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Abstract: Transformer-based methods have demonstrated impressive performance in image super-

resolution tasks. However, when applied to large-scale Earth observation images, the existing trans-

formers encounter two significant challenges: (1) insufficient consideration of spatial correlation be-

tween adjacent ground objects; and (2) performance bottlenecks due to the underutilization of the 

upsample module. To address these issues, we propose a novel distance-enhanced strip attention 

transformer (DESAT). The DESAT integrates distance priors, easily obtainable from remote sensing 

images, into the strip window self-attention mechanism to capture spatial correlations more effec-

tively. To further enhance the transfer of deep features into high-resolution outputs, we designed 

an attention-enhanced upsample block, which combines the pixel shuffle layer with an attention-

based upsample branch implemented through the overlapping window self-attention mechanism. 

Additionally, to better simulate real-world scenarios, we constructed a new cross-sensor super-res-

olution dataset using Gaofen-6 satellite imagery. Extensive experiments on both simulated and real-

world remote sensing datasets demonstrate that the DESAT outperforms state-of-the-art models by 

up to 1.17 dB along with superior qualitative results. Furthermore, the DESAT achieves more compet-

itive performance in real-world tasks, effectively balancing spatial detail reconstruction and spectral 

transform, making it highly suitable for practical remote sensing super-resolution applications.  

Keywords: remote sensing; image super-resolution; deep learning; transformer; self-attention; 

Gaofen-6 satellite 

 

1. Introduction 

High-resolution (HR) remote sensing images are essential for advanced remote sens-

ing applications, such as precision agriculture [1], land cover mapping [2], forest classifi-

cation [3], photovoltaic panel extraction [4], and ground object detection [5]. However, the 

spatial and temporal resolutions of Earth observation satellite images often fall short of 

the demands of these tasks due to limitations in sensor hardware and imaging techniques. 

Additionally, the high cost of satellite and sensor technology often restricts the availability 

of HR remote sensing images, raising the cost of remote sensing applications. Therefore, 

it is crucial to retrieve at most the already acquired information in order to use the obser-

vation at its maximal potential. For this purpose, single image super-resolution (SR) has 

shown to be a very good solution. 

As a classical low-level task in computer vision, single-image SR aims to reconstruct 

HR images from low-resolution (LR) inputs by enhancing spatial details and texture 
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information through software algorithms. Single-image SR techniques can be broadly cat-

egorized into four types: reconstruction-based, interpolation-based, learning-based, and 

transformer-based algorithms [6]. Early works utilized interpolation [7] or prior infor-

mation [8,9] to reconstruct spatial details. However, the complexity of image degradation 

and the introduction of inaccurate prior knowledge often resulted in noticeable artifacts 

and unsatisfactory texture reconstruction results. 

In recent years, significant advancements in deep learning have driven the develop-

ment of numerous deep-learning-based SR methods, which have demonstrated remarka-

ble performance [10–16]. Initially, many SR methods based on convolutional neural net-

works (CNNs) [11–15,17,18] have been proposed and dominated this field due to their 

ability to model local nonlinear features. For example, the very deep residual channel at-

tention network (RCAN) [17] applies a residual-in-residual design and incorporates a 

channel attention mechanism to achieve impressive SR performance. 

However, CNNs are limited in capturing long-range dependencies in images due to 

their inherent inductive biases. In contrast, transformers [19], with their multi-head self-

attention mechanisms, excel at feature representation and modeling long-range relation-

ships, allowing them to achieve state-of-the-art (SOTA) performance in various high-level 

computer vision tasks [20–22]. Recently, transformer-based SR methods [16,23–26] have 

shown superior performance compared to CNN-based methods. For example, SwinIR 

[16] introduced the Swin Transformer architecture [20], achieving remarkable SR perfor-

mance, while many subsequent studies [24–27] proposed different attention strategies and 

model structures to improve it and achieve more competitive performance. 

In challenging remote sensing super-resolution tasks, some transformer-based re-

mote sensing image super-resolution methods [28–30] have been designed to address 

scale diversity, a key challenge in remote sensing. However, most existing methods rely 

on simulated datasets where LR images are generated using simplified degradation mod-

els like bicubic downsampling [31]. However, the significant discrepancies between these 

assumed models and real-world degradation can lead to unsatisfactory SR performance 

in real-world scenarios. Additionally, for remote sensing scenes with scale diversity, su-

per-resolution models trained on simulated datasets often struggle to effectively enhance 

the spatial resolution of real satellite images [32]. 

To address this issue, ground-truth-based remote sensing super-resolution has been 

proposed. Numerous researchers have constructed real-world cross-sensor super-resolu-

tion datasets using satellite imagery from various sources and have trained SR models 

based on these datasets, which have been shown to be effective in improving the resolu-

tion of real-world satellite images [31–34]. However, the LR-HR image pairs used in these 

studies are sourced from different satellites with imaging times that are not exactly 

aligned. Variations in satellite attitude and atmospheric conditions further complicate ge-

ometric registration. Additionally, the high costs associated with obtaining HR images 

constrain dataset sizes, limiting the extent of SR model training and real-world applica-

tions. 

To mitigate the impact of geometric registration errors, SR models need to avoid 

overemphasizing local details. Increasing the receptive field in SR networks enables them 

to learn a more comprehensive spatial understanding, which reduces sensitivity to minor 

misalignments between the LR-HR pairs. Additionally, tailoring models to the character-

istics of remote sensing images is essential for efficient feature extraction, which, in turn, 

reduces the need for extensive training data. These design strategies, also adopted in this 

study, help address the inherent variability in remote sensing data, resulting in more ro-

bust super-resolution performance. Additionally, we constructed the GF6SRD dataset, a 

real-world cross-sensor super-resolution dataset, using WFV (16 m) and PMS (8 m) im-

agery from the same Gaofen-6 satellite. The GF6SRD dataset contains up to 18,306 LR-HR 

image pairs (512 × 512 pixels for HR). Since both PMS and WFV images are from Gaofen-

6, they share nearly identical imaging times, satellite attitudes, and atmospheric condi-

tions, significantly reducing the need for complex geometric registration and enhancing 



Remote Sens. 2024, 16, 4251 3 of 28 
 

 

consistency across LR-HR pairs. The GF6SRD dataset thus offers a more reliable founda-

tion for training super-resolution models in real-world applications. 

Early transformer-based SR methods, such as SwinIR, primarily focused on improv-

ing feature representation but did not demonstrate clear advantages over CNNs in mod-

eling long-range dependencies compared to CNNs [25]. Later studies, including the HAT 

[25], RGT [27], and TTST [29], introduced various attention mechanisms to expand the 

receptive field of SR transformers, thereby improving performance. Furthermore, in Earth 

observation images, there is a strong spatial correlation between ground objects with close 

distance, as described by the first law of geography [33]. However, many previous studies 

have not fully explored these spatial correlations in remote sensing super-resolution tasks. 

To address these challenges, a novel distance-enhanced strip attention transformer 

(DESAT) is proposed in this study. Specifically, to better capture the spatial correlation 

between adjacent ground objects, we design a distance-enhanced strip attention block 

(DSAB). This design integrates distance priors into the self-attention mechanism within 

strip windows which enlarges the receptive field and enhances spatial detail reconstruc-

tion, especially for regular textures. Additionally, the DESAT employs a novel attention-

enhanced upsample block (AEUB), which combines the pixel shuffle layer with an atten-

tion-based upsample branch implemented through distance-enhanced attention mecha-

nism in overlapping windows. This dual-branch upsample block transforms LR deep fea-

tures into HR outputs from both attention-feature and pixel-wise perspectives. These in-

novations enable the DESAT to achieve a broader receptive field, more efficient feature 

extraction, and enhanced spatial detail reconstruction, which is critical for remote sensing 

super-resolution tasks. Furthermore, these advancements allow the DESAT to partially 

mitigate challenges such as geometric registration errors and limited dataset sizes, which 

are commonly encountered in real-world scenarios. To comprehensively assess the DE-

SAT’s performance, we conducted experiments using both the simulated AID dataset [34] 

and our proposed real-world GF6SRD dataset. 

In brief, the main contributions of this study are summarized as follows: 

1. Considering the spatial correlation between the adjacent ground objects, the pro-

posed novel distance-enhanced strip attention transformer (DESAT) integrates dis-

tance priors into the strip window self-attention mechanism, achieving superior spa-

tial detail reconstruction ability in challenging remote sensing image super-resolu-

tion tasks. 

