
Noname manuscript No.
(will be inserted by the editor)

Nekbone Performance on GPUs with OpenACC and

CUDA Fortran Implementations

Jing Gong · Stefano Markidis · Erwin

Laure · Matthew Otten · Paul Fischer ·

Misun Min

Received: date / Accepted: date

Abstract We present a hybrid GPU implementation and performance analy-
sis of Nekbone, which represents one of the core kernels of the incompressible
Navier-Stokes solver Nek5000. The implementation is based on OpenACC and
CUDA Fortran for local parallelization of the compute-intensive matrix-matrix
multiplication part, which significantly minimizes the modification of the ex-
isting CPU code while extending the simulation capability of the code to GPU
architectures. Our discussion includes the GPU results of OpenACC interoper-
ating with CUDA Fortran and the gather-scatter operations with GPUDirect
communication. We demonstrate performance of up to 552 Tflops on 16, 384
GPUs of the OLCF Cray XK7 Titan.

Keywords Nekbone/Nek5000 · OpenACC · CUDA Fortran · GPUDirect ·
Gather-scatter communication · Spectral-element discretization

1 Introduction

OpenACC is a high-level compiler-directive-based programming approach for
parallel computing on graphics processing units (GPUs). The compiler maps
the compute and data regions specified by the OpenACC directives to GPUs
for higher performance. In contrast to other low-level GPU programming, such
as CUDA and OpenCL, where more explicit compute and data management
is necessary, porting of legacy CPU-based applications with OpenACC does
not require significant structural changes in the original code, which allows

COST IC1305, corresponding author: Misun Min, E-mail: mmin@mcs.anl.gov

J. Gong, S. Markidis, E. Laure, PDC, KTH, E-mail: (gongjing,markidis,erwinl)@pdc.kth.se
M. Otten, Cornell University, U.S.A., E-mail: mjo98@cornell.edu
P. Fischer, Univeristy of Illinois Urbana-Champaign, U.S.A., E-mail: fischerp@illinois.edu
and Argonne National Laboratory, U.S.A., E-mail: fischer@mcs.anl.gov
M. Min, Argonne National Laboratory, U.S.A., E-mail: mmin@mcs.anl.gov

2 Jing Gong et al.

considerable simplification and productivity improvement when hybridizing
existing applications.

While the directive-based approach of OpenACC greatly simplifies pro-
gramming it does not provide the flexibility of CUDA or OpenCL. For exam-
ple, both CUDA and OpenCL provide fine-grained synchronization primitives,
such as thread synchronization and atomic operations, whereas OpenACC does
not. Efficient implementations of applications may depend on the availability
of software-managed on-chip memory, which can be used directly in CUDA
and OpenCL, but not in OpenACC. These differences may prevent full use
of the available architectural resources, potentially resulting in inferior perfor-
mance when compared to highly tuned CUDA and OpenCL code. However,
OpenACC has significant potential to enable domain scientists to approach
GPU computing with minimal effort and few modifications to existing CPU
implementations.

To understand the performance implications for programming accelerators
with OpenACC, this paper presents case studies of porting and optimization of
kernel benchmarks for a spectral element code Nekbone, which is a simplified
version of a computational fluid dynamics (CFD) code Nek5000. Nekbone fo-
cuses on the Poisson operator evaluation that is a central computational kernel
in Nek5000. The discretization is based on a continuous Galerkin formulation
using a high-order spectral element discretization on a mesh of hexahedral
elements. The Poisson solver uses Jacobi preconditioned conjugate gradients
which exercise two of the principal communication kernels in Nek5000—the
gather-scatter (gs) operation for nearest-neighbor exchanges and the all-reduce
operations that yield optimal approximations in the Krylov subspace. As ker-
nel benchmarks, we focus on highly tuned OpenACC and CUDA Fortran ver-
sions for fine-grained parallelism of matrix-vector multiplications. To port Nek-
bone to GPU with OpenACC, we have added approximately 300 lines of Ope-
nACC directives to the CPU version of Nekbone consisting of over 38,000 lines
of FORTRAN routines. A CUDA Fortran implementation using OpenACC as
an interface is also considered for the most compute-intensive matrix-matrix
multiplication routines, which significantly simplifies the CUDA-based data
management and copy. We note that, before starting the iterations in the Pois-
son solver, each CPU moves the necessary data from the host CPU memory
to GPU memory only once, and computations are performed fully on GPUs
during the iterations, which minimizes the data movement between CPU and
GPU at each iteration and reduces the memory latency. As for the commu-
nication kernel of Nekbone, we examine our fully optimized GPU-based gs

library which was demonstrated for a spectral element discontinuous Galerkin
solver in our previous work [8] where an OpenACC implementation for the
gather-scatter kernel consisting of over 2000 lines of C routines in the CPU
version required adding approximately 23 lines of OpenACC directives.

The paper is organized as follows. We give an overview of Nekbone code
and discuss in details for the governing equation, formulations and discretiza-
tions. We discuss highly optimized OpenACC and CUDA Fortran routines for

Nekbone Performance on GPUs 3

matrix-matrix multiplications, and the gather-scatter kernels. Then we provide
performance results and their analysis on a single and multi GPUs.

2 Related Work

Here we address some related studies on performance, portability, implemen-
tation effort, and issues discussed by others for GPU-enabled computational
fluid dynamic (CFD) codes based on OpenACC and CUDA accelerations.

In [1], single GPU performance is discussed for a CFD code, OVERFLOW.
A CPU version of OVERFLOW is hand-translated into a CUDA version,
achieving 40% speedup in total wall-clock time on a single GPU.

In [2], performance comparisons of OpenACC and CUDA on a single node
of the Japanese supercomputer TSUBAME2.0 are studied for two microbench-
marks and a CFD application code, UPACS (Unified Platform for Aerospace
Computational Simulation). The comparison indicates the limitation of pro-
grammable control of the on-chip memory in OpenACC by showing that some
case studies of an OpenACC-based acceleration achieve approximately 50%
of the performance of a CUDA-based acceleration, while the OpenACC ver-
sion can increase its performance up to 98% of CUDA when a careful manual
optimization is applied.

In [3], a C++ CFD code ZFS (Zonal Flow Solver) is OpenACC-accelerated
and tested on an 8-node cluster (2 Intel Xeon E5-260 v2 and 4 Tesla K40m
on each node) connected with FDR InfiniBand. Their OpenACC-accelerated
ZFS demonstrates 2.1∼2.4× speedup compared with the CPU-only ZFS.

In [4], a cost-effective OpenACC implementation for a high-order implicit
algorithm using a reconstructed discontinuous Galerkin method is discussed.
The GPU-accelerated implementation includes a compact in-place direct in-
version and a special-element-reordering algorithm, achieving 6∼7× speedup
for transonic flow past a Boeing 747 aircraft compared with CPU runs. The au-
thors leave the memory-bound issue of a fine-grained left-hand side for further
improvement.

