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Abstract: Background: Accurate longitudinal risk prediction for DCI (delayed cerebral ischemia)
occurrence after subarachnoid hemorrhage (SAH) is essential for clinicians to administer appropriate
and timely diagnostics, thereby improving treatment planning and outcome. This study aimed to
develop an improved longitudinal DCI prediction model and evaluate its performance in predicting
DCI between day 4 and 14 after aneurysm rupture. Methods: Two DCI classification models were
trained: (1) a static model based on routinely collected demographics and SAH grading scores
and (2) a dynamic model based on results from laboratory and blood gas analysis anchored at the
time of DCI. A combined model was derived from these two using a voting approach. Multiple
classifiers, including Logistic Regression, Support Vector Machines, Random Forests, Histogram-
based Gradient Boosting, and Extremely Randomized Trees, were evaluated through cross-validation
using anchored data. A leave-one-out simulation was then performed on the best-performing models
to evaluate their longitudinal performance using time-dependent Receiver Operating Characteristic
(ROC) analysis. Results: The training dataset included 218 patients, with 89 of them developing
DCI (41%). In the anchored ROC analysis, the combined model achieved a ROC AUC of 0.73 ± 0.05
in predicting DCI onset, the static and the dynamic model achieved a ROC AUC of 0.69 ± 0.08
and 0.66 ± 0.08, respectively. In the leave-one-out simulation experiments, the dynamic and voting
model showed a highly dynamic risk score (intra-patient score range was 0.25 [0.24, 0.49] and 0.17
[0.12, 0.25] for the dynamic and the voting model, respectively, for DCI occurrence over the course
of disease. In the time-dependent ROC analysis, the dynamic model performed best until day 5.4,
and afterwards the voting model showed the best performance. Conclusions: A machine learning
model for longitudinal DCI risk assessment was developed comprising a static and a dynamic sub-
model. The longitudinal performance evaluation highlighted substantial time dependence in model
performance, underscoring the need for a longitudinal assessment of prediction models in intensive
care settings. Moreover, clinicians need to be aware of these performance variations when performing
a risk assessment and weight the different model outputs correspondingly.

Keywords: subarachnoid hemorrhage; brain ischemia; machine learning

1. Introduction
1.1. Delayed Cerebral Ischemia (DCI)

DCI occurs in up to one third of patients after aneurysmal subarachnoid hemor-
rhage [1] and doubles the risk of poor outcome [2]. The pathophysiology of DCI is multi-
factorial [3] and the prediction and timely detection especially in unconscious patients is
highly demanding.
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1.2. Tools for the Prediction of DCI

Prediction tools or scores, such as the VASOGRADE [4], currently used in clinical
practice are determined on admission and are thus static and do not account for the
dynamically changing factors that contribute to the development of DCI. Even in the awake
and thus clinically assessable patient, the onset of DCI is missed frequently [5]. In comatose
patients, however, clinicians must rely entirely on technical diagnostics such as Transcranial
Doppler (TCD), electroencephalography, invasive brain monitoring, CT angiography, CT
perfusion, and/or digital subtraction angiography [6]. All of these techniques have their
limitations. Some are invasive, examiner dependent, or require patient transport to imaging
units. In summary, there are major diagnostic gaps in the DCI time window ranging from
day 4 to 14 after initial hemorrhage.

1.3. Optimized Prediction through Machine Learning

Optimized, dynamic, and automated monitoring tools for prediction and detection of
DCI are therefore needed. Classical prediction scores for outcome and DCI have already
been improved in their performance by linking or adding further parameters and using
artificial intelligence (VASOGRADE [4]; SAHIT [7]; Nutshell-tool [8]). Still, most of the
available tools fall short in capturing the temporal dynamics of disease progression leading
to the occurrence of DCI. Several machine learning models for predicting DCI have already
been developed [9]. The majority of these models rely on features collected either immedi-
ately after or within the first few days following the cerebral event. These input features are
primarily derived from the abovementioned scores, as well as laboratory and physiological
parameters. As such, these models are based on single time-point assessments, without
accounting for the temporal progression of these features. Consequently, they also fail to
capture the individualized and dynamic nature of DCI development. As an exception to
be highlighted, Megjhani et al. generated an hourly risk score for DCI development from
routine vital signs and analyzed the anchored performance of the models [10].

