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CHROMATIC POLYNOMIALS OF PLANE TRIANGULATIONS

1. Basic results. Throughout this survey, G will denote a multigraph with n vertices,
m edges, c components and b blocks, and m ′ will denote the smallest number of edges
whose deletion from G leaves a simple graph. The corresponding numbers for Gi will be
denoted by ni , mi , ci , bi and mi′ .

Let P(G, t) denote the number of different (proper vertex-) t -colourings of G.
Anticipating a later result, we call P(G, t) the chromatic polynomial of G. It was
introduced by G. D. Birkhoff (1912), who proved many of the following basic results.

Proposition 1. (Examples.) Here Tn denotes an arbitrary tree with n vertices, Fn denotes
an arbitrary forest with n vertices and c components, and Rn denotes the graph of an
arbitrary triangulated polygon with n vertices: that is, a plane n -gon divided into triangles
by n − 3 noncrossing chords.

(a) P(
� �

Kn , t) = t n,

(b) P(Tn , t) = t(t − 1)n −1,

(c) P(Rn , t) = t(t − 1)(t − 2)n −2,

(d) P(Kn , t) = t(t − 1)(t − 2) . . . (t − n + 1),

(e) P(Fn , t) = t c(t − 1)n −c,

(f) P(Cn , t) = (t − 1)n + (−1)n(t − 1)

= (−1)nt(t − 1)[1 + (1 − t) + (1 − t)2 + . . . + (1 − t)n −2].

Proposition 2. (a) If the components of G are G1 , . . . , Gc , then

P(G, t) = P(G1 , t) . . .P(Gc , t).

(b) If G = G1 ∪ G2 where G1 ∩ G2 = Kr , then

P(G, t) =
P(Kr , t)

P(G1 , t) P(G2 , t)
� ������������������������� .

Proposition 3. (The deletion-contraction formula.) For each edge e of G,

P(G, t) = P(G − e, t) − P(G /e, t).

(When this result is rewritten in the form

P(G − e, t) = P(G, t) + P(G /e, t),

it is sometimes called the addition-identification formula.)

Proposition 4. If G has a loop, then P(G, t) is identically zero. Otherwise, P(G, t) is a
monic polynomial in t of degree n , the smallest power of t with a nonzero coefficient is t c,
the coefficient of tn −1 is m ′ − m , and the powers of t between t c and t n all have nonzero
coefficients, which alternate in sign. Thus if G is simple then

P(G, t) = t n − mtn −1 + an −2 t n −2 − . . . + (−1)n −cac t c,

where ac , . . . , an −2 are all positive.

In view of this result, it makes sense to evaluate P(G, t) at noninteger values of t , and
to make statements like P(G, √5) = − 2

1
� � (1 + √5). Of course, this does not mean there are

− 2
1
� � (1 + √5) ways of colouring G with √5 colours; it is purely a statement about the value of
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a certain polynomial function at a particular value of its argument. For the record, R. P.
Stanley (1973) has found a combinatorial interpretation of P(G, t) whenever t is a negative
integer; in particular, P(G, −1) is (−1)n times the number of ways in which one can direct
all the edges of G without creating any directed circuits. As far as I know, nobody has
discovered a combinatorial interpretation of P(G, t) for any noninteger value of t .
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Fig. 1. Neither triangulations nor near-triangulations
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K2 + C4
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K2 + C5

Octahedron

Icosahedron

Fig. 2. Eight triangulations
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K2 + P4
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K2 + P5

Fig. 3. Six near-triangulations
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2. Inequalities, zeros and plane triangulations. A loopless plane multigraph is a
triangulation if every region is bounded by exactly three edges, and a near-triangulation
with k -face if every region but one is bounded by exactly three edges and the exceptional
region (usually drawn as the outside region) is bounded by a circuit of k 3 edges. It is
easy to see that triangulations and near-triangulations are 2-connected. A separating
circuit in a plane graph is a circuit that has at least one vertex inside it and at least one
vertex outside it.

For a positive integer t , G is t-colourable if and only if P(G, t) ≠ 0. Thus it is natural
to examine the distribution and nature of zeros of chromatic polynomials. The 4-colour
theorem says that 4 is not a zero of P(G, t) if G is a planar graph. It is easy to see that this
is true for all planar graphs if and only if it is true for plane triangulations. And it turns
out that the chromatic polynomials of plane triangulations have a more regular structure
than the chromatic polynomials of planar graphs in general. Thus it is natural to
concentrate on proving results about the chromatic polynomials of plane triangulations.

