gestures to give a proper an-
swer, creating a more realistic verbal communication be-
tween humans and robots. Possible improvements should
include a more effective detection algorithm for the Kinect,
more efficient ways to execute the mapping, the use of all
points detected (not just limbs and head), the use of the offi-
cial Microsoft SDK to have even more points detected (pro-
vided it’s possible to retrieve all the necessary libraries) and
a more general user-friendly experience (like the ability to
set a timer for recording). Moreover, we plan to improve
our framework as to deal with novel and emerging big data
trends including performance (e.g., [7, 12, 9]), and privacy
and security (e.g., [11, 15]).
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