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Abstract: Vibration sensing data is an important resource for mechanical fault prediction, which
is widely used in the industrial sector. Artificial neural networks (ANNs) are important tools for
classifying vibration sensing data. However, their basic structures and hyperparameters must be
manually adjusted, which results in the prediction accuracy easily falling into the local optimum.
For data with high levels of uncertainty, it is difficult for an ANN to obtain correct prediction results.
Therefore, we propose a multifeature fusion model based on Dempster-Shafer evidence theory
combined with a particle swarm optimization algorithm and artificial neural network (PSO-ANN).
The model first used the particle swarm optimization algorithm to optimize the structure and
hyperparameters of the ANN, thereby improving its prediction accuracy. Then, the prediction
error data of the multifeature fusion using a PSO-ANN is repredicted using multiple PSO-ANNs
with different single feature training to obtain new prediction results. Finally, the Dempster-Shafer
evidence theory was applied to the decision-level fusion of the new prediction results preprocessed
with prediction accuracy and belief entropy, thus improving the model’s ability to process uncertain
data. The experimental results indicated that compared to the K-nearest neighbor method, support
vector machine, and long short-term memory neural networks, the proposed model can effectively
improve the accuracy of fault prediction.

Keywords: vibration sensing data; fault prediction; artificial neural network; particle swarm
optimization; Dempster-Shafer evidence theory

1. Introduction

Large-scale industrial machinery and equipment in the petroleum, chemical, aviation, and
electricity sectors are the mainstays of modern economic development. Monitoring the operation
status and fault prediction can effectively guarantee the safe and reliable operation of the equipment,
which can result in huge economic benefits. Operational monitoring data obtained from mechanical
equipment generally includes vibration signals, pressure, sound, and temperature. Among these
parameters, the vibration signal contains a significant amount of useful information related to
mechanical equipment [1,2] which can accurately reflect the operating state. At the same time, with
the rapid development of communication technology and the improvement of computing capacity
in recent years, the cost of vibration sensing data acquisition from mechanical equipment has been
significantly reduced. Using multiple vibration sensors to obtain real-time operational data from
different parts of the mechanical equipment, designing and selecting an appropriate data processing
model [3] and accurately predicting mechanical equipment failure are critical to the development of
intelligent mechanical equipment.
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Presently, widely-used mechanical fault prediction methods employ artificial neural networks
(ANNs) [4–6], support vector machines (SVMs) [7,8], deep learning [9–11], and other artificial
intelligence (AI) technologies. For example, Ben et al. [12] proposed the use of empirical mode
decomposition and energy entropy for feature extraction, which was combined with an ANN for
multifeature fusion to make bearing fault predictions. Jiang et al. [13] used a variety of different
time-domain analytical methods for feature extraction combined with SVM for multifeature fusion
to achieve fault prediction for rotating machinery. Su et al. [14] proposed a new information fusion
framework based on convolutional neural networks (CNNs), and residual squeeze networks were used
to make fault predictions for high-speed trains. Yang et al. [15] proposed a time series analysis model
based on a long short-term memory neural network to make fault predictions for electro-mechanical
actuators. Dai et al. [16] proposed a multisource information fusion model based on a deep belief
network to perform fault detection analyses on a power transformer. Jiang et al. [17] proposed a
multifeature fusion method for stacked multilevel denoising autoencoders, which can effectively
improve the fault diagnosis accuracy of wind turbines by using a deep network architecture formed
by stacking.

Compared with SVM and deep learning algorithms, ANNs have lower requirements for training
data, and they can quickly build a multifeature fusion model. However, the network structure and
hyperparameters of the ANN must be manually adjusted, which causes the prediction accuracy to
easily fall into the local optimum. To solve this problem, Illias et al. [18] proposed a hybrid modified
evolutionary particle swarm optimization algorithm that optimizes the learning rate and momentum
parameters of the ANN, but the number of hidden layer neurons had to be manually determined. Alnaqi
et al. [19] proposed a hybrid particle swarm optimization algorithm to optimize the weight parameters
and deviations of the ANN, but other parameters still required manual adjustment. Liao et al. [20]
proposed a regrouping particle swarm optimization algorithm to optimize the weight parameters,
deviations, and hidden layer neurons of the ANN, but there was no comparative analysis of learning
parameters and other hyperparameters. Currently, many scholars use particle swarm optimization
algorithms to optimize weight parameters [21], learning rate, and other hyperparameters [22] of the
ANN, but they do not pay attention to the optimization of the hidden layer structure of the ANN,
which results in the ANN training process still requiring the assistance of artificial experience.

Due to the complex operating environment associated with a great deal of mechanical equipment,
vibration sensing data results in serious noise pollution and great uncertainty. For data with high
levels of uncertainty, it is difficult for an ANN to provide accurate prediction results, which results in
lower final prediction accuracies. Through investigation, Dempster-Shafer (DS) evidence theory was
found to have a high decision-making ability for uncertain data. For example, Li et al. [23] proposed a
bearing fault diagnosis model based on ensemble deep CNNs and improved DS evidence theory; the
experimental results showed that it provided better diagnostic results than other machine learning
methods. Kar et al. [24] proposed a multifeature fusion model based on an ANN and DS evidence
theory, which can effectively improve the accuracy of fault prediction compared to the use of an ANN
alone for bearing fault diagnosis. However, basic DS evidence theory has difficulty obtaining the
correct decision results when the original evidence has high levels of conflict. To solve this problem,
many types of belief entropy have been proposed to measure the uncertainty between different datasets.
For example, Deng Yong [25] and Jiroušek et al. [26] proposed an improved belief entropy based on
Shannon entropy, while Pan et al. [27] and Cui et al. [28] improved upon Deng entropy. According
to belief entropy, scholars have proposed a variety of schemes to preprocess the original evidence,
which is combined with DS evidence theory for information fusion. For example, Jiang et al. [29] and
Tang et al. [30] used belief entropy to preprocess the original evidence. Wang et al. [31] proposed the
preprocessing of original evidence using evidence distance and belief entropy. Xiao et al. [32] proposed
the preprocessing of original evidence with improved cosine similarity and belief entropy; although
this improved strategy combined with the DS evidence theory can be used in some scenarios, it is
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still unable to effectively improve the decision-making ability of the original DS evidence theory for
uncertain data.