Incidentally, Woodall (1977) showed that the chromatic polynomials of complete
bipartite graphs, whose largest integer zero is 1, can have arbitrarily large real zeros.
Hence there is no general upper bound on the size of the largest real zero in terms of the
largest integer zero—although there is such a bound for planar graphs (see Theorem 5(e)
below).

Theorem 1.
(a) If t < 0, then P(G, t) is nonzero with the sign of (−1)n.
(b) At 0, P(G, t) has a zero of multiplicity c (hence, a simple zero if G is connected).
(c) If 0 < t < 1, then P(G, t) is nonzero with the sign of (−1)n −c.
(d) At 1, P(G, t) has a zero of multiplicity b (hence, a simple zero if G is 2-connected).
(e) If 1 < t 27

32
� ��� , then P(G, t) is nonzero with the sign of (−1)n −c −b.

Parts (a)–(c) of Theorem 1 are due to W. T. Tutte (1974), part (d) to D. R. Woodall
(1977) and (independently) E. G. Whitehead and L.-C. Zhao (1984), and part (e) to
B. Jackson (1993). Jackson showed that the figure 27

32
� ��� in (e) cannot be increased, and

C. Thomassen (1997) went further and showed that the zeros of chromatic polynomials are
dense in the interval ( 27

32
� ��� , ∞).

Even without the last sentence, it is easy to see that the pattern of Theorem 1 (a)–(d)
cannot continue: it follows from these results that if G is any 2-connected bipartite graph
with an odd number of vertices, then P(G, t) is negative just to the right of 1, and positive
at 2, and so it has a zero between 1 and 2. For example, we could take G to be K2,3 ,
which is also planar. There are also nonbipartite planar examples, such as . However,
for near-triangulations of the plane, the pattern does continue a bit further:

Theorem 2. (G. D. Birkhoff and D. C. Lewis, 1946.) Let G be a plane near-triangulation.
(a) If 1 < t < 2, then P(G, t) is nonzero with the sign of (−1)n.
(b) At 2, P(G, t) has a zero of multiplicity at least m ′ + 1, with equality if G is a

triangulation; thus P(G, t) has a simple zero at 2 if G is a 3-connected triangulation.

It seems possible to make the following conjectured extensions of Theorem 2; the
graphs in part (a) need not be planar.

Conjecture. (a) (B. Jackson, 1993.) The conclusion of Theorem 2 (a) holds also for all
3-connected nonbipartite graphs (or, perhaps, for all 3-connected graphs that are not
bipartite with an odd number of vertices?).
(b) The chromatic polynomial of a 3-connected nonbipartite planar graph has a simple
zero at 2.

In connection with (b), there are nonplanar 3-connected graphs whose chromatic
polynomials have multiple zeros at 2; it does not seem to be known whether there are
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examples that are more highly connected than this.

Theorem 1 (a)–(d) and Theorem 2 follow from the following two theorems. Write
A x B if A and B can be expressed as polynomials in x and, when this is done, each
coefficient in A is at least as large as the corresponding coefficient in B.

Theorem 3. (D. R. Woodall, 1992a.) Let G be a simple graph and write γ := m − n + c
and µ := n − c − b . Define q(G, t) by

P(G, t) = (−1)µt c(t − 1)bq(G, t).

Then q(G, t) is a polynomial in t and

q(G, t) s 1 + γ s + γ s 2 + . . . + γ s µ −1 + s µ

where s := 1 − t . Thus q(G, t) 1 if t 1. (Equality holds if G is a forest, or is unicyclic,
and for some other graphs with two or three circuits.)

Theorem 4. (G. D. Birkhoff and D. C. Lewis, 1946.) Let G be a near-triangulation with
k-face F. Define q(G, t) by

P(G, t) = (−1)n −3−m ′t(t − 1)(t − 2)m ′ +1q(G, t).

Then q(G, t) is a polynomial in t and

q(G, t) r r k −3(1 + r)n −k −m ′

where r := 2 − t . Thus q(G, t) (2 − t)k −3(3 − t)n −k −m ′ if t 2.