2. The proposed attention-enhanced upsample block (AEUB) enhances the pixel shuffle 

layer by introducing an overlapping window attention-based upsample branch, fol-

lowed by a transformer fusion block for better feature integration and transformation 

between LR and HR features. 

3. We constructed a comprehensive real-world cross-sensor remote sensing super-res-

olution dataset (GF6SRD) using images from two sensors with different resolutions 

onboard the Gaofen-6 satellite. The dataset comprises 18,306 LR-HR image pairs (512 

× 512 pixels for HR), facilitating robust SR model training, and evaluation across di-

verse geographic and temporal conditions. 

The remainder of this paper is organized as follows: Section 2 further introduces re-

lated works of this study; Section 3 details the implementation of our DESAT and the con-

struction of the GF6SRD dataset; Section 4 presents extensive experiments conducted on 

both the simulated AID dataset and the real-world GF6SRD dataset; Section 5 further dis-

cusses the proposed method; and Section 6 summarizes the paper and specifies the future 

direction of this work. 
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2. Related Works 

2.1. Natural Image Super-Resolution 

With the advancement of deep learning, various SR networks have emerged and 

achieved significant performance. The super-resolution convolutional neural network 

(SRCNN) [11,12] was the first deep learning-based approach to super-resolution. It inter-

polates LR images to the target resolution and then reconstructs HR images using a three-

layer convolutional neural network. To accelerate SRCNN, the fast super-resolution con-

volutional neural network (FSRCNN) [13] removes the pre-network interpolation step 

and adds a deconvolutional layer after the convolutional neural network to upsample the 

LR features to the target resolution. Very deep convolutional networks for super-resolu-

tion (VDSR) [14] further extend this approach by using a 20-layer deep convolutional net-

work combined with residual learning, expanding the receptive field and accelerating 

model convergence. Enhanced deep residual networks for super-resolution (EDSR) [15] 

introduce modifications to the ResNet architecture [35] by removing the batch normaliza-

tion layer and relocating the ReLU activation outside each residual block, resulting in sub-

stantial performance improvements. The holistic attention network (HAN) [18] adds a 

layer attention module and a channel spatial attention module, effectively modeling ho-

listic interdependencies to capture more informative features for SR tasks. 

Until recently, transformer-based super-resolution (SR) methods [16,23–26] have 

shown superior performance compared to CNN-based methods due to the excellent long-

range relationship modeling capabilities of the self-attention mechanism. For example, the 

pre-trained image processing transformer (IPT) [23], a pioneering work in applying trans-

formers to image super-resolution, employs a transformer pre-trained on a large dataset 

and achieves impressive SR performance at a high computational cost. SwinIR [16], built 

on Swin Transformer architecture [20], enhances computational efficiency by removing 

the patch merging layer, leading to significant performance improvements. The dual ag-

gregation transformer (DGT) [24] aggregates spatial and channel features alternately to 

reduce computational complexity. The hybrid attention transformer (HAT) [25] intro-

duces overlapping window cross-attention and hybrid attention blocks to activate more 

pixels in SR tasks, thus enhancing performance. The introduction of N-Gram context to 

transformers for super-resolution enlarges the receptive field and significantly improves 

performance [26]. Recursive-generalization self-attention has been proposed to better ag-

gregate features, followed by cross-attention to extract global information, delivering 

good SR results at low computational costs [27]. 

2.2. Remote Sensing Image Super-Resolution 

Deep learning SR methods have achieved significant success in natural images. 

Building on this progress, many researchers have developed specialized SR networks tai-

lored for remote sensing images. For instance, a top-k selective mechanism has been in-

troduced to better handle scale diversity and reduce redundant token representation, 

achieving excellent remote sensing SR performance [28]. A lightweight feature extraction 

block and a sequence-based upsample block have been proposed for an efficient hybrid 

CNN-transformer approach for better SR performance [29]. The hybrid-scale hierarchical 

transformer network (HSTnet) [30] utilizes a hybrid-scale feature exploitation module to 

leverage internal recursive information across scales in remote sensing images. 

Furthermore, to better simulate the real-world cross-sensor remote sensing super-

resolution tasks, ground-truth-based remote sensing super-resolution is proposed. For in-

stance, Galar et al. [36] constructed 21,754 LR and HR image pairs (192 × 192 pixels for 

HR) from Sentinel-2 and Planet satellites, using an improved EDSR to enhance the reso-

lution of Sentinel-2 images to 2.5 m. Romero et al. [37] created a dataset with 5827 LR-HR 

image pairs (140 × 140 pixels for HR) from WorldView and Sentinel satellites, applying 

ESRGAN to improve Sentinel-2 images with a scaling factor of five. Zabalza et al. [32] built 

a larger dataset of 56,821 LR-HR pairs (192 × 192 pixels for HR) from Sentinel-2 and Planet 
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satellites, utilizing the spectral attention residual network (SARNet) to enhance Sentinel-

2 images from 10 m to 5 m and 2.5 m. Additionally, based on Gaofen-1/6 and Gaofen-2/7 

satellites, Zhao et al. [38] constructed 9246 LR and HR image pairs (200 × 200 pixels for 

HR), applying an improved generative adversarial network with a self-attention module 

and texture loss to enhance Gaofen-1/6 images from 2 m to 1 m. 

However, these methods use the pixel shuffle layer as their upsample module, which 

may lead to potential performance bottlenecks. Moreover, as a primary source of Earth 

observation data, remote sensing images have significant spatial correlations between 

ground objects. Meanwhile, distance measurement in remote sensing images is relatively 

easy, facilitating spatial correlation modeling. 

In general, it is necessary to consider the improvement of the upsample module, and 

the modeling of the spatial correlation of ground objects can better extract the features of 

remote sensing images, which may be beneficial to improving the performance of remote 

sensing image super-resolution tasks. 

3. Materials and Methods 

In this section, the different sensors onboard the Gaofen-6 satellite and the construc-

tion of the real-world super-resolution GF6SRD dataset are first introduced, followed by 

a presentation of the overall architecture of the DESAT and its detailed implementation. 

Finally, the proposed distance-enhanced strip attention block (DSAB) and attention-en-

hanced upsample block (AEUB) are described in detail. The overall methodology of this 

paper is illustrated in Figure 1. 

 

Figure 1. The overall methodology of this paper. 

3.1. Real-World Cross-Sensor Super-Resolution Dataset of Gaofen-6 Satellite (GF6SRD) 

Many super-resolution studies rely on simulated datasets for training and testing SR 

models. These simulated datasets typically consist solely of HR images, lacking real HR-

LR image pairs as references for model training. Most studies generate LR images from 

HR images based on an assumed degradation model, such as the most widely used bicu-

bic kernel-based downsampling [31]. However, real remote sensing images with different 

resolutions are often captured by distinct sensors under different imaging conditions, 

leading to the extremely complicated remote sensing image degradation process, which 

is difficult to represent via the simplistic degradation model used in the simulated da-

tasets. To address this issue, we construct a real-world cross-sensor super-resolution 

GF6SRD dataset with different resolutions (16 m WFV and 8 m PMS) onboard the Gaofen-

6 satellite. This dataset consists of real HR-LR image pairs, offering a more accurate rep-

resentation of real-world remote sensing super-resolution tasks. The remainder of Section 
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3.1 first introduces these two sensors of the Gaofen-6 satellite and then presents the cross-

sensor GF6SRD dataset. 

3.1.1. Introduction to the Sensors of the Gaofen-6 Satellite 

The Gaofen-6 satellite, launched in June 2018, is equipped with two multispectral 

sensors. Its primary applications include agricultural and forestry surveys, as well as dis-

aster management. The satellite carries two distinct multispectral sensors: a 16 m resolu-

tion wide field view (WFV) camera with a swath width exceeding 800 km and a 2/8 m 

resolution panchromatic/multispectral (PMS) camera with a swath width exceeding 90 

km. 

As shown in Table 1, the WFV and PMS sensors offer complementary advantages. 

While the PMS camera provides higher resolution, it has fewer spectral bands, a narrower 

swath, and a lower revisit frequency than WFV. Additionally, while WFV images are 

freely accessible, PMS images are not, which restricts the broad application of PMS im-

agery. To fully leverage the strengths of both sensors, constructing a cross-sensor super-

resolution dataset is essential for developing robust SR models that can enhance the reso-

lution of WFV imagery for real-world applications. 