To address the above problems, the particle swarm optimization algorithm was used to optimize
the ANN hyperparameters and hidden layer structure, which improved the prediction accuracy of
the ANN. In addition, for data with false predictions based on the PSO-ANN multifeature fusion
model, multiple PSO-ANN models trained with different single features were used for reprediction.
At the same time, the prediction accuracy and belief entropy were applied to preprocess the new
prediction results, which were combined with the DS evidence theory for the decision-level fusion
of the preprocessed prediction results. The rest of the paper is organized in the following manner:
Section 2 introduces a multifeature fusion model based on vibration sensing data. The feature extraction
methods based on vibration sensing data are discussed in Section 3. The principle of applying a
particle swarm optimization algorithm combined with an ANN for feature-level fusion is proposed
in Section 4. Section 5 considers the principle of multiple PSO-ANN models using different single
feature training combined with DS evidence theory for decision-level fusion. The selection of rolling
bearings for multifeature fusion fault prediction experiments and the analytical results are presented
in Section 6, and a brief summary is provided in Section 7.

2. Multifeature Fusion Model Based on Vibration Sensing Data

A vibration sensor can measure the impact force and acceleration of mechanical equipment, and it
generally uses the acceleration data of the mechanical equipment to perform fault prediction. Various
types of machinery, such as steam turbines, pumps, gearboxes, and machine tools, are composed of
many components. With the increase in service life, each part can affect the vibration mode of the
entire device. Different vibration modes may cause different faults. Through scientific analyses of the
vibration signal, it is possible to effectively monitor the operating state of the mechanical equipment
for better maintenance. Therefore, this paper proposes a multifeature fusion model based on vibration
sensing data to analyze and process the vibration signals of mechanical equipment. The model was
divided into four stages: data acquisition, feature extraction, feature-level fusion, and decision-level
fusion. The details are presented in Figure 1.
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Stage 1: Data Collection
As shown in the first stage in Figure 1, multiple vibration sensors are placed in different parts of

the mechanical equipment that are prone to failure to collect real-time data.
Stage 2: Feature Extraction
As shown in the second stage in Figure 1, according to the selected sliding window size (the

length of continuous time series of original vibration signals) and time-domain feature extraction
method, the original vibration sensing data is extracted according to the time series sequence.

Stage 3: Feature-Level Fusion
As shown in the third stage in Figure 1, the ANN is first used to perform multifeature fusion

on all the feature values extracted in the second stage, and the optimal feature combination is
selected according to the prediction accuracy. Then, using the input data formed by the optimal
feature combination, the PSO-ANN is used for feature-level fusion. Finally, the prediction error
data of multifeature fusion using the PSO-ANN is repredicted using the decision-level fusion in the
fourth stage.

Stage 4: Decision-Level Fusion
As shown in fourth stage in Figure 1, multiple PSO-ANN models using different single feature

training first repredict the prediction error data to obtain new prediction results and fault prediction
accuracies, and the weights of the corresponding model prediction results are calculated using the fault
prediction accuracy and belief entropy. Then, weighted average fusion preprocessing is performed
on the new prediction results using the weights. Finally, the DS evidence theory is used for the
decision-level fusion of the preprocessed prediction results to obtain the final fault diagnosis results.

3. Feature Extraction Method Based on Vibration Sensing Data

Feature extraction can effectively reduce the uncertainty in vibration sensing data. Common
feature extraction methods include information entropy [33–35], time domain analysis [36,37], empirical
mode decomposition [38–40], and wavelet packet analysis [41,42]. Compared to the information
entropy method and the empirical mode decomposition method, time domain analysis is less affected
by the interruption of time-frequency signals, the steps of feature extraction are relatively simple, and
different time domain features contain different information in the vibration signal. By comparing and
analyzing the time domain feature extraction methods proposed in previous research, the latest or
most widely-used feature extraction methods [43–45] were selected, as shown in Table 1.

Table 1. Nine different time domain feature extraction methods based on vibration sensing data.

Serial Number Feature Name Formula

1 Root mean square (RMS)
√

1
n
∑n

i=1(xi)
2

2 Standard deviation (STD)
√

1
n
∑n

i=1(xi − x)2

3 Peak max(x)

4 Root mean square entropy
estimator (RMSEE)

1
n
∑n

i=1( −RMS(i) ∗ log(RMS(i)) )

5 Waveform entropy (WFE) 1
M

∑M
i=1( Wt−i∗ log(Wt−i) )

6 Kurtosis 1
n−(STD)4

∑n
i=1(xi − x)4

7 Skewness 1
n
∑n

i=1

(
xi−x
STD

)3

8 Crest factor (CRF) Peak
RMS

9 Impulse factor (IMF) Peak
1
n
∑n

i=1 |xi |
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The xi in all formulas in Table 1 represents vibration sensing data collected during the i-th unit time,
and x represents the mathematical average of the vibration sensing data collected for n consecutive unit
times (where n represents the sliding window size). The calculation and meaning of the parameter Wt−i
in the waveform entropy formula can be referred to in [45]. When using nine different time-domain
feature extraction methods in Table 1 for feature extraction, the input vibration sensing data sequence
and the sliding window size are the same.

4. Feature-Level Fusion Based on the Use of a PSO-ANN

This section introduces the process of applying the particle swarm optimization (PSO) algorithm
combined with an ANN (PSO-ANN) for feature-level fusion, which is divided into three subsections.
The structure of the ANN used in this study and the strategy to obtain the optimal combination of
eigenvalues are introduced in Section 4.1. Section 4.2 introduces the optimization principle of the
PSO algorithm combined with an ANN, and the algorithm principle of feature-level fusion using a
PSO-ANN is discussed in Section 4.3.

4.1. Artificial Neural Network and the Strategy to Obtain the Optimal Eigenvalues Combination

The basic structure of an ANN consists of an input layer, a hidden layer, and an output layer, with
each layer containing a different number of neurons, as shown in Figure 2. During the training process,
the learning rate, the number of hidden layer neurons, and the gradient descent algorithm must be set
according to artificial experience. The commonly-used gradient descent algorithm includes stochastic
gradient descent [46], momentum gradient descent [47], and the Adam optimization [48] algorithm,
with the Adam optimization algorithm performing the best for practical applications. The momentum
and RMSprop parameters are hyperparameters of the Adam optimization algorithm which must be
manually adjusted during network training. The network structure and hyperparameter setting of the
ANN are related to the artificial experience. If the setting is not ideal, it will result in a large labor cost,
and it is easy to make the model prediction accuracy fall into the local optimum.
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In this study, the Adam optimization algorithm is selected as the gradient descent algorithm of
the ANN. According to the feature-level fusion process in Figure 1, the strategy using an ANN to get
the optimal combination of eigenvalues is shown in Figure 3.
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As shown in Figure 3, the number of eigenvalues and the combination order need to be continuously
changed, and the combination of eigenvalues obtained each time are input to the ANN for training to
get the prediction accuracy of the test set. Finally, the combination of eigenvalues with the highest
prediction accuracy is the optimal combination of eigenvalues.