Theorem 5. Let G be a plane triangulation with n vertices and let τ := 2
1� � (1 + √5) =

1.6180339. . . , the golden ratio (see the next section).
(a) (D. R. Woodall, 1992b.) If 2 < t < 2.5466023. . . , then q(G, t) (defined in Theorem 4)

is positive and so P(G, t) is nonzero with the sign of (−1)n −m ′ −1; here 2.5466023. . . is
the unique real zero of the polynomial t 3 − 9t2 + 29t − 32, which is a factor of the
chromatic polynomial of the octahedron

� �
K2 + C4 (see Fig. 2).

(b) (W. T. Tutte, 1970a.)
�
P(G, τ + 1)

�
τ 5−n.

(c) (W. T. Tutte, 1970b.) P(G, τ + 2) = (τ + 2)τ 3n −10P(G, τ + 1)2.
(d) (The Four-Colour Theorem.) P(G, 4) > 0.
(e) (G. D. Birkhoff and D. C. Lewis, 1946.) If t 5, then P(G, t) and all its derivatives

(up to the n th) are strictly positive.

Birkhoff and Lewis conjectured that (e) holds if t 4, and there is overwhelming
evidence to support this; if true, this would then follow for all planar graphs. If G is a
3-colourable (i.e., Eulerian) plane triangulation then it seems very likely that (e) holds
whenever t 3. But (a) is not even true for all near-triangulations: using the addition-
identification formula one sees that the near-triangulation

� �
K2 + P4 in Fig. 3 has chromatic

polynomial

t(t − 1)(t − 2)(t − 3)3 + t(t − 1)(t − 2)3 = t(t − 1)(t − 2)(t 3 − 8t2 + 23t − 23),

which has a zero at about 2.4301597. . . . By analogy with (a), which I conjectured in
1977, I also conjectured that P(G, t) ≠ 0 if 2.6778146. . . < t < 3, where 2.6778146. . . is a
zero of the polynomial t3 − 6t 2 + 30t − 35, which is a factor of the chromatic polynomial of
the pentagonal double pyramid

� �
K2 + C5 (see Fig. 2). It now seems that this is false;

indeed, it seems that the zeros of chromatic polynomials of plane triangulations are very
probably dense in this interval. However, all known (4-connected) counterexamples have
vertices with degree less than 5, and I have made the following replacement conjecture.
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Conjecture. (D. R. Woodall, 2001.) The chromatic polynomial of a 4-connected plane
triangulation with minimum degree 5 cannot have a zero (a) between 2 and 2.6180317. . .
or (b) between 2.6181972. . . and 3.

The noninteger appearing in (b) is a zero of the chromatic polynomial of the
icosahedron, and the one in (a) is a zero of the chromatic polynomial of the 16-vertex
polyhedron shown to the right of the icosahedron in Fig. 2. Part (b) of the conjecture is
particularly appealing by analogy with Theorem 5 (a), involving the octahedron. A proof
of (b) (with the expected sign) would also establish that a 4-connected triangulation with
minimum degree 5 does have a zero between 2.5466023. . . and 2.6181972. . . , ‘close’ to
τ + 1 = 2.6180339. . . where the polynomial is small by Theorem 5 (b). (The truth of (a)
and (b) together would prove the existence of a zero even closer to τ + 1.)

3. The Beraha numbers, and other developments. In this section we will consider only
plane triangulations. Berman and Tutte (1969) used a computer to plot the zeros of the
chromatic polynomials of hundreds of plane triangulations. They discovered that there
always seems to be a real zero at about 2.61803..., and there is often another near 3.246...,
the closeness of approximation to these values seeming to increase as the number of
vertices in the triangulation increases. Since the well known golden ratio has the value
τ = 1.61803..., Berman and Tutte suggested that the ‘true value’ of 2.61803... is the larger
root of the equation t 2 − 3t + 1 = 0, which is 2

1� � (3 + √5), or τ + 1. They referred to the zero
that usually occurs near this value as the ‘golden root’ of the chromatic polynomial.
D. W. Hall suggested that the ‘true value’ of 3.246... might be the largest root of the
equation t 3 − 5t2 + 6t − 1 = 0, since this polynomial features prominently in various
calculations involving chromatic polynomials. Tutte suggested that the zero that often
occurs near this value should be called the ‘silver root’ of the chromatic polynomial.

