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ABSTRACT
Stack inspection is a security mechanism implemented in
runtimes such as the JVM and the CLR to accommodate
components with diverse levels of trust. Although stack in-
spection enables the fine-grained expression of access control
policies, it has rather a complex and subtle semantics. We
present a formal semantics and an equational theory to ex-
plain how stack inspection affects program behaviour and
code optimisations. We discuss the security properties en-
forced by stack inspection, and also consider variants with
stronger, simpler properties.

1. SECURITY BY STACK INSPECTION?
Stack inspection is a software-based access control mech-

anism. Its purpose is to allow components with diverse ori-
gins to share the same runtime and access its resources in
a controlled manner, according to their respective levels of
trust. It is a key security mechanism in typed runtime en-
vironments such as the JVM [19, 11] and the CLR [8] that
support distributed computation based on mobile code. It
enables the fine-grained expression of access control policies,
and hence is more liberal and flexible than a strict sand-
boxing mechanism. It has received much attention in the
literature [5, 7, 9, 16, 17, 27, 29, 30].

Now, stack inspection is often marketed as a feature that:

(1) allows security-conscious developers, such as the au-
thors of trusted libraries, to express their security re-
quirements easily and precisely, and

(2) can safely be ignored by everyone else.

We began this work with the realisation that these two
claims are problematic and need careful qualification:

(1) The first problem is that stack inspection, as its name
suggests, is usually thought of in specific, low level
terms. It seems to be remarkably hard to give a gen-
eral account of what actually is guaranteed by stack in-
spection. Hence, it can be difficult to assess whether it
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is correctly implementing a higher level security policy.
Besides, certain higher-order features, such as threads
and method delegation, need careful treatment.

(2) The second problem is that stack inspection profoundly
affects the semantics of all programs. In particular, it
invalidates a wide variety of program transformations,
such as inlining and tail call optimisations.

We address these two problems in the setting of a λ-
calculus model [27, 29] of stack inspection. We formally
state some of the guarantees given by stack inspection and
suggest variations of stack inspection with stronger, simpler
properties. We develop an equational theory of stack in-
spection that helps to highlight its subtle effects and also
justifies certain transformations.

Having outlined our motivations, we next review the ideas
of stack inspection. Then we elaborate on the difficulties it
raises. We close this introductory section by describing our
contributions in more detail.

An Outline of Stack Inspection.The situation addressed
by stack inspection mechanisms is as follows. Applications
are collections of components, possibly compiled from dif-
ferent languages, that share the same runtime. Compo-
nents have a variety of origins, more or less trusted. Some
mechanism—such as scoping or typing rules—prevents di-
rect access from untrusted components to resources pro-
tected by trusted components. Still, untrusted code may
call trusted code, and the other way round.

We express access to different kinds of protected resources
in terms of permissions, such as “may perform screen I/O”
or “may perform file I/O”. A configurable policy determines
the access rights available to each component given evidence
of its origin, that is, where it came from and who wrote it.
The access rights are simply a set of allowed permissions.
Here we abstract from the details of policy and evidence, and
simply refer to this set of permissions itself as the principal
that owns the code.

For example, a System principal might consist of all per-
missions, whereas an Applet principal might consist of a very
limited set of rights, including “may perform screen I/O,”
but not including “may perform file I/O.”

During compilation and loading, but before execution,
each function or method body securely receives an annota-
tion (here called a frame) specifying the principal owning it.

During execution, when trusted code is about to access
some protected resource, it invokes the stack inspection prim-
itive (here called test) to determine whether the appropriate



permission is present. A first requirement is that its imme-
diate caller be statically annotated with the permission. In
fact, the basic algorithm is to inspect the whole call stack to
ensure that indirect callers as well as the immediate caller
are all statically annotated with the permission. The pur-
pose of inspecting the whole stack is to prevent the possibil-
ity that untrusted code lacking the permission could some-
how cause an indirect call to a trusted function that itself
accesses the resource—an instance of the Confused Deputy
attack [14, 30]. Abstractly, this basic algorithm computes
a compound principal whose access rights are the intersec-
tion of the access rights of all the principals on the stack,
and then checks whether this compound principal has the
appropriate permission.

The full algorithm allows trusted code to invoke a prim-
itive (here called grant) to override the inspection of its
callers for some permissions and hence to assert responsi-
bility for use of those permissions in every context.

For example, suppose some System-owned function im-
plementing screen I/O needs to write into a log-file, for per-
formance debugging purposes, and hence needs the “may
perform file I/O” permission. If this function is called by
an Applet-owned function, access to the log-file is denied
because Applet does not have the “may perform file I/O”
permission. The function would override inspection of its
callers for the “may perform file I/O” permission so that
the file write is allowed even if its caller is Applet-owned.

Limitations of Stack Inspection.The permissions autho-
rised by stack inspection (the test primitive) are determined
by a clever algorithm, outlined above, that scans control
stacks on demand. The authorisation decision depends solely
on the current series of nested calls. Therefore, it does not
depend on other kinds of interaction between software com-
ponents. Such interactions include, for instance, the use
of results returned by untrusted code, mutable state, in-
heritance, side effects, concurrency, and dynamic loading.
These interactions are commonplace, and their impact on
security must be addressed independently. In the formal-
ism of this paper, the problem appears when trusted and
untrusted code exchange functions as values.

As a result, a careful analysis of any code that explicitly
manipulates permissions may not in fact yield any strong
guarantee (although it may reveal security problems). This
significantly restricts the scope of stack inspection, in iso-
lation. On the other hand, stricter mechanisms, based for
instance on systematic flow analyses, yield stronger guaran-
tees, but may be harder and more costly to implement and
to use.

Living in Harmony with Stack Inspection.Assuming the
target platform features stack inspection, the programmer
faces two conflicting problems. Some untrusted component
may take advantage of the programmer’s code to breach
security—this is potentially quite bad, but it is hard to char-
acterize. A more immediate concern is that some permission
may be missing in the middle of a computation involving
this code (even if the code statically has those permissions);
typically, an unexpected security exception is raised—this
complies with the policy, but remains undesirable.

In addition, the compiler writer must deal with a specific
problem: stack inspection makes the control stack observ-
able, hence the actual runtime stack must agree with the

stack as it appears to the source program. This correctness
issue hinders any program transformation that changes the
structure of the stack. (A prerequisite to using stack in-
spection is to make the control stack apparent in the source
language. This may be troublesome in declarative languages
like, for instance, Haskell or Mercury.)

There are two further problems. Programmers and com-
piler writers may be concerned about the runtime costs in-
curred by stack inspection and by other operations on per-
missions. Besides, they have little control of the security
policy that will be applied to their code, and must program
without knowing exactly which static permissions their code
will receive.

Contributions of the Paper.We discuss stack inspection
in the precise and abstract setting of λsec, a call-by-value
λ-calculus [26] with notions of permissions, principals, and
stack inspection, introduced by Pottier, Skalka, and Smith
[27, 29]. Previous studies of λsec focus on type systems for
checking information about permissions. Here, we use the
untyped λsec-calculus as a minimal formalism for investigat-
ing the runtime behaviour of stack inspection.

• We present the first equational theory for a calculus of
stack inspection. We prove soundness of a primitive
set of equations with respect to Morris-style contex-
tual equivalence (Theorem 1), and completeness with
respect to the reduction semantics (Theorem 2).