In [5], the progress and challenges in accelerating simulations of fluid flow
using GPUs are surveyed. The authors present case studies and discuss suc-
cessful strategies for performance improvement, including efficiently utilizing
global and shared memory, asynchronous memory transfer, and minimal CPU-
GPU communication.

3 Nekbone

Nekbone is a lightweight subset of the CFD code Nek5000 [9] that is intended
to mimic the essential computational complexity of Nek5000 in relatively few
lines of code. This “mini-app” allows software and hardware developers to un-
derstand the basic structure and computational costs of Nek5000 over a broad
spectrum of architectures ranging from software-based simulators running at

4 Jing Gong et al.

one ten-thousandth the speed of current processors to exascale platforms run-
ning millions of times faster than single-core platforms. Indeed, Nekbone has
weak-scaled to 6 million MPI ranks on the Blue Gene/Q Sequoia at Lawrence
Livermore National Laboratory. (Nek5000 has strong-scaled to over a million
ranks on the Blue Gene/Q Mira at Argonne National Laboratory.) Nekbone
provides flexibility to adapt new programming approaches for scalability and
performance studies on a variety of platforms without having to understand
all the features of Nek5000.

Nek5000 is a high-order Navier-Stokes solver based on the spectral-element
method (SEM) that is designed for direct numerical simulations (DNS) and
large eddy simulations (LES) of turbulent flows in a broad range of applica-
tion areas, including reactor thermal hydraulics, combustion, oceanography,
and astrophysics, that require highly accurate solutions using extreme-scale
computing resources. The code is MPI based, written in Fortran and C, and
is equipped with highly tuned matrix-matrix product routines and a scalable
gather-scatter kernel that has a black-box user interface. The SEM employs
unstructured body-fitted hexahedral elements for accurate representations of
complex geometries and employs efficient multilevel iterative solvers for im-
plicit solution of the viscous and pressure substeps. As is invariably the case
for incompressible Navier-Stokes solvers, the pressure solve accounts for most
of the computational overhead in Nek5000—typically about 60 percent of the
wall-clock time when using the spectral-element multigrid scheme developed
in [10,11].

To capture the essential computational aspects of Nek5000, Nekbone solves
the Poisson equation using conjugate gradient iteration with the same matrix-
vector product routine as Nek5000 but on a domain that is a tensor product
of rectilinear spectral elements. The simple geometry was chosen to facilitate
scaling from one element to millions of elements at run time. No attempt is
made to exploit this simple configuration, since that would inveigh against
the generality of the target application space. Because Nekbone retains the
essentials of the algorithmic and numerical approaches of Nek5000, including
the general-purpose gather-scatter kernel, investigation and profiling of its
performance can lend insight into the performance potential of Nek5000 on
future architectures.

Nekbone is intrinsically well load-balanced, with each process having the
same number of spectral elements and therefore the same amount of com-
putational work. This strategy was followed in order to control macroscopic
variables and to allow users to focus on more subtle performance features. The
principal communication consists of nearest-neighbor (in the mesh topology,
not necessarily in the network topology) exchanges with up to 26 surrounding
elements, involving potential data communication for 6 faces, 12 edges, and 8
vertices. Because Nekbone generates a convex subset of elements for each rank,
the 26 neighbor configuration also extends to the number of ranks that any sin-
gle processor communicates with in the gather-scatter operation. In Nek5000,
this number can be as high as 50 to 80 for irregular decompositions. Other
communications in Nekbone include mpi all reduce. The tree-based coarse-

Nekbone Performance on GPUs 5

grid solve [12,13] featured in Nek5000 is not included in Nekbone. Because
of boundary conditions, the amount of data communicated with neighboring
processes can vary between processes, but the effects of this imbalance have
been observed to be minimal on most systems. For systems with scalable (i.e.,
constant-time) MPI reduction operations and where point-to-point commu-
nications are noninterfering between network nodes, the performance of the
benchmark has been observed to scale nearly linearly with increasing number
of ranks across several orders of magnitude.

3.1 Formulation

The viscous and pressure substeps in Nek5000 require solutions of second-order
variable-coefficient elliptic boundary value problems of the form

−∇ · (α∇u) + βu = f in Ω, (1)

subject to Neumann, Dirichlet, and Robin conditions on the boundary ∂Ω.
Nekbone solves a restricted class of problems with constant coefficients (α = 1
and β ≥ 0), subject to homogeneous Dirichlet boundary conditions. The SEM
is based on the weak formulation of (1): Find a solution u ∈ XN

0 ⊂ H1
0 (Ω)

such that

a(u, υ) + b(u, υ) = (f, υ) for all υ ∈ XN
0 , (2)

where the bilinear functionals are defined as

a(u, υ) =

∫

Ω

∇u · ∇υdΩ =

∫

Ω

(

∂u

∂x

∂υ

∂x
+
∂u

∂y

∂υ

∂y
+
∂u

∂z

∂υ

∂z

)

dΩ, (3)

b(u, υ) =

∫

Ω

uυ dΩ and (f, υ) =

∫

Ω

fυ dΩ. (4)

Here, H1
0 is the usual Sobolev space of square-integrable functions vanishing

on ∂Ω and having derivatives that are also square-integrable, and XN
0 is a

discrete subspace to be introduced shortly.

3.2 Discretizations

We denote our computational domain as Ω = ∪E
e=1Ω

e, where Ωe repre-
sents nonoverlapping body-conforming hexahedral elements. We define a finite-
dimensional approximation space V N = span{ψijk(ξ

e, ηe, γe)}, with i, j, k ∈

{0, . . . , N}3 and e ∈ {1, . . . , E}. Here, (ξe, ηe, γe) ∈ Ω̂ := [−1, 1]3 are local
computational coordinates associated with xe = (xe, ye, ze) ∈ Ωe that are
defined implicitly by the isoparametric map

xe(ξ, η, γ) =

N
∑

i,j,k=0

xe
ijkψijk(ξ, η, γ), ξ, η, γ ∈ Ω̂. (5)

6 Jing Gong et al.

The local basis ψijk(ξ, η, γ) = ℓi(ξ)ℓj(η)ℓk(γ), or simply ψijk, is a tensor prod-
uct of the one-dimensional Nth-order Legendre-Lagrange interpolation poly-
nomials,

ℓi(ξ) = [N(N + 1)−1(1− ξ2)L′

N (ξ)]/[(ξ − ξi)LN (ξi)] for ξ ∈ [−1, 1], (6)

based on the Gauss-Lobatto-Legendre (GLL) quadrature nodes ξi with LN

denoting the Nth-order Legendre polynomial and L′

N its derivative.
For the SEM, we seek solutions u(x) ∈ XN

0 := V N∩H1
0 .X

N
0 is the subspace

of the piecewise polynomial approximation space V N that is continuous and
that satisfies homogeneous Dirichlet conditions on ∂Ω. As is the case with
the geometry (5), u (and υ) is expressed locally on Ω̂ by the tensor-product
Lagrange polynomials,

ue(ξ, η, γ) =

N
∑

i,j,k=0

ueijkℓi(ξ)ℓj(η)ℓk(γ). (7)