4.2. Optimization Principle Using the Particle Swarm Optimization Algorithm

The basic idea of the particle swarm optimization algorithm [49] is to initialize multiple random
solutions of the problem to be optimized, with each solution corresponding to one particle, which is
used to find the optimal solution in an N-dimensional space through cooperation and information
sharing among multiple particles [50]. Each particle contains an N-dimensional velocity vector
Vi = (vi1, vi2, . . . , vin) and a corresponding position vector Xi = (xi1, xi2, . . . , xin), where the velocity
vector is used to adjust the motion path of the particle; the position vector represents a solution of the
problem to be optimized. In this study, the prediction accuracy of the ANN was used as the problem to
be optimized. The learning rate, the number of hidden layer neurons, the momentum parameter, and
the RMSprop parameter were used to form the position vector of each particle. The particle swarm
optimized the global position by iteration, and the update formula of the velocity vector and position
vector of each particle can be expressed by Equations (1) and (2), respectively.

Vk+1
i = wVk

i + c1r1
(
Pbestk

i −Xk
i

)
+ c2r2

(
Gbestk

−Xk
i

)
(1)

Xk+1
i = Xk

i + Vk+1
i (2)
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In Equation (1), Pbestk
i represents the optimal position of the i-th particle in the k-th iteration, and

Gbestk represents the optimal position of the particle swarm after k iterations. r1 and r2 are two random
constants, and the range of values is [0, 1]. This is used to increase the randomness of the particle
search, and w is the inertia weight parameter, which is used to adjust the range of the particle search
for the current space [51]. The calculation formula is expressed as Equation (3).

w = wmax − (wmax −wmin)
iteration

iterationmax
(3)

where the value of wmax is 0.9, and the value of wmin is 0.4. iteration represents the current number of
iterations, and iterationmax represents the maximum number of iterations.

c1 and c2 are the acceleration learning constants used to adjust the maximum step size of the
particle search [52]. The updated formula is expressed as Equation (4).

c = cmax − (cmax − cmin)
iteration

iterationmax
(4)

where the value of cmax is 2.0, the value of cmin is 0.5, and the values of c1 and c2 are equal to c.

4.3. Algorithm Principle of Feature-Level Fusion Using a PSO-ANN

In this study, the PSO algorithm was used to optimize the learning rate, the number of hidden
layer neurons, the momentum parameter, and the RMSprop parameter of the ANN, which avoids
the process of manual parameter adjustment and realizes the automatic optimization of the network
structure and parameters. When a particle swarm is used to optimize the position iteratively, the
current position must be determined based on the fitness value obtained by the fitness function. In this
study, the loss error generated by the ANN during the training process was selected, and the prediction
accuracy of the test set was used as the return value of the fitness function. The cross-entropy [53] was
used to calculate the loss error of ANN training. The calculation formula is expressed as Equation (5).

Loss = −
1
n

n∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (5)

The flow chart of feature-level fusion using the PSO-ANN model is shown in Figure 4, and the
specific implementation process is presented as Algorithm 1.
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In Algorithm 1, lines 11–13 indicate that the ANN is initialized by the position vector of particles,
and the ANN is trained by the training set. Lines 14–15 represent the loss error of the ANN on the
training set, and the prediction accuracy on the test set was used as the fitness value of the particle.
Lines 16–23 indicate that the best position Pbest of the current particle and the best position Gbest of
the particle swarm are updated based on the fitness value. Lines 24–27 indicate that the velocity vector
and position vector of the current particle are updated according to Equations (1) and (2), respectively.

Algorithm 1: PSO-ANN algorithm.

Input: All the eigenvalues of the optimal feature combination.
Output: The best position of the particle swarm Gbest, and the best prediction accuracy.
01: Set the parameters {n, iterationmax, vmax, vmin, xmax, xmin}
02: for i = 1 to n do /* n is the number of particles */
03: Initialize vi = (vi1, vi2, vi3, vi4), xi = (xi1, xi2, xi3, xi4), Pbesti = xi
04: end for
05: Acquire training set Xtrain, Ytrain and test set Xtest, Ytest

06: Set the particle with best fitness(Pbesti) to be Gbest
07: for k = 1 to iterationmax do
08: Update w with Equation (3)
09: Update c1, c2 with Equation (4)
10: for i = 1 to n do
11: anni = ann_model(learning_rate = xi1, hidden_layer_ neurons = xi2,
12: momentum_parameter = xi3, rmsprop_parameter = xi4)
13: anni.fit(Xtrain, Ytrain) /* Training ANN model */
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14: loss_valuei = anni.loss_value
15: prediction_accuracyi = anni.score(Xtest, Ytest)
16: if (loss_valuei > fitness(Pbesti).loss_value and
17: prediction_accuracyi < fitness(Pbesti).prediction_accuracy) then
18: Pbesti = xi
19: end if
20: if (loss_valuei > fitness(Gbest).loss_value and
21: prediction_accuracyi < fitness(Gbest).prediction_accuracy) then
22: Gbest = xi
23: end if
24: for j = 1 to 4 do

25: vk+1
i j = wvk

i j + c1r1

(
Pbestk

i j − xk
i j

)
+ c2r2

(
Gbestk

j − xk
i j

)
26: xk+1

i j = xk
i j + vk+1

i j
27: end for
28: end for
29: end for

5. Decision-Level Fusion Based on Multiple PSO-ANN Models and Dempster-Shafer
Evidence Theory

This section introduces the principle of decision-level fusion of multiple PSO-ANN models with
different single feature training combined with DS evidence theory (PSO-ANN-DS), which is divided
into two subsections. In Section 5.1, the running process of decision-level fusion using four PSO-ANN
models with different single feature training combined with DS evidence theory is introduced. The
principle of preprocessing new prediction results using prediction accuracy and belief entropy, and
the algorithm model of decision-level fusion combined with DS evidence theory, are discussed in
Section 5.2.

5.1. Running Process of a PSO-ANN-DS

The nine time domain feature extraction methods presented in Table 1 can extract feature
information from different aspects of the vibration sensing data. For most vibration sensing data,
multifeature fusion can effectively improve the accuracy of mechanical fault prediction. However, the
noise pollution of partial vibration sensing data is serious; the reasons for the noise in the vibration
sensing data of mechanical equipment are shown in Table 2.