Table 1. Technical details of different sensors of Gaofen-6 satellite. 

Technical Specifications WFV PMS 

Spatial Resolution 16 m 2/8 m Pan/MS 1 

Image Swath >800 km >90 km 

Revisit Period 4 days 41 days 

Spectral Range 

Coastal (B1): 0.40 μm~0.45 μm 

Blue (B2): 0.45 μm~0.52 μm 

Green (B3): 0.52 μm~0.59 μm 

Yellow (B4): 0.59 μm~0.63 μm 

Red (B5): 0.63 μm~0.69 μm 

Red Edge1 (B6): 0.69 μm~0.73 μm 

Red Edge2 (B7): 0.73 μm~0.77 μm 

NIR (B8): 0.77 μm~0.89 μm 

 Pan (P): 0.45 μm~0.90 μm 

Blue (B1): 0.45 μm~0.52 μm 

Green (B2): 0.52 μm~0.60 μm 

Red (B3): 0.63 μm~0.69 μm 

NIR (B4): 0.76 μm~0.90 μm 

1 Pan/MS represents panchromatic/multispectral. 

3.1.2. Construction Details of the Cross-Sensor GF6SRD Dataset 

As illustrated in Figure 2, the process of constructing the GF6SRD dataset involves 

four main steps: Gaofen-6 satellite image downloading, image preprocessing, image 

screening, and image clipping. 

After completing these steps, the resulting GF6SRD dataset consists of 18,306 WFV-

PMS (LR-HR) image pairs, where the WFV images are 256 × 256 pixels with a resolution 

of 16 m, and the PMS images are 512 × 512 pixels with a resolution of 8 m.  
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Figure 2. Construction flow chart of GF6SRD dataset. 

Figure 3 provides examples of the WFV-PMS image pairs, with the same relative 

stretch applied to the RGB bands for color representation. 

 

Figure 3. Some WFV-PMS image pairs of the proposed GF6SRD dataset. 
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All the image pairs in the GF6SRD dataset were clipped from 36 pairs of original 

satellite images, with acquisition dates detailed in Table 2. To better simulate a real-world 

cross-sensor remote sensing super-resolution task, the dataset was partitioned into train-

ing and test sets based on acquisition dates. The test set includes 2710 WFV-PMS image 

pairs captured on 22 January 2023, 29 September 2023, and 9 November 2023. And the 

training set contains 15,596 WFV-PMS image pairs captured on other dates. 

Table 2. Numbers of WFV-PMS original satellite image pairs taken at different times. 

Acquisition Time Number of WFV-PMS Image Pairs 

18 January 2022 2 

3 February 2022 3 

8 March 2022 3 

18 April 2022 2 

26 April 2022 2 

7 October 2022 2 

5 November 2022 3 

13 November 2022 2 

28 December 2022 3 

22 January 2023 2 

29 May 2023 1 

22 July 2023 2 

19 August 2023 2 

29 September 2023 1 

3 October 2023 3 

9 November 2023 3 

3.2. Methods 

3.2.1. The Overall Architecture 

As illustrated in Figure 4, the overall network of our DESAT comprises three primary 

components: shallow feature extraction, deep feature extraction, and image reconstruc-

tion. This architecture design has been widely adopted in previous studies [16,25,26,28]. 

Specifically, for a given LR input ILR ∈ 𝑅ℎ×𝑤×𝐶𝑖𝑛 , the DESAT first employs a single convo-

lutional layer to extract shallow features FS ∈ 𝑅ℎ×𝑤×𝐶, where 𝐶𝑖𝑛 and 𝐶 denote the num-

ber of input and hidden feature channels, respectively. Subsequently, a series of residual 

distance-enhanced strip attention groups (RDSG), followed by a convolutional layer, are 

employed to extract deep features FD ∈ 𝑅ℎ×𝑤×𝐶   from the shallow features. Finally, the 

super-resolution output image ISR ∈ 𝑅𝐻×𝑊×𝐶𝑜𝑢𝑡  is reconstructed from the deep features FD 

and shallow features FS through a reconstruction block consisting of our AEUB and con-

volution layers. For simplicity, the DESAT is optimized using the Charbonnier loss [39] 

defined as 𝐿𝐶 = √‖𝐼𝑆𝑅 − 𝐼𝐺𝑇‖2 + 𝜖2 with 𝜖 = 1 × 10−3, where 𝐼𝑆𝑅 denotes the SR image 

l, 𝐼𝐺𝑇  is the high-resolution ground-truth image, and the 𝜖 is a small constant that pre-

vents instability by smoothing the loss function around zero differences. 

Figure 4 shows that each RDSG contains several subgroups utilizing the proposed 

DSAB, hybrid attention blocks (HAB) [28], an overlap cross-attention block (OCAB) [28], 

and a 3 × 3 convolutional layer. Building upon the successful residual hybrid attention 

group [28], our RDSG replaces several HABs with DSABs. This modification incorporates 

our proposed distance-enhanced strip attention mechanism (DESAM), improving the rep-

resentation of texture features. Additionally, we added a DESAM with a skip connection 

to better integrate the horizontal and vertical features before the OCAB. Due to space con-

straints, readers are referred to previous works for the specific implementations of HAB 

and OCAB. The details of the proposed DSAB and AEUB are provided in the following 

sections. 
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Figure 4. The overall architecture of the DESAT and the structure of the DSAB, DESAM, and RDSG. 

3.2.2. Distance-Enhanced Strip Attention Block (DSAB) 

The first law of geography states, “Everything is related to everything else, but near 

things are more related than distant things.” This principle highlights the significant im-

pact of distance on the correlation between different ground objects in remote sensing 

images. In addition, the high altitude of satellite sensors allows for precise distance meas-

urements between ground objects, enabling the integration of distance priors into the at-

tention mechanism. Moreover, inspired by previous work [40–42], we divide features into 

horizontally and vertically oriented strip windows to extend the receptive field and im-

prove texture reconstruction while maintaining a low computational cost. Within each 

strip window, we calculate the Euclidean distance between pixels and incorporate this 

spatial information into the traditional self-attention mechanism, thereby enhancing fea-

ture extraction. This customized mechanism for remote sensing images effectively models 

spatial correlations between adjacent ground objects, resulting in superior spectral fidelity 

and spatial detail reconstruction. 

As demonstrated in Figure 4, the structure of our DSAB is built by paralleling our 

proposed distance-enhanced strip attention mechanism (DESAM) over the shifted win-

dow multi-head self-attention mechanism (SW-MSA) within the Swin Transformer block 

[20]. In the following, we focus on the implementation of DESAM. The calculation process 

of DESAM is depicted in Figure 4. First, our DESAM unfolds the input Finput ∈ 𝑅𝐻×𝑊×𝐶  to 
𝐻

ℎ
×

𝑊

𝑤
 non-overlapping strip windows Fwindow ∈ 𝑅ℎ×𝑤×𝐶, oriented both horizontally (with 

h < w) and vertically (with h > w). Then, for each window, the Euclidean distance matrix 

D ∈ 𝑅ℎ𝑤×ℎ𝑤 between pixels is calculated as 

Di,j = √((𝑖 ℎ⁄ −  𝑗 ℎ⁄ )2 + (𝑖%ℎ −  𝑗%ℎ)2),  (1) 
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where Di,j denotes the distance between the ith pixel and the jth pixel within the windows. 

The operations “/” and “%” represent integer division and modulo operations, respec-

tively. 

Next, similarly to traditional self-attention mechanism, the query Q ∈ 𝑅ℎ𝑤×𝐶, key K 

∈ 𝑅ℎ𝑤×𝐶 , and value V ∈ 𝑅ℎ𝑤×𝐶  are generated from the window feature Fwindow ∈ 𝑅ℎ×𝑤×𝐶 

through linear transformation separately as 

Q = FwindowWQ, K = FwindowWK, V = FwindowWV,  (2) 

where WQ, WK, and WV are learnable weight matrices for generating Q, K, and V, respec-

tively. After that, the attention matrix A ∈ 𝑅ℎ𝑤×ℎ𝑤 is computed through the scaled dot-

product operation between Q and transposed K across channels as 

A = 𝑄𝐾𝑇

√𝑑𝑘 ,
⁄   (3) 

where 𝑑𝑘 the dimensionality of the key, and √𝑑𝑘 is used to control the magnitude of the 

dot-product operation. Then, to incorporate distance priors, the distance-enhanced atten-

tion matrix DA ∈ 𝑅ℎ𝑤×ℎ𝑤 is computed as 

DA = Softmax(A ⊙ Softmax(𝑀𝑎𝑥𝐷𝑖𝑠 + 1 − 𝐷
𝛼⁄ )).  (4) 

Where A is the attention matrix, and D is the Euclidean distance matrix. MaxDis is the 

maximum distance between pixels in the strip window, and 𝛼 is constant to smooth out 

differences in values within DA. 