The choice of this basis implies that the coefficients are nodal values at the
GLL points. Specifically, u(xe

ijk) = ueijk. Interelement function continuity for

any function u ∈ XN is enforced by requiring that

ueijk = ue
′

i′j′k′ if xe
ijk = xe′

i′j′k′ . (8)

In addition, boundary conditions (u ∈ XN
0) are enforced by setting ueijk = 0

for all xe
ijk ∈ ∂Ω. The procedure for implementing these two conditions is

described shortly.
All computations are performed on the reference domain. Denoting (x, y, z) =

(x1, x2, x3) and (ξ, η, γ) = (r1, r2, r3), we evaluate derivatives in the bilinear
form using the chain rule. For i=1, 2, and 3,

∂u

∂xi
=

(

∂u

∂ξ

∂ξ

∂xi
+
∂u

∂η

∂η

∂xi
+
∂u

∂γ

∂γ

∂xi

)

=
3

∑

j=1

∂u

∂rj

∂rj
∂xi

. (9)

The bilinear form in (3) is expressed as

a(u, υ) =

E
∑

e=1

3
∑

j=1

3
∑

i=1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∂υ

∂ri
Gij ∂u

∂rj
dr1 dr2 dr3, (10)

where the symmetric tensor comprising the geometric factors

Gij :=
3

∑

k=1

∂ri
∂xk

∂rj
∂xk

J (r1, r2, r3), (11)

involves the metrics from the mapping r(x) and the Jacobian, J =
∣

∣

∂x
∂r

∣

∣.
A central step for efficient evaluation of the SEM operators is to approx-

imate all integrals in the bilinear forms (3)–(4) by quadrature on the GLL
nodal points [14]. If the local set of test and trial functions is represented by

Nekbone Performance on GPUs 7

the respective vectors υe = {υeijk} and ue = {ueijk}, the discrete form for (3)
reads

aN(u, υ) =

E
∑

e=1

(υe)T





Dξ

Dη

Dγ





T 



G11 G12 G13

G21 G22 G23

G13 G23 G33





e 



Dξ

Dη

Dγ



ue (12)

=
E
∑

e=1

(υe)TDTGeDue =
E
∑

e=1

(υe)TAeue, (13)

where Gst = Gst
ijkρiρjρk (s, t = 1, 2, 3) represents the product of the geomet-

ric factors evaluated at the nodes with the corresponding GLL quadrature
weights, ρiρjρk, and the matrices Dξ, Dη, Dγ evaluate the local derivatives
of their operands at the GLL points. Specifically, the tensor product forms

Dξ = I⊗ I⊗ D̂, Dη = I⊗ D̂⊗ I, Dγ = D̂⊗ I⊗ I (14)

involve the one-dimensional differentiation matrix D̂ki = l′i(ξk) and the iden-
tity matrix I in R

(N+1)×(N+1).
To complete the problem statement, we need to assemble the system and

apply the boundary conditions, both of which imply restrictions on the nodal
values ueijk and υeijk. For any u(x) ∈ XN we can associate a single nodal value
ug for each unique xg ∈ Ω, where g ∈ {1, . . . , n̄} and n̄ is the cardinality of
XN . Let g = geijk be an integer that maps any xe

ijk to xg; let l = i + (N +

1)(j−1)+(N+1)2(k−1)+(N+1)3(e−1) represent a lexicographical ordering
of the local nodal values; and let m = E(N +1)3 be the total number of local
nodes. We define QT as the n̄ ×m Boolean gather matrix whose lth column
is êg(l), where g(l) is the local-to-global pointer and êg is the gth column of

the n̄ × n̄ identity matrix. For any u ∈ XN we have the global-to-local map
uL = {ue}Ee=1 = Qu (the scatter operation), such that the discrete bilinear
form (3) becomes

aN(u, υ) =
E
∑

e=1

(υe)TAeue = (Qυ)TAL Qu = υTQTAL Qu, = υT Āu,

where AL= block-diag{Ae} is the unassembled stiffness matrix and Ā is the
assembled stiffness matrix. The preceding definition of Q is strictly formal.
One never actually creates Q nor QT . Rather, the actions of these matrices,
applied as a gather-scatter pair, are implemented as a single communication
routine as noted below in (22). We refer to [14] for more details and examples
of the gather-scatter operation.

Boundary conditions are enforced by formally numbering the boundary
nodes last such that n < n̄ represents the number of unique interior nodes.
Defining R = [In O] as the n × n̄ restriction matrix comprising the n × n
identity In and an n× (n̄− n) zero matrix O, one defines the global stiffness
matrix A = RĀRT , which is symmetric positive definite.

8 Jing Gong et al.

To obtain the mass matrix, we consider the inner product,

b(u, υ) =

∫

Ω

υ u dΩ, (15)

which, when combined with the SEM basis and quadrature rule, becomes

bN(υ, u) =
E
∑

e=1

(υe)TJe
(

M̂⊗ M̂ ⊗ M̂
)

ue =
E
∑

e=1

(υe)TBeue. (16)

Here, the local mass matrix Be := Je
(

M̂⊗ M̂⊗ M̂
)

is diagonal with entries

Je
ijkρiρjρk arising from the product of the Jacobian evaluated at the GLL

points with the one-dimensional mass matrix, M̂ = diag{ρk}. As is the case
with the stiffness matrix, the assembled mass matrix is B̄ = QTBLQ, where
BL= block-diag{Be}.

For f(x) ∈ L2, we do not impose interelement continuity nor vanishing
values on ∂Ω. Consequently, for α = 1 and β = 0, the discretized form of (1)
has the form

Au = RQT B̄f
L
, (17)

where f
L
enumerates all entries of f in V N . As it is most common to express

spectral element functions in terms of local nodal values, we formally write
the solution as uL = QRTu, which extends the entries of u in (17) to the
boundary by zero and copies the global values to each local element.