• To obtain a co-inductive proof technique to justify our
equational theory, we recast Abramsky’s applicative
bisimilarity for the λsec-calculus. We show that bisim-
ilarity is a congruence by Howe’s method (Theorem 3).
Hence, we prove that bisimilarity in fact equals contex-
tual equivalence (Theorem 4), admitting bisimulation-
style proofs of program equivalence.

• Applications of the equational theory include justifi-
cation of compiler transformations—such as elimina-
tion of redundant frames and tests—and programming
techniques—such as performing security tests eagerly
to speed up stack inspection. Moreover, we use the
equational theory to discuss the effect of stack inspec-
tion on inlining and tail call optimisations.

• We explain how stack inspection can be understood
as a form of data dependency analysis and—relying in
part on our equational theory—discuss somewhat lim-
ited properties guaranteed by stack inspection (Theo-
rems 5 and 6). We describe how stack inspection only
partly fulfils its intent with respect to the higher-order
features of λsec. (Similar limitations arise in practice
with side-effects, exception handling, and method del-
egates). We give precise rules for how stack inspection
could be amended to overcome these limitations, and
formalize guarantees provided by the amended seman-
tics (Theorems 7 and 8).

Some details and all proofs appear in a technical report [10].
Although the technical contributions of this paper are

phrased in terms of a formalism, the formalism is not an end
in itself: the development is inspired by a study of stack in-
spection in the CLR, in relation to the compilation of func-
tional languages. It also suggests potential improvements
and validates optimisations performed by its JIT compiler.



2. A CALCULUS OF STACK INSPECTION
We describe the syntax and informal semantics of a ver-

sion of the λsec-calculus [27], present an operational seman-
tics, and explain how we use λsec to model loading compo-
nents of diverse origins.

2.1 Syntax and Informal Semantics
We assume there is a set P of atomic permissions. Let a

principal be a subset of P.

Permissions and principals

p, q ∈ P permission
R, S, T, D ⊆ P principal: a set of permissions

This presentation is a little more abstract than the original
λsec, where a principal is a name, and a function maps each
principal to its set of permissions. For our purposes we may
as well eliminate this indirection.

Expressions include variables, functions, and applications,
as usual, plus constructs for stack inspection. A framed ex-
pression R[e] is the expression e framed with the principal R;
the principal represents permissions conferred on the code e
given its origin. We have grant and test expressions as dis-
cussed in the introduction. Finally, fail is an exception,
used, for example, to indicate a security failure.

Expressions

e, f ::= expression
x variable
λx.e function
e f application
R[e] framed expression
grant R in e permission grant
test R then e else f permission test
fail abnormal termination

Abstractly, the behaviour of an expression depends on
two sets of permissions: the static permissions, S, and the
dynamic permissions, D, with D ⊆ S. The static permis-
sions are the principal in the nearest enclosing frame, an
upper bound on the permissions available to the expression.
The dynamic permissions are those effectively available at
runtime; they represent what can be retrieved by a stack
inspection. We consider a top-level expression to be fully
trusted, so take the static and dynamic permission sets to
be P initially.

The expression R[e] behaves as e, but with static permis-
sions set to R, and dynamic permissions intersected with R.
The expression grant R in e behaves as e, but with the dy-
namic permissions extended with all the static permissions
that also appear in R. The expression test R then e else f
behaves as e if all permissions in R are dynamic permissions,
but otherwise behaves as f . The other expressions do not
inspect or modify the permission sets. They behave as in a
standard call-by-value λ-calculus with a single uncatchable
exception fail and left-to-right evaluation order.

We follow some standard syntactic conventions. In a func-
tion λx.e, the variable x is bound, with scope e. We write
fv(e) for the set of variables occurring free in e, and write
e{x←e′} for the outcome of a capture-avoiding substitution
of the expression e′ for each free occurrence of the variable
x in e. An expression e is closed when fv(e) = ?. We iden-
tify expressions up to capture-avoiding renamings of bound
variables, that is, λx.e = λx′.(e{x←x′}) if x′ /∈ fv(e).

We introduce notions of values and outcomes. A value is a
function or a variable; values represent the formal and actual
arguments passed to a function. An outcome is a value or
the exception fail ; outcomes are fully-reduced expressions.

Values and outcomes

u, v ::= x | λx.e value
o ::= v | fail outcome

The first four of the following abbreviations are fairly stan-
dard. The fifth defines an arbitrary value ok to indicate nor-
mal termination in our examples. The last, check p for e,
represents a common idiom, a primitive in earlier formula-
tions of λsec [27, 29]: test whether a single permission p is
effectively available; if so, run e; otherwise, raise a security
exception.

Abbreviations

λx1 · · ·xn.e
∆
= λx1. . . . λxn.e

let x = e1 in e2
∆
= (λx.e2) e1

λ .e
∆
= λx.e for any x 6∈ fv(e)

e1; e2
∆
= let = e1 in e2

ok
∆
= λx.x

check p for e
∆
= test {p} then e else fail

2.2 Operational Semantics
We formalize the behaviour of expressions as a small-step

reduction relation, indexed by the security context: the re-
lation e →S

D e′ means that, in a context with static permis-
sions S and dynamic permissions D, the expression e may
evolve to e′. We allow e →S

D e′ only when D ⊆ S.

Security-indexed reduction rules

(Ctx Rator)
e1 →S

D e′1
e1 e2 →S

D e′1 e2

(Ctx Rand)
e2 →S

D e′2
v1 e2 →S

D v1 e′2

(Red Appl)
(λx.e) v →S

D e{x←v}
(Fail Rator)
fail e →S

D fail
(Fail Rand)
v fail →S

D fail

(Ctx Frame)
e →R

D∩R e′

R[e] →S
D R[e′]

(Ctx Grant)
e →S

D∪(R∩S) e′

grant R in e →S
D grant R in e′

(Red Frame)
R[o] →S

D o
(Red Grant)
grant R in o →S

D o

(Red Test)
test R then etrue else efalse →S

D eR⊆D

Rules (Ctx Rator), (Ctx Rand), and (Red Appl) imple-
ment call-by-value function evaluation; as usual, we do not
reduce within function bodies. Rules (Fail Rator) and (Fail
Rand) propagate exceptions through applications. The con-
text rules (Ctx Frame) and (Ctx Grant) specify how a frame
and a grant, respectively, manipulate permission sets, as de-
scribed above. Rules (Red Frame) and (Red Grant) discard
a frame and a grant, respectively, once its body has reduced
to an outcome—this reflects the deletion of the actual stack
frame for that body. Finally, (Red Test) specifies how a test
inspects the dynamic permission set.

As usual, contexts C are expressions with a placeholder (·)
and evaluation contexts E are derived from the (Ctx-) rules:
E(·) ::= · | E(·) e | v E(·) | R[E(·)] | grant R in E(·).



The top-level reduction relation, e → e′, describes the
single-step evolution of a fully trusted expression e (which
may of course contain partially trusted subexpressions). It
is defined from the security-indexed relation by setting the
static and dynamic permissions to be the full set, P. The
top-level evaluation relation, e ⇓ o, computes the outcome o
of evaluating an expression e.