For each window, the horizontal outputs Oh ∈ 𝑅ℎ𝑤×𝐶   and vertical outputs Ov ∈

𝑅ℎ𝑤×𝐶  are then calculated as 

Oh = DAhVh, Ov = DAvVv.  (5) 

Finally, these outputs are folded back to their original shape, yielding the horizontal 

feature FH ∈ 𝑅𝐻×𝑊×𝐶 and vertical feature FV ∈ 𝑅𝐻×𝑊×𝐶. To integrate these two features, the 

DESAM concatenates them along the channel dimension and applies a 3 × 3 convolutional 

layer to produce the final output feature Foutput ∈ 𝑅𝐻×𝑊×𝐶, which can be represented by 

Foutput = Conv(Concat(FH, FV)),  (6) 

where Conv(∙) is a 3 × 3 convolutional layer with 2C input channels and C output channels. 

This process completes the computation of DESAM, yielding the final output Foutput. 

Similarly to the self-attention mechanism, the time complexity of DESAM is proportional 

to the number of pixels within the window. In addition, compared to the traditional win-

dow self-attention mechanism, our DESAM integrates distance measurements into the at-

tention map, which enables more effective extractions of spatial texture features by differ-

entiating pixels based on their positional relationships within strip windows. Conse-

quently, DESAM enhances DSAB’s ability to capture spatial correlations between ground 

objects, leading to improved spatial detail and texture representation. 

3.2.3. Attention-Enhanced Upsample Block (AEUB) 

The pixel shuffle layer [43] is the widely used upsample module for super-resolution 

tasks due to its simplicity and effectiveness. However, much research has focused on op-

timizing feature extraction modules while often overlooking the potential of improving 

the upsample process. This has resulted in the upsample module contributing only a small 

computational load, creating a potential bottleneck in SR models. 

To address this, we proposed the attention-enhanced upsample block (AEUB), which 

integrates the pixel shuffle layer and distance-enhanced attention applied in overlapping 

windows for better feature transformation. As illustrated in Figure 5, our AEUB consists 

of two parallel branches: the pixel branch and the attention branch. The pixel branch rear-

ranges pixel-wise spatial details through the pixel shuffle layer, while the attention branch 

captures broader spatial relationships via distance-enhanced attention. Together, these 
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two branches ensure more accurate and efficient transformations of LR features into HR 

outputs. 

The pixel branch first utilizes a convolutional layer to increase the number of input 

channels and then rearranges features from the channel dimension into the spatial dimen-

sion through the pixel shuffle layer. In parallel, the attention branch first employs a dis-

tance-enhanced attention mechanism in overlapping windows and then merges these 

window features in a non-overlapping manner to improve spatial resolution through re-

peated sampling features across spatial dimensions. Subsequently, a novel transformer 

fusion block combines the outputs of both branches, ensuring better feature integration 

and HR transformation. 

Specifically, for a LR feature input Flr ∈ 𝑅ℎ×𝑤×𝐶, our AEUB generates two HR fea-

tures: FP ∈ 𝑅𝐻×𝑊×𝐶 from the pixel branch and FA ∈ 𝑅𝐻×𝑊×𝐶 from the attention branch. 

These two features are then fused through the transformer fusion block to produce the 

final HR feature Fhr ∈ 𝑅𝐻×𝑊×𝐶. The overall operation of AEUB can be represented by 

Fhr = TF(P(Flr), A(Flr)),  (7) 

where P (∙) and A(∙) represent the operations of the pixel branch and attention branch, 

respectively. And TF(∙ ) denotes the transformer fusion block, which will be illustrated 

later. 

In the pixel branch, the computation is straightforward: 

FP = P(Flr) = Pixel-Shuffle(Conv(Flr)).  (8) 

In the attention branch, the process involves more complexity. For an upsampling 

factor of 2, the input LR feature Flr ∈ 𝑅ℎ×𝑤×𝐶 is unfolded into overlapping windows of 

size 8 × 8 with an overlapping ratio of 0.5, producing the unfolded features Fu ∈ 𝑅
ℎ𝑤

16
×64×𝐶, 

which can be represented as. 

Fu = Unfold(Flr).  (9) 

For each 8 × 8 window, the distance-enhanced attention mechanism (DEA) is applied 

to compute the window attention feature Fw ∈ 𝑅8×8×𝐶 . These window features are then 

folded back in a non-overlapping manner to produce the attention-based HR feature FA 

∈ 𝑅𝐻×𝑊×𝐶 , expressed as 

FA = A(Flr) = Fold(DEA(Fu)),  (10) 

where DEA(∙) denotes the distance-enhanced attention mechanism, which is similar to our 

DESAM, as described in Section 3.2.2, but operates on square windows instead of strip win-

dows. The pseudo-code for the attention branch of our AEUB is shown in Algorithm 1. 
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Figure 5. Overview of the proposed AEUB module. 

Algorithm 1: The pseudo-code of our attention branch of AEUB. 

Input: LR features Flr ∈ 𝑅𝑏×𝑐×ℎ×𝑤 

Output: HR features FA ∈ 𝑅𝑏×𝑐×2ℎ×2𝑤 

1: Q, K, V ⇐ Chunk(Conv(Flr)); // 𝑏 × 𝑐 × ℎ × 𝑤 

2: Q, K, V ⇐ Reshape(Q, K, V); // 𝑏 × ℎ𝑒𝑎𝑑 × 
𝑐

ℎ𝑒𝑎𝑑
 × ℎ × 𝑤 

3: Q, K, V ⇐ Overlapping-Unfold(Q, K, V); // 𝑏 × ℎ𝑒𝑎𝑑 × 
𝑐

ℎ𝑒𝑎𝑑
 × 64 ×

ℎ

4
×

𝑤

4
 

4: Q, K, V ⇐ Permute(Q, K, V); // 𝑏 × ℎ𝑒𝑎𝑑 ×
ℎ

4
×

𝑤

4
× 64 × 

𝑐

ℎ𝑒𝑎𝑑
   

5: A ⇐ 
𝑄𝐾

𝜆
; // 𝑏 × 𝑐 ×

ℎ

4
×

𝑤

4
× 64 × 64  

6: DA ⇐ A • Dis_mask; // 𝑏 × 𝑐 ×
ℎ

4
×

𝑤

4
× 64 × 64  

7: Fw ⇐ Softmax(DA)V; // 𝑏 × ℎ𝑒𝑎𝑑 ×
ℎ

4
×

𝑤

4
× 64 × 

𝑐

ℎ𝑒𝑎𝑑
  

8: Reshaped_Fw ⇐ Reshape(Permute(Fw)); // 𝑏 × 𝑐 × 64 ×
ℎ

4
×

𝑤

4
 

9: FA ⇐ Nonoverlapping-Fold (Reshaped_Fw); // 𝑏 × 𝑐 × 2ℎ × 2𝑤 

In summary, the attention branch uses an innovative overlapping unfold operation 

combined with a distance-enhanced attention mechanism to obtain spatially repetitively 

sampled deep features from the LR input. These features are then efficiently upsampled 

into HR outputs through a non-overlapping fold operation. Additionally, the upsampling 

ratio of the attention branch can be adjusted by the window size and overlap rate. 

Once the pixel and attention branch features FP and FA are obtained, they are fused 

via the proposed transformer fusion block TF(∙), yielding the final HR feature Fhr. As is 

depicted in Figure 5, this block generates the query Q from the attention feature FA and 

pixel feature FP, while the key K and value V are calculated from pixel feature FP, ensuring 

optimal integration of both features through the attention mechanism. The detailed com-

putation of the transformer fusion block is as follows: 
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FPN = LN(FP), FAN = LN(Concat(FA, FP)), 

FF = W-MAF(FPN, FAN), 

Fhr = FNN(LN(FF)) + FPN,  

(11) 

where LN(∙ ) denotes layer normalization, FNN represents the feedforward neural net-

work, and W-MAF(∙) represents our proposed window multi-head attention-based fusion 

layer, whose specific calculations are illustrated in Figure 5. 