3.3 Arithmetic Operations

The matrix A is never explicitly formed. In an iterative solver, matrix-vector
multiplication is effected by applying Ae in the factored form (12), which
requires 6E(N+1)3 storage for the geometric factors and 12E(N+1)4 work for
application of the derivative matrices. Assuming that u is already represented
in its local form, uL = {ue}Ee=1, local operator evaluation begins with the
tensor product–based derivatives,

ueξ := Dξu
e = (I⊗ I⊗ D̂)ue = ΣN

l=0D̂ilu
e
qjk, (18)

ueη := Dηu
e = (I⊗ D̂⊗ I)ue = ΣN

l=0D̂jlu
e
ilk, (19)

ueγ := Dγu
e = (D̂⊗ I⊗ I)ue = ΣN

l=0D̂klu
e
ijl. (20)

These are followed by pointwise multiplications with the geometric factors
and application of DT . The product is completed by applying the assembly
and restriction matrices, RQT . However, given the desire to have only one
storage format, this last step is immediately followed by extension to local
form. Consequently, the matrix-vector product w = Au in Nekbone is written

wL = QRTRQTALuL (21)

= MLQQTALuL, (22)

Nekbone Performance on GPUs 9

where ML is a diagonal mask matrix in local form that is one for all interior
nodes and zero for all nodes xe

ijk ∈ ∂Ω. With the form (22), the local-to-global

mapping steps QQT are combined into a single operation that sums values at
shared vertices and redistributes the result to the local representation. This is
the gather-scatter operation that involves nearest-neighbor communication in
Nekbone.

We note that, aside from (22), the work for all operations in the Jacobi-
preconditioned conjugate gradient iteration scale as the total number of grid-
points n = E(N +1)3. Accounting for these operations, the work per iteration
is approximately

W = [12(N + 1)4 + 34(N + 1)3]E = [12(N + 1) + 34]n. (23)

The number of memory references is linear in n, while the work per grid point
asymptotically scales as 12(N + 1), which leads to an increase in the flops
per byte. In actual applications, this increased computational intensity leads
to improved accuracy at fixed resolution or reduced resolution (n) for a given
accuracy and thus there is a tangible benefit to increasing N .

4 Poisson Operator Evaluation

We now turn to the OpenACC and CUDA Fortran implementation of the spec-
tral element Poisson operator (12), which is the central compute-intensive part
of Nekbone. The operator evaluation involves two phases. We first compute the
matrix-vector product υ = (GD)uL to obtain the weighted first-order deriva-
tives. We then proceed with the second matrix-vector multiplication w = DTυ
which yields the second-order derivative part of the Poisson operator. The data
management using OpenACC directives is introduced in Algorithm 1. Algo-
rithms 2–4 show the pseudo-code of the subroutine ax acc involving the two
parallel-loops for these procedures. The OpenACC directives in Algorithms 2–
3 are optimized for CCE and PGI compilers, respectively. Algorithm 4 is an
optimized CUDA version using OpenACC as an interface.

4.1 Data Management

We initiate Nekbone on the CPU. The host CPU manages the data transfers
between the host and its corresponding GPU using the OpenACC directives
and the GPU executes parallel regions. In Nekbone, we first allocate memory
on GPU for the GPU arrays as shown in Algorithm 1 using OpenACC direc-
tives DATA CREATE. For the repeatedly used arrays such as the differentiation
matrices and geometric variables, we compute them on CPU and copy them
to GPU by specifying UPDATE DEVICE within the OpenACC data region.

In our pseudocodes, we use the arrays for the differentiation matrices

dxm1(:,:):=D̂, dxtm1(:,:):=D̂T ,

10 Jing Gong et al.

Algorithm 1 OpenACC Data Management.

!$ACC DATA CREATE(u,w,wr,ws,wt)

!$ACC& CREATE(dxm1,dxtm1,gxyz)

compute the repeatedly used arrays (dxm1,dxtm1,gxyz)

!$ACC UPDATE DEVICE(dxm1,dxtm1,gxyz)

compute the conjugate iterations (Poisson operator evaluation)

!$ACC END DATA

and the geometric variables (note that G21 = G12, G31 = G13, G32 = G23)

gxyz(:,:,:,1,:):=G11, gxyz(:,:,:,2,:):=G12,
gxyz(:,:,:,3,:):=G13, gxyz(:,:,:,4,:):=G22,
gxyz(:,:,:,5,:):=G23, gxyz(:,:,:,6,:):=G33,

where these arrays are computed once and stored on the GPU. For the deriva-
tives of u(:,:,:,:):=u with respect to ξ, η, and γ, we use scalar variables
within the innermost DO loop as

ur:=Dξu, us:=Dηu, ut:=Dγu.

We also declare some additional working arrays including

w(:,:,:,:), wr(:,:,:,:), ws(:,:,:,:), wt(:,:,:,:).

4.2 OpenACC implementation

The requisite matrix-vector products to apply the discretized Poisson operator
to the current iterate are effected through the Eqs. (12) and (18)–(20).

Algorithm 2 shows the optimized version for the CCE compiler. We use
the PRESENT clause in the OpenACC data region to tell that the arrays in the
list are already present in GPU memory so that the application will find and
use that existing GPU data. If the arrays are not properly placed on the GPU,
the program halts with a runtime error. For the CCE version, we optimized
the OpenACC parallelism based on gangs, workers, and vector elements. GANG
is the highest level of parallelism, equivalent to CUDA threadblocks grid.
WORKER is equivalent to CUDA thread within a threadblock. VECTOR is the
tightest level of single-instruction multithreading (SIMT) dimension, equiva-
lent to CUDA warp. In Algorithm 2, the OpenACC directives COLLAPSE
instructs the compiler to collapse the quadruply nested loop into a single
loop and then the GANG WORKER VECTOR divides the collapsed outer loop into
the most efficient parallel decomposition, where the default vector size is 128
for the Kepler architecture. The innermost loop is performed in scalar mode
by specifying LOOP SEQ with PRIVATE clause for the scalar variables, which
minimizes the data movement. We note that the combined OpenACC direc-
tives with PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR and LOOP SEQ

Nekbone Performance on GPUs 11

Algorithm 2 OpenACC (CCE Compiler Version): Poisson Operator

subroutine ax_acc(u,w,wr,ws,wt,dxm1,dxtm1,gxyz)
!$ACC DATA PRESENT(u,w,wr,ws,wt,dxm1,dxtm1,gxyz)
!$ACC PRIVATE(ur,us,ut)

!$ACC PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR
do e = 1,E

do k = 1,N+1
do j = 1,N+1

do i = 1,N+1
ur = 0
us = 0

ut = 0
!$ACC LOOP SEQ

do l = 1,N+1 ! serial loop, no reduction needed
ur = ur + dxm1(i,l)*u(l,j,k,e)
us = us + dxm1(j,l)*u(i,l,k,e)

ut = ut + dxm1(k,l)*u(i,j,l,e)
enddo

wr(i,j,k,e) = gxyz(i,j,k,1,e)*ur + gxyz(i,j,k,2,e)*us + gxyz(i,j,k,3,e)*ut
ws(i,j,k,e) = gxyz(i,j,k,2,e)*ur + gxyz(i,j,k,4,e)*us + gxyz(i,j,k,5,e)*ut

wt(i,j,k,e) = gxyz(i,j,k,3,e)*ur + gxyz(i,j,k,5,e)*us + gxyz(i,j,k,6,e)*ut
enddo
enddo

enddo
enddo

!$ACC END PARALLEL LOOP

!$ACC PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR

do e = 1,E
do k = 1,N+1

do j = 1,N+1
do i = 1,N+1

!$ACC LOOP SEQ
do l = 1,N+1

w(i,j,k,e) = w(i,j,k,e) + dxtm1(i,l)*wr(l,j,k,e)

+ dxtm1(j,l)*ws(i,l,k,e)
+ dxtm1(k,l)*wt(i,j,l,e)

enddo
enddo
enddo

enddo
enddo

!$ACC END PARALLEL LOOP
!$ACC END DATA

return
end

deliever a better performance, compared to a simple instruction with PARALLEL

LOOP COLLAPSE(4).