Our semantic rules (in particular, (Ctx Frame) and (Ctx
Grant)) specify how to update the dynamic permission set
upon change of security context. This strategy is known as
the security-passing style [30] or the eager semantics [3, 11].
The alternative strategy—the lazy semantics used by most
implementations—is to compute the dynamic permissions
indirectly by inspecting the stack. We show in an appendix
that our eager semantics corresponds exactly to a lazy se-
mantics given by Pottier, Skalka, and Smith [27]. The eager
semantics is more convenient for the theory of this paper.
Still, the lazy semantics appears to lead to more efficient
implementations [11, 30].

Top-level reduction and evaluation

e → e′
∆
= e →P

P e′ top-level reduction
e ⇓ o

∆
= e →∗ o top-level evaluation

2.3 Framing
The syntax of λsec enables framed subexpressions any-

where in an expression. In practice, framed subexpressions
would appear only as the result of applying a security policy,
for example, when code is first loaded. (Without a similar
restriction, untrusted code could grant itself any right.)

We can describe the application of a uniform security pol-
icy as a function from the frameless fragment of λsec to the
full calculus, that inserts the same, given frame under every
abstraction: R[[λx.e]] = λx.R[R[[e]]] and R[[·]] commutes with
all other constructs.

Framing an expression with principal R

R[[x]]
∆
= x

R[[λx.e]]
∆
= λx.R[R[[e]]]

R[[e1 e2]]
∆
= R[[e1]] R[[e2]]

R[[grant S in e]]
∆
= grant S in R[[e]]

R[[test S then e1 else e2]]
∆
= test S then R[[e1]] else R[[e2]]

R[[fail ]]
∆
= fail

Initially, we model a runtime configuration by an expres-
sion of the form

e R1[[v1]] . . . Rn[[vn]]

where e accounts for the runtime, linker, and low-level re-
sources, while v1, . . . , vn are miscellaneous additional com-
ponents, with respective static permissions R1, . . . Rn at-
tributed by the secure loader.

3. PROGRAMMING EXAMPLES
Our series of examples models interaction between I/O li-

brary functions and applets. The intent is to prevent applets
from accessing the content of arbitrary files. We consider
permissions screenIO and fileIO and principals Applet =
{screenIO} and System = {screenIO ,fileIO}.

Direct Access. First, consider an I/O library function
that protects read access to the file system by requiring the
fileIO permission. We assume some encoding for strings,
and let primRF be a primitive for returning the contents of
a file as a string.

readFile
∆
= λn.System[check fileIO for primRF n]

For instance, we have

Applet[readFile “secrets”] ⇓ fail (1)

System[readFile “version”] ⇓ “Build 2601” (2)

In this setting, the applet code (here, readFile“secrets”) may
refer to readFile but not to primRF, and must be framed
with principal Applet. Such expressions can be obtained by
framing and linking; for instance, the expression in (1) is
obtained from the initial configuration

(λsa. a s)
System[[λn.check fileIO for primRF n]]
Applet[[λreadFile.readFile “secrets”]]

One may check that no (frameless, closed) applet code
substituted for λreadFile.readFile “secrets” can cause any
file to be read. We state a more general result in Section 6.

Indirect Access. Consider now a System-routine that calls
another System-routine. We assume that primDS is the
primitive that displays a string and returns ok .

displayString
∆
= λs.System[check screenIO for primDS s]

displayFile
∆
= λn.System[displayString (readFile n)]

For example:

Applet[displayString “hi”] ⇓ ok (3)

Applet[displayFile “secrets”] ⇓ fail (4)

System[displayFile “version”] ⇓ ok (5)

If stack inspection did not compound principals, the call in
example (4) would succeed.

Overriding Policy. Sometimes it is acceptable for trusted
code to make exceptions to a standard policy. For instance,
we may wish to allow any code read access to a file contain-
ing the operating system version.

readVersion
∆
= λ .System[grant {fileIO} in readFile “version”]

For example:

Applet[readVersion ok ] ⇓ “Build 2601” (6)

The above are examples of calls from less trusted to more
trusted code. A symmetric situation is where more trusted
code calls less trusted, such as when trusted libraries call
methods such as ToString or Equals on untrusted objects.
Attempts by such methods to exploit the greater privileges
of their callers are also thwarted by stack inspection.

Untrusted Results. The following example describes some
trusted code depending on data supplied by untrusted code.
We have a System-function foolishDisplayFile that calls a
function parameter h to compute a filename s, and then
calls displayFile s to display it.

foolishDisplayFile
∆
= λh.System[displayFile (h ok)]



Now, since the call to h completes before the call to display-
File begins, the principal associated with h has disappeared
from the stack before the access tests in displayFile occur.
So the following call, which allows an untrusted function to
determine which file is displayed, succeeds.

foolishDisplayFile (λ .Applet[“secrets”]) ⇓ ok (7)

Stack inspection does prevent the function parameter from
making privileged calls while it is running, but it does not
prevent it influencing computation, perhaps against policy,
once it has terminated and returned a result.

Higher Order. Our last example is more involved. Trusted
code (main) calls an applet; the applet calls trusted code
(fileHandler) to build a System-closure for its choice of pa-
rameters (“secrets” and leak) and returns that closure; later,
a trusted call triggers the closure:

main
∆
= System[[λh.(h ok ok)]]

fileHandler
∆
= System[[λ s c . c (readFile s)]]

leak
∆
= Applet[[λs.displayString s]]

main
�
λ .Applet[fileHandler “secrets”leak]

� ⇓ ok (8)

Since the security context used to create the closure is dis-
carded as Applet[fileHandler “secrets”leak] returns, the clo-
sure gets access to “secrets”. In more detail, we have the
following, where okS is short for System[[ok ]].

main
�
λ .Applet[fileHandler “secrets”leak]

�
→2 System[Applet[fileHandler “secrets”leak] okS ]
→2 System[Applet[System[System[

λ .System[leak (readFile “secrets”)]]]] okS ]
→3 System[λ .System[leak (readFile “secrets”)] okS ]
→5 System[System[leak 〈content of “secrets”〉]]
→6 System[System[Applet[ok ]]] →3 ok

In this situation, it is quite hard to modify the code so
that a suitably framed closure is returned. A safe approach
may be to request the permissions that will be used within
the closure before returning the closure. However, this re-
quires specific knowledge of those permissions. Instead of
fileHandler, one may write, for instance:

safeFileHandler
∆
= λs.test {fileIO}

then System[[λc . c (readFile s)]]
else System[[λc .fail ]]

Another, more uniform approach is to provide a general
mechanism to capture the current dynamic permissions (D)
and restore them as the closure is triggered. In the JVM
and in the CLR, such a mechanism is used internally for
special cases of closures, for instance to start a new thread.
As the corresponding closure is created, the stack is scanned
to compute D, then D is used to build the first frame of the
new stack. This design issue is discussed in [11, section 3.11].

The example above may seem a little contrived, but in
fact is very common in an object-oriented setting: whenever
a call returns an object from untrusted code, further calls
to its methods will be performed using virtual calls, and
there is no simple, uniform way to test whether that object
encapsulates low-trust parameters (or even code).

4. EQUATIONAL REASONING

In order to transform programs while preserving their se-
mantics, we rely on Morris-style contextual equivalence [23].
Since it is preserved by all contexts, local transformations
based on contextual equivalence may be used anywhere in a
program.