As shown in Table 2, the noise pollution of the vibration sensing data comes from mechanical
equipment and vibration sensors; some of the reasons for this are difficult to control during the
data acquisition process. Due to the serious noise pollution of the partial vibration sensing data, the
uncertainty of the eigenvalue obtained by the partial time domain feature extraction method is relatively
large. Therefore, it is difficult to obtain accurate prediction results by using the PSO-ANN model for
multifeature fusion. For data containing a significant amount of noise pollution, the prediction results
of multiple PSO-ANN models trained with partially different single features are less uncertain than
the multifeature fusion using a PSO-ANN model. However, multiple PSO-ANN models trained with
different single features may have different prediction results, and the final results are still difficult to
determine. Through investigation, the Dempster-Shafer (DS) evidence theory can effectively integrate
multiple uncertain prediction results [54], and it is widely used in the field of information fusion [55].
Therefore, this paper uses four PSO-ANN models trained by different single features (STD, Peak,
RMSEE and Skewness) to repredict the vibration sensing data with serious noise pollution. At the
same time, the DS evidence theory is applied to the decision-level fusion of the new prediction results
to obtain the final fault prediction results. The running process of the PSO-ANN-DS model is shown in
Figure 5.
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Table 2. Causes of vibration sensing data noise pollution.

Noise Location Reason Explanation

Mechanical equipment

Eddy noise Increased external air velocity causes eddies around
machinery.

Rotating noise
The vibration force of rotating machinery deviates
easily from the normal value when encountering

strong air flow.

Energy shortage Energy issues (for example, oil level below average)
cause large levels of noise pollution.

Impact noise Large levels of noise pollution caused by impacts.

Other reasons
Suddenly increasing the operating power of
mechanical equipment, manual operation of

mechanical equipment.

Vibration sensor

Temperature factor In general, the higher the temperature, the greater the
measurement error.

Resonant frequency
The closer the vibration frequency of the machine is to
the value of the resonance frequency, the greater the

measurement error.

Placement deviation
Vibration sensors generally get acceleration sensing

data in three directions. The larger the deviation in the
placement direction, the greater the measurement error.

Original error Different types of vibration sensors have different
original errors.

Other environmental factors
Under the condition of a strong electrostatic field,

alternating magnetic field, or nuclear radiation, the
measurement error may become larger.
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5.2. Algorithm Principle of Decision-Level Fusion Using a PSO-ANN-DS

As shown in Figure 5, four PSO-ANN models are first trained by different single features (STD,
Peak, RMSEE, and Skewness). Then, all prediction error data of multifeature fusion using a PSO-ANN
are inputted into four PSO-ANN models for reprediction, and the prediction results and prediction
accuracies are obtained. However, it is difficult to directly obtain correct decision results using the
DS evidence theory for results with large conflicts. Therefore, the prediction accuracy of multiple
PSO-ANN models trained by different single features and belief entropies are used to perform weighted
average fusion preprocessing of the prediction results, which is then combined with the DS evidence
theory for decision-level fusion. The algorithm flow of decision-level fusion using multiple PSO-ANN
models trained with different single features combined with the DS evidence theory is shown in
Figure 6.
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Step 1: Obtain the fault prediction accuracy of multiple PSO-ANN models trained with different
single features, which is recorded as PRE.

PRE = {Pre1, Pre2, . . . , Prei, . . . , Pren} (6)

where Prei represents the fault prediction accuracy of the PSO-ANN model trained with the ith single
eigenvalue of the test set with a high level of uncertainty. In this paper, the value of n is 4, and different
PSO-ANN models are trained by STD, Peak, RMSEE, and Skewness.

Step 2: Normalize the fault prediction accuracy to obtain credibility, recorded as CRD.
The PRE is normalized to obtain the credibility of each PSO-ANN model.

CRD(mi) =
Prei∑n

i=1 Prei
(7)

where mi is the fault prediction result of the PSO-ANN model trained with a single feature i.
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Step 3: Calculate the uncertainty of fault prediction result of PSO-ANN model according to belief
entropy, recorded as MUN.

Belief entropy is an important indicator used to measure uncertainty; the greater the value of belief
entropy, the greater the uncertainty in the information. Many scholars have proposed a specific belief
entropy based on DS evidence theory; Deng entropy [25] is the most widely used. The calculation
formula is expressed as Equation (8).

E(m) = −
∑

A∈2θ
m(A) log

[
m(A)

2|A| − 1

]
(8)

To avoid the occurrence of 0 in the belief entropy calculation result, specific mathematical
processing is performed using Equation (9).

MUN(mi) = eE(mi) (9)

Step 4: Correct the credibility based on the uncertainty, which is recorded as MCRD.

MCRD(mi) = CRD(mi)∗MUN(mi) (10)

Step 5: Normalize the revised credibility, recorded as NMCRD.

NMCRD(mi) =
MCRD(mi)∑n

i=1 MCRD(mi)
(11)

Step 6: Weighted average fusion of prediction results, recorded as WAE.

WAE(m) =
∑

n
i=1(NMCRD(mi)∗mi) (12)

Step 7: Using DS evidence theory for decision-level fusion.
It is assumed that m1 and m2 are the PSO-ANN model fault prediction results trained by feature 1

and feature 2, respectively, where A, B, and C represent the fault type. Then, the final decision result m
(C) obtained using the Dempster-Shafer synthesis rule is expressed as Equation (13).

m(C ) = m1 ⊕m2=

{ 1
1−K

∑
A∩B=C m1(A)m2(B), C , ∅

0, C = ∅ (13)

K represents the collision coefficient, and K < 1, which is defined as follows:

K =
∑

A∩B=∅m1(A)m2(B) (14)

According to the literature [56], the original DS evidence synthesis rule is used to continuously
fuse the WAE(m) n − 1 times, where n represents the total number of different single features. The
formula is expressed as Equation (15).

Fus(m) = (((WAE(m) ⊕WAE(m))1 ⊕ . . .)hWAE(m))(n−1) (15)

Fus(m) is the final decision result, and the specific implementation process is presented as
Algorithm 2.
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Algorithm 2: PSO-ANN-DS algorithm.