Algorithm 3 is an optimized version for PGI compiler based on OpenACC
directives using KERNELS construct with the combined GANG and LOOP VECTOR

directives. The GANG parallelism is equivalent to CUDA grid-level parallelism
and the LOOP VECTOR parallelism is equivalent to CUDA thread-level paral-
lelism. Within KERNELS construct, the PGI compiler optimizes the actual code
into the most efficient parallelism mapping. Thus, we obtain different perfor-
mance depending on different versions of PGI compilers (mostly the latest ver-
sion of PGI compiler delivers a better performance than an older version of PGI
compiler). We also note that specifying the vector length with VECTOR(N+1)

12 Jing Gong et al.

Algorithm 3 OpenACC (PGI Compiler Version): Poisson Operator

subroutine ax_acc(u,w,wr,ws,wt,dxm1,dxtm1,gxyz)
!$ACC DATA PRESENT(u,w,wr,ws,wt,dxm1,dxtm1,gxyz)
!$ACC KERNELS

!$ACC GANG
do e = 1,E

!$ACC LOOP VECTOR(N+1)
do k = 1,N+1

!$ACC LOOP VECTOR(N+1)
do j = 1,N+1

!$ACC LOOP VECTOR(N+1)

do i = 1,N+1
ur = 0

us = 0
ut = 0

!$ACC LOOP SEQ

do l = 1,N+1
ur = ur + dxm1(i,l)*u(l,j,k,e)

us = us + dxm1(j,l)*u(i,l,k,e)
ut = ut + dxm1(k,l)*u(i,j,l,e)

enddo
wr(i,j,k,e) = gxyz(i,j,k,1,e)*ur + gxyz(i,j,k,2,e)*us + gxyz(i,j,k,3,e)*ut
ws(i,j,k,e) = gxyz(i,j,k,2,e)*ur + gxyz(i,j,k,4,e)*us + gxyz(i,j,k,5,e)*ut

wt(i,j,k,e) = gxyz(i,j,k,3,e)*ur + gxyz(i,j,k,5,e)*us + gxyz(i,j,k,6,e)*ut
enddo

enddo
enddo

enddo

!$ACC END KERNELS

!$ACC KERNELS
!$ACC GANG

do e=1,E
!$ACC LOOP VECTOR(N+1)

do k = 1,N+1

!$ACC LOOP VECTOR(N+1)
do j = 1,N+1

!$ACC LOOP VECTOR(N+1)
do i = 1,N+1

!$ACC LOOP SEQ

do l = 1,N+1
w(i,j,k,e) = w(i,j,k,e) + dxtm1(i,l)*wr(l,j,k,e)

+ dxtm1(j,l)*ws(i,l,k,e)
+ dxtm1(k,l)*wt(i,j,l,e)

enddo
enddo
enddo

enddo
enddo

!$ACC END KERNELS
!$ACC END DATA

return
end

gives a better performance than the default length with VECTOR(64), while
the typical range of our vector length N+1 goes up to 16.

4.3 CUDA Fortran Implementation with OpenACC

Finally we discuss OpenACC interoperability. In our approach, we consider
OpenACC for data allocation, copy, and compute kernel launch, which would

Nekbone Performance on GPUs 13

Algorithm 4 OpenACC Calling CUDA Fortran Kernel for Poisson Operator

subroutine ax_acc(w,u,ur,us,ut,gxyz,dxm1,dxtm1)

use cudafor

!$ACC DATA PRESENT(w,u,gxyz,ur,us,ut,dxm1,dxtm1)
!$ACC HOST_DATA USE_DEVICE(w,u,ur,us,ut,gxyz,dxm1,dxtm1)

call ax_cuda<<<E,dim3(N+1,N+1,N+1)>>>(w,u,ur,us,ut,gxyz,dxm1,dxtm1)

!$ACC END HOST_DATA
return

end

Algorithm 5 CUDA Fortran Kernel: Poisson Operator

attribute (global) subroutine ax cuda(w,u,ur,us,ut,gxyz,dxm1,dxtm1)
real, shared :: dxm1_s (N+1,N+1)

real, shared :: dxtm1_s(N+1,N+1)

e = blockIdx%x
k = threadIdx%z

j = threadIdx%y
i = threadIdx%x

dxm1_s (i,j) = dxm1 (i,j)
dxmt1_s(i,j) = dxtm1(i,j)

call syncthreads()

rtmp = 0.0
stmp = 0.0

ttmp = 0.0
do l = 1,N+1

rtmp = rtmp + dxm1_s(i,l)*u(l,j,k,e)
stmp = stmp + dxm1_s(j,l)*u(i,l,k,e)
ttmp = ttmp + dxm1_s(k,l)*u(i,j,l,e)

enddo
ur(i,j,k) = gxyz(i,j,k,1,e)*rtmp + gxyz(i,j,k,2,e)*stmp + gxyz(i,j,k,3,e)*ttmp

us(i,j,k) = gxyz(i,j,k,2,e)*rtmp + gxyz(i,j,k,4,e)*stmp + gxyz(i,j,k,5,e)*ttmp
ut(i,j,k) = gxyz(i,j,k,3,e)*rtmp + gxyz(i,j,k,5,e)*stmp + gxyz(i,j,k,6,e)*ttmp

call syncthreads()

do l = 1,N+1
w(i,j,k,e) = w(i,j,k,e) + dxtm1_s(i,l)*ur(l,j,k,e)

+ dxtm1_s(j,l)*us(i,l,k,e)
+ dxtm1_s(k,l)*ut(i,j,l,e)

enddo

return
end

remain no change in the data management structure of our OpenACC version
that we have discussed in previous sections. Then we enhance the performance
for compute-intensive routines using CUDA Fortran implementation.

The interoperability feature of OpenACC allows us to call CUDA functions
using the arrays that we have already copied to the GPU using OpenACC.
Algorithm 4 demonstrates the Poisson operator subroutine ax acc on the host,
calling a CUDA Fortran function ax cuda that launches a CUDA kernel shown
in Algorithm 5. Code running on the host manages the memory on both the

14 Jing Gong et al.

host and device, and also launches kernels which are subroutines executed on
the device. These kernels are executed by many GPU threads in parallel. The
launch is asynchronous so that the host program continues and may issue other
launches.