Contextual equivalence

Let e⇓ if and only if there is an outcome o with e ⇓ o.
Let e ' e′ if and only if, for all contexts C,
if both C(e) and C(e′) are closed, then C(e)⇓ ⇐⇒ C(e′)⇓.

Contextual equivalence is strictly more discriminating than
in the call-by-value λ-calculus (CBV), even for pure λ-terms.
For instance, the terms

λx.let z = x ok in λ .z
and λx.let z = x ok in λ .(x ok)

are equivalent in CBV but can be separated in λsec using
the context ?[(·) (λ .test P then Ω else ok)] ok where Ω is
an expression that diverges. This suggests that usual opti-
mizations may break, and motivates our study of contextual
equivalence.

4.1 Equational Properties ofλsec

We present a new equational theory for λsec that is sound
for contextual equivalence and complete with respect to the
reduction semantics. We first state the theory and briefly
comment on its equations.

Let e ≡ e′ be the smallest congruence—that is, a re-
flexive, symmetric, and transitive relation preserved by all
contexts—to satisfy the primitive equations listed below.

Primitive equations

(Fun Beta) (λx.e) v ≡ e{x←v}
(Fun Eta) x /∈ fv(v) =⇒ λx.v x ≡ v

(Let Eta) let x = e in x ≡ e
(Let Let) x1 /∈ fv(e3) =⇒

let x1 = e1 in (let x2 = e2 in e3) ≡
let x2 = (let x1 = e1 in e2) in e3

(Frame o) R[o] ≡ o
(Frame Frame Appl)

R1[R2[e1 e2]] ≡ R1[R2[(R1[R2[e1]]) (R1[R2[e2]])]]
(Frame Let) R[let x = e1 in e2] ≡ let x = R[e1] in R[e2]
(Frame Frame) R1 ⊇ R2 =⇒ R1[R2[e]] ≡ R2[e]
(Frame Frame Frame)

R1[R2[R3[e]]] ≡ (R1∩R2)[R3[e]]
(Frame Frame Grant)

R1[R2[grant R3 in e]] ≡ (R1∪R3)[R2[grant R3 in e]]
(Frame Grant)

R1[grant R2 in e] ≡ R1[grant R1∩R2 in e]
(Frame Grant Frame) R1 ⊇ R2 =⇒

R1[grant R2 in R3[e]] ≡ R1[R3[grant R2 in e]]
(Frame Grant Test) R1 ⊇ R2 ⊇ R3 =⇒

R1[grant R2 in test R3 then e1 else e2] ≡
R1[grant R2 in e1]

(Frame Test Then) R1 ⊇ R2 =⇒
R1[test R2 then e1 else e2] ≡
test R2 then R1[e1] else R1[e2]

(Frame Test Else) ¬(R1 ⊇ R2) =⇒
R1[test R2 then e1 else e2] ≡ R1[e2]

(Grant ?) grant ? in e ≡ e



(Grant o) grant R in o ≡ o
(Grant Appl) grant R in (e1 e2) ≡

grant R in ((grant R in e1) grant R in e2)
(Grant Let) grant R in (let x = e1 in e2) ≡

let x = (grant R in e1) in (grant R in e2)
(Grant Grant)

grant R1 in grant R2 in e ≡ grant R1∪R2 in e
(Grant Frame) grant R1 in R2[e] ≡ grant R1∩R2 in R2[e]
(Grant Frame Grant)

grant R2 in R1[grant R2 in e] ≡ R1[grant R2 in e]

(Test ?) test ? then e1 else e2 ≡ e1

(Test Refl) test R then e else e ≡ e
(Test ∪) test R1∪R2 then e1 else e2 ≡

test R1 then (test R2 then e1 else e2) else e2

(Test Grant) test R then e1 else e2 ≡
test R then (grant R in e1) else e2

(Eq Fail Rator) fail e ≡ fail
(Eq Fail Rand) v fail ≡ fail

Derived equations

(Let Beta) let x = v in e ≡ e{x←v}
(Frame Dup) R[R[e]] ≡ R[e]
(Frame Appl) R[e1 e2] ≡ R[R[e1] R[e2]]
(Frame Frame ∩) R1[R2[e]] ≡ (R1∩R2)[R2[e]]
(Frame Frame Test Else) ¬(R1 ⊇ R3) =⇒

R1[R2[test R3 then e1 else e2]] ≡ R1[R2[e2]]

Proposition 1. The equations in the preceding table are
derivable within the equational theory.

The λsec-calculus extends Plotkin’s call-by-value λv; ac-
cordingly, we retain βv and ηv equations, here named (Fun
Beta) and (Fun Eta). As in Plotkin’s calculus, the following
more general laws are unsound: (λx.e) e′ ≡ e{x←e′} and
x /∈ fv(e) =⇒ λx.e x ≡ e. We also have the standard monad
laws for let from Moggi’s computational λ-calculus [22], here
named (Let Beta), (Let Eta), and (Let Let).

Specific rules manipulate nested security constructors. In
R1[R2[e]], the effect of a grant in e is determined by R2

but not by R1. Therefore, R1[R2[e]] ≡ (R1∩R2)[e] is not
sound in general. Still, (Frame Frame) coalesces two frames
into one when the outer principal dominates the inner, and
(Frame Frame Frame) unconditionally coalesces three frames
into two. Rules (Frame Let) and (Grant Let) are limited
forms of the more general equations R[e1 e2] ≡ R[e1] R[e2]
and grant R in (e1 e2) ≡ (grant R in e1) (grant R in e2),
which are not sound. Rule (Frame Frame Appl) pushes dou-
bly nested frames into applications.

When the enclosing permission modifiers are available,
the outcome of a grant may be determined, independently
of the enclosing context. We obtain partial commutativity
laws (Frame Grant), (Grant Frame), (Frame Grant Frame),
(Grant Frame Grant). Similarly, the outcome of a test may
be determined. Regarding (Frame Test Else), if the princi-
pal R1 cannot access the resource R2, testing for that re-
source must fail. On the other hand, R1 ⊇ R2 does not
imply R1[test R2 then e1 else e2] ≡ R1[e1], because the call-
ing context may not have been granted R2. A corollary of
(Frame Grant) and (Grant ?) is the rule R1 ∩ R2 = ? =⇒
R1[grant R2 in e] ≡ R1[e]. If the principal R1 cannot access
the resources R2, it is futile for code framed by R1 to try to
grant R2.

Using bisimulation proof techniques discussed in the next
section, we can show the equational theory to be sound with
respect to contextual equivalence.

Theorem 1. If e ≡ e′ then e ' e′.

We cannot expect the converse, completeness with respect
to contextual equivalence. The set of provable equations e ≡
e′ is recursively enumerable whereas the set of contextual
equivalences e ' e′ is not.

Still, we do obtain a limited completeness result with re-
spect to the security-indexed reduction semantics. To state
the theorem, we introduce security-setters, CS

D(·), evaluation
contexts that set the static and dynamic permissions within
the context to S and D, respectively. More precisely, when
running CS

D(e) with arbitrary permission sets S′ and D′, the
expression e runs with permission sets S and D.

Security-setters

CS
D(·) ∆

= D[grant D in S[·]] where D ⊆ S

Theorem 2. If e →S
D e′ then CS

D(e) ≡ CS
D(e′).