Input: Four single eigenvalues, and fault data with high levels of uncertainty.
Output: Decision-level fusion result Fus(m).
01: /* Step 1 */
02: Train_data = {STD, Peak, RMSEE, Skewness} /* Four single eigenvalues */
03: for i = 1 to 4 do
04: PSOANNi = PSO-ANN_algorithm(Input = Train_data [i])
05: PRE[i] = PSOANNi(test_data = fault data with high
06: uncertainty). prediction_accuracy
07: end for
08: /* Step 2 */
09: for i = 1 to 4 do
10: CRD[i] = PRE[i] / sum(PRE)
11: end for
12: /* Step 3 */
13: for i = 1 to 4 do
14: MUN[i] = Calculate the value with Equation (8) and (9)
15: end for
16: /* Step 4 */
17: for i = 1 to 4 do
18: MCRD[i] = CRD[i] * MUN[i]
19: end for
20: /* Step 5 */
21: for i = 1 to 4 do
22: NMCRD[i] = MCRD[i] / sum(MCRD)
23: end for
24: /* Step 6 */
25: for j = 1 to J do /* J is the number of fault types */
26: WAE[j] = 0
27: for i = 1 to 4 do
28: WAE[j] = WAE[j] + NMCRD[i] * PSOANNi.prediction_result(fault_type = j)
29: end for
30: end for
31: /* Step 7 */
32: Fus(m) = WAE
33: for i = 1 to 3 do /* There are 4 single features, which need to be merged 3 times. */
34: Fus(m) = Fus(m) WAE /* refers to the DS fusion rule */
35: end for

6. Bearing Fault Prediction Experiment Based on Vibration Sensing Data

This section describes the bearing failure prediction experiment based on vibration sensing data,
which is divided into five subsections. Section 6.1 introduces the data set and experimental environment
used in this experiment. The application of the ANN for multifeature fusion fault diagnosis and
the means of obtaining the optimal feature combination according to the prediction accuracy are
introduced in Section 6.2. The input data obtained according to the optimal feature combination and
the use of PSO to optimize the structure and parameters of the ANN are described in Section 6.3.
The data used for feature-level fusion prediction errors using the PSO-ANN model are presented in
Section 6.3, and the use of the PSO-ANN-DS model for decision-level fusion to improve the accuracy
of PSO-ANN fault prediction is introduced in Section 6.4. Finally, in Section 6.5, the fault prediction
accuracies of various models are compared and analyzed.
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6.1. Introduction to Data Set and Experimental Environment

This paper uses the bearing fault data set [57] provided by Case Western Reserve University
(CWRU) as the experimental data source. CWRU’s laboratory used bearing motors for experiments to
collect vibration data using accelerometers near and away from the bearing. The bearing used in the
experiment was artificially damaged by electric sparks, and the failure parts included the inner ring,
the outer ring, and the ball at the drive end or the fan end of the bearing. The balls were recorded
as different types of faults according to different diameters. There were four different ball diameters:
0.007, 0.014, 0.021, and 0.028 inches. The outer ring used an accelerometer to collect data in the fault
areas at 3:00, 6:00, and 12:00. In addition, there were four types of motor load used in the experiments:
0HP, 1HP, 2HP, and 3HP. There were also four types of rotational speeds: 1797 rpm, 1772 rpm, 1750
rpm, and 1730 rpm. In this paper, some data was selected from the CWRU data set for the experiment.
The specific data is presented in Table 3.

Table 3. Data used in the experiments in this study. The motor load was 1HP, the speed was 1772 rpm,
and the ball diameter of the fault data was 0.007 inches.

Fault Type File Name

Normal Baseline Data 98.mat
48K Drive End Bearing Fault Data (Inner Race) 110.mat

48K Drive End Bearing Fault Data (Ball) 123.mat
48K Drive End Bearing Fault Data (Outer Race Orthogonal@3:00) 149.mat

48K Drive End Bearing Fault Data (Outer Race Centered@6:00) 136.mat
48K Drive End Bearing Fault Data (Outer Race Opposite@12:00) 162.mat

As shown in Table 3, there are six types of mechanical faults, namely normal state, inner raceway
fault, rolling element fault (Ball), outer race orthogonal@3:00 fault, outer race centered@6:00 fault,
and outer race opposite@12:00 fault. The vibration sensing data of bearing motors collected in 2000
consecutive unit times for two fault types (normal state and rolling element fault) are selected, and the
change of acceleration value with a continuous unit time is shown in Figure 7.
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Figure 7. The change of acceleration value with a continuous unit time under (a) normal state and (b)
rolling element fault conditions.

As shown in Figure 7, there is a clear difference between the vibration sensing data of the bearing
motors under normal state and rolling element fault conditions. In addition, the acceleration value
shows a trend of periodic changes with the increase of unit time.

An Ubuntu 18.04 operating system with 32 G of memory and an Intel i7-8700k CPU were the
important components of our experimental computer. Python was used as the basic development
language, and the ANN was implemented by Sklearn.
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6.2. Using an ANN to Get Optimal Feature Combination

The setting of the sliding window size not only has a great influence on the optimal feature
combination, but also has a great influence on the final prediction accuracy. To compare the effects of
different sliding window values on the accuracy of final fault prediction, sliding window sizes of 120,
240, 360, 480, 600, 720, 840, and 960 were employed for feature value extraction. Each type of fault
data was extracted into 500 groups, and a total of 3000 groups (six different types) were extracted. For
example, 500 groups of sample points were each extracted according to the RMS formula and RMSEE
formula when the sliding window size was set to 840; the distribution of six different mechanical fault
feature sample points is shown in Figure 8.Sensors 2020, 20, 6 15 of 23 
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According to the artificial experience of the ANN model parameters and structure adjustment, the
number of ANN hidden layers used in this experiment was set to 1, the number of hidden layer units
was set to 20, the learning rate was set to 0.001, the momentum parameter value was set to 0.9, and the
RMSprop parameter value was set to 0.999. The training data set used in the experiment accounted for
70% of the total data, while the test set accounted for the remaining 30%. Table 4 shows the accuracy of
the ANN for single feature fault prediction and multifeature fusion fault prediction using different
sliding window sizes for feature value extraction.

Table 4. Fault prediction accuracy of feature value extraction using different sliding windows, where
“All” is the fault accuracy of multifeature fusion according to the order of RMS, STD, Peak, RMSEE,
WFE, Kurtosis, Skewness, CRF, and IMF.