In Algorithm 4, we use a module cudafor which contains the CUDA For-
tran definitions, provided by the PGI CUDA Fortran compiler. The HOST DATA

OpenACC construct makes the address of device data available on the host,
so you can pass it to functions that expect CUDA device pointers. Whenever
we use the arrays listed in the USE DEVICE clause within the HOST DATA re-
gion, the compiler generates code to use the device copy of the arrays, instead
of the host copy. The CUDA launch configuration uses the chevron syntax,
<<<grid,block>>>, which dictates how many device threads execute the kernel
in parallel. CUDA launches a kernel with a grid of thread blocks. The second
argument in the execution configuration specifies the number of threads in a
thread block. The first argument specifies the number of thread blocks in the
grid. Threads in a thread block can be arranged in a multidimensional manner,
containing x, y, and z components for the derived type dim3.

In Algorithm 5, the CUDA Fortran predefined variables are blockidx and
threadidx. We assign the index e (e = 1, ..., E) for the mesh elements for
blockid%x as shown in Algorithm 4 and the indices i,j,k for the x, y, z co-
ordinates for threadid%x, threadid%y, and threadid%z, respectively. The
utilization of shared memory in GPUs is very important for writing optimized
CUDA code since access to shared memory is much faster than to global mem-
ory. Shared memory is allocated per thread block (with 64KB shared memory
limit), therefore all threads in a block have access to the same shared memory.
We declare the arrays dxm1 s and dxtm1 s as shared memory variables for
dxm1 and dxtm1, respectively. We note that the vector length of a threadblock
is limited to 1024. For N > 9, the block size (N + 1)3 exceeds 1024. Thus, for
example, we set dim3(N+1,N+1,(N+1)/2) with the repeated procedure of the
DO loops in ax cuda for the different set of indices for the third component
k = 1, ..., (N + 1)/2 and k = (N + 1)/2, ..., N + 1 for N = 11. A similar set-
ting can be applied for different sizes of N with dim3(N+1,N+1,(N+1)/4) and
dim3(N+1,N+1,(N+1)/8). We omit the detailed pseudocode here.

5 Communication Kernel

Nekbone uses a C-based gather-scatter routine, gs op, that supports local-
gather, global-scatter, global-gather, and local-scatter procedures for exchang-
ing data between neighboring elements and executing the direct-summation
operation QQT , referred as dssum. In the CPU version, users pass field data
by calling gs op from Fortran or C and gs op automatically handles the com-
munication, selecting the fastest option among pairwise, all-reduce, or crystal-
router exchanges. Dense stencils, with 100s of nonzeros per row (e.g., as arise
in lower levels of algebraic multigrid) tend to run faster with the all-reduce
or crystal-router strategies. To effect QQT on the GPU without modifying

Nekbone Performance on GPUs 15

the user interface we have extended the gs library with OpenACC pragmas
for the gather-scatter operations that are local to the node, as demonstrated
in Algorithm 6 [7]. The local gs operations are performed with OpenACC di-
rectives PARALLEL LOOP. In Algorithm 6, global data that is to be exchanged
between neighboring elements on different nodes are passed to the standard
(MPI-based) gs op for non-local exchanges. This process requires a GPU-CPU
data copy, followed by the MPI exchange, and then a copy back to the GPU.
While this is not a fully optimized approach it delivers reasonable results when
the system does not support GPUDirect.

More recently, we developed a fully optimized GPU-based gs library [8]
and demonstrated the performance advantages of this approach in the context
of the time-dependent Maxwell’s equations, discretized by a spectral element
discontinuous Galerkin method (SEDG). Nekbone uses the standard SEM,
which requires face, edge, and vertex exchanges whereas SEDG requires data
exchanges only between faces. In this paper, we show the performance of the
Poisson solver Nekbone using [8]. The fully optimized version accelerates all
four parts of gs: local-gather, global-scatter, global-gather, and local-scatter
where accelerating the global loops allows us to use the GPUDirect pragmas,
as the buffers are prepared on the GPU. In this new version, data communica-
tion between CPUs is not necessary since the GPU would efficiently perform
the local additions and does not need any information from other nodes. We
compare the performance of the GPUDirect-enabled communication kernel [8]
with that of Algorithm 6 [7] without GPUDirect support.

6 Performance Results

We demonstrate and analyze Nekbone’s performance on Titan and Curie.

Algorithm 6 Local-gather and local-scatter operations on GPU [7].

unew_l = u_l

% u_g = Q u_l Local Gather on GPU
!$ACC PARALLEL LOOP

u_g = 0
do i = 1, nl

li = lgl(1,i)
gi = lgl(2,i)
u_g(gi) = u_g(gi)+u_l(li)

enddo

!$ACC UPDATE HOST(u_g) % copy GPU->CPU
call gs_op(u_g,1,1,0) % MPI communication between CPUs
!$ACC UPDATE DEVICE(u_g) % copy CPU->GPU

% u_l = Q^T u_g Local Scatter on GPU

!$ACC PARALLEL LOOP
do i = 1, nl

li = lgl(1,i)
gi = lgl(2,i)
unew_l(li) = u_g(gi)

enddo

16 Jing Gong et al.

Fig. 1 Single-GPU performance on Titan for OpenACC CCE/PGI versions and Ope-
nACC+CUDA Fortran version; n = E(N + 1)3 for E = 512 with varying N = 7, 11, 15.

Titan is a Cray XK7 system at the Oak Ridge Leadership Computing
Facility (OLCF), consisting of 18,688 AMD Opteron 6274 16-core CPUs at 2.6
GHz and 18,688 Nvidia Tesla K20X GPUs. Titan has a hybrid architecture
with peak performance of 27 Pflops. The pair of nodes shares a Gemini high-
speed interconnect router in a 3D torus topology.

Curie is a PRACE Tier-0 system, operated at the French Alternative En-
ergies and Atomic Energy Commission (CEA) in France. Curie has total of
144 hybrid nodes. Each hybrid node contains two 4-core Westmere-EP CPUs
at 2.67 GHz and 2 Nvidia M2090 GPUs. The compute nodes are connected
through a QDR InfiniBand network with a full fat-tree topology.

Titan supports both Cray CCE and PGI compilers with GPUDirect. Curie
supports only the PGI compiler with no GPUDirect. For a single-GPU perfor-
mance, we demonstrate the results on Titan with CCE, PGI, and PGI CUDA
compilers and the results on Curie with the PGI compiler. For multi-GPU
performance, we demonstrate strong scaling and weak scaling on Curie with
the PGI compiler using up to 256 GPUs without GPUDirect and weak scaling
on Titan with the CCE compiler using up to 16,384 GPUs with and without
GPUDirect. All our performance tests are based on double-precision runs. For
PGI compiler we used the flag -ta=tesla:managed to allocate managed mem-
ory, i.e. it actually allocates host pinned memory as well as device memory.
Cray CCE compiler supports such flag for host pinned memory by default.