4. Results 

4.1. Experimental Setup 

4.1.1. Datasets for Experiments 

The results of the experiments are presented to evaluate the super-resolution models 

on both the simulated AID super-resolution dataset and our proposed real-world GF6SRD 

dataset. 

The AID dataset is a remote sensing classification dataset with resolutions ranging 

from 0.5 m to 8 m. For simplification, we randomly selected 3500 images from the original 

10,000 images in the AID dataset to obtain LR-HR image pairs and form the simulated 

super-resolution dataset. The original images (600 × 600 pixels) were resampled to 512 × 

512 pixels to obtain HR images, which were then downsampled using bicubic interpola-

tion to generate LR images. The simulated AID dataset was split into 3000 training pairs 

and 500 test pairs. 

The GF6SRD dataset, as detailed in Section 3.1, includes 15,596 training image pairs 

and 2710 test image pairs. Each image pair comprises a 16 m WFV image (LR, 256 × 256 

pixels) and an 8 m PMS image (HR, 512 × 512 pixels). Real-world cross-sensor remote 

sensing super-resolution tasks involve both spatial texture differences and spectral varia-

tions between LR and HR images due to differences in the spectral response functions of 

different sensors. These factors contribute to the instability of SR results. Similarly to the 

large-input super-resolution task [44], the output image patches from the SR model must 

be merged to restore the original large-scale remote sensing images (typically exceeding 

10,000 × 10,000 pixels). Due to this instability of SR results, noticeable seams often appear 

at the boundaries of adjacent SR image patches, affecting the overall quality of merged 

results. To mitigate this issue, we use larger LR image patches of 256 × 256 pixels instead 

of the more common 64 × 64 pixels, thereby reducing the number of patches from each 

original remote sensing image and lessening the impact of seams. 

4.1.2. Implementation Details 

In this study, all models are implemented for ×2 SR. For the structure of our final 

DESAT, the number of RDSGs is set to four, with each RDSG containing four HABs and 

two DSABs. The window size for self-attention within each HAB is set to 8, while each 

DSAB has a strip window length of 16 and a width of 4. The number of channels in the 

DESAT is set to 96, and the number of attention heads is set to 6. The window size within 

AEUB is set to 8, and the overlapping ratio is set to 0.5 for ×2 SR. Additionally, we provide 

a smaller version of the DESAT-S with fewer parameters and computations than the HAT. 

In the DESAT-S, the number of channels is set to 64, and the number of attention heads is 

set to 4, while other parameters remain the same as with the DESAT. 

All SR models use the same training method to ensure fair comparisons. Specifically, 

on the AID dataset, total training iterations are set to 600,000, with the learning rate ini-

tialized as 5 × 10−5 and reduced by half at [150,000, 300,000, and 450,000]. On the GF6SRD 

dataset, total training iterations are set to 311,920, with the learning rate initialized as 5 × 

10−5 and reduced by half at [77,980, 155,960, and 233,940]. The batch size is set to one, and 

models are optimized by the Charbonnier loss [39]. Adam optimizer is employed in all 

models. 
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For evaluation, the widely used peak signal-to-noise ratio (PSNR), structural similar-

ity index (SSIM), and learned perceptual image patch similarity (LPIPS) [45] are adopted. 

All SR models were trained using the PyTorch framework on an Ubuntu 20.04.2 machine 

with A100-PCIE-40GB GPU. 

4.2. Comparison Studies 

4.2.1. Comparison Studies on the Simulated AID Dataset 

Quantitative Results: On the simulated AID dataset, Table 3 shows the quantitative 

comparison of our approaches and the state-of-the-art methods, including CNN-based 

methods, such as the FSRCNN [13], EDSR [15], and HAN [18], and transformer-based 

methods, such as the SwinIR [16], SwinIR-NG [26], HAT [25], RGT [27], and TTST [29]. 

Since the input image resolution is 256 × 256 pixels in this study, which differs from the 

common 64 × 64 pixels, the original versions of some transformer models mentioned 

above cannot be directly run due to GPU memory limitations. Meanwhile, to be consistent 

with our DESAT, the number of channels of all transformer models is set to 96, except for 

our DESAT-S, and the number of transformer blocks is set to 24. Only our DESAT-S model 

has the number of channels set to 64 as illustrated in Section 4.1.2. 

The quantitative results on the simulated AID dataset show that our DESAT signifi-

cantly outperforms the other approaches on this dataset. Concretely, the DESAT surpasses 

the best transformer-based method, the HAT, by 0.09 dB and outperforms the best CNN-

based method, the HAN, by 0.05 dB, with much lower parameters and computations. Ad-

ditionally, our smaller version, the DESAT-S, outperforms the HAT by 0.03 dB with even 

fewer parameters and computations. Furthermore, the DESAT shows an advantage in per-

ceptual quality, achieving the lowest LPIPS score (0.0906) among all models, with reduc-

tions of 0.0005 and 0.0018 relative to the HAN and HAT, respectively. These results un-

derscore the effectiveness of the DSAB and AEUB modules in enhancing perceptual and 

texture feature representation, particularly highlighting the advantages of our proposed 

distance-enhanced strip attention mechanism over the channel attention employed in the 

HAT. 

To further evaluate SR performance across different land cover classes on the AID 

dataset, we analyzed the top six models. Table 4 presents the quantitative results of these 

models for 30 different land cover classes on the AID dataset. The DESAT achieves the 

best SR performance in 29 of the 30 land cover classes. Compared with the second-best 

model, the HAN, the DESAT shows a maximum improvement of 0.14 dB in PSNR and 

0.0004 in SSIM. Furthermore, our smaller version, the DESAT-S, also performs compara-

bly to the HAN, while being much more resource efficient. 

Table 3. Quantitative comparison with state-of-the-art methods on the simulated AID dataset. The 

top three results are marked in red bold, blue bold and green bold (the “↑” indicates that a larger 

value for this metric is better, while the “↓” indicates that a smaller value for this metric is better). 

Method PSNR (dB)↑ SSIM↑ LPIPS↓ Params FLOPs Memory 

CNN-based 

FSRCNN 38.97  0.9712 0.1099 0.01 M 0.93 G 1690 MB 

EDSR 41.09  0.9781 0.0922 40.73 M 2669.44 G 8098 MB 

HAN 41.19  0.9784 0.0911 15.92 M 1035.53 G 13,054 MB 

Transformer- 

based 

SwinIR 41.09  0.9780 0.0929 2.42 M 160.11 G 11,558 MB 

SwinIR-NG 41.12  0.9781 0.0924 2.82 M 149.26 G 12,270 MB 

HAT 41.15  0.9782 0.0924 4.06 M 267.45 G 15,662 MB 

RGT 41.04  0.9778 0.0930 2.14 M 128.46 G 15,930 MB 

TTST 40.95  0.9775 0.0934 4.93 M 323.83 G 36,629 MB 

DESAT-S (ours) 41.18  0.9783 0.0916 3.03 M 207.43 G 15,962 MB 

DESAT (ours) 41.24  0.9785 0.0906 6.39 M 429.56 G 21,430 MB 
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Table 4. Quantitative comparison of 30 land cover classes on the simulated AID dataset. The top 

two results are marked in red bold and blue bold. 