The proof shows there are sufficient equations to distribute
information about the security context to where it is needed
to justify reduction steps; indeed, the proof prompted the
discovery of various equations. If we view the equational
theory as a new axiomatic semantics of λsec, the theorem
shows that the reduction relation is a correct algorithm for
computing certain equations.

4.2 Basic Applications
In addition to justifying contextual equivalences mentioned

in Section 5, we can apply the theory as follows.

Framing versus Currying. As illustrated in example (8),
the framing translation of Section 2.3 yields multiple nested
frames when applied to functions with multiple arguments.
Using (Frame o), we can discard these duplicate frames:

R[[λxy.e]]
∆
= λx.R[λy.R[R[[e]]]] ≡ λxy.R[R[[e]]]

Hence, we can choose the latter form as a more efficient
translation when dealing with multiple arguments (or more
generally with functions that have multiple entry points).

Shortening Stack Inspections. In typical implementa-
tions of stack inspection, permissions are tested on demand,
with a runtime cost that grows linearly with the depth of
the stack. When the same permissions are frequently tested,
it may be worth testing those permissions in advance, then
granting them, so that all further tests succeed faster. In-
deed, this is a recommended idiom for optimizing programs
that perform frequent checks in the CLR [20].

In the theory, we can use (Test Grant) to justify this kind
of program transformations by deriving the equation:

e ≡ test R then (grant R in e) else e

Normal Forms for Security-Modifiers. We say that
an evaluation context is a security-modifier when it is built
using one or more frames and any number of grants. Using
the equational theory, we can systematically simplify such
contexts. (We lift the relation ≡ pointwise from expressions
to contexts seen as functions: C ≡ C′ when for all e we have
C(e) ≡ C′(e).)



Proposition 2. For every security-modifier C, there exist
unique permission sets D ⊆ A ⊆ R ⊆ S such that

C ≡ grant A in R[S[grant D in (·)]]
Informally, D collects the dynamic permissions always

present in (·), A collects the permissions present when stat-
ically available in the enclosing context, R collects the per-
missions present when dynamically available in the enclos-
ing context, and S collects the permissions present when
self-granted.

These contexts summarize the security content of arbi-
trary slices of the stack; they may be used to rearrange
stacks at runtime. The security-setter contexts CS

D(·) used
in Theorem 2 are a special case. The two forms are equiva-
lent only when A = R = D, that is, when C does not depend
on its environment.

4.3 Proof Technique: Applicative Bisimilarity
As usual, the quantification over arbitrary contexts in the

definition of contextual equivalence makes it cumbersome
to apply the definition directly when proving equivalences.
In this section, we present a secondary equivalence, a form
of Abramsky’s applicative bisimilarity [2], that avoids any
quantification over contexts, and hence is easier to estab-
lish. We can show that bisimilarity is a congruence relation
using Howe’s method [15], and hence that it coincides with
contextual equivalence. Therefore, we can use bisimulation
arguments to establish contextual equivalences. We use this
technique to prove Theorem 1.

Two closed expressions are applicatively bisimilar if, given
any static and dynamic permissions, S and D, whenever
one expression reduces to an outcome, so does the other,
and moreover, the two outcomes match in the sense that
either (1) both are failures, or (2) both are abstractions such
that when they receive identical values they are themselves
applicatively bisimilar.

We formally define applicative bisimilarity by the follow-
ing fairly standard series of definitions. The novelty rela-
tive to previous versions of applicative bisimilarity is the
quantification over static and dynamic permissions; without
this quantification, we would lose congruence with respect
to frames and grants. For several papers discussing applica-
tive bisimilarity, and related techniques, see the book edited
by Gordon and Pitts [12].

• Let e ⇓S
D o if and only if both D ⊆ S and e(→S

D)∗o.

• An applicative simulation is a relation S on closed ex-
pressions such that e1 S e2 implies:

(1) if e1 ⇓S
D fail then e2 ⇓S

D fail ;

(2) if e1 ⇓S
D λx.f1 then there is λx.f2 such that e2 ⇓S

D

λx.f2 and for every closed value v, f1{x←v} S
f2{x←v}.

• An applicative bisimulation is a relation S such that
both S and S−1 are applicative simulations.

• Let ground applicative bisimilarity, ∼, be the great-
est applicative bisimulation, that is, the union of all
applicative bisimulations.

• Let (applicative) bisimilarity, ∼◦, be such that e ∼◦ e′

if and only if eσ ∼ e′σ for all substitutions σ such that
σ = {x1←v1} · · · {xn←vn} for some closed v1, . . . , vn

where {x1, . . . , xn} = fv(e e′).

We prove congruence by Howe’s method. The idea is to
construct an auxiliary relation, the congruence candidate,
that clearly includes bisimilarity and is a congruence. By
showing that the congruence candidate is a bisimulation, it
follows that it is included in bisimilarity, and therefore the
two are one. Hence, we obtain:

Theorem 3. Bisimilarity is a congruence.

Given congruence, the identity of contextual equivalence
and applicative bisimilarity follows easily. The interesting
step in the proof is to show that contextual equivalence is
an applicative bisimulation.

Theorem 4. Bisimilarity equals contextual equivalence.

Some (though not all) of the equations of Section 4.1 are
justified by Theorem 4 in combination with the following
simple proof principle. It is justified by a bisimulation ar-
gument. Using this proposition is considerably simpler than
attempting direct proofs of contextual equivalence.

Proposition 3. For any expressions e1 and e2, e1 ∼◦ e2 if
for all D and S such that D ⊆ S, and for all substitutions σ
sending variables to closed values with dom(σ) = fv(e1 e2)
and for all o, we have e1σ ⇓S

D o ⇐⇒ e2σ ⇓S
D o.

We can show that security-setting contexts CS
D(·) relate

top-level and security-indexed evaluation in the sense that
in general CS

D(e) ⇓ o ⇐⇒ e ⇓S
D o. Therefore, this proof prin-

ciple can be read as a simple context lemma [21] reducing
proofs of contextual equivalence to the consideration of a
limited set of contexts.

5. PROGRAM TRANSFORMATIONS
We consider two categories of program transformations.

One may try to optimize the use of permissions and stack
inspections to reduce their runtime costs; such optimizations
are studied in the literature, and illustrated in Section 4.1.
Alternatively, one may try to carry over standard optimiza-
tions to a setting with stack inspection. The examples given
below suggest that this requires some care, even for simple
optimizations. As can be expected, it is important (and
hard) to effectively combine both kinds of optimizations.
We largely ignore this issue, and instead establish the cor-
rectness of individual transformations.

Runtime behaviour is complicated by the application of a
security policy. We may consider program transformations
in different situations:

(1) Seen from the front-end compiler (usually in charge
of performing global optimizations), optimizations op-
erate before the framing translation, so their correct-
ness must be assessed in every context after framing
R[[(·)]], for every principal R. One may also consider
cross-module optimizations such that R varies.

(2) From the JIT compiler viewpoint, optimizations op-
erate on expressions obtained by framing; this gives
structural guarantees, such as the presence of a frame
in every function.

(3) For later optimizations, such as runtime optimizations,
one can no longer assume all expressions are obtained
by framing.



In case (1), we are considering equations before framing,
so we have to lift contextual equivalence, assuming a sin-
gle, uniform but unknown frame. Accordingly, we introduce
front-end equivalence, e [[']] e′, defined as follows.