6.1 Single-GPU Performance

Fig. 1 shows the results for a single GPU on Titan based on Algorithms 2–3
with optimized OpenACC directives for the CCE and PGI compilers and Al-
gorithms 4–5 with the optimized OpenACC+CUDA Fortran version for the

Nekbone Performance on GPUs 17

PGI CUDA Fortran compiler. We fixed the number of elements E = 512 and
varied the polynomial order as N = 7, 11, 15. As noted in (23), the computa-
tional intensity scales linearly with N , and thus the performance on the GPU
increases dramatically as N increases. For N = 7 with n = 262, 144 we achieve
46.2, 43.3, and 54.7 Gflops for the CCE, PGI, and PGI CUDA versions, respec-
tively. For N = 15 with n = 2, 097, 152 (512 · 163), we achieve 70.4, 66.7, and
78.2 Gflops for the CCE, PGI, and PGI CUDA versions, respectively. For the
CCE and PGI versions, the performance continues to increase linearly as N
increases. For the PGI CUDA Fortran version, the performance with N = 11
is close to that with N = 15. The CUDA Fortran version is around 1.2 ∼ 1.5×
faster than the OpenACC code. Although CUDA Fortran with OpenACC re-
quired additional management of the arrays for the larger N cases because of
the block size limit (1,024), we note that the amount of effort to port Nekbone
to CUDA using OpenACC is not comparable with that of a CUDA-only port.
A porting strategy that mixes OpenACC with CUDA seems to be a reasonable
option for high performance.

Fig. 2 shows the performance of Algorithm 3 on Curie with the PGI com-
plier for a single GPU as a function of E and N . We observe in Fig. 2(a)
an increase in flop rate with both E and N that levels off as E is increased.
The performance gain due to increased computational intensity in Eq. (23) is
noticeable as N is increased. We note that the largest case we can consider
for N=15 is E=2048, which achieves 43.46 Gflops. Larger problems do not fit
into memory (i.e., are memory bound), but this situation poses no particular
difficulty because in practice one can add more nodes and have an increase in
memory capacity (and bandwidth). In fact, for E=256, the single-GPU per-
formance drops only slightly, to 40.5 Gflops. Thus, one can effectively use 8
GPUs for a case with (E,N) = (2048, 15) and anticipate running 8 times as
fast as with a single GPU. We consider multi-GPU performance in the next
section. In Fig. 2(b) we plot the same data, but the horizontal axis is now
n = E(N +1)3, and the vertical axis is Gflops(E,N)/Gflops(Emax, N), which
represents the fraction of realizable peak for a given (E,N) pairing. For ex-
ample, for N=9, the peak performance is 32 Gflops and the N=9 curve is
normalized by this value. Fig. 2(b) shows that n 1

2

, the (local) problem size re-
quired to reach one-half of the realizable peak performance, is around 80,000
to 90,000 for this configuration. Similarly, one needs about 500,000 gridpoints
to saturate at 90% of the realizable peak. Remarkably, these numbers are only
weakly dependent on N .

6.2 Multi-GPU Performance

Our multi-GPU performance involves either CPU-CPU MPI communication
(no GPUDirect) or GPU-GPU MPI communication (GPUDirect). We begin
with discussing multi-GPU performance on Curie based on the OpenACC PGI
version in Algorithm 3 with no GPUDirect support.

18 Jing Gong et al.

(a)

(b)

Fig. 2 Single-GPU performance on Curie with PGI version; n = E(N + 1)3 for varying
E = 32, 64, 128, 256, 512, 1024, 2048, 4096 and N = 7, 9, 11, 13, 15; (a) performance in FLOPS
and (b) normalized performance.

Fig. 3 shows strong scaling of Nekbone on Curie, measured in Tflops. Here
(E,N) = (32768, 15) (n = 134217728) for a number of GPUs ranging from
P=32 to 256. Linear scaling is observed for n/P out to 2 million (i.e., for
P=64). The performance is 3.4 Tflops on 128 GPUs and 5.7 Tflops on 256
GPUs, demonstrating 88% and 72% scaling efficiency, respectively, compared
with P=32. We note, however, that 5.7 Tflops is only 55% of the 10.4 Tflops
performance that one might expect from Fig. 2. Part of the loss is due to
communication overhead, but part of it also comes from using two GPUs per
node, as shown in Fig. 4.

Nekbone Performance on GPUs 19

Fig. 3 Strong scaling on Curie with PGI version using 2 GPUs/node; n = (1024 · 32) · 163.

Fig. 4 Weak scaling on Curie with PGI version using 1 GPU/node (up to 128 nodes) and
2 GPUs/node (up to 64 nodes); 1, 32, 64, 128 GPUs with n = 1024 · 163 per GPU.

We note that Fig. 3 shows 2 GPUs per node on Curie. Each Curie hybrid
node has 2 sockets, and each GPU is bound to a socket. By default both pro-
cesses run on only one GPU. As a result, the CUDA VISIBLE DEVICES variable
should be set to 0 or 1 depending on the rank of the process. In addition, one
must bind the processes to the GPU in order to ensure that they run on the
same socket that hosts the desired GPU. However, binding the processes slows
the application while both processes share some resources. Fig. 4 shows the
weak-scaling performance on Curie, comparing the performance of those two

20 Jing Gong et al.

Fig. 5 Weak scaling on Titan with CCE version using GPUDirect and no GPUDirect on
512, 1024, 2048, 4096, 8192, 16384 GPUs (1 GPU/node); n=1024 · 163 per GPU.

cases (1 GPU/node and 2 GPUs/node). Both cases are using n = 1024·163 per
GPU. We observe the superior performance of 4.8 Tflops using 128 GPUs on
128 nodes, compared with 4.2 Tflops using 128 GPUs on 64 nodes. Of course,
since one is charged for node hours, using the second GPU results in a 1.875
speedup for a given set of resources.

We performed weak-scaling tests of Nekbone with up to 16,384 GPUs on
Titan with the CCE compiler with and without GPUDirect communication.
Fig. 5 shows flops rates with GPUDirect and n = 4, 194, 304 (1024 · 163) grid-
points per GPU. We achieve 552 Tflops on 16, 384 GPUs with GPUDirect and
542 Tflops on 16, 384 GPUs with no GPUDirect. As the results shown in [8],
we achieve 5–10% improvement in performance with GPUDirect, compared
with no GPUDirect.

6.3 Discussion of Performance Data

We note that there are several factors that limit strong scalability of dis-
tributed memory computing. In addition to communication as the traditional
source of overhead, GPU-enabled nodes have other limitations that put a lower
bound on the granularity, n/P , that ultimately limits the amount of paral-
lelism for applications on these architectures. As it is important for users to
recognize these bounds when interpreting performance results we give a brief
synopsis of the performance data presented above.