Land Cover 
EDSR HAN SwinIR-NG HAT DESAT-S DESAT 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Airport 41.59  0.9793  41.69  0.9795  41.60  0.9791  41.64  0.9792  41.66  0.9793  41.72  0.9796  

Bare Land 44.25  0.9811  44.27  0.9812  44.27  0.9811  44.27  0.9811  44.29  0.9812  44.31  0.9813  

Baseball Field 41.56  0.9759  41.63  0.9761  41.57  0.9759  41.59  0.9759  41.62  0.9760  41.66  0.9762  

Beach 42.93  0.9771  43.02  0.9773  43.02  0.9773  43.03  0.9773  43.05  0.9774  43.08  0.9775  

Bridge 42.48  0.9784  42.56  0.9787  42.51  0.9785  42.54  0.9785  42.56  0.9786  42.61  0.9788  

Center 40.18  0.9780  40.36  0.9784  40.27  0.9781  40.32  0.9782  40.33  0.9783  40.43  0.9785  

Church 38.69  0.9744  38.90  0.9749  38.79  0.9745  38.85  0.9747  38.86  0.9748  38.94  0.9751  

Commercial 40.99  0.9817  41.10  0.9820  41.07  0.9818  41.12  0.9819  41.15  0.9820  41.22  0.9822  

D-Residential 38.78  0.9779  38.97  0.9786  38.86  0.9781  38.92  0.9783  38.94  0.9784  39.01  0.9787  

Desert 44.69  0.9803  44.72  0.9804  44.73  0.9804  44.74  0.9804  44.76  0.9805  44.79  0.9806  

Farmland 42.83  0.9755  42.88  0.9758  42.83  0.9755  42.84  0.9755  42.87  0.9756  42.91  0.9758  

Forest 40.51  0.9735  40.55  0.9737  40.55  0.9736  40.54  0.9736  40.57  0.9737  40.61  0.9739  

Industrial 39.84  0.9796  39.98  0.9801  39.88  0.9796  39.94  0.9798  39.96  0.9799  40.04  0.9802  

Meadow 43.10  0.9710  43.11  0.9710  43.10  0.9709  43.11  0.9709  43.12  0.9710  43.15  0.9712  

M-Residential 38.80  0.9711  38.97  0.9716  38.88  0.9713  38.91  0.9713  38.93  0.9714  39.00  0.9717  

Mountain 41.68  0.9784  41.71  0.9785  41.72  0.9785  41.72  0.9785  41.74  0.9786  41.78  0.9787  

Park 40.52  0.9779  40.59  0.9782  40.55  0.9780  40.57  0.9780  40.61  0.9782  40.66  0.9784  

Parking 39.80  0.9833  39.97  0.9836  39.83  0.9833  39.92  0.9835  39.92  0.9835  40.04  0.9838  

Playground 41.27  0.9758  41.36  0.9760  41.29  0.9757  41.31  0.9757  41.34  0.9759  41.40  0.9761  

Pond 42.00  0.9795  42.06  0.9797  42.02  0.9795  42.04  0.9795  42.06  0.9796  42.10  0.9798  

Port 41.13  0.9829  41.29  0.9832  41.19  0.9830  41.24  0.9831  41.25  0.9831  41.31  0.9833  

Railway 40.54  0.9800  40.62  0.9803  40.51  0.9798  40.55  0.9799  40.58  0.9801  40.64  0.9803  

Resort 40.33  0.9792  40.49  0.9798  40.42  0.9794  40.46  0.9795  40.47  0.9796  40.52  0.9798  

River 41.15  0.9730  41.20  0.9732  41.17  0.9730  41.17  0.9730  41.20  0.9731  41.24  0.9733  

School 39.39  0.9791  39.51  0.9795  39.45  0.9792  39.48  0.9793  39.51  0.9794  39.58  0.9797  

S-Residential 39.13  0.9686  39.24  0.9691  39.20  0.9689  39.21  0.9688  39.24  0.9690  39.28  0.9692  

Square 40.67  0.9793  40.78  0.9796  40.75  0.9795  40.77  0.9795  40.81  0.9797  40.93  0.9800  

Stadium 40.95  0.9811  41.11  0.9815  40.92  0.9808  40.98  0.9809  41.00  0.9811  41.10  0.9814  

Storage Tanks 39.72  0.9772  39.89  0.9776  39.75  0.9771  39.80  0.9773  39.81  0.9773  39.89  0.9776  

Viaduct 40.82  0.9785  40.89  0.9787  40.77  0.9782  40.81  0.9784  40.84  0.9785  40.93  0.9790  

Visual Results: Figure 6 provides visual comparisons on the simulated AID dataset. 

In Figure 6a, for the image “square_229”, the DESAT is the only model that correctly re-

constructs the path and alignment of the sidewalks. In contrast, other approaches distort 

the lateral distribution of the sidewalks into an oblique distribution. Figure 6b shows the 

results for the image “industrial_137”. The DESAT accurately recovers the regular texture 

of densely arranged buildings, while the other approaches exhibit varying levels of arti-

facts and blurring. In summary, compared with all comparison methods, the DESAT has 

a more robust texture reconstruction ability, making it the only approach to restore the 

sidewalk arrangement correctly, and the DESAT also has a clearer reconstruction result 

for local spatial details. These visual results further validate the DESAT’s strong perfor-

mance on the simulated AID dataset. 
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Figure 6. Visual comparisons on the simulated AID dataset (the red box represent the zoomed 

area. And (a) represent the visual results of image “square_229”, while (b) represent the visual 

results of image “industrial_137”). 
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4.2.2. Comparison Studies on the Proposed Real-World GF6SRD Dataset 

Quantitative Results: On our real-world GF6SRD dataset, Table 5 presents the quan-

titative results of the DESAT compared with the models discussed in Section 4.2.1. The 

DESAT significantly outperforms all the comparison models on the real-world GF6SRD 

dataset, showing an improvement of 1.17 dB in PSNR and 0.0090 in SSIM over the best 

comparison model TTST. Additionally, in perceptual evaluations, the DESAT achieves the 

lowest LPIPS among all models, with reductions of 0.0153 relative to the best comparison 

model EDSR. For the smaller version, the DESAT-S, also exceeds all comparison models, 

outperforming TTST by 0.36 dB in PSNR and 0.0035 in SSIM. 

Compared to the SR performance on the simulated AID dataset, the DESAT shows 

enhanced competitiveness and substantial performance improvement on the real-world 

GF6SRD dataset. This highlights the model’s effectiveness in the more challenging real-

world cross-sensor super-resolution tasks, where the introduction of a distance-enhanced 

strip attention mechanism and attention-enhanced upsample module are particularly ben-

eficial. These results underscore the strong potential of the DESAT for remote sensing en-

gineering applications. 

Table 5. Quantitative comparison with state-of-the-art methods on the real-world GF6SRD dataset. 

The top three results are marked in red bold, blue bold and green bold (the “↑” indicates that a larger 

value for this metric is better, while the “↓” indicates that a smaller value for this metric is better). 

Method PSNR (dB)↑ SSIM↑ LPIPS↓ Params FLOPs Memory 

CNN-based 

FSRCNN 30.81  0.8370 0.4383 0.02 M 1.23 G 1690 MB 

EDSR 33.36  0.9370 0.1654 40.74 M 2670.80 G 8098 MB 

HAN 32.98  0.9328 0.1844 15.93 M 1035.87 G 13,054 MB 

Transformer- 

based 

SwinIR 33.18  0.9326 0.1887 2.42 M 160.55 G 11,296 MB 

SwinIR-NG 33.34  0.9302 0.1897 2.83 M 149.77 G 12,270 MB 

HAT 33.35  0.9346 0.1794 4.07 M 267.88 G 15,662 MB 

RGT 33.04  0.9313 0.1831 2.15 M 128.90 G 15,930 MB 

TTST 33.57  0.9341 0.1769 4.94 M 324.27 G 36,667 MB 

DESAT-S (ours) 33.93  0.9376 0.1621 3.04 M 207.78 G 15,962 MB 

DESAT (ours) 34.74  0.9431 0.1501 6.42 M 430.00 G 21,430 MB 

Visual Results: Figures 7–9 display visual comparisons on the GF6SRD dataset, show-

ing WFV-PMS image pairs alongside SR results from the DESAT and comparison models. 

All images are displayed using false colors for bands 4, 3, and 2. Due to differences in 

sensor characteristics, the WFV and PMS images exhibit spectral discrepancies, leading to 

color variations under the same color stretch. 

In Figure 7a, the DESAT reconstructs the arc outline of the outer runway and the 

square outline of the inner lawn with greater accuracy than other models. It also produces 

more accurate color predictions for the lawn and runway. Figure 7b demonstrates that the 

DESAT provides the most precise reconstruction of the small water body in the lower-left 

corner of the dam, including its boundary. 

Figure 8 shows that the DESAT achieves the most accurate color representation and 

the clearest texture reconstruction of buildings compared to other models. Figure 9 illus-

trates that the DESAT effectively predicts the internal voids of buildings and the trans-

verse distribution of multiple rectangular structures while providing the most accurate 

color representation. 