Front-end equivalence

e [[']] e′ if and only if for all R, R[[e]] ' R[[e′]].

5.1 Function Inlining
Code inlining is a fundamental program transformation,

used by most global program optimizations.
Informally, inlining is problematic when it merges several

frames that may have different permissions at runtime. For
instance, when the caller and the inlined code have different
static permissions, the inlined code is run with its caller’s
permissions. This effectively rules out cross-module inlining
prior to setting the security policy.

In the following, we inline a function with principal R; we
let D(·) abbreviate the context let h = R[[λx.e]] in C(·) and
assume a preliminary renaming to prevent variable captures.
Inlining of framed code may be described by the equation

D(h v) 7−→ D(R[[e]]{x←v}) (9)

that transforms a function call hv into an inlined copy of the
body e of h with v taking place of the formal parameter x—
and thereby discards the inner frame. This differs from the
literal inlining justified by equation (Fun Beta):

D(h v) ≡ D(R[[λx.e]] v)
∆
= D((λx.R[R[[e]]]) v)

≡ D(R[ R[[e]]{x←v}] ) (10)

This is correct in λsec, but leaves the frame R[·] around
inlined code. Conversely, (9) may or may not be a contextual
equivalence, depending on the context D.

As a consequence, literal inlining before framing (as per-
formed by a source compiler) is also problematic, even if
λx.e and v have the same principal. In the case v = R[[w]],
an instance of (9) is

e0
∆
= let h = R[[λx.e]] in R[[h w]]

7−→ e1
∆
= let h = R[[λx.e]] in R[[e{x←w}]]

Again, this transformation is not generally correct. Consider
the inlined code e = grant R in test R then ok else fail .
Assuming R 6= ?, we have ?[e0] ⇓ ok versus ?[e1] ⇓ fail .
In contrast, we do have

R[[let h = λx.e in h w]] ' R[[let h = λx.e in e{x←w}]]
because our encoding of let, followed by framing, introduces
an extra frame R[·] on both sides of the equation, which
enable us to apply equation (Frame Frame).

We have a more general correctness result for inlining be-
fore framing, which justifies a limited form of (9):

Lemma 1 (Local Inlining). For all expressions e, values w,
and contexts B in the frameless λsec, we have

let h = λx.e in B(h w) [[']] let h = λx.e in B(e{x←w})

5.2 Tail Call Elimination
Tail call elimination is a useful optimization which also

affects the structure of the stack. Instead of building a new

frame for the last call in a function, the optimization over-
writes the current frame so that the callee directly returns to
the caller’s caller. In the CLR, for instance, this may occur
when the call is annotated as “tail callable” in the code [8],
and the decision is made by the JIT compiler according to
the security policy.

Informally, optimizing a tail call may create two problems:
an untrusted caller may thereby remove its tracks from the
calling stack; less importantly, perhaps, a trusted caller may
inadvertently cancel permissions it has just granted. For
these reasons, most implementations of stack inspection dis-
allow or restrict tail calls. Various workarounds have been
proposed [6, 28].

In our model, we reflect tail call elimination as a runtime
transformation just before the call, rather than a specific
language construct:

R[v w] 7−→ v w (11)

in some evaluation context or, more generally for callers that
grant permissions, R[grant S in v w] 7−→ v w. As in Sec-
tion 2, we interpret (Red Frame) reduction steps as popping
a runtime frame from the evaluation stack. With an ordi-
nary call, the frame R is kept until vw completes, whereas it
is immediately discarded with the tail call optimization. For
instance, if the callee is of the form v = λx.S[e], compare:

R[v w] → R[S[e{x←w}]] ordinary call
R[v w] 7−→→ S[e{x←w}] optimized call

As with inlining, a frame is erased, but one level deeper in
the stack. Clearly, (11) may not preserve contextual equiv-
alence: we can formulate the two problems above as inequa-
tions. First, with examples (4) and (5) of Section 3, we have:

System[Applet[displayFile “secrets”]]

7−→ System[displayFile “secrets”]

and the permission check fails only in the first expression,
leading to different outcomes. Second, with example (6)
from Section 3, we have

Applet[readVersion ok ]

→ Applet[System[grant {fileIO} in readFile “version”]]

7−→ Applet[readFile “version”]

and the latter expression fails instead of returning the string
“Build 2601”.

Fortunately, tail call elimination is actually correct in most
common cases. For instance:

• Assume the callee has at most the static permissions
of the caller, that is, v = λx.S[e] with S ⊆ R. Then,
we can prove R[v w] ' v w using rules (Fun Beta) and
(Frame Frame) from Section 4.1. In particular, any
tail call within the same component can be optimized
as long as the caller does not grant permissions.

• Even if the caller grants permissions T , and as long
as both the static permissions of the callee and the
granted permissions are statically given to the caller
(T ∪ S ⊆ R), the runtime may still be able to copy
the grant to the new frame. With the same nota-
tions, let v′ be v with the same additional grant (v′ =
λx.S[grant T in e]). Similarly, we can prove the equa-
tion R[grant T in vw] ' v′w using (Fun Beta), (Frame
Grant Frame), and (Frame Frame).



6. KEEPING TRACK OF DEPENDENCIES
Informally, stack inspection is a mechanism that prevents

untrusted code from causing harm. However, it is surpris-
ingly hard to state a useful theorem that captures this intent
for a general class of trusted and untrusted code. We give it
a try, and also explore variants of the operational semantics
that yield stronger, easier-to-explain theorems. Our results
are meant to illustrate these semantics, rather than provide
the most general statements.

6.1 What is Guaranteed by Stack Inspection?
A first problem is that there is no generic notion of “some-

thing bad happens”. To this end, we re-interpret failures
(fail) as security failures, rather than security exceptions.
That is, we define “e does dangerous things” as e ⇓ fail .

In the following, S ⊆ P represents an upper bound on the
permissions effectively given to untrusted code. We intro-
duce syntactic restrictions required in the results below, for
any code (both trusted and untrusted).

Syntactic requirements

An expression e is safe against S when
(1) grant R in e′ occurs only with R ⊆ S.
(2) fail occurs only as test R then fail else e′ with R 6⊆ S.

Conservatively, fail in (2) stands for any potentially danger-
ous code protected by R, such as primRF in the examples,
and (1) rules out any dangerous grant.

Theorem 5 (Sandbox). If e is safe against S, then S[e]
does not fail.

This basic result states that applets do nothing danger-
ous on their own, but does not capture the behaviour of a
system that runs S[e] in a more trusted environment, as il-
lustrated in Section 3. Rather, it describes a sandbox policy
with maximal permissions S. Such a policy can be enforced
without the complications of dynamic stack inspections, us-
ing the constant set of permissions S or relying on types [18].

Next, we focus on trusted code that discards any un-
trusted result. With this discipline, applet code framed
with S should not affect any code protected by permis-
sions beyond S. The next theorem formalizes this reasonable
property. Its statement relies on a partial erasure operator:

Partial erasure of untrusted code

Let S ⊆ P. The function on terms (·) \S is defined by
- (S[e]; e′) \S ∆

= ok ; (e′ \S)
- (·) \S otherwise commutes with all constructors.