1.4. Dynamic Prediction of DCI

Yet, the ability to accurately predict DCI occurrence on a longitudinal scale starting
at admission is pivotal for informed clinical decision-making. Thus, we aim to address
this gap by developing a longitudinal model taking advantage of static and dynamic
clinical parameters and to apply a time-dependent ROC analysis to investigate the varying
performance of the algorithm predicting DCI between day 4 and 14. Moreover, we aimed
to select machine learning models that provide explainability for medical professionals
through the use of visualization techniques.

2. Methods

The authors strictly adhered to the TRIPOD (transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis) and STROBE (strengthening the
reporting of observational studies in epidemiology) reporting guidelines.

2.1. Participants and Data Source

For this cohort study, we analyzed data prospectively collected from patients with
aneurysmal subarachnoid hemorrhage (aSAH) who were admitted to the neurosurgical in-
tensive care unit at the University Hospital of Zurich between October 2016 and November
2022. The data collection was carried out via a CNS data collector (Moberg ICU Solutions,
Ambler, PA, USA) and the high-resolution data were processed and stored by “ICU Cock-
pit”, our dedicated information technology infrastructure [11]. The study received approval
from the ethics committee of Kanton Zurich (Basec Nr. 2016-01101), Switzerland. Patients
were included in the study after written consent had been obtained from patients or their
legal representatives.
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2.2. Diagnostics and Treatment

Clinical management was based on the guidelines of the American Heart Associ-
ation [12,13]. Magnetic resonance imaging (MRI) or computed tomography (CT) scans
including CT angiography/perfusion were performed if patients met the following crite-
ria: delayed neurological deterioration (DND) defined as a >2-point change in Glasgow
Coma Scale (GCS) or a new focal neurological deficit lasting >1 h and not associated with
aneurysmal coiling or clipping [14]. Transcranial Doppler sonography with measurements
of mean blood flow velocities were performed daily. In unconscious or sedated patients,
multimodal neuromonitoring brain tissue oxygen measurements and cerebral microdialysis
were performed. In these patients, a decrease in ptiO2 <20 mmHg and/or an increase in the
lactate/pyruvate coefficient above 40 led to one of the abovementioned imaging techniques.
Hypertensive therapy was induced with DND and vasospasm in CT-angiography or CT
perfusion deficit, respectively, as first line therapy. If patients did not improve or worsened
neurologically, or if values from multimodal monitoring did not improve, neuroradiologi-
cal interventional therapy with intraarterial nimodipine instillation and/or percutaneous
balloon angioplasty was performed as second line therapy.

2.3. Prediction Target

The outcome, i.e., prediction target, was the first occurrence of delayed cerebral
ischemia (DCI). DCI was defined as new infarctions in MRI or CT scans, and/or a confirmed
perfusion deficit detected in perfusion CT or MRI between day 4 and day 14 after the onset
of symptoms (not present on imaging performed within 24 to 48 h after aneurysm occlusion
and not attributable to other causes). We focused only on the first occurrence of DCI
excluding any successive instances to avoid the consequent lack of explainability arising
from interfering, overlapping DCI symptoms, and predictors.

2.4. Predictors

The dataset comprised 30 laboratory findings and 15 values from blood gas analy-
sis, routinely measured in aSAH patients, as well as routinely collected demographics
consisting of age, gender, Glasgow Coma Scale, and comorbidities, such as diabetes, cardio-
vascular disease, and hypertension. Additionally, standard SAH gradings were considered,
including the Hunt and Hess scale, modified Fisher scale, World Federation of Neurosurgi-
cal Societies grading system, and the Barrow Neurological Institute grading scale [15–18].
Data used in this study were collected based on the ICU Cockpit IT infrastructure [11].

2.5. Pre-Processing and Missing Data

In a first step, the longitudinal data of each patient were individually aligned with
respect to the time of symptom onset and resampled to a sampling time of one per hour.
Forward filling was employed to address gaps in the resampled time series caused by the
intermittent data collection of laboratory and blood gas analysis results, thereby always
considering the latest value as the current value for each predictor.