Eigenvalue
Sliding Window Size

120 240 360 480 600 720 840 960

RMS 31.67% 52.11% 77.22% 86.11% 88.67% 88.11% 91.33% 91.89%
STD 30.11% 52.11% 76.78% 85.89% 88.44% 88.00% 91.22% 91.78%
Peak 30.67% 41.89% 63.67% 73.22% 76.89% 79.00% 81.56% 80.44%

RMSEE 23.89% 41.78% 46.22% 52.33% 53.78% 55.44% 56.78% 52.78%
WFE 1.11% 7.22% 7.22% 20.22% 24.11% 27.22% 39.78% 46.44%

Kurtosis 2.67% 9.67% 20.78% 23.44% 12.33% 12.11% 29.56% 31.00%
Skewness 1.78% 6.56% 15.11% 20.11% 23.11% 22.89% 22.11% 23.78%

CRF 0.44% 2.89% 1.56% 3.56% 10.22% 10.67% 10.56% 14.22%
IMF 1.89% 6.89% 8.89% 21.33% 12.78% 12.22% 10.33% 12.22%
All 48.33% 73.00% 86.11% 92.33% 94.33% 95.78% 97.22% 97.89%

As shown in Table 4, as the size of the sliding window was increased, the fault accuracy using
multifeature fusion exhibited an increasing trend. However, when the size of the sliding window was
increased from 840 to 960, the accuracy of multifeature fusion fault prediction only slightly improved,
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and the accuracy of partial single feature failure prediction decreased. Based on the results of additional
experimental comparisons, when the sliding window size continued to increase to 960, the final fault
diagnosis prediction accuracy was virtually unchanged.

When using an ANN for multifeature fusion fault prediction, the number or order of eigenvalue
combinations have a greater impact on the accuracy of fault prediction. The sliding window size was
set to 360, 2–9 different features were applied in turn to merge, and the order of feature fusion was
changed. The prediction accuracy is shown in Table 5.

Table 5. Multifeature fusion performed using 2–9 different features in turn, while the fusion order was
changed at the same time. For example, the first feature value in the third row of the table below is
STD, and the subsequent fusion order is RMS, Peak, RMSEE, WFE, etc.

Eigenvalue RMS STD Peak RMSEE WFE Kurtosis Skewness CRF IMF

RMS 79.67% 79.00% 80.33% 82.78% 83.89% 85.11% 86.33% 86.11%
STD 79.67% 79.00% 80.33% 82.78% 83.89% 84.67% 86.33% 86.00%
Peak 79.22% 79.44% 80.00% 82.89% 83.89% 84.56% 85.67% 85.11%

RMSEE 79.67% 81.33% 79.78% 82.89% 83.78% 85.33% 86.00% 86.22%
WFE 81.78% 82.33% 83.11% 83.22% 84.00% 84.33% 85.44% 86.00%

Kurtosis 82.44% 84.11% 82.89% 83.00% 84.00% 83.89% 85.00% 85.56%
Skewness 82.22% 82.56% 83.22% 83.44% 84.44% 84.44% 85.44% 85.00%

CRF 81.33% 80.44% 81.11% 81.44% 82.33% 84.89% 85.33% 85.00%
IMF 82.33% 83.67% 82.11% 82.44% 83.00% 83.89% 84.78% 86.22%

As shown in Table 5, when multifeature fusion is performed in the order of RMS, STD, Peak,
RMSEE, WFE, Kurtosis, Skewness, and CRF, the accuracy of fault prediction is the highest. By
comparing the last column and the first three columns of Table 5, the accuracy of the fault prediction
using nine features was found to be much higher than that associated with the application of a few
features. In addition, as shown in the last column of Table 5, the fault prediction accuracy of the same
number of feature value combinations using Skewness or CRF to initiate multifeature fusion was the
lowest, which was 1.33% lower than the highest accuracy. In accordance with the experimental strategy
used in Table 5, the sliding window size was set to other values in turn, and the corresponding optimal
feature combination and fault prediction accuracy were obtained. The results are shown in Table 6.

Table 6. Optimal combination of features and fault prediction accuracy for different sliding windows,
where “All” is the corresponding multifeature combination in Table 2, specifically {RMS, STD, Peak,
RMSEE, WFE, Kurtosis, Skewness, CRF, IMF}.

Sliding
Window Size Optimal Feature Combination

Accuracy

All Optimal Combination

120 {Kurtosis,RMS,STD,Peak,RMSEE,WFE,Skewness,CRF} 48.33% 50.44%
240 {RMS,STD,Peak,RMSEE,WFE,Kurtosis,Skewness,CRF,IMF} 73.00% 73.00%
360 {RMS,STD,Peak,RMSEE,WFE,Kurtosis,Skewness,CRF} 86.11% 86.33%
480 {WFE,RMS,STD,Peak,RMSEE,Kurtosis,Skewness,CRF,IMF} 92.33% 93.00%
600 {RMS, STD,Peak,RMSEE,WFE,Kurtosis,Skewness,CRF,IMF} 94.33% 94.33%
720 {IMF,RMS,STD,Peak,RMSEE,WFE,Kurtosis,Skewness} 95.78% 96.44%
840 {Skewness,RMS,STD,Peak,RMSEE,WFE,Kurtosis,CRF,IMF} 97.22% 97.67%
960 {RMS,STD,Peak,RMSEE,WFE,Kurtosis,Skewness,CRF,IMF} 97.89% 97.89%

As shown in Table 6, when the sliding window values were set to 120, 360, and 720, there were
eight optimal feature combinations. When the sliding window values were set to 240, 480, 600, 840,
and 960, there were nine optimal feature combinations. For different sliding windows, the order of
feature combinations may also be different.
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6.3. Feature-Level Fusion Fault Prediction Experiment Based on a PSO-ANN

In this subsection, the input data formed by the optimal feature combination in Table 6 were used,
and the hidden layer structure and hyperparameters of the ANN were automatically optimized using
a PSO algorithm to avoid the process of manually adjusting the structure and parameters of the ANN
model. The information in the parameter range of the ANN optimized by a PSO algorithm is shown in
Table 7.

Table 7. Structure of the ANN and the variation range of relevant parameters.