The intent of the erasure is to make independence from
the untrusted subterms syntactically obvious. We erase code
that is framed with the permission set S exactly. However,
we can apply our theorems several times with different S pa-
rameters to erase more code, and conversely we can add an
extra permission to S and to some S-frames for a more se-
lective erasure.

In general, erasure and evaluation do not commute, be-
cause diverging or failing computations may be erased. In
our setting, we have:

Theorem 6 (Protection from untrusted procedures).
Assume e is safe against S. If e ⇓ o, then e \S ⇓ o \S.

Hence, if e ⇓ fail , then also e\S ⇓ fail on its own. Informally,
security failures do not depend on any untrusted code that is
erased. As can be expected from our examples, the theorem
would not hold for a more general erasure operator that
may discard untrusted expressions whose results are actually
used by trusted code.

The theorem does not distinguish between trusted and
untrusted code. Indeed, an erased frame S[e] may contain
both trusted and untrusted parts; such frames naturally oc-
cur by reduction from the initial configurations obtained by
framing, described in Section 2.3.

Due to its strict syntactic requirements, Theorem 6 may
not immediately apply to these configurations, but we can
use our equational theory to rearrange them. Specifically:

(1) As a prerequisite, both trusted and untrusted code
must be safe against S. In the case untrusted code con-
tains grants of permissions not in S, one can sometimes
apply equations (Frame Grant) and (Grant Frame) to
lower those grants and meet requirement (1).

(2) The theorem is useful inasmuch as untrusted frames
are discarded. Hence, S frames should be moved into
contexts such that (·) \S erases them, when possible.

Typically, after framing untrusted code, S frames ap-
pear under abstractions rather than in contexts (·); e.
Consider, for instance, an expression that links trusted
code (z e); e′ and untrusted code S[[v]] = λx.S[e′′] for
some x 6∈ fv(e e′). We have:

(λz.(z e); e′) λx.S[e′′] ≡ ((λx.S[e′′]) e); e′
∆
= (let x = e in S[e′′]); e′

≡ let x = e in (S[e′′]; e′)

(·) \S let x = e \S in (ok ; e′\S)

≡ (λz.(z e); e′) \S λx.ok

applying first equations (Fun Beta) and (Let Let), then
erasing the S frame, and finally applying those equa-
tions again. Thus, we can extend Theorem 6 to a
stronger notion of erasure that embeds this pattern.

(3) After applying the theorem, if there is any residual
untrusted code, such as functions whose results are
not discarded, some more equational reasoning may
be required to assess their effect on the computation.

An interesting approach to obtain similar guarantees (and
to benefit further from stack inspection) is to modify the in-
terface between trusted and untrusted code. For instance,
one can perform a local continuation-passing style trans-
form (CPS) on untrusted functions: whenever the results
of untrusted applets are used in trusted code, one can in-
stead pass the result to a trusted continuation. (While it
is tempting to apply a global CPS, this has little practical
interest, inasmuch as its effective implementation rules out
the stack-based, on demand inspection algorithm.)

For example, if (e1 S[f ]); e2 is modified by CPS-transform
into (λκ.(S[κ f ]; e2)) e1, and as long as the whole expression
is safe against S, we can erase f and apply Theorem 6 to
show that the outcome of the expression does not depend
on f . However, this modification is not a contextual equiv-
alence in λsec.



6.2 Tracking all Call-by-Value Dependencies
To get a better understanding of the limitations of stack

inspection, we now consider alternative operational seman-
tics that keep track of dependencies more systematically.

For simplicity, in the following we only consider λsec with-
out permission grants.

We let w range over framed values, given by the grammar
w ::= v | R[w]. According to the semantics of Section 2,
values and framed values are equivalent, as we can always
discard frames using (Red Frame) or equation (Frame o).

Our first modified semantics keeps track of all dependen-
cies, much like information-flow.

Reduction rules for CBV dependency tracking

(Red Frame), (Ctx Rand), and (Fail Rand) are replaced by:

(Red Frame Rand)
v1 R[w2] →S

D R[v1 w2]

(Ctx Rand W)
e2 →S

D e′2
w1 e2 →S

D w1 e′2

(Red Frame Rator)
R[w1] w2 →S

D R[w1 w2]
(Fail Frame)
R[fail ] →S

D fail
(Fail Rand W)
w fail →S

D fail

Other rules are unchanged from Section 2.2: (Red Appl),
(Red Test), (Ctx Rator), (Ctx Frame), (Fail Rator).

Rules (Red Frame Rand), (Red Frame Rator), and (Fail
Frame) refine rule (Red Frame) with three disjoint cases.
The net effect of the refined semantics is to accumulate ev-
ery frame that ever occurs in evaluation context, instead of
discarding frames after local evaluation.

Pragmatically, this variant is much harder to implement
lazily: stack inspection must be supplemented with a mech-
anism that captures the current security environment and
attaches it to any value. Conversely, a security-passing style
implementation of the λ-calculus, at least, could easily ac-
commodate this variation.

Rules (Red Frame Rand) and (Red Frame Rator) for frames
correspond to the two operational rules for labels in the
call-by-value semantics given by Abadi, Lampson, and Lévy
in [1, section 3.7]. Their semantics also strictly keep track
of dependencies, although their intent is quite different.

With our modified semantics, we have a stronger, simpler
variant of Theorem 6. We redefine the erasure operator as
follows: S[e]\S = S[ok ], and (·)\S commutes with all other
constructors. Hence, we uniformly erase untrusted code,
independently of its usage.

Theorem 7 (Independence from untrusted code).
Assume e is safe against S. With the dependency tracking
semantics above, e ⇓ fail ⇐⇒ e \S ⇓ fail and e ⇓ w ⇐⇒
e \S ⇓ w \S for any extended value w not framed by S.

The first claim of the theorem asserts that failures in e do not
depend on any S-framed code. Less importantly, perhaps,
the second claim describes computations that do not use
S-framed code.

6.3 Two Intermediate Tracking Semantics
Starting from the semantics for CBV dependency track-

ing, we can give up the preservation of convergence and get a
coarser semantics by (1) discarding rule (Red Frame Rand),
and (2) generalizing (Red Appl) to substitute framed values.
This is similar in spirit to the first labelled semantics of [1],
where labels are parts of values.

Reduction rules with framed values

(Red Appl) is replaced by
(Red Appl W)
(λx.e) w →S

D e{x←w}
Other rules are unchanged from Sections 2.2 and 6.2:
(Ctx Rator), (Ctx Rand W), (Ctx Frame), (Red Test),
(Red Frame Rator)(Fail Frame)(Fail Rator)(Fail Rand W).

Alternatively, we can obtain a similar semantics without
modifying (Red Appl) by pushing the frame constructors
under abstractions instead of discarding them.

Reduction rules with frame capture in functions

(Red Frame) is replaced by
(Red Frame Fun)
R[λx.e] →S

D λx.R[e]

Other rules are unchanged from Sections 2.2 and 6.2:
(Ctx Rator), (Ctx Rand), (Ctx Frame), (Red Appl),
(Red Test), (Fail Frame), (Fail Rator), (Fail Rand).

These two intermediate semantics model the capture of
the dynamic security environment (here D) that sometimes
occurs in runtimes, for example when preparing the first
call to a new thread. They are weaker than CBV depen-
dency tracking; for instance, the divergence properties of
low-privileged, unused subterms are not taken into account.
For both of these semantics, we have R[λx.e] ' λx.R[e] and
so they are roughly equivalent.