These visual results demonstrate that the DESAT significantly outperforms all com-

parison methods in color accuracy and spatial detail reconstruction. It also proves that the 

DESAT can produce high-quality super-resolution images with better quantitative metrics 

and visual effects than other approaches in challenging real-world remote sensing super-

resolution tasks. 
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Figure 7. Visual comparisons on two WFV-PMS image pairs shot on 29 September 2023 (the green 

box represent the zoomed area. And (a,b) represent the visual results of two different areas shot 

on 29 September 2023, respectively). 
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Figure 8. Visual comparisons on a WFV-PMS image pair shot on 22 January 2023. 

 

Figure 9. Visual comparisons on a WFV-PMS image pair shot on 9 November 2023. 

4.3. Ablation Experiments 
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4.3.1. The Effects of the DSAB and AEUB 

To assess the effectiveness of the proposed distance-enhanced strip attention block 

(DSAB) and attention-enhanced upsample block (AEUB), we conducted a series of abla-

tion experiments. Table 6 presents the quantitative results on both the simulated AID da-

taset and the real-world GF6SRD dataset. The baseline model is created by replacing 

DSABs with HABs and using the pixel shuffle layer instead of our AEUB for reconstruc-

tion. And the baseline model also includes the OCABs like the DESAT. 

On the AID dataset, the inclusion of DSAB results in a performance improvement of 

0.06 dB, while adding the AEUB leads to a gain of 0.07 dB. Moreover, incorporating DSAB 

and AEUB together results in a further performance enhancement of 0.09 dB for the pro-

posed DESAT. 

On the GF6SRD dataset, the impact of the DSAB and AEUB is even more pronounced. 

The addition of DSAB alone raises PSNR by 0.86 dB, while the AEUB contributes a 0.74 

dB gain. When combined, the DSAB and AEUB achieve an overall improvement of 1.39 

dB in PSNR and 0.0085 increase in SSIM. This substantial enhancement underscores the 

effectiveness of the DSAB and AEUB in handling the complexities of cross-sensor scenar-

ios in real-world remote sensing super-resolution tasks, where spatial and spectral infor-

mation must be accurately reconstructed. 

These results demonstrate that both the DSAB and the AEUB enhance the DESAT’s 

performance across different datasets, with particularly strong effects observed in chal-

lenging real-world datasets like GF6SRD. 

Table 6. Ablation studies of the proposed DSAB and AEUB on the simulated AID dataset. 

Model 
AID GF6SRD 

PSNR  SSIM PSNR SSIM 

Baseline 41.15 0.9782 33.35 0.9346 

DSAB 41.21 0.9784 34.21 0.9377 

AEUB 41.22 0.9784 34.09 0.9386 

DSAB + AEUB 41.24 0.9785 34.74 0.9431 

4.3.2. The Effects of Distance-Enhanced Attention 

To evaluate the impact of the distance-enhanced attention mechanism, we compared 

the DESAT using this mechanism with a version utilizing traditional attention. Table 7 

shows the quantitative results on both the AID and GF6SRD datasets. On the AID dataset, 

the introduction of distance-enhanced attention results in a 0.04 dB increase in PSNR. On 

the more complex real-world GF6SRD dataset, the distance-enhanced attention mecha-

nism achieves a substantial improvement of up to 0.73 dB over traditional attention. 

These results demonstrate that our distance-enhanced attention effectively integrates 

distance prior to the traditional window self-attention mechanism, leading to significant 

performance gains, especially in challenging real-world super-resolution tasks. 

Table 7. Ablation studies of the distance-enhanced attention mechanism on two datasets. 

Module 
AID GF6SRD 

PSNR  SSIM PSNR SSIM 

Traditional Attention 41.20  0.9784 34.01  0.9389 

Distance-enhanced Attention 41.24  0.9785 34.74  0.9431 

4.4. Interpretations with Local Attribution Maps 

To further interpret the performance improvements of our model, we visualized local 

attribution maps [46] (LAM) for several state-of-the-art models. LAM utilizes the inte-

grated gradients to interpret SR networks by highlighting contributing pixels and acti-

vated regions for reconstruction within the selected local image patch. It provides two 
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outputs: attribution maps, showing pixels that contribute significantly to local texture re-

construction; and activated regions, reflecting the model’s receptive field. 

Figure 10 illustrates the LAM results for different models on the AID dataset, reveal-

ing the receptive field size as indicated by the activated region. These results indicate that 

the CNN-based method, the HAN, has a slightly larger activated region compared to 

EDSR, correlating with the HAN’s superior SR performance. Similarly, the transformer-

based method, the HAT, shows a larger activated region than SwinIR, aligning with its 

better performance than SwinIR. Meanwhile, our DESAT exhibits a modestly larger acti-

vated region than that of the HAT, reflecting an expanded receptive field due to the DSAB 

and AEUB. This expanded receptive field improves the DESAT’s ability to capture spatial 

dependencies and reconstruct detailed textures, as shown by its superior quantitative and 

qualitative performance over the HAT. These results reinforce findings from previous 

studies [25,28] that correlate receptive field size with super-resolution effectiveness, un-

derscoring the positive impact of DSAB and AEUB on the DESAT’s performance. 

 

Figure 10. Local attribution maps (LAM) results for different models in the AID dataset (the red box 

represents the selected local image patch, and the green box represents the zoomed area). 

4.5. Spectral Validations 
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Accurate reconstruction of spectral characteristics is crucial for super-resolution re-

mote sensing images as it directly impacts their effectiveness in various applications. Be-

yond capturing spatial textures, a model’s ability to learn and accurately transform spec-

tral information across different sensors is essential, especially in real-world cross-sensor 

super-resolution tasks. On our GF6SRD dataset, the SR model must address differences 

in spectral characteristics and color variations between WFV and PMS images due to their 

distinct imaging processes. 

To evaluate the DESAT’s ability to transform spectral information, we compared the 

spectral values of target PMS images with the SR images generated by the DESAT. Specif-

ically, we analyzed all test WFV-PMS image pairs captured on 29 September 2023, per-

forming a detailed comparison of spectral values across all bands. R-squared coefficients 

were employed to quantify the spectral similarity between the SR and PMS images. 

Figure 11 shows a scatter plot of the spectral values from 200,000 randomly selected 

pixels in these WFV-PMS image pairs. The R-squared coefficients for each band are above 

0.95, indicating that the spectral characteristics of the SR images closely match those of the 

target PMS images. 

Additionally, Figure 12 provides visual examples of spectral performance across var-

ious land cover categories, including vegetation, urban, water, and bare areas. For each 

land cover type, we selected representative points to plot spectral curves for the WFV im-

age, the PMS image, and the DESAT-generated SR image. These visual examples highlight 

the DESAT’s ability to accurately transform spectral information across diverse land cover 

categories. 

Overall, these results confirm that the DESAT effectively learns and transforms spec-

tral characteristics in real-world cross-sensor super-resolution tasks, maintaining con-

sistency in spectral information across different sensors. 

 

Figure 11. Spectral value comparisons in each band between the SR images and the PMS images 

(the x-axis represents the PMS values, and the y-axis represents the SR values). 
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Figure 12. Visual examples of different land cover types in WFV images, SR images, and PMS im-

ages, along with the representative spectral curves (zoom in for a better view). 

4.6. Migration Experiments 

To evaluate the generalization capability of the DESAT, we conducted migration ex-

periments by applying the DESAT, trained on the GF6SRD dataset, to WFV images cap-

tured by the Gaofen-6 satellite in regions and periods not included in the original dataset. 

The WFV images were divided into image patches of 256 × 256 pixels, which the DESAT 

processed to generate SR patches. These patches were then merged to create a wide-field 

SR image with the same resolution and spectral characteristics as PMS images. 

Figure 13 presents the visual results from these migration tests. As illustrated, the SR 

images generated by the DESAT display sharper and more detailed local textures than the 

original WFV images, indicating the DESAT’s strong generalization across regions and 

times. 

To further quantify migration effectiveness, we employed two no-reference metrics: 

average gradient (AG) and spatial frequency (SF). With no ground-truth PMS images 

available for migration experiments, AG and SF provide insights by quantifying spatial 

detail and sharpness retained in SR images. These metrics are essential in assessing the SR 

results’ practical value in remote sensing, where higher values generally indicate better 

spatial information and texture fidelity. 