Parameter Range Interval/Value

Number of hidden layers 1
Number of hidden layer units [10, 100]

Learning rate [0.0001, 0.1]
Momentum parameter [0.001, 0.999]
RMSprop parameter [0.001, 0.999]

The application of a PSO algorithm also requires relevant parameters to be set. In addition to
the inertia parameters and acceleration learning constants, the number of particles is also important.
The larger the number of particles, the larger the search range of the a PSO algorithm, which leads
to an increase in computational cost. If there are a small number of particles, the search range of the
PSO algorithm is small, which makes it difficult to obtain solutions that meet the expected goals. The
eigenvalues extracted when the sliding window size is 360 are used as the input data of the PSO-ANN
model, and different particle swarm numbers (10, 20, 30, 40, 50, and 60, respectively) are used to
initialize the PSO-ANN model for multifeature fusion fault prediction. The relationship between the
number of iterations of the PSO algorithm initialized by different numbers of particles and the loss
value of the ANN is shown in Figure 9 (the maximum number of iterations of the PSO algorithm was
uniformly set to 100). Table 8 shows the parameter values, the loss values, and the prediction accuracy
obtained by multifeature fusion fault prediction using the PSO-ANN model initialized with a different
number of particles.
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Table 8. ANN parameters, loss value, and prediction accuracy obtained using the PSO-ANN model for
multifeature fusion fault prediction.

Number of
Particles

Learning
Rate

Momentum
Parameter

RMSprop
Parameter

Number of
Hidden Layer

Neurons

Loss
Value Accuracy

10 0.021404 0.999 0.999 100 0.372830 89.22%
20 0.007614 0.609325 0.658986 58 0.479214 89.44%
30 0.006649 0.573852 0.966601 81 0.464076 89.89%
40 0.008156 0.467269 0.989776 77 0.467528 89.22%
50 0.014367 0.998993 0.999 90 0.347928 90.11%
60 0.010740 0.999 0.999 81 0.349434 89.67%

As shown in Figure 9 and Table 8, when the number of particles was set to 50, the PSO-ANN model
achieved the highest prediction accuracy and the loss value was also the lowest. Therefore, when the
number of particles is set to 50, the large calculation cost caused by the high number of particles is
avoided and a better prediction accuracy is obtained. Table 9 shows the eigenvalues extracted using
other sliding window sizes as training data and the accuracy of fault prediction using the PSO-ANN
model, in which the number of particles is uniformly set to 50. Figure 10 shows the relationship
between the fault prediction accuracy and the sliding window size using multifeature fusion with the
ANN and the PSO-ANN.

Table 9. Accuracy of fault prediction based on the PSO-ANN model.

Eigenvalue
Sliding Window Size

120 240 360 480 600 720 840 960

RMS 40.00% 58.89% 78.33% 87.11% 89.22% 88.78% 91.56% 92.00%
STD 41.22% 64.22% 78.00% 86.44% 89.22% 88.56% 91.78% 92.11%
Peak 42.67% 58.11% 68.00% 76.33% 77.44% 81.11% 82.22% 81.78%

RMSEE 33.00% 47.67% 59.44% 62.44% 70.89% 70.89% 72.44% 75.33%
WFE 7.33% 10.67% 20.56% 30.33% 32.33% 42.56% 47.44% 49.89%

Kurtosis 5.89% 11.44% 24.33% 25.67% 21.00% 23.11% 41.44% 47.00%
Skewness 3.22% 11.44% 19.78% 20.44% 23.56% 24.11% 23.56% 30.22%

CRF 1.11% 4.89% 7.89% 20.11% 21.78% 11.44% 12.56% 15.67%
IMF 4.11% 10.33% 20.00% 23.89% 14.78% 14.22% 34.78% 32.56%
All 54.67% 78.44% 90.11% 93.11% 96.22% 97.22% 97.89% 98.67%
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A comparison of the prediction accuracy of single eigenvalues in Tables 4 and 9 indicated that
using the PSO to automatically optimize the ANN’s number of hidden layer neurons, learning rate,
momentum parameter, and RMSprop parameter can effectively improve its prediction accuracy and



Sensors 2020, 20, 6 19 of 24

avoid the process of manually adjusting the structure and parameters of the ANN model. In addition,
as shown in Figure 10, the PSO-ANN model had a higher prediction accuracy than the ANN model for
multifeature fusion fault diagnosis.

6.4. Decision-Level Fusion Fault Prediction Experiment Based on PSO-ANN-DS

In this subsection, the multifeature fusion fault prediction data from the PSO-ANN model were
input into multiple PSO-ANN models trained by different single features for reprediction. It was then
combined with DS evidence theory for decision-level fusion. Table 10 shows the reprediction results of
multiple PSO-ANN models trained with different single eigenvalues using one of the prediction error
data (the sliding window size of the eigenvalue extraction is 120). Table 11 shows the values of various
parameters obtained by preprocessing the data in Table 10 and applying the prediction accuracy and
belief entropy according to Algorithm 2.

Table 10. Prediction results of test data from multiple PSO-ANNs trained by different single features.

PSO-ANN
Model

Fault Type

Normal
State

Inner
Race
Fault

Rolling
Element

Fault

Outer Race
Orthogonal@3:00

Fault

Outer Race
Centered@6:00

Fault

Outer Race
Opposite@12:00

Fault

STD 0 0.2979 0.0053 0.1500 0.2961 0.2507
Peak 0 0.267 0.0608 0.1630 0.2214 0.2878

RMSEE 0 0.2763 0.0846 0.1170 0.2759 0.2462
Skewness 0.0926 0.0674 0.1257 0.2928 0.227 0.1945

Table 11. Parameter values obtained by preprocessing the data in Table 9 according to Algorithm 2.

Parameter Name
PSO-ANN Trained by a Single Feature

STD Peak RMSEE Skewness

PRE 0.2941 0.2623 0.2672 0.1789
CRD 0.2934 0.2616 0.2665 0.1785
MUN 7.3255 8.8422 8.9058 11.2462

MCRD 2.1493 2.3132 2.3734 2.0073
NMCRD 0.243 0.2616 0.2684 0.227

The prediction results of the plurality of the PSO-ANN models in Table 10 were preprocessed
according to the parameter values calculated in Table 11. The fusion was performed three times in
combination with the DS evidence theory, and the fusion results are shown in Table 12.

Table 12. Results of decision-level fusion using the DS evidence theory. The number of fusions was 0,
which indicates that the results were calculated by Equation (12).

Fusion
Times of DS

Fault Type

Normal
State

Inner
Race
Fault

Rolling
Element

Fault

Outer Race
Orthogonal@3:00

Fault

Outer Race
Centered@6:00

Fault

Outer Race
Opposite@12:00

Fault

0 0.021 0.2317 0.0684 0.1769 0.2555 0.2465
1 0.002 0.2484 0.0217 0.1448 0.302 0.2811
2 0.0001 0.249 0.0065 0.1109 0.3338 0.2997
3 0 0.2435 0.0019 0.0828 0.36 0.3118

According to Table 12, after three consecutive fusions, the maximum probability of outer race
centered@6:00 fault is 0.36. It can be seen that the final fault prediction result is outer race centered@6:00
fault, which is the same as the real value. Based on the results of the PSO-ANN multifeature fusion
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fault prediction experiment in Section 6.3, Table 13 shows that multiple PSO-ANN models trained
with different single features are combined with basic DS evidence theory, DS evidence theory and
Deng entropy [30], DS evidence theory combined with evidence distance and Deng entropy [31], DS
evidence theory combined with cosine similarity and Deng entropy [32], and the proposed method for
fault prediction accuracy of decision-level fusion.