We summarise our semantics variants by considering re-
ductions for the expression e0 = (λx.e) R[λy.f ], from the
coarsest to the most restrictive: standard stack inspection;
stack inspection with frame capture; stack inspection with
framed values; and CBV dependency tracking.

e0
(Red Frame)−−−−−−−−−−−→ (Red Appl)−−−−−−−−−−→ e{x←λy.f}

e0
(Red Frame Fun)−−−−−−−−−−−−−−→ (Red Appl)−−−−−−−−−−→ e{x←λy.R[f ]}

e0
(Red Appl W)−−−−−−−−−−−−→ e{x←R[λy.f ]}

e0
(Red Frame Rand)−−−−−−−−−−−−−−−→ (Red Appl)−−−−−−−−−−→ R[e{x←λy.f}]

In order to get an adequate theorem for the intermediate
semantics, we adapt again the erasure operator, as follows.
To preserve convergence, we use a closed value t instead
of ok such that λ .t ' t. We let S[e] \S = t, and let (·) \S
commute with all other constructors.

Theorem 8 (Protection from untrusted code).
Assume e is safe against S. With any of the two semantics
above, we have e ⇓ fail =⇒ e \S ⇓ fail .

7. CONCLUSIONS AND RELATED WORK
We began the paper by casting doubt on the claims that

stack inspection (1) allows easy and precise statement of
security requirements and (2) is transparent for most pro-
grammers. To be clear, we are not denying the entirety of
these claims; after all, stack inspection has been an effective
security tool in runtimes like the JVM or the CLR.

Instead, we are probing its limitations. The limits of (1)
appear in Sections 3 and 6 as we model complex interac-
tions between trusted and untrusted code. The limits of
(2) appear as we investigate standard program transforma-
tions in Sections 4 and 5. Although we use a formalism,



we attempted throughout also to explain the issues in im-
plementation terms. Inevitably, we leave aside important
issues in the details of the implementations.

As well as casting doubt, the paper casts light on the
semantics of stack inspection. The equational theory in
Section 4.1 allows us to reason carefully about compiler
transformations. The variations in Section 6 strike differ-
ent balances between security requirements and their imple-
mentation cost. Still, these variations are exploratory, and
so far purely theoretical. Implementation experiments re-
main future work. To the best of our knowledge, ours is the
first work to analyse contextual equivalence in the presence
of stack inspection, or to attempt to formulate high-level
program-independent guarantees.

Wallach, Appel, and Felten [30] provide an alternative
semantics, security-passing style, that makes explicit the se-
curity environment as an extra argument passed to every
function; they clearly separate the security intent from its
implementation mechanism; they also present a semantics in
terms of authentication logic. Our security-indexed seman-
tics amounts to a direct account of security-passing style.

Besson, Jensen, Le Métayer, and Thorn [16, 7] propose
a logic for security properties of the control flow graph of
a program. Their strategy is to identify specific properties,
construct a flow graph, and apply a model-checker. Their
logic can express the behaviour of stack inspection as a for-
mula. Their work is notable for its success in proving inter-
esting program-dependent guarantees.

Erlingsson and Schneider [9] implement two formulations
of stack inspection by constructing an inlined reference mon-
itor. They informally outline shortcomings of stack inspec-
tion with respect to thread creation and method inheritance.

Pottier, Skalka, and Smith [27, 29] introduce the λsec-
calculus in their work on avoiding dynamic stack inspections
by type-based static analysis. Their types express detailed
information on permissions, which may be useful in a typed
equational theory.

Banerjee and Naumann [3] develop an eager denotational
semantics for a λ-calculus similar to λsec, and show its cor-
respondence to a lazy operational semantics. They present
a static analysis, similar to but more abstract than the anal-
ysis of Pottier, Skalka, and Smith, that can safely eliminate
certain stack inspections. They identify program transfor-
mations validated by their denotational semantics; this is
the only other work we know of to analyse program equiv-
alence in the presence of stack inspection. In subsequent
work, Banerjee and Naumann extend their denotational se-
mantics to model stack inspection in a Java-like class-based
language [4]. An abstraction theorem for their semantics is
the basis for ongoing work on proving security properties of
programs.

Karjoth [17] gives a detailed operational semantics of the
stack inspection mechanism in Java 2, but does not consider
the effect of stack inspection on code optimisations.

Bartoletti, Degano, and Ferrari [5] analyse bytecode to
approximate the set of permissions effectively granted or
denied at run-time, and use this information to optimize
stack inspection mechanisms.

We discussed in Section 6 the view that stack inspec-
tion approximates a flow analysis. Several authors consider
flow analyses for security. For instance, Ørbæk and Pals-
berg model trust in a pure λ-calculus supplemented with
trust, distrust, and check constructors. Trust and distrust

annotations remain attached to values, much like labels or
S-frames in Section 6.2, but they can cancel one another,
with for instance trust (distrust e) → trust e. Their se-
mantics does not fix a particular evaluation strategy. They
provide a type system that rules out erroneous expressions
check (distrust e). Myers [24] also proposes a flow analy-
sis for protecting privacy and integrity properties in Java
programs.

Grossman, Morrisett, and Zdancewic [13] model multi-
ple principals within a typed λ-calculus, with a reduction
semantics similar to the tracking semantics of Section 6.
They are not concerned with access control, but prove vari-
ous safety and abstraction properties.
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APPENDIX: SEMANTICS WITH EXPLICIT
STACK INSPECTION
Pottier, Skalka, and Smith [27] give two different seman-
tics for λsec. The first semantics gives an explicit account
of stack inspection: it closely models the complex inspec-
tion mechanism that occurs on demand when testing per-
missions, as an inductive predicate on the current evalua-
tion context. Still, modulo minor syntactic differences, we
can prove that our top-level reduction relation equals their
reduction relation with stack inspection (Corollary 1). In
short, our definition is equivalent but more abstract.

Their second semantics is by translation to a standard λ-
calculus plus primitive operations on permission sets. This is
the security-passing style transformation proposed by Wal-
lach, Appel, and Felten [30]. Our security-indexed opera-
tional semantics represents this style directly rather than
by translation; the dynamic permissions set D in →S

D is es-
sentially the additional parameter in security-passing style.

We recall on the next page the first semantics given in [27]
for our variant of λsec. The semantics is given as reduction
steps in evaluation context. Crucially, permission tests de-
pend on a stack-inspection predicate that takes the current
context as a parameter. (Evaluation contexts E are defined
in Section 2.2.) For simplicity, we describe stack inspection
independently for each requested permission and aggregate
the results in (SI Test).

Next, we relate this semantics to the one given in Sec-
tion 2. The first lemma states that the sets S and D passed
in reductions→S

D collect the static and dynamic permissions
that can be read on demand from the stack, in order to pro-
cess a permission test. As a corollary, we obtain agreement
between the two semantics.

Lemma 2 (Stack Inspection vs Security Passing).
Let E be an evaluation context. Let S = {p | E `s p} and
D = {p | E ` p}. We have E(e) → E(e′) ⇐⇒ e →S

D e′

Corollary 1 (Agreement). e
w−→ e′ ⇐⇒ e → e′
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