Clinical data were acquired prospectively. In case of missing data, during retrospective
supplementation of the clinical data, care was taken that patients had a complete set of
patient characteristics and SAH gradings where possible. Moreover, by only including
commonly measured laboratory findings and blood gas analysis results as longitudinal
predictors, missing data could be kept to a minimum. Nonetheless, to allow for incomplete
predictor vectors also at time of prediction, all model pipelines evaluated in this study
included a simple median imputer as a pre-processing step.

2.6. Data Modeling

The modeling task was divided into two sub-tasks: modeling predictors that remained
constant after recording at admission and time-varying predictors that changed during
the ICU stay (i.e., laboratory findings, blood gas analysis results, with age as the only
exception). Separate groups of models were developed for each task and subsequently
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evaluated using 10-fold nested cross-validation. These two groups of models are referred
to as static and dynamic models, respectively. The cross-validation folds were stratified to
ensure equal DCI prevalence, and the stratification grouped the data in such a way that
information from a specific patient appeared only in a single fold. The primary metric used
for model evaluation was the area under the receiver operating characteristics curve (ROC
AUC), which was also utilized in the optimization procedures during model training.

For both groups of models, the modeling task was framed as a classification problem.
For static models, the task was to distinguish between patients that eventually experienced
a DCI from those that did not. For the dynamic models, the goal was to differentiate
between patients that would or would not experience a DCI during the subsequent 48 h.
For the latter, we used the first DCI event as an anchor following an approach presented
by Megjhani et al. [10]. For patients with no DCI event, the anchor was set to the median
time between symptom onset and first DCI occurrence, the latter calculated from patients
with DCI. Importantly, for each patient, we included all 48 data points (hourly predictor
vectors) leading up to the anchor in the development dataset. This was done to account for
the varying degree of variation in the dynamic predictor values over the considered 48 h
time window before the anchors.

The evaluated static models, i.e., models trained only on static predictors, comprised
Logistic Regression models with L1 and L2 penalty, Support Vector Classifier, Random
Forests, Extremely Randomized Trees, and Histogram-based Gradient Boosting Classifica-
tion Tree. For the Logistic Regression and Support Vector Classifier models, the predictors
were centered around zero and scaled to have unit variance. Class weights were adjusted
in ensemble models to balance the dataset. Furthermore, hyperparameter tuning was
performed and sequential feature selection was evaluated in comparison with a set of
baseline models based on default parameters and all predictors.

The dynamic models included Logistic Regression models, Extremely Randomized Trees,
and Histogram-based Gradient Boosting Classification Tree. As optimization routes, we
explored Principal Component Analysis (PCA), Feature Selection based on Gini-Importance
(FS from Model), and Recurrent Feature Elimination (RFE) in combination with hyperpa-
rameter tuning. Again, class weights were adjusted in training ensemble models to balance
the dataset.

Finally, we also evaluated a model combining the static and the dynamic models in a
voting model. The voting model computed its output score as the arithmetic average of the
static and dynamic scores and was not separately trained.

The data modelling was performed using Python 3.9.12 and the machine learning
module scikit-learn version 1.1.1.

2.7. Leave-One-Out Simulation

In addition to the anchored ROC analysis, leave-one-out (LOO) simulation was con-
ducted to evaluate the model’s ability to predict DCI in a scenario more closely resembling
the clinical setting in which the models would regularly produce new risk assessments. Due
to the considerable amount of time required to train all the different evaluated classifiers,
we restricted the LOO simulation analysis to the best performing models in the anchored
analysis. For each run of the LOO simulation, a single patient was excluded from the
development set and the models were re-trained on the data of the remaining patients. We
then used these newly trained models to predict hourly risk scores for the left-out patient
for their entire ICU stay. The procedure was repeated until we had computed hourly risk
scores for all patients. Finally, time-dependent ROC analyses were performed to evaluate
and summarize the performance of the models trained on the leave-one-out datasets.