Table 13. Fault prediction accuracy of decision-level fusion using multiple PSO-ANN models trained
with different single features combined with different DS evidence theory.

Method
Sliding Window Size

120 240 360 480 600 720 840 960

Basic DS 67.89% 82.00% 92.44% 95.89% 97.44% 97.89% 98.89% 98.89%
Literature [30] 67.56% 82.56% 92.44% 96.22% 97.44% 97.89% 98.89% 98.78%
Literature [31] 68.44% 81.78% 92.33% 96.22% 97.44% 98.00% 98.78% 98.89%
Literature [32] 68.22% 81.67% 92.33% 96.22% 97.33% 98.00% 98.78% 98.89%
We Proposed 68.33% 82.67% 92.44% 96.44% 97.44% 98.22% 99.00% 99.00%

As shown in Table 13, the method proposed in [30] had a prediction accuracy that was lower
than that of the basic DS theory when the sliding window sizes were 120 and 960. When the sliding
window sizes were 240 and 360, the prediction accuracies of the methods proposed in [31,32] were also
lower than those of the basic DS evidence theory. Compared with the basic DS evidence theory results,
the method proposed and employed in this study could be used to effectively guarantee the original
prediction accuracy and achieve different degrees of improvement.

6.5. Comparison and Analysis of Fault Prediction Accuracy of Various Models

In Section 6.2, according to the artificial experience, the ANN with a fixed structure and parameters
was used for multifeature fusion fault prediction. The effects of different sliding window sizes on the
prediction accuracy and optimal feature combinations were compared and analyzed. The experimental
results revealed that when the sliding window size was less than 960, increasing the sliding window
size could effectively improve the prediction accuracy of the ANN. By comparing and analyzing the
optimal feature combination results corresponding to different sliding window sizes, the number and
order of feature combinations will have a greater impact on the prediction accuracy of ANN. It is
generally difficult to obtain the ideal prediction accuracy by manually adjusting the structure and
hyperparameters of the ANN, while it is relatively easy to make the prediction accuracy fall into a local
optimum. To solve this problem, in Section 6.3, PSO was used to automatically optimize the number of
hidden layers, learning rate, momentum parameter, and RMSprop parameter of the ANN according to
the input data formed by the optimal feature combination. The experimental results indicated that the
prediction accuracy of the PSO-ANN model was significantly higher than that of the ANN. Because
there are uncertain data in the original vibration sensing data, it is easy to generate a large deviation for
the multifeature fusion using the PSO-ANN for this part of the data. Therefore, in Section 6.4, multiple
PSO-ANN models trained with different single features were combined with the DS evidence theory
for a decision-level fusion of uncertain data, thus improving the processing ability of the model for the
uncertain data.

To further compare the fault prediction accuracy of the PSO-ANN-DS model proposed in this
study with the accuracy of other models, the fault prediction accuracy based on the k-nearest neighbor
(KNN) method, decision tree, random forest, naive Bayes, ANN, support vector machine (SVM), long-
and short-term memory neural network (LSTM), PSO-ANN, and PSO-ANN-DS models using different
sliding windows for feature extraction fault prediction accuracy are presented in Table 14.
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Table 14. Fault prediction accuracy of various models.

Model
Sliding Window Size

120 240 360 480 600 720 840 960

KNN 57.78% 74.45% 84.33% 90.11% 93.11% 94.67% 95.44% 96.44%
Decision tree 57.22% 75.44% 86.89% 91.44% 94.00% 95.67% 97.11% 98.22%

Random forest 61.89% 78.00% 89.33% 94.00% 96.44% 97.33% 97.78% 98.44%
Naive Bayes 62.11% 76.33% 83.67% 90.56% 93.78% 95.00% 97.44% 98.11%

ANN 50.44% 73.00% 86.33% 93.00% 94.33% 96.44% 97.67% 97.89%
SVM 63.67% 78.89% 88.00% 92.67% 95.11% 96.78% 97.78% 98.00%

LSTM 57.89% 72.89% 80.11% 84.22% 88.33% 91.56% 93.00% 96.11%
PSO-ANN 54.67% 78.44% 90.11% 93.11% 96.22% 97.22% 97.89% 98.67%

PSO-ANN-DS 68.33% 82.67% 92.44% 96.44% 97.44% 98.22% 99.00% 99.00%

As shown in Table 14, the ANN performed poorly in many models, while SVM and random forest
had significant advantages over traditional classification methods. When the sliding window size was
larger than 240, the prediction accuracy of the PSO-ANN was higher than the SVM prediction accuracy,
but it was lower than that of random forest. Compared with the KNN method, SVM, and LSTM, the
PSO-ANN-DS model had a significant advantage in fault prediction accuracy.

7. Conclusions

The multifeature fusion fault prediction method based on vibration sensing data is currently a
hot research topic and a primary focus of future industrial development. The basic structure and
hyperparameters of the ANN generally require manual adjustment, and it is easy to make the prediction
accuracy fall into a local optimum. Therefore, based on the training data formed by the optimal feature
combination, the PSO was used to optimize the number of hidden layers, learning rate, momentum
parameters, and RMSprop parameters of the ANN to avoid the process of manual adjustment. The
experimental results indicated that the prediction accuracy of the PSO-ANN was significantly higher
than that of the ANN. The original vibration sensing data included data with serious noise pollution
and a high degree of uncertainty, which led to incorrect results when the PSO-ANN model was applied
for multifeature fusion fault prediction. For this part of the data, the PSO-ANN model’s prediction
accuracy and belief entropy were used to preprocess the new prediction results, which were then
combined the DS evidence theory for decision-level fusion. The experimental results revealed that
compared with the original DS evidence theory or the combination of belief entropy, the proposed
method can effectively improve the model’s ability to deal with uncertain data. In addition, compared
to other models such as the KNN method, SVM, and LSTM, using the PSO-ANN-DS model for fault
diagnosis resulted in high level of fault prediction accuracy.
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