� ���������������������������������������������������������������������������������������������������
n bn n bn� ���������������������������������������������������������������������������������������������������
2 0 7 3.2469796. . .
3 1 8 3.4142135. . . ( = 2 + √2)
4 2 9 3.5320888. . .
5 2.6180339. . . ( = τ + 1) 10 3.6180339. . . ( = τ + 2)
6 3 . . . . . .� ���������������������������������������������������������������������������������������������������
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�
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�
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��
�
�
�
�
�
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S. Beraha pointed out that τ + 1 = 2 + 2 cos 2π /5, and the largest root of the above
cubic equation is 2 + 2 cos 2π /7. This suggests that one should look at what are now called
the Beraha numbers, defined by the equation bn := 2 + 2 cos 2π /n (see table). For n = 5
and n = 7 we get the two values already referred to. For n = 2, 3 and 4, we get simply 0,
1 and 2, where there are always zeros, and n = 6 gives 3, where there is a zero unless the
triangulation is 3-colourable, which happens if and only if it is Eulerian. For larger values
of n we get a sequence of numbers between 3 and 4, and

n →∞
lim bn = 4. This last fact may

well be significant: it suggests that there may be some way of using the Beraha numbers
in order to prove the four-colour theorem.

In fact, I know of only two relevant theorems about Beraha numbers, both proved by
Tutte in 1970. The first, Theorem 5 (b), says that � P(G, b5) � τ 5−n, which is very small.
This does not prove that there is a zero nearby—indeed, there may not be, if G is not
4-connected (or even, in one case, if it is)—but it is not surprising that there usually is.
The second, Theorem 5 (c), relates P(G, b10 ) to P(G, b5 ). It does not show that P(G, b10 ) is
small; what it does show, much more interestingly, is that it is always positive.
Unfortunately, there are chromatic polynomials of plane triangulations that, although
positive at b10 and 4 (by the 4-colour theorem), are negative at points in between, and it is
now known that there are no other Beraha numbers at which the chromatic polynomial is
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always positive; this follows from work of G. F. Royle (2005), who has shown that there
are plane triangulations whose chromatic polynomials have real zeros arbitrarily close
to 4. The Beraha numbers were a very exciting discovery, but nobody has been able to
see quite how to make use of them.

Another idea that looks suggestive, but has not yet been tested, is to transform the
chromatic polynomial. Put u := t − 3 and x := u −1. If G is a plane triangulation, define
Q(G, u) and R(G, x) by the equations

P(G, t) = t(t − 1)(t − 2)(t − 3)Q(G, t − 3)

= (u + 3)(u + 2)(u + 1)uQ(G, u)

and

R(G, x) = u4−nQ(G, u),

so that

P(G, t) = t(t − 1)(t − 2)(t − 3)n −3R(G, x).

Q(G, u) is called the Q-chromial of G. It is a polynomial unless G is Eulerian, in which
case G is 3-colourable and so (t − 3) is not a factor of P(G, t) and Q(G, u) has a term in u −1.
The coefficients in Q(G, u) are usually much smaller than those in P(G, t), and so the
published tables tend to be of Q-chromials rather than the chromatic polynomials
themselves. R(G, x), however, is always a polynomial. Its advantages over P(G, t) are
threefold.

Firstly, the coefficients of R(G, x) are the same as those of Q(G, u) but in the reverse
order, and so the polynomials R(G, x) can be read off from the published tables of
Q-chromials. Here are some small examples.

n Q(G, u) R(G, x)
�������������������������������������������������������������������������������������������������������������������������

K4 4 1 1
octahedron 6 u2 + 0u + 2 + u −1 1 + 0x + 2x 2 + x3

� �

K2 + C5 7 u3 + 0u2 + 3u + 1 1 + 0x + 3x 2 + x3

8 u4 + 0u3 + 4u 2 − u − 1 1 + 0x + 4x 2 − x3 − x 4

8 u4 + 0u3 + 4u 2 + 3u + 3 + u −1 1 + 0x + 4x 2 + 3x3 + 3x 4 + x5

Secondly, some equations look simpler for R(G, x) than for P(G, t). For example, if G ′
is obtained from G by inserting a new vertex of degree 3 in a triangular face, then
P(G ′ , t) = (t − 3)P(G, t), but R(G ′ , x) = R(G, x). And Tutte’s ‘golden identity’ (Theorem
5 (c)) takes the particularly simple form R(G, τ) = R(G, −τ 2)2.