In a first approach, the overall ability of the models to differentiate between the two
groups of patients with and without eventual DCI occurrence was studied. The output
scores of the models were plotted for the two groups together with the time-dependent
ROC AUC values.
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Next, the focus was shifted from classification regarding eventual DCI occurrence
towards DCI occurrence in the following 48 h. The latter being arguably the clinically
more relevant question to be answered by a prediction tool. To this end, we evaluated
whether the scores during the 48 h period before a DCI occurrence were significantly higher
compared to the periods before or in patients with no DCI at all. This comparison was first
carried out by pooling all the hourly risk scores from the entire ICU stays and a second time
in a time-resolved manner in order to study the performance of the prediction model as
function of time starting with the time of symptom onset. For the latter, the considered time
frame from day 2 to day 14 was divided into 5 intervals of equal proportions of time-points
that were followed by a DCI.

Importantly, when analyzing the predictions for the next 48 h, the risk set, i.e., the
patients being assessed, was continuously adjusted to contain solely patients who had not
experienced a DCI event. In other words, once patients suffered from a DCI, they were
excluded from the set of analyzed patients.

2.8. Statistical Analysis

The Mann–Whitney U-test was used for comparing continuous and ordinal variables
and the Fisher exact test for binary variables. Statistical significance was assumed at p < 0.05.
Effect size was quantified using the ROC AUC value, where a value above 0.5 indicates a
positive association and below 0.5 a negative association with the outcome. Confidence
intervals for the ROC AUC values in the time-dependent ROC analysis were computed
via bootstrapping.

3. Results
3.1. Participants

In total, the data of 222 patients were analyzed. Of these patients, 218 patients had
data in the relevant time frame for DCI occurrence between day 4 and 14 and were included
in the development set. DCI occurred in 89 (41%) of patients. An overview of the patient
characteristics is shown in Table 1. With a median age of 57 years and a higher proportion of
females (63.8%), this cohort is representative of typical subarachnoid hemorrhage patients.
The severity of subarachnoid hemorrhage, as assessed by clinical scales (WFNS, Hunt and
Hess), showed no significant association with the development of DCI in our cohort. In
contrast, the severity classification based on imaging findings (mFS, BNI) yielded different
results. Statistical analysis revealed that only the Barrow Neurological Institute (BNI)
grading scale was significantly associated with DCI occurrence.

Table 1. Patient characteristics for patients with and without DCI. GCS (Glasgow Coma Scale),
WFNS (World Federation of Neurosurgical Societies), mFS (modified Fisher Scale), and BNI (Barrow
Neurological Institute grading scale). * Significant.

Total Patients = 218 DCI+ DCI− p Value

Age, year; median (IQR) 57.0 (50.0–67.0) 56.0 (49.0–64.0) 57.0 (50.0–69.0) 0.289

Female sex, n (%) 139 (63.8) 56 (62.9) 83 (64.3) 0.886

Hypertension, n (%) 83 (38.1) 28 (31.5) 55 (42.6) 0.118

Cardiovascular disease, n (%) 43 (19.7) 13 (14.6) 30 (23.3) 0.123

Diabetes, n (%) 17 (7.8) 3 (3.4) 14 (10.9) 0.069

GCS (extra.), median (IQR) 14.0 (8.0–15.0) 14.0 (9.0–15.0) 14.0 (8.0–15.0) 0.959

Hunt and Hess, median (IQR) 3.0 (2.0–4.0) 3.0 (2.0–4.0) 2.0 (2.0–4.0) 0.103

Hunt and Hess, 4–5; n (%) 58 (26.6) 25 (28.1) 33 (25.6) 0.756

WFNS, median (IQR) 2.0 (1.0–4.0) 2.0 (1.0–4.0) 2.0 (1.0–4.0) 0.972

WFNS, 4–5; n (%) 91 (41.7) 35 (39.3) 56 (43.4) 0.578
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Table 1. Cont.

