Vibration Energy Harvester Based on Bilateral Periodic One-Dimensional Acoustic Black Hole
Abstract
:1. Introduction
2. VEH Integrated with Bilateral Periodic 1D ABH
2.1. Structure of VEH
2.2. Operation Principle of VEH
2.3. Dynamic Modeling of ABH Beam
3. Simulation and Analysis
3.1. Structure and Material
3.2. Simulation of VEH with ABHs
3.2.1. Natural Frequency of ABH Beams
3.2.2. Transient Response under Gaussian Pulse
3.2.3. Analysis in Frequency Domain
4. Experimental Test
4.1. Experimental System
4.2. Results and Discussion
4.2.1. Output Voltage of VEH with ABH
4.2.2. Optimal Impedance Matching of VEH with ABH
4.2.3. Transient Voltage Response Test of VEH with ABH
5. Conclusions
- (1)
- After the best impedance matching is completed: the output power of the traditional VEH reaches 33.63 mW, that of VEH Model 1 can reach 35.62 mW, that of VEH Model 2 can reach 75.01 mW and that of VEH Model 3 can reach 91.52 mW.
- (2)
- Under the same external conditions: the output voltage of the traditional VEH reaches 84.78 V, that of VEH Model 1 can reach 88.36 V, that of VEH Model 2 can reach 137.58 V and that of VEH Model 3 can reach 169.16 V.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Order Number/Structure | Traditional | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|
1 (Hz) | 18.143 | 18.183 | 16.446 | 15.222 |
2 (Hz) | 144.95 | 149.64 | 120.74 | 110.51 |
3 (Hz) | 643.7 | 657.18 | 388.83 | 353.96 |
4 (Hz) | 1368.3 | 1452.7 | 833.02 | 750.32 |
Order Number/Structure | Traditional | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|
1 (Hz) | 20 | 20 | 18 | 17 |
Output voltage (V) | 4.08 | 5.83 | 7.82 | 9.36 |
2 (Hz) | 153 | 146 | 140 | 130 |
Output voltage (V) | 8.48 | 10.52 | 22.08 | 29.21 |
3 (Hz) | 595 | 603 | 403 | 395 |
Output voltage (V) | 0.86 | 1.14 | 5.34 | 6.89 |
4 (Hz) | 900 | 900 | 800 | 780 |
Output voltage (V) | 0.06 | 0.07 | 0.63 | 4.3 |
References
- Bosso, N.; Magelli, M.; Zampieri, N. Application of low-power energy harvesting solutions in the railway field: A review. Veh. Syst. Dyn. 2021, 59, 841–871. [Google Scholar] [CrossRef]
- Chen, F.; Yang, C.; Guo, Z.; Wang, Y.; Ma, X. A Magnetically Controlled Current Transformer for Stable Energy Harvesting. IEEE Trans. Power Deliv. 2022, 38, 212–221. [Google Scholar] [CrossRef]
- Li, Z.; Yan, Z.; Luo, J.; Yang, Z. Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration. Energy Convers. Manag. 2019, 179, 132–140. [Google Scholar] [CrossRef]
- Li, Y. Design and Implementation of Electrostatic Energy Harvesters with Green Nanomaterials. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2018. [Google Scholar]
- Yang, Y.; Wang, S.; Stein, P.; Xu, B.X.; Yang, T. Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: Analysis and identification of optimal structural parameters. Smart Mater. Struct. 2017, 26, 045011. [Google Scholar] [CrossRef]
- Qi, L.; Pan, H.; Pan, Y.; Luo, D.; Yan, J.; Zhang, Z. A review of vibration energy harvesting in rail transportation field. Iscience 2022, 25, 103849. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Doaré, O.; Touzé, C.; Pelat, A.; Gautier, F. Energy harvesting efficiency of unimorph piezoelectric acoustic black hole cantilever shunted by resistive and inductive circuits. Int. J. Solids Struct. 2022, 238, 111409. [Google Scholar] [CrossRef]
- Krylov, V.V. New type of vibration dampers utilising the effect of acoustic ‘black holes’. Acta Acust. United Acust. 2004, 90, 830–837. [Google Scholar]
- Gao, N.; Wang, B.; Lu, K.; Hou, H. Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure. Appl. Acoust. 2021, 177, 107906. [Google Scholar] [CrossRef]