Fig. 2 illustrates for all values of N considered, one needs at least 100,000
points per GPU to exceed 50% parallel efficiency and that one would need
500,000 points per GPU to exceed 90% efficiency. These numbers are the

Nekbone Performance on GPUs 21

respective n 1

2

and n.9 values for OpenACC-enabled Nekbone running on a
single GPU on Curie with no communication overhead. When one accounts
for node resource contention that arises when running two GPUs per node, the
efficiency drops by another factor of 1.875/2. (Here, 1.875 is the node speedup
observed when the second GPU is enabled on a node.) Thus, for the strong-
scaling study of Fig. 3, the parallel losses leading to an observed efficiency of
55% at P=256 GPUs can be attributed roughly as follows: 10% due to single-
node performance drop for n/P = 524288 ≈ n.9, 6.25% due to insufficient
node resources to support two GPUs at full speed, and the remaining 30%
due to communication/synchronization overhead.

7 Conclusions

We implemented a hybrid GPU version of Nekbone to exploit the processing
power of multi-GPU systems using OpenACC and CUDA Fortran program-
ming. Our focus is on optimizing the use of OpenACC directives in order to
boost GPU performance on different platforms and to gain insight into strate-
gies that will be beneficial for tuning the more complicated production codes.

We note that CUDA Fortran with OpenACC is slightly more efficient than
straight OpenACC. Given that the amount of effort to port Nekbone to CUDA
using OpenACC is significantly less than for a CUDA-only port, this mixed
approach might prove a viable strategy for ultimate tuning of accelerated code.
Using the GPUDirect communication with the highly tuned gather-scatter
kernel developed in [8], Nekbone achieves 552 Tflops on 16, 384 GPUs of the
OLCF Cray XK7 Titan.

We have also examined some of the node-specific sources of performance
loss. Among these we note that there is a reduction in peak single-GPU per-
formance on Curie from 43 GFLOPS to 30 GFLOPS as N is reduced from
15 to 7. This reduction is consistent with the complexity estimate (23), which
indicates a computational intensity (flops/word) scaling as ≈ (12N + 46)/7.
In addition, one needs at least 100,000 points per GPU to exceed 50% parallel
efficiency and 500,000 points per GPU to exceed 90% efficiency. Using two
GPUs per node, one realizes a 1.875 speedup over a single GPU, implying
about a 6% efficiency loss for this configuration.

In summary, using Nekbone as a surrogate for Nek5000 or other similar
spectral element codes, we anticipate sustained perfomance of approximately
40 GFLOPS per GPU if one has at least 500,000 points per GPU. There is
a 5–10% gain through the use of GPUDirect communication and similar gain
through combined OpenACC/CUDA programming for key kernels.

Acknowledgements This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Computing Research, under
Contract DE-AC02-06CH11357, and partially supported by the Swedish e-Science Research
Centre (SeRC). This research used resources of the Oak Ridge Leadership Computing Facil-
ity at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725. The research also used

22 Jing Gong et al.

computing resources of the French Alternative Energies and Atomic Energy Commission
(CEA) in France via the Partnership for Advanced Computing in Europe (PRACE).

References

1. D. C. Jespersen, “Acceleration of a CFD code with a GPU”, Scientific Programming,
vol. 18, no. 3–4, pp. 193–201, 2010

2. T. Hoshino and N. Maruyama and S. Matsuoka and R. Takaki, “CUDA vs OpenACC:
Performance Case Studies with Kernel Benchmarks and a Memory-Bound CFD Ap-
plication” in the Proceeding of 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, Delft, The Netherlands, May 13-16, 2013.

3. J. Kraus and M. Schlottke and A. Adinetz and D. Pleiter, “Accelerating a C++ CFD
code with OpenACC”, in the Proceedings of the First Workshop on Accelerator Pro-
gramming using Directives SC14, pp. 47–54, LA, USA, 2014

4. Y. Xia and H. Luo and L. Luo and J. Edwards and J. Lou, OpenACC acceleration of an
unstructured CFD solver based on a reconstructed discontinuous Galerkin method for
compressible flows, International Journal for Numerical Methods in Fluids, Vol. 78(3),
2015, pp.123–139

5. K. Niemeyer and C. Sung, “Recent progress and challenges in exploiting graphics pro-
cessors in computational fluid dynamics”, The Journal of Supercomputing, vol. 67, no.
2, pp. 528–564, 2014.

6. J. Gong, S. Markidis, M. Schliephake, E. Laure, D. Henningson, P. Schlatter, A. Peplin-
ski, A. Hart, J. Doleschal, D. Henty, and P. Fischer, Nek5000 with OpenACC, in Solv-
ing Software Challenges for Exascale, the International Conference on Exascale Ap-
plications and Software, EASC 2014 Stockholm, Sweden, April 20-23, 2014, Stefano
Markidis, Erwin Laure (Eds.), Springer LNCS8759, 2015.

7. S. Markidis, J. Gong, M. Schliephake, E. Laure, A. Hart, D. Henty, K. Heisey, and
P. Fischer, “OpenACC acceleration of the Nek5000 spectral element code”, Interna-
tional Journal of High Performance Computing Applications, vol. 29, pp. 311–319,
2015.

8. M. Otten, J. Gong, A. Mametjanov, A. Vose, J. Levesque, P. Fischer, and M. Min,
“An MPI/OpenACC Implementation of a High Order Electromagnetics Solver with
GPUDirect Communication”, accepted in International Journal of High Performance
Computing Applications, 2015.

9. P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, Nek5000 web page, Web page:
http://nek5000.mcs.anl.gov.

10. P. Fischer and J. W. Lottes, “Hybrid Schwarz-multigrid methods for the spectral ele-
ment method: extensions to Navier-Stokes”, Domain Decomposition Methods in Science
and Engineering Series, edited by Kornhuber, R. and R. Hoppe and J. Périaux and O.
Pironneau and O. Widlund and J. Xu, Springer, Berlin, 2004.

11. J. W. Lottes, P. Fischer, “Hybrid multigrid/Schwarz algorithms for the spectral element
method”,Journal of Scientific Computing, vol. 24, pp. 45–78, 2005.

12. P. Fischer, J. Lottes, W. D. Pointer, and A. Siegel, “Petascale Algorithms for Reactor
Hydrodynamics”, Journal of Physics: Conference Series, vol. 125, 012076, 2008.

13. H. M. Tufo and P. Fishcer, “Fast Parallel Direct Solvers for Coarse-Grid Problems”,
Journal of Parallel Distribution Computing, vol. 61, pp. 151–177, 2001.

14. M. Deville, P. Fischer, and E. Mund, High-order methods for incompressible fluid flow,
Cambridge University Press, 2002

Nekbone Performance on GPUs 23

The following paragraph should be deleted before the paper is published:
The submitted manuscript has been created by UChicago Argonne, LLC, Op-
erator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the Government.

	Introduction
	Related Work
	Nekbone
	Poisson Operator Evaluation
	Communication Kernel
	Performance Results
	Conclusions