Total Patients = 218 DCI+ DCI− p Value

mFS, median (IQR) 4.0 (3.0–4.0) 4.0 (3.0–4.0) 4.0 (3.0–4.0) 0.157

mFS, 3–4; n (%) 199 (91.3) 84 (94.4) 115 (89.1) 0.225

BNI, median (IQR) 3.0 (3.0–4.0) 4.0 (3.0–5.0) 3.0 (2.0–4.0) <0.001 *

BNI, 4–5; n (%) 98 (45.0) 52 (58.4) 46 (35.7) 0.001 *

3.2. Model Development and Model Specification

From the 218 patients in the development set, 10,470 predictor vectors were sampled
for the 48 h before the anchor, each containing a total of 60 static and dynamic parameters.
On average, 3.6% and 7.2% of the static and dynamic parameters were missing, respectively.
The dataset was sightly unbalanced with 41% of the patients experiencing at least one
DCI event. 14 static and 19 dynamic model pipelines of different complexity were defined
and evaluated.

3.3. Performance of Model Building Pipelines (Cross-Validation)

The results of the cross-validation results are presented and summarized in Figure 1.
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Figure 1. Cross-validation performance. Panels (A,B) show the ROC AUC scores for the different
static and dynamic models, respectively. The bars and the horizontal lines indicate the mean and
standard deviation of ROC AUC score over the 10 folds, respectively. The baseline models were
parameterized with reasonable default values, but no hyper-parameter tuning, feature selection, or
dimensionality reduction was performed. GS stands for Grid Search (i.e., hyper-parameter tuning),
PCA for Principal Component Analysis (i.e., dimensionality reduction), SFS for Sequential Feature
Selection, RFE for Recursive Feature Elimination, and “From Model” implies that 10 features were
selected using feature importance derived from said model. Models are abbreviated as follows:
Extremely Randomized Trees (ET), Histogram-based Gradient Boosting Classification Tree (HB),
Random Forest (RF), Logistic Regression with L1 or L2 loss (LR1 or LR2, respectively), and Support
Vector Machine (SVC).

Among the static models, hyper-parameter tuning improved model performance
across all models. The simple Logistic Regression models outperformed the more complex
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machine learning models. Specifically, the Logistic Regression model with Sequential
Feature Selection and the L2 loss-function showed the best performance (ROC AUC:
0.66 ± 0.08). When trained on the entire development set, this pipeline selected the BNI
grading scale, the WFNS, diabetes, hypertension, and cardiovascular disease as predictors,
along with a high regularization parameter (C = 10) during hyper-parameter tuning.

Regarding the dynamic models, the baseline Extremely Randomized Trees (ET) model
achieved the best performance (ROC AUC: 0.70 ± 0.09), while the ET GS model with
hyper-parameter tuning ranked second (ROC AUC: 0.69 ± 0.08). Consequently, the ET GS
model was used in the combined model as well as in subsequent leave-one-out analysis, as
it shows a similar performance as the ET baseline model, while having its model parameters
learnt from the data. When trained on the entire development set, the optimized parameters
of the ET GS model for the maximal tree depth and the number of selectable features at the
decision nodes were determined as 8 and 10, respectively.

Using the best static and the selected optimized dynamic model in a combined model
resulted in a superior model achieving a ROC AUC of 0.73 ± 0.05.

Figure 2 depicts the corresponding ROC curves of the selected static and dynamic
models, as well as the resulting combined model. The ROC curve computations were based
on the cross-validation scores, thus, represent an average over the individual models fitted
during cross-validation.
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(L2 SFS), the dynamic (ET GS) models, and the resulting combined model.

3.4. Model Performance (Leave-One-Out)

Figure 3 shows the scores of the selected static, dynamic and the resulting combined
models as computed in the LOO simulation. While the output of the static model naturally
stayed constant over the entire stay, with scores higher for the patients in the DCI group,
the outputs of the dynamic and combined model changed continuously. After day 2, the
scores of the dynamic DCI group visibly surpass the ones of the static DCI group and show
a ROC AUC value above 0.5, further increasing until day 6 when it starts saturating at
around 0.67, reaching a maximum of 0.715 on day 10.
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and combined models, respectively. Scores of patients with and without an eventual DCI are plotted in
red and blue, respectively. The median scores are plotted as a line together with the interquartile range
(colored area). In the background thin, partially transparent lines indicate the scores of individual
patients. In panel (D), we plotted the time-dependent ROC AUC values to identify patients exhibiting
at least one DCI occurrence.