- Gao, N.; Wei, Z.; Hou, H.; Krushynska, A.O. Design and experimental investigation of V-folded beams with acoustic black hole indentations. J. Acoust. Soc. Am. 2019, 145, EL79–EL83. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Wei, Z.; Zhang, R.; Hou, H. Low-frequency elastic wave attenuation in a composite acoustic black hole beam. Appl. Acoust. 2019, 154, 68–76. [Google Scholar] [CrossRef]
- Deng, J.; Guasch, O.; Zheng, L.; Song, T.; Cao, Y. Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting. J. Sound Vib. 2021, 494, 115790. [Google Scholar] [CrossRef]
- Zhao, L.; Conlon, S.C.; Semperlotti, F. Broadband energy harvesting using acoustic black hole structural tailoring. Smart Mater. Struct. 2014, 23, 065021. [Google Scholar] [CrossRef]
- Ji, H.; Liang, Y.; Qiu, J.; Cheng, L.; Wu, Y. Enhancement of vibration based energy harvesting using compound acoustic black holes. Mech. Syst. Signal Process. 2019, 132, 441–456. [Google Scholar] [CrossRef]
- Du, X.; Fu, Q.; Zhang, J.; Zong, C. Numerical and Experimental Study on Suppression Effect of Acoustic Black Hole on Vibration Transmission of Refrigerator Compressor. Appl. Sci. 2021, 11, 8622. [Google Scholar] [CrossRef]
- Liang, H.; Liu, X.; Yuan, J.; Bao, Y.; Shan, Y.; He, T. Influence of Acoustic Black Hole Array Embedded in a Plate on Its Energy Propagation and Sound Radiation. Appl. Sci. 2022, 12, 1325. [Google Scholar] [CrossRef]
- Lyu, X.; Ding, Q.; Ma, Z.; Yang, T. Ultra-Wide Bandgap in Two-Dimensional Metamaterial Embedded with Acoustic Black Hole Structures. Appl. Sci. 2021, 11, 11788. [Google Scholar] [CrossRef]
- Sun, J.Q. Vibration and sound radiation of non-uniform beams. J. Sound Vib. 1995, 185, 827–843. [Google Scholar] [CrossRef]
- Wagg, D.; Neild, S. Nonlinear Vibration with Control; Springer: New York, NY, USA, 2010. [Google Scholar]
- Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; Wiley: New York, NY, USA, 1995. [Google Scholar]
Parameter | Traditional ABH | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|
xL | 290 mm | |||
hm | 10 mm | |||
b | 20 mm | |||
ε | 0.00546 | 0.00273 | 0.01525 | 0.05125 |
m | 2 | |||
xt | 12 mm | |||
ht | 1.7 mm | |||
lm | 8 mm | |||
xA | 90 mm | |||
xE | 40 mm | |||
xu | 30 mm |
Parameter | AlSi10Mg | Iron | PZT-5H |
---|---|---|---|
Young’s modulus (GPa) | 74.01 | 200 | 60.61 |
Density (kg/m3) | 2790 | 7870 | 7500 |
Poisson’s ratio | 0.33 | 0.29 | 0.31 |
Damping loss factor | 0.02 | 0.03 | 0.31 |
Structure/Natural Frequency (Hz) | First | Second | ||||
---|---|---|---|---|---|---|
Simulation | Test | Deviation | Simulation | Test | Deviation | |
Traditional ABH | 18.1 | 20 | 9.5% | 144.9 | 153 | 5.3% |
Model 1 | 18.2 | 20 | 9.0% | 149.6 | 146 | 2.5% |
Model 2 | 16.4 | 18 | 8.9% | 120.7 | 140 | 13.8% |
Model 3 | 15.2 | 17 | 10.6% | 110.5 | 130 | 13.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, H.; Yang, C.; Sun, H.; Yuan, Y. Vibration Energy Harvester Based on Bilateral Periodic One-Dimensional Acoustic Black Hole. Appl. Sci. 2023, 13, 6423. https://doi.org/10.3390/app13116423
Zhang Z, Wang H, Yang C, Sun H, Yuan Y. Vibration Energy Harvester Based on Bilateral Periodic One-Dimensional Acoustic Black Hole. Applied Sciences. 2023; 13(11):6423. https://doi.org/10.3390/app13116423
Chicago/Turabian StyleZhang, Zihao, Hai Wang, Chunlai Yang, Hang Sun, and Yikai Yuan. 2023. "Vibration Energy Harvester Based on Bilateral Periodic One-Dimensional Acoustic Black Hole" Applied Sciences 13, no. 11: 6423. https://doi.org/10.3390/app13116423