Table 8 presents the AG and SF metrics for DESAT-generated SR results versus bicu-

bic-interpolated WFV images. The DESAT shows an AG increase of 12.55 and an SF im-

provement of 27.04 over bicubic interpolation. This indicates the DESAT’s ability to en-

hance and preserve spatial detail in migration scenarios, confirming its applicability in 

real-world SR applications across diverse conditions. 

Table 8. Quantitative evaluation of migration effectiveness: AG and SF metrics for DESAT vs. bicu-

bic interpolation on WFV images. 

Method AG↑ SF↑ 

Bicubic Interpolation 17.53 34.19 

SR Results from DESAT 30.08 61.23 
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Figure 13. The overviews and local details of the WFV image and the super-resolution results. 

5. Discussion 

In this study, we construct a real-world cross-sensor super-resolution dataset, 

GF6SRD, and propose the DESAT to address the limitations of existing SR methods. Ex-

perimental results demonstrate that the DESAT shows competitive performance in both 

simulated and real-world super-resolution tasks. The discussion integrating these results 

with theoretical analysis is as follows. 

5.1. Impact of DSAB and AEUB 

Ablation studies (Section 4.3.1) show that incorporating the DSAB and AEUB effec-

tively enhances SR performance. Theoretically, the strip window attention mechanism in 

the DESAT extends the receptive field while maintaining computational efficiency. Com-

pared to the pixel shuffle layer, the larger window size in AEUB (set to 8) further extends 

the receptive field. This is supported by the LAM results (Section 4.4), which show that 

the DESAT has a bigger activated region and achieves a larger receptive field. Furthermore, 

the distance-enhanced attention mechanism successfully integrates distance priors into 

traditional attention (Section 4.3.2), leading to performance improvements, particularly in 

real-world tasks. 

5.2. Comparison with Other Models 

The DESAT outperforms CNN-based models like the EDSR and HAN in SR perfor-

mance while offering lower computational costs. Compared to transformer-based models 

such as SwinIR, SwinIR-NG, and RGT, the DESAT provides significant performance im-

provements. Additionally, our smaller version, the DESAT-S, also surpasses transformer-
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based models like the HAT and TTST with fewer parameters and lower computational 

demands. Notably, compared to its performance on simulated datasets, the DESAT shows 

greater advancements on more challenging cross-sensor super-resolution tasks, where it 

demonstrates superior spectral fidelity and spatial detail reconstruction. The significant 

spectral and spatial differences between PMS and WFV images in the cross-sensor 

GF6SRD dataset pose a challenge to traditional SR models, which the DESAT addresses 

effectively by leveraging distance priors through its enhanced attention mechanism. 

5.3. Performance on Super-Resolution Tasks with Higher Magnification Rates (×4) 

To further assess the DESAT’s capabilities, we conducted additional4× super-resolu-

tion experiments on the simulated AID dataset, comparing the DESAT with other strong 

models, including the HAN, SwinIR-NG, and HAT. As illustrated in Table 9, the DESAT 

consistently demonstrates competitive performance, outperforming all comparison mod-

els at the 4× magnification rate. Concretely, the DESAT surpasses the transformer-based 

method, the HAT, by 0.06 dB in PSNR and 0.0012 in SSIM, while the DESAT also outper-

forms the CNN-based method, the HAN, by 0.06 dB in PSNR and 0.0008 in SSIM with 

much lower parameters and computations. Additionally, the DESAT also shows an ad-

vantage in perceptual quality, achieving the lowest LPIPS (0.2658) among all models, with 

reductions of 0.0025 and 0.0010 relative to the HAT and HAN, respectively. These results 

support the DESAT’s adaptability and effectiveness at higher magnification rates, demon-

strating its great potential for remote sensing super-resolution applications. 

Table 9. Comparison of 4× super-resolution results on the simulated AID dataset. 

Method PSNR↑ SSIM↑ LPIPS↓ 

HAN 31.91 0.8771 0.2668 

SwinIR-NG 31.89 0.8758 0.2684 

HAT 31.91 0.8767 0.2685 

DESAT (ours) 31.97 0.8779 0.2658 

However, our real-world GF6SRD dataset was constructed specifically for 2× super-

resolution tasks to accurately simulate the complex degradation in real-world remote 

sensing imagery using native-resolution images from different sensors. Thus, this dataset 

is only of practical significance and application value in the 2× super-resolution tasks. For 

future work, we will construct real-world cross-sensor datasets that support higher mag-

nification rates, allowing for a further evaluation of the DESAT’s performance in real-

world high-magnification super-resolution tasks. 

5.4. Potential of the AEUB on Non-Integer Scale Super-Resolution Tasks 

Most SR models focus on integer scaling factors, which limits flexibility in real-world 

applications that often require non-integer scaling. For example, in a real-world remote 

sensing super-resolution task, the multispectral image of the Gaofen-7 satellite with a spa-

tial resolution of 3.2 m is used as the HR image, and the PMS image of the Gaofen-6 satel-

lite with a spatial resolution of 8 m is used as the LR image. This super-resolution task 

requires a 2.5× upsampling factor. However, traditional models, including those in Section 

4, are constrained to integer scales due to their reliance on the pixel shuffle layer. 

The attention branch of AEUB has the potential to overcome this by supporting non-

integer scaling through an innovative spatially repeated sampling technique. In our ap-

proach, the desired upsampling ratio, α, can be adjusted by setting the window overlap 

ratio, 𝛽 = 1-1/α. Following the process described in Section 3.2.3, our approach divides 

input features into overlapping windows, applies distance-enhanced attention to each 

window, and then merges the results without overlap to create high-resolution outputs at 

the desired scales. 
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This design demonstrates the potential of AEUB for non-integer scale super-resolu-

tion, suggesting its applicability to real-world remote sensing image resolution tasks re-

quiring various scaling factors. While the pixel branch in AEUB, which uses the pixel shuf-

fle layer, is optimized for integer scaling, future work will explore ways to further enhance 

its adaptability for non-integer scales, broadening AEUB’s applicability across a wider 

range of upscaling needs. 

5.5. Limitations of the Study 

First, although the GF6SRD dataset reduces geometric errors by using two sensors 

from a single satellite, some WFV-PMS image pairs still exhibit geometric errors within 

two pixels. This may slightly affect the dataset’s effectiveness for remote sensing SR ap-

plications. Second, while the DSAB significantly enhances performance, it also increases 

computational complexity. To address this, DSABs and HABs are used in combination 

within the DESAT to balance performance and efficiency. Future work will focus on de-

veloping a lightweight DSAB that can maintain performance while reducing computa-

tional demands. 

6. Conclusions 

In this study, we propose a distance-enhanced strip attention transformer for remote 

sensing super-resolution to address critical limitations of the existing SR methods. To bet-

ter capture spatial correlations between ground objects, we designed a distance-enhanced 

strip attention block (DSAB), which incorporates the first law of geography by integrating 

distance prior into a strip window attention mechanism. This approach allows the DESAT 

to more accurately reconstruct spatial textures with spatial correlations while expanding 

its receptive field. Additionally, to address bottlenecks caused by traditional upsample 

modules, we proposed an attention enhance upsample block (AEUB), which combines the 

pixel shuffle layer with overlapping window distance-enhanced attention, effectively 

transferring deep features into HR outputs. We further introduced a real-world cross-sen-

sor super-resolution dataset, GF6SRD, constructed with PMS and WFV imagery from the 

Gaofen-6 satellite. This high-quality dataset provides a valuable resource for remote sens-

ing applications. 

Comparison experiments on both the simulated AID dataset and the real-world 

GF6SRD dataset show that the DESAT achieves competitive results, with substantial im-

provements on the GF6SRD dataset, outperforming state-of-the-art SR methods in both 

quantitative and qualitative evaluations. This demonstrates the DESAT’s effectiveness, 

particularly in challenging real-world scenarios where traditional methods often encoun-

ter limitations. Spectral validation experiments further highlight the DESAT’s strong ca-

pability in learning and transforming spectral information, while migration studies con-

firm its robust generalization across different geographic regions and time periods. Future 

research will focus on developing lightweight SR models and constructing hybrid SR da-

tasets incorporating imagery from various satellites, further enhancing the applicability 

of super-resolution techniques across a broader range of remote sensing tasks. 
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