When analyzing the performance of DCI prediction for the following 48 h, we found
that the risk scores were significantly higher for all three models during the 48 h leading
up to a DCI occurrence compared to when no DCI occurred. Corresponding boxplots are
shown in Figure 4. The effect sizes measured by the ROC AUC were 0.60, 0.61, and 0.63 for
the static, dynamic, and combined model, respectively.

To study the time-dependence of the model performances, five time-intervals were
computed with equal numbers of samples (e.g., hours) followed by a DCI during subse-
quent 48 h. The intervals were (i) day 2 until day 4.2, (ii) day 4.2 until day 5.4, (iii) day 5.4
until day 6.9, (iv) day 6.9 until day 8.8, and (v) day 8.8 until day 14. The different lengths
stemmed from the uneven distribution of DCI occurrences after SAH. The ROC AUC values
for all three models are shown in Figure 5. The static model showed the strongest time
dependence with a ROC AUC that was below 0.5 in the first interval. The dynamic model
is more stable, achieving ROC AUC values between 0.62 and 0.67. The dynamic model is
the best-performing model for the first two intervals until day 5.4. From day 5.4 onwards,
the combined model shows the best performances with ROC AUC values of 0.68, 0.67, and
0.71 for the third, fourth, and fifth intervals, respectively.

To make the scores more interpretable, thresholds were computed that achieve a
sensitivity level of 80%. Table 2 presents these thresholds along with the corresponding
specificity for each interval. The thresholds depend on the considered time intervals and
increase together with the corresponding ROC AUC value.
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Figure 4. Comparison of model output scores for the 48 h leading up to DCI. Boxplots of model
output scores for the different models. Scores were grouped according to whether a DCI occurred in
the subsequent 48 h. Only scores up to the first DCI were considered and patients were removed
from the risk set after DCI occurrence. The effect size was measured and is shown as the ROC AUC.
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Figure 5. Area under the receiver operating characteristic for different intervals. Panels (A–C) show
the ROC AUC values computed for the intervals (i) day 2 until day 4.2, (ii) day 4.2 until day 5.4,
(iii) day 5.4 until day 6.9, (iv) day 6.9 until day 8.8, and (v) day 8.8 until day 14 after symptom onset.
The 95% confidence intervals are depicted by vertical lines at the tips of the bars.

Table 2. Thresholds and specificity for a sensitivity level of 80%.

Model Interval (i) (ii) (iii) (iv) (v)

static

ROC AUC 0.44 0.54 0.62 0.64 0.70

Threshold 0.21 0.26 0.30 0.30 0.35

Specificity 0.13 0.19 0.30 0.32 0.49

Precision 0.07 0.15 0.15 0.14 0.09
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Table 2. Cont.

Model Interval (i) (ii) (iii) (iv) (v)

dynamic

ROC AUC 0.62 0.63 0.67 0.63 0.62

Threshold 0.46 0.41 0.39 0.38 0.41

Specificity 0.37 0.45 0.45 0.44 0.40

Precision 0.09 0.20 0.18 0.16 0.08

combined

ROC AUC 0.52 0.61 0.68 0.67 0.71

Threshold 0.38 0.36 0.37 0.39 0.42

Specificity 0.26 0.29 0.37 0.47 0.55

Precision 0.08 0.16 0.16 0.17 0.10

4. Discussion

Numerous scoring systems exist for risk stratification in aSAH patients. However, a
critical need persists for continuously updating clinical support tools that enhance situ-
ational awareness. Recently, Megjhani et al. presented a set of machine learning models
trained on vital sign parameters and patient demographics using DCI occurrence as an
anchor to train binary classifiers [10]. While their models demonstrated robust perfor-
mance when applied to other centers, their analysis was limited to anchored data. In
addition, there is the ongoing problem that models developed are not validated on live
data streams. These limitations hinder the assessment of their applicability in real-world
clinical practice, where the anchor is unknown, and data are aligned with symptom onset
or hospital/ICU admission.