Thirdly, R(G, x) unifies some of the known results about P(G, t). Note the following
table of corresponding values.

t : 3 τ + 1 = τ 2 2 2
1� �� � ��
2
1�� � �� � 2 1 0 −1 −2 ±±±∞∞∞∞∞∞ 6 5 4 τ + 2 3

x : ±∞ −τ 2 −−−2 −−−1 − 2
1� � − 3

1� � − 4
1� � − 5

1� � 0 3
1� �

2
1� �� � ��
2
1�� � �� � 1 τ ±∞

Theorem 6. If G is a plane triangulation then R(G, x) > 0 when −1 < x 2
1� � , and also when

−2 x −1 if G is simple.

Proof. By Theorem 5(e), if t 5, that is, 0 < x 2
1� � , then P(G, t) > 0, and so R(G, x) > 0.

R(G, 0) = 1 since R(G, x) always has constant term 1. By Theorem 4, if t 2, that is,
−1 x < 0, then R(G, x) = (−1)n −3−m ′(t − 2)m ′(t − 3)3−nq(G, t) where q(G, t) > 0. Thus
R(G, x) > 0 if t < 2, and also if t = 2 when G is simple (m ′ = 0). Finally, by Theorem
5 (a), if 2 < t 2 2

1� � , that is, −2 x < −1, then the same inequality holds, and so again
R(G, x) > 0.

�

The conjecture of Birkhoff and Lewis mentioned after Theorem 5 can be tied in with
Theorem 6 to give:
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Conjecture. If G is a simple plane triangulation then R(G, x) > 0 whenever −2 x 1.

EXERCISES

1 Prove the formulae

P(Cn , t) = (t − 1)n + (−1)n(t − 1)

= (−1)nt(t − 1)[1 + (1 − t) + (1 − t)2 + . . . + (1 − t)n −2]

in Proposition 1.

2 Calculate the chromatic polynomials of (at least) the triangulations
� �
K2 + C4 and� �

K2 + C5 in Fig. 2 and the last two near-triangulations in Fig. 3.

3 Prove Proposition 2(b), that if G = G1 ∪ G2 where G1 ∩ G2 = Kr , then

P(G, t) =
P(Kr , t)

P(G1 , t)P(G2 , t)������������������������� .

Would the analogous result be true with
� �
Kr in place of Kr ?

4 Prove Proposition 4, that if G is simple then

P(G, t) = t n − mtn −1 + an −2 t n −2 − . . . + (−1)n −cac t c,

where ac , . . . , an −2 are all positive.

5 Prove that, for any graph G and any complex number t ,
�
P(G, t)

� �
t
� n −m(

�
t
�
+ 1)m.

6 Prove that, if G is a simple graph and t 1, then
�
P(G, t)

� �
t c(t − 1)n −c −1 � (m − n + c + 1 − t)

�
t c(t − 1)n −c � .

(Hint: Prove the result directly for forests. For other graphs, apply the deletion-
contraction formula to an edge in a circuit.)

7 Prove Theorem 1 parts (a)–(c) directly, without using Theorem 3. (Hint: Use the
fact that the chromatic polynomial is multiplicative over components. Prove the
results directly for trees, proving also that the coefficient of t is nonzero and has the
sign of (−1)n −1. For other connected graphs, apply the deletion-contraction formula
to an edge in a circuit.)

8 Prove Theorem 1(d) directly by the following method. Split the graph apart at any
cut-vertex; for 2-connected graphs, use the deletion-contraction formula to prove
that the derivative of P(G, t) at 1 is nonzero and has the sign of (−1)n.

9 Let e = v1v2 be an edge in a 2-connected graph G.
(a) Prove that G − e is 2-connected if and only if there is a circuit in G − e

containing v1 and v2 .
(b) Prove that G /e is 2-connected if and only if v2 is not a cut-vertex of G − v1 .
(c) Deduce that, if G ≠ K3 , then G contains an edge e such that G /e is 2-connected.

10 Prove that Tutte’s ‘golden identity’ (Theorem 5(c)) is the same as R(G, τ) =
R(G, −τ 2)2. (Hint: τ 2 − τ − 1 = 0, so τ + 1 = τ 2, τ − 1 = τ −1 and τ − 2 = −τ −2.)
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