Adopting the anchoring approach in building our development dataset, we trained
well-performing static and dynamic models evaluating a range of machine learning model
types. Furthermore, disentangling static and dynamic parameters allowed us to come
up with a more transparent combined model that permits reasoning about the different
model contributions.

To justify the anchoring approach used and to evaluate the resulting models within a
scenario closely resembling clinical practice, we conducted time-dependent ROC analysis
using scores generated through a leave-one-out simulation. This allowed us to investigate
the performance not anchored to the DCI events anymore but to symptom onset, which
is what a clinician would experience in clinical practice. Our time-dependent analysis of
the scores showed that the dynamic model does indeed produce highly time-dependent
results. Interestingly, when grouping patients by eventual DCI occurrence, the median
dynamic score initially trended even higher in the patients without eventual DCI before
declining below the DCI patients around day 4, indicating that the correlations learned by
the dynamic model from the anchored dataset are not indicative for DCI in the early phase
of the patient’s ICU stay.

Moreover, focusing on the 48 h before DCI onset, we confirmed significantly higher
scores for all models compared to other periods. Additionally, partitioning the time
interval up to day 14 into five intervals revealed that model performance strongly depends
on the duration from symptom onset. While temporal variation in the static model’s
performance is influenced by changes in the risk set, the dynamic model’s performance is
governed by disease progression and corresponding fluctuations in laboratory and blood
gas analysis results.

These temporal variations in model performance underscore the challenges associated
with longitudinal models, including the need to adapt threshold interpretation over time to
maintain consistent sensitivity. Furthermore, selecting the appropriate model or sub-model
is crucial for achieving optimal risk assessment. The recommended strategy is to utilize the
dynamic model until day 5.4 and then switch to the combined model.



Bioengineering 2024, 11, 988 11 of 13

A key objective for our team is to obtain direct clinical experience with our support
system. To facilitate this, we deliberately selected models that allow for visualization,
thereby offering a degree of interpretability for medical personnel. Figure 6 demonstrates
the implementation of the visualization tool. A waterfall plot illustrates the influence of
individual parameters on the static score, while a heat map depicts the impact of laboratory
chemical values on the dynamic score. Additionally, the combined score can be visualized
over time using a separate graph. In a future clinical study, the goal will be to to equip
medical staff with interpretative tools that may foster trust in the algorithms.
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However, this study has several limitations, including the small sample size and data
collected at a single center. Given the limited sample size, we opted for a simple voting
approach instead of learning model combination weights from the data. Additionally, the
lack of data from multiple centers prevents us from investigating the transferability of our
models to different healthcare settings.

We only implemented laboratory parameters and values from the blood gas analyses
in our dynamic model. Several considerations were made prior to this decision. As early
as 2010, Kasius et al. were able to show a correlation between an increase in platelet and
leucocyte counts and the occurrence of DCI [19]. Other correlations, for example via serum
D-dimers or C-reactive protein, have also followed in more recent publications [20]. A
further reason for excluding vital parameters or measured values of extended diagnostics
is based on the consideration that these imply a high degree of false measurements. This
may be due to artefacts or interventionally altered values as a result of specific treatment.
In addition, laboratory and blood gas analyses are ubiquitously available, even in smaller
hospitals or in countries with less data processing power.

The definition of delayed cerebral ischemia as an endpoint remains difficult, especially
in unconscious patients, where clinical examination is limited. We therefore confirmed
the endpoint in all patients with imaging evidence of new infarction and/or evidence of
perfusion deficit. From a clinical point of view, it is therefore not possible to correctly
determine the time of DCI onset, especially in unconscious patients, which affects the time
frame of the dynamic model in both training and validation.

5. Conclusions

A longitudinal DCI prediction model with static and dynamic sub-models could be
trained successfully and validated in a real-world scenario. The time-dependent ROC
analysis revealed that the performance of the sub-models as well as the combined model
critically depended on the time of assessment. This highlighted the importance to evaluate
longitudinal prediction models using time-dependent analysis methods such as time-
dependent ROC analysis. This holds especially true for prediction targets that evolve
over time. The next important steps are to validate our model in external datasets and in
everyday clinical practice using live data